This repository has been archived by the owner on Jul 7, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpipeline_caller.py
executable file
·180 lines (128 loc) · 6.51 KB
/
pipeline_caller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/python3
#-*- coding: utf-8 -*-
name = 'ITU Turkish NLP Pipeline Caller'
__copyright__ = '__copyright__ 2015-2018 Maintainers'
__license__ = 'GPLv2\n\
This program is free software; you can redistribute it and/or \
modify it under the terms of the GNU General Public license version 2 \
as published by the Free Software Foundation. \
This program is distributed in the hope that it will be useful, \
but WITHOUT ANY WARRANTY; without even the implied warranty of \
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the \
GNU General Public license for more details. \
You should have received a copy of the GNU General Public license \
along with this program. If not, see <http://www.gnu.org/licenses/>.'
author0 = ('Ferit Tunçer', '[email protected]')
author1 = ('Ülgen Sarıkavak', '[email protected]')
website = 'https://github.com/ferittuncer/ITU-Turkish-NLP-Pipeline-Caller'
version = '3.0.0'
import argparse
import locale
import os
import re
import time
import urllib.parse
import urllib.request
TOKEN_PATH = "pipeline.token"
TOKEN_ENVVAR = "pipeline_token"
DEFAULT_ENCODING = locale.getpreferredencoding(False)
DEFAULT_OUTPUT_DIR = 'output'
class PipelineCaller(object):
API_URL = 'http://tools.nlp.itu.edu.tr/SimpleApi'
PIPELINE_ENCODING = 'UTF-8'
DEFAULT_SENTENCE_SPLIT_DELIMITER_CLASS = '[\.\?:;!]'
def __init__(self, tool='pipelineNoisy', text='example', token='invalid', processing_type='whole'):
self.tool = tool
self.text = text
self.token = token
self.processing_type = processing_type
self.sentences = []
self.words = []
def call(self):
if self.processing_type == 'whole':
params = self.encode_parameters(self.text)
return self.request(params)
if self.processing_type == 'sentence':
results = []
self.parse_sentences()
for sentence in self.sentences:
params = self.encode_parameters(sentence)
results.append(self.request(params))
return "\n".join(results)
if self.processing_type == 'word':
results = []
self.parse_words()
for word in self.words:
params = self.encode_parameters(word)
results.append(self.request(params))
return "\n".join(results)
def parse_sentences(self):
r = re.compile(r'(?<=(?:{}))\s+'.format(PipelineCaller.DEFAULT_SENTENCE_SPLIT_DELIMITER_CLASS))
self.sentences = r.split(self.text)
if re.match('^\s*$', self.sentences[-1]):
self.sentences.pop(-1)
def parse_words(self):
self.parse_sentences()
for sentence in self.sentences:
for word in sentence.split():
self.words.append(word)
def encode_parameters(self, text):
return urllib.parse.urlencode({'tool': self.tool, 'input': text, 'token': self.token}).encode(self.PIPELINE_ENCODING)
def request(self, params):
response = urllib.request.urlopen(self.API_URL, params)
return response.read().decode(self.PIPELINE_ENCODING)
def get_token(filename=TOKEN_PATH, envvar=TOKEN_ENVVAR):
"""
Returns pipeline_token for API
Tries local file first, then env variable
"""
if os.path.isfile(filename):
with open(filename) as token_file:
token = token_file.readline().strip()
else:
token = os.environ.get(envvar)
if not token:
raise ValueError("No token found.\n"
"{} file doesn't exist.\n{} environment variable is not set.".format(filename, envvar))
return token
def get_output_path(output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
filepath = os.path.join(output_dir, 'output{0:.0f}'.format(time.time()))
return filepath
def conditional_info(to_be_printed, quiet):
if quiet == 0:
print(to_be_printed)
def parse_arguments():
# epilog section is free now
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description='ITU Turkish NLP Pipeline Caller v{}\n\n Maintained by:\n {} {}\n {} {}\n\n {}'.format(version, *author0, *author1, website),
add_help=True
)
parser.add_argument('filename', help='relative input filepath')
parser.add_argument('-p', '--processing-type', dest='processing_type', choices=['word', 'sentence', 'whole'], default='whole', help='Switches processing type, default is whole text at once. Alternatively, word by word or sentence by sentence processing can be selected.')
parser.add_argument('-q', '--quiet', dest='quiet', action='store_true', help='no info during process')
parser.add_argument('--tool', dest='tool', default='pipelineNoisy', choices=['ner', 'morphanalyzer', 'isturkish', 'morphgenerator', 'tokenizer', 'normalize', 'deasciifier', 'Vowelizer', 'DepParserFormal', 'DepParserNoisy', 'spellcheck', 'disambiguator', 'pipelineFormal', 'pipelineNoisy'], help='Switches pipeline tool which is \'pipelineNoisy\' by default')
parser.add_argument('-e', '--encoding', dest='encoding', metavar='E', default=DEFAULT_ENCODING, help='force I/O to use given encoding, instead of default locale')
parser.add_argument('-o', '--output', metavar='O', dest='output_dir', default=DEFAULT_OUTPUT_DIR, help='change output directory, \'{}\' by default'.format(DEFAULT_OUTPUT_DIR))
parser.add_argument('--version', action='version', version='{} {}'.format(name, version), help='version information')
parser.add_argument('--license', action='version', version='{}'.format(__license__), help='license information')
return parser.parse_args()
def main():
args = parse_arguments()
with open(args.filename, encoding=args.encoding) as input_file:
text = input_file.read()
output_path = get_output_path(args.output_dir)
token = get_token()
conditional_info('[INFO] Pipeline tool: {}'.format(args.tool), args.quiet)
conditional_info('[INFO] File I/O encoding: {}'.format(args.encoding), args.quiet)
conditional_info('[INFO] Output destination: .{}{}'.format(os.sep, output_path), args.quiet)
start_time = time.time()
caller = PipelineCaller(args.tool, text, token, args.processing_type)
with open(output_path, 'w', encoding=args.encoding) as output_file:
output_file.write('{}\n'.format(caller.call()))
process_time = time.time() - start_time
print("[DONE] It took {0:.0f} seconds to process whole text.".format(process_time))
if __name__ == '__main__':
main()