-
Notifications
You must be signed in to change notification settings - Fork 437
/
IntroToHaskell.hs
299 lines (209 loc) · 8.09 KB
/
IntroToHaskell.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
{- ghci command
Start ghci:
prompt>ghci -- or -- prompt> ghci intro.hs
Prelude>:load IntroToHaskell.hs -- load the definitions in IntroToHaskell.hs
Prelude>:r -- reload the previous file.
Prelude> :set +t -- asks for more type information to be displayed.
-}
module Main where
import Data.List -- It should work just inporting List, but...
import Test.QuickCheck -- used for doing random testing of code
l = [1,2,3]
r = foldl (\accumulator i -> i + accumulator) 0 l
{- We can type expressions directly into ghci:
(5+3) - 2
if 5>3 then "Harry" else "Hermione"
5 == 4
-}
-- Overview by Type
-- Base Types
-- Bool
true = True
false = False
ifExpression = if true then 10 else 13
-- Integers
anInt = 2
anIntExpression = 2 * 4
-- Strings (note, String = [Char])
aString :: String -- "::" means "has type"
aString = "Ron Weasley"
-- Real numbers
aFloat = 2.2
-- Simple compound types
-- Tuples
aTuple = (4,5,"Griffendor")
-- Lists
nilList :: [a] -- Lowercase types are type variables.
nilList = [] -- polymorphic type
anIntList = 1 : [2,3,4] -- Infix cons notation (:)
-- Note, ML uses :: for cons and : for "has type".
-- Records
data Person = Person {firstName :: String, lastName :: String}
deriving Show
hg = Person {firstName = "Hermione", lastName = "Granger"}
-- Patterns and Declarations
-- Patterns can be used in place of variables
-- <pat> ::= <var> | <tuple> | <cons> | <record>
--
-- Value declarations
-- <pat = <exp>
myTuple = ("Flitwick", "Snape")
(x,y) = myTuple
myList = [1,2,3,4]
z:zs = myList
-- Let allows us to introduce local declarations
localDecl = let (x,y) = (2,"Snape") in x * 4
-- Functions and Pattern Matching
anonymousFunction = \x -> x + 1 -- Like Lisp lambda, function (...) in Javascript
-- Declaration form:
-- <name> <pat1> = <exp1>
-- <name> <pat2> = <exp2>
-- <name> <pat3> = <exp3>
-- Single-branch function defined using tuple pattern as argument.
f (x,y) = x + y
-- Curried version of f
g x y = x + y
-- Multiple-branch function defined using list pattern as argument.
myLength [] = 0
myLength (x:xs) = 1 + myLength xs
-- Map function on Lists
myMap f [] = []
myMap f (x:xs) = f x : myMap f xs
applyMap = myMap (\x -> x + 1) [1,2,3]
-- More functions on lists.
append([], ys) = ys
append(x:xs, ys) = x : append(xs, ys)
myReverse [] = []
myReverse (x:xs) = (reverse xs) ++ [x]
-- How efficient is reverse?
-- This pattern of writing a related function with an extra "accumulator"
-- is very common in functional programming.
accumReverse xs =
let rev ( [], z ) = z
rev ( y:ys, z ) = rev( ys, y:z )
in rev( xs, [] )
-- List Comprehensions
myData = [1,2,3,4,5,6,7]
twiceData = [2 * x | x <- myData]
twiceEvenData = [2*x| x <- myData, x `mod` 2 == 0]
-- Datatype declarations
-- Type Names and data constructors start with capital letters.
data Color = Red | Yellow | Blue -- Elements of type Color are Red, Yellow, and Blue
deriving Show
-- Data constructors can take arguments
data Atom = Atom String | Number Int
deriving Show
atom1 = Atom "oxygen"
atom2 = Number 8
-- Data declarations can be recursive.
data List = Nil | Cons (Atom,List)
list1 = Nil
list2 = Cons (atom1, list1)
-- Data declarations can be parameterized by type variables
data Tree a = Leaf a | Node (a, Tree a, Tree a)
deriving Show
aTree = Node(4, Node(3, Leaf 1, Leaf 2),
Node(5, Leaf 6, Leaf 7))
-- Functions over datatypes use pattern matching over data constructors to access values:
tsum (Leaf n) = n
tsum (Node(n,t1,t2)) = n + tsum(t1) + tsum(t2)
-- Example: Evaluating Expressions
-- Define datatype of expressions:
data Exp = Var String | Const Int | Plus (Exp, Exp)
deriving Show
-- exampleExp is (x + 3) + y
exampleExp = Plus(Plus(Var "x", Const 3), Var "y")
-- We can also use a case expression to deconstruct values of a datatype:
-- Indentation matters in branches of a case in Haskell.
-- All branches must start at the same column.
exampleCase = case exampleExp of
Var n -> 0
Const n -> 0
Plus(e1,e2) -> 2
-- Suppose we want to write an evaluation function to simplify our expressions
exampleExp2 = Plus(Const 3, Const 2) -- Const 5
exampleExp3 = Plus(Var "x", Plus(Const 2, Const 3)) -- Plus (Var "x", Const 5)
exampleExp4 = Plus(Var "x", Plus(Const 2, Plus (Const 3, Const 4)))
-- Definition of evaluation function:
ev ( Var s) = Var s
ev ( Const n ) = Const n
ev ( Plus ( e1,e2 ) ) =
case ev e1 of
Var s -> Plus( Var s, ev e2)
Const n -> case ev e2 of
Var s -> Plus(Const n, Var s)
Const m -> Const (n+m)
Plus(e3,e4) -> Plus ( Const n, Plus ( e3, e4 ))
Plus(e3, e4) -> Plus( Plus ( e3, e4 ), ev e2)
-- Laziness
-- Haskell is lazy language.
-- Functions and data constructors don't evaulate their arguments until they need them.
-- Programmers can write their own control-flow operators:
cond :: Bool -> a -> a -> a
cond True t e = t
cond False t e = e
-- Why can't programmers write such operations in eager languages?
-- Using laziness
-- "Harry" `isSubString` "Harry Potter"
-- (Putting ticks around a function makes it an infix operator.)
-- (Putting parens around an infix operator makes it a normal function: (+) 3 2 evaulates to 5)
isSubString :: String -> String -> Bool
x `isSubString` s = or [ x `isPrefixOf` t | t <- suffixes s ]
suffixes :: String -> [String]
-- All suffixes of s
suffixes [] = [""]
suffixes (x:xs) = (x:xs) : suffixes xs
-- Another example
-- (or bs) returns True if any of the bs is True
myOr :: [Bool] -> Bool
myOr [] = False
myOr (b:bs) = b || myOr bs
-- Infinte data structures
-- Laziness allows us to use conceptually infinte data structures. Because values
-- are only computed when they are needed, the infinite structure is not materialized
-- (unless the code is looping infinitely..)
-- The haskell notation [n..] generates the infinite sequence of natural numbers starting at n
naturals = [0..]
-- The function 'take n list' returns the first n elements of the list 'list', so
-- first10 is the list [0,1,2,3,4,5,6,7,8,9]
first10 = take 10 naturals
-- primesN is the infite list of primes.
-- It is defined using list comprehension notation.
primesN :: [Int]
primesN = let
sieve(p:xs) = p : sieve [ x | x <- xs, x `mod` p > 0]
in sieve [2..]
-- A lazy paradigm
-- Generate all solutions (a potentially enormous tree)
-- Walk the tree to find the solution you want
nextMove :: Board -> Move
nextMove b = selectMove allMoves
where allMoves = allMovesFrom b
data Board = Board -- Put real definition here
data Move = Move -- Put real definition here
selectMove moves = undefined -- undefined is Haskell function that runs for ever, has type a
allMovesFrom b = undefined -- replace with real definition
-- Testing
-- It is good to write tests as you write code.
-- Printf-style debugging doesn't work in Haskell. Why?
-- You can use ghci as an interactive shell to test code as you write it.
-- The QuickCheck library helps with testing by generating random test data
-- automatically from the type of the function being tested.
-- Consider the function 'eReverse' that reverses a list using an accumulator:
eReverse xs =
let rev ( [], z ) = []
rev ( y:ys, z ) = rev( ys, y:z )
in rev( xs, [] )
-- Define a non-polymorphic type at which to test the function
type TS = [Int]
-- Define property we wish to test:
prop_RevRev :: TS -> Bool
prop_RevRev l = eReverse (eReverse l) == l
-- Run in ghci
test_result= quickCheck prop_RevRev
-- We can fix the function and rerun property checker.
-- Note that quickCheck is a Haskell ** library **. There is no special interaction
-- with ghc or ghci
-- This file can also be compiled, using ghc --make IntroToHaskell.hs
main =
putStrLn "Code snippets from lecture on an Introduction to Haskell. Use ghci IntroToHaskell.hs to play with snippets."