forked from WenmuZhou/PSENet.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·263 lines (229 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# -*- coding: utf-8 -*-
# @Time : 2018/6/11 15:54
# @Author : zhoujun
import cv2
import os
import config
os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu_id
import shutil
import glob
import time
import numpy as np
import torch
from tqdm import tqdm
from torch import nn
import torch.utils.data as Data
from torchvision import transforms
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
from dataset.data_utils import MyDataset
from models import PSENet
from models.loss import PSELoss
from utils.utils import load_checkpoint, save_checkpoint, setup_logger
from pse import decode as pse_decode
from cal_recall import cal_recall_precison_f1
def weights_init(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
# learning rate的warming up操作
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
if epoch < config.warm_up_epoch:
lr = 1e-6 + (config.lr - 1e-6) * epoch / (config.warm_up_epoch)
else:
lr = config.lr * (config.lr_gamma ** (epoch / config.lr_decay_step[0]))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def train_epoch(net, optimizer, scheduler, train_loader, device, criterion, epoch, all_step, writer, logger):
net.train()
train_loss = 0.
start = time.time()
scheduler.step()
# lr = adjust_learning_rate(optimizer, epoch)
lr = scheduler.get_lr()[0]
for i, (images, labels, training_mask) in enumerate(train_loader):
cur_batch = images.size()[0]
images, labels, training_mask = images.to(device), labels.to(device), training_mask.to(device)
# Forward
y1 = net(images)
loss_c, loss_s, loss = criterion(y1, labels, training_mask)
# Backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
loss_c = loss_c.item()
loss_s = loss_s.item()
loss = loss.item()
cur_step = epoch * all_step + i
writer.add_scalar(tag='Train/loss_c', scalar_value=loss_c, global_step=cur_step)
writer.add_scalar(tag='Train/loss_s', scalar_value=loss_s, global_step=cur_step)
writer.add_scalar(tag='Train/loss', scalar_value=loss, global_step=cur_step)
writer.add_scalar(tag='Train/lr', scalar_value=lr, global_step=cur_step)
if i % config.display_interval == 0:
batch_time = time.time() - start
logger.info(
'[{}/{}], [{}/{}], step: {}, {:.3f} samples/sec, batch_loss: {:.4f}, batch_loss_c: {:.4f}, batch_loss_s: {:.4f}, time:{:.4f}, lr:{}'.format(
epoch, config.epochs, i, all_step, cur_step, config.display_interval * cur_batch / batch_time,
loss, loss_c, loss_s, batch_time, lr))
start = time.time()
if i % config.show_images_interval == 0:
if config.display_input_images:
# show images on tensorboard
x = vutils.make_grid(images.detach().cpu(), nrow=4, normalize=True, scale_each=True, padding=20)
writer.add_image(tag='input/image', img_tensor=x, global_step=cur_step)
show_label = labels.detach().cpu()
b, c, h, w = show_label.size()
show_label = show_label.reshape(b * c, h, w)
show_label = vutils.make_grid(show_label.unsqueeze(1), nrow=config.n, normalize=False, padding=20,
pad_value=1)
writer.add_image(tag='input/label', img_tensor=show_label, global_step=cur_step)
if config.display_output_images:
y1 = torch.sigmoid(y1)
show_y = y1.detach().cpu()
b, c, h, w = show_y.size()
show_y = show_y.reshape(b * c, h, w)
show_y = vutils.make_grid(show_y.unsqueeze(1), nrow=config.n, normalize=False, padding=20, pad_value=1)
writer.add_image(tag='output/preds', img_tensor=show_y, global_step=cur_step)
writer.add_scalar(tag='Train_epoch/loss', scalar_value=train_loss / all_step, global_step=epoch)
return train_loss / all_step, lr
def eval(model, save_path, test_path, device):
model.eval()
# torch.cuda.empty_cache() # speed up evaluating after training finished
img_path = os.path.join(test_path, 'img')
gt_path = os.path.join(test_path, 'gt')
if os.path.exists(save_path):
shutil.rmtree(save_path, ignore_errors=True)
if not os.path.exists(save_path):
os.makedirs(save_path)
long_size = 2240
# 预测所有测试图片
img_paths = [os.path.join(img_path, x) for x in os.listdir(img_path)]
for img_path in tqdm(img_paths, desc='test models'):
img_name = os.path.basename(img_path).split('.')[0]
save_name = os.path.join(save_path, 'res_' + img_name + '.txt')
assert os.path.exists(img_path), 'file is not exists'
img = cv2.imread(img_path)
h, w = img.shape[:2]
#if max(h, w) > long_size:
scale = long_size / max(h, w)
img = cv2.resize(img, None, fx=scale, fy=scale)
# 将图片由(w,h)变为(1,img_channel,h,w)
tensor = transforms.ToTensor()(img)
tensor = tensor.unsqueeze_(0)
tensor = tensor.to(device)
with torch.no_grad():
preds = model(tensor)
preds, boxes_list = pse_decode(preds[0], config.scale)
scale = (preds.shape[1] * 1.0 / w, preds.shape[0] * 1.0 / h)
if len(boxes_list):
boxes_list = boxes_list / scale
np.savetxt(save_name, boxes_list.reshape(-1, 8), delimiter=',', fmt='%d')
# 开始计算 recall precision f1
result_dict = cal_recall_precison_f1(gt_path, save_path)
return result_dict['recall'], result_dict['precision'], result_dict['hmean']
def main():
if config.output_dir is None:
config.output_dir = 'output'
if config.restart_training:
shutil.rmtree(config.output_dir, ignore_errors=True)
if not os.path.exists(config.output_dir):
os.makedirs(config.output_dir)
logger = setup_logger(os.path.join(config.output_dir, 'train_log'))
logger.info(config.print())
torch.manual_seed(config.seed) # 为CPU设置随机种子
if config.gpu_id is not None and torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
logger.info('train with gpu {} and pytorch {}'.format(config.gpu_id, torch.__version__))
device = torch.device("cuda:0")
torch.cuda.manual_seed(config.seed) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(config.seed) # 为所有GPU设置随机种子
else:
logger.info('train with cpu and pytorch {}'.format(torch.__version__))
device = torch.device("cpu")
train_data = MyDataset(config.trainroot, data_shape=config.data_shape, n=config.n, m=config.m,
transform=transforms.ToTensor())
train_loader = Data.DataLoader(dataset=train_data, batch_size=config.train_batch_size, shuffle=True,
num_workers=int(config.workers))
writer = SummaryWriter(config.output_dir)
model = PSENet(backbone=config.backbone, pretrained=config.pretrained, result_num=config.n, scale=config.scale)
if not config.pretrained and not config.restart_training:
model.apply(weights_init)
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
model = nn.DataParallel(model)
model = model.to(device)
# dummy_input = torch.autograd.Variable(torch.Tensor(1, 3, 600, 800).to(device))
# writer.add_graph(models=models, input_to_model=dummy_input)
criterion = PSELoss(Lambda=config.Lambda, ratio=config.OHEM_ratio, reduction='mean')
# optimizer = torch.optim.SGD(models.parameters(), lr=config.lr, momentum=0.99)
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
if config.checkpoint != '' and not config.restart_training:
start_epoch = load_checkpoint(config.checkpoint, model, logger, device, optimizer)
start_epoch += 1
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, config.lr_decay_step, gamma=config.lr_gamma,
last_epoch=start_epoch)
else:
start_epoch = config.start_epoch
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, config.lr_decay_step, gamma=config.lr_gamma)
all_step = len(train_loader)
logger.info('train dataset has {} samples,{} in dataloader'.format(train_data.__len__(), all_step))
epoch = 0
best_model = {'recall': 0, 'precision': 0, 'f1': 0, 'models': ''}
try:
for epoch in range(start_epoch, config.epochs):
start = time.time()
train_loss, lr = train_epoch(model, optimizer, scheduler, train_loader, device, criterion, epoch, all_step,
writer, logger)
logger.info('[{}/{}], train_loss: {:.4f}, time: {:.4f}, lr: {}'.format(
epoch, config.epochs, train_loss, time.time() - start, lr))
# net_save_path = '{}/PSENet_{}_loss{:.6f}.pth'.format(config.output_dir, epoch,
# train_loss)
# save_checkpoint(net_save_path, models, optimizer, epoch, logger)
if (0.3 < train_loss < 0.4 and epoch % 4 == 0) or train_loss < 0.3:
recall, precision, f1 = eval(model, os.path.join(config.output_dir, 'output'), config.testroot, device)
logger.info('test: recall: {:.6f}, precision: {:.6f}, f1: {:.6f}'.format(recall, precision, f1))
net_save_path = '{}/PSENet_{}_loss{:.6f}_r{:.6f}_p{:.6f}_f1{:.6f}.pth'.format(config.output_dir, epoch,
train_loss,
recall,
precision,
f1)
save_checkpoint(net_save_path, model, optimizer, epoch, logger)
if f1 > best_model['f1']:
best_path = glob.glob(config.output_dir + '/Best_*.pth')
for b_path in best_path:
if os.path.exists(b_path):
os.remove(b_path)
best_model['recall'] = recall
best_model['precision'] = precision
best_model['f1'] = f1
best_model['models'] = net_save_path
best_save_path = '{}/Best_{}_r{:.6f}_p{:.6f}_f1{:.6f}.pth'.format(config.output_dir, epoch,
recall,
precision,
f1)
if os.path.exists(net_save_path):
shutil.copyfile(net_save_path, best_save_path)
else:
save_checkpoint(best_save_path, model, optimizer, epoch, logger)
pse_path = glob.glob(config.output_dir + '/PSENet_*.pth')
for p_path in pse_path:
if os.path.exists(p_path):
os.remove(p_path)
writer.add_scalar(tag='Test/recall', scalar_value=recall, global_step=epoch)
writer.add_scalar(tag='Test/precision', scalar_value=precision, global_step=epoch)
writer.add_scalar(tag='Test/f1', scalar_value=f1, global_step=epoch)
writer.close()
except KeyboardInterrupt:
save_checkpoint('{}/final.pth'.format(config.output_dir), model, optimizer, epoch, logger)
finally:
if best_model['models']:
logger.info(best_model)
if __name__ == '__main__':
main()