-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDualConvMixer.py
131 lines (109 loc) · 4.41 KB
/
DualConvMixer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
import torch.nn.functional as F
# class Residual(nn.Module):
# def __init__(self, fn):
# super().__init__()
# self.fn = fn
# def forward(self, x):
# return self.fn(x) + x
# class ConvBlock(nn.Module):
# def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
# super(ConvBlock, self).__init__()
# self.conv = nn.Sequential(
# Residual(nn.Sequential(
# nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding),
# nn.GELU(),
# nn.BatchNorm2d(in_channels)
# )),
# nn.Conv2d(in_channels, out_channels, kernel_size=1),
# nn.GELU(),
# nn.BatchNorm2d(out_channels)
# )
# def forward(self, x):
# return self.conv(x)
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(self.bn(self.conv(x)))
class UpBlock(nn.Module):
def __init__(self, in_channels, out_channels,kernel_size=3, stride=1, padding=1):
super(UpBlock, self).__init__()
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
# self.upsample = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=False)
self.conv = ConvBlock(in_channels, out_channels,kernel_size=kernel_size, stride=stride, padding=padding)
def forward(self, x):
x = self.upsample(x)
return self.conv(x)
# class DeconvBlock(nn.Module):
# def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, output_padding=0):
# super(DeconvBlock, self).__init__()
# self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, output_padding)
# self.bn = nn.BatchNorm2d(out_channels)
# self.relu = nn.ReLU(inplace=True)
# def forward(self, x):
# return self.relu(self.bn(self.deconv(x)))
class HourglassModel(nn.Module):
def __init__(self, input_channels=3, latent_dim=128):
super(HourglassModel, self).__init__()
# Encoder (正卷积部分)
self.encoder = nn.Sequential(
ConvBlock(input_channels, 64),
ConvBlock(64, 64),
nn.MaxPool2d(2),
ConvBlock(64, 128),
ConvBlock(128, 128),
nn.MaxPool2d(2),
ConvBlock(128, 256),
ConvBlock(256, 256),
nn.MaxPool2d(2),
ConvBlock(256, 512),
ConvBlock(512, 512),
nn.MaxPool2d(2),
ConvBlock(512, latent_dim)
)
# Decoder
self.decoder = nn.Sequential(
UpBlock(latent_dim, 512),
UpBlock(512, 256),
UpBlock(256, 128),
UpBlock(128, 64),
nn.Conv2d(64, input_channels, kernel_size=3, stride=1, padding=1),
nn.Tanh()
)
# # Decoder (反卷积部分)
# self.decoder = nn.Sequential(
# DeconvBlock(latent_dim, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
# DeconvBlock(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
# DeconvBlock(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
# DeconvBlock(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
# nn.Conv2d(64, input_channels, kernel_size=3, stride=1, padding=1),
# nn.Tanh()
# )
def forward(self, x):
latent = self.encoder(x)
output = self.decoder(latent)
return output
def encode(self, x):
return self.encoder(x)
def decode(self, latent):
return self.decoder(latent)
# 测试模型
if __name__ == "__main__":
# 创建一个示例输入
batch_size = 1
channels = 3
height, width = 32, 32
x = torch.randn(batch_size, channels, height, width)
# 初始化模型
model = HourglassModel()
# 前向传播
output = model(x)
print(model.encode(x).shape)
print(f"Input shape: {x.shape}")
print(f"Output shape: {output.shape}")
# print(f"Model architecture:\n{model}")