-
Notifications
You must be signed in to change notification settings - Fork 1
/
cuda_prover_piecewise.cu
259 lines (191 loc) · 7.25 KB
/
cuda_prover_piecewise.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include <string>
#include <chrono>
#define NDEBUG 1
#include <prover_reference_functions.hpp>
#include "multiexp/reduce.cu"
// This is where all the FFTs happen
// template over the bundle of types and functions.
// Overwrites ca!
template <typename B>
typename B::vector_Fr *compute_H(size_t d, typename B::vector_Fr *ca,
typename B::vector_Fr *cb,
typename B::vector_Fr *cc) {
auto domain = B::get_evaluation_domain(d + 1);
B::domain_iFFT(domain, ca);
B::domain_iFFT(domain, cb);
B::domain_cosetFFT(domain, ca);
B::domain_cosetFFT(domain, cb);
// Use ca to store H
auto H_tmp = ca;
size_t m = B::domain_get_m(domain);
// for i in 0 to m: H_tmp[i] *= cb[i]
B::vector_Fr_muleq(H_tmp, cb, m);
B::domain_iFFT(domain, cc);
B::domain_cosetFFT(domain, cc);
m = B::domain_get_m(domain);
// for i in 0 to m: H_tmp[i] -= cc[i]
B::vector_Fr_subeq(H_tmp, cc, m);
B::domain_divide_by_Z_on_coset(domain, H_tmp);
B::domain_icosetFFT(domain, H_tmp);
m = B::domain_get_m(domain);
typename B::vector_Fr *H_res = B::vector_Fr_zeros(m + 1);
B::vector_Fr_copy_into(H_tmp, H_res, m);
return H_res;
}
static size_t read_size_t(FILE* input) {
size_t n;
fread((void *) &n, sizeof(size_t), 1, input);
return n;
}
template< typename B >
struct ec_type;
template<>
struct ec_type<mnt4753_libsnark> {
typedef ECp_MNT4 ECp;
typedef ECp2_MNT4 ECpe;
};
template<>
struct ec_type<mnt6753_libsnark> {
typedef ECp_MNT6 ECp;
typedef ECp3_MNT6 ECpe;
};
void
check_trailing(FILE *f, const char *name) {
long bytes_remaining = 0;
while (fgetc(f) != EOF)
++bytes_remaining;
if (bytes_remaining > 0)
fprintf(stderr, "!! Trailing characters in \"%s\": %ld\n", name, bytes_remaining);
}
static inline auto now() -> decltype(std::chrono::high_resolution_clock::now()) {
return std::chrono::high_resolution_clock::now();
}
template<typename T>
void
print_time(T &t1, const char *str) {
auto t2 = std::chrono::high_resolution_clock::now();
auto tim = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
printf("%s: %ld ms\n", str, tim);
t1 = t2;
}
template <typename B>
void run_prover(
const char *params_path,
const char *input_path,
const char *output_path,
const char *preprocessed_path)
{
B::init_public_params();
size_t primary_input_size = 1;
auto beginning = now();
auto t = beginning;
FILE *params_file = fopen(params_path, "r");
size_t d = read_size_t(params_file);
size_t m = read_size_t(params_file);
rewind(params_file);
printf("d = %zu, m = %zu\n", d, m);
typedef typename ec_type<B>::ECp ECp;
typedef typename ec_type<B>::ECpe ECpe;
typedef typename B::G1 G1;
typedef typename B::G2 G2;
static constexpr int R = 32;
static constexpr int C = 5;
FILE *preprocessed_file = fopen(preprocessed_path, "r");
size_t space = ((m + 1) + R - 1) / R;
//auto A_mults = load_points_affine<ECp>(((1U << C) - 1)*(m + 1), preprocessed_file);
//auto out_A = allocate_memory(space * ECpe::NELTS * ELT_BYTES);
auto B1_mults = load_points_affine<ECp>(((1U << C) - 1)*(m + 1), preprocessed_file);
auto out_B1 = allocate_memory(space * ECpe::NELTS * ELT_BYTES);
auto B2_mults = load_points_affine<ECpe>(((1U << C) - 1)*(m + 1), preprocessed_file);
auto out_B2 = allocate_memory(space * ECpe::NELTS * ELT_BYTES);
auto L_mults = load_points_affine<ECp>(((1U << C) - 1)*(m - 1), preprocessed_file);
auto out_L = allocate_memory(space * ECpe::NELTS * ELT_BYTES);
fclose(preprocessed_file);
print_time(t, "load preprocessing");
auto params = B::read_params(params_file, d, m);
fclose(params_file);
print_time(t, "load params");
auto t_main = t;
FILE *inputs_file = fopen(input_path, "r");
auto w_ = load_scalars(m + 1, inputs_file);
rewind(inputs_file);
auto inputs = B::read_input(inputs_file, d, m);
fclose(inputs_file);
print_time(t, "load inputs");
const var *w = w_.get();
auto t_gpu = t;
cudaStream_t sA, sB1, sB2, sL;
//ec_reduce_straus<ECp, C, R>(sA, out_A.get(), A_mults.get(), w, m + 1);
ec_reduce_straus<ECp, C, R>(sB1, out_B1.get(), B1_mults.get(), w, m + 1);
ec_reduce_straus<ECpe, C, 2*R>(sB2, out_B2.get(), B2_mults.get(), w, m + 1);
ec_reduce_straus<ECp, C, R>(sL, out_L.get(), L_mults.get(), w + (primary_input_size + 1) * ELT_LIMBS, m - 1);
print_time(t, "gpu launch");
G1 *evaluation_At = B::multiexp_G1(B::input_w(inputs), B::params_A(params), m + 1);
//G1 *evaluation_Bt1 = B::multiexp_G1(B::input_w(inputs), B::params_B1(params), m + 1);
//G2 *evaluation_Bt2 = B::multiexp_G2(B::input_w(inputs), B::params_B2(params), m + 1);
// Do calculations relating to H on CPU after having set the GPU in
// motion
auto H = B::params_H(params);
auto coefficients_for_H =
compute_H<B>(d, B::input_ca(inputs), B::input_cb(inputs), B::input_cc(inputs));
G1 *evaluation_Ht = B::multiexp_G1(coefficients_for_H, H, d);
print_time(t, "cpu 1");
cudaDeviceSynchronize();
//cudaStreamSynchronize(sA);
//G1 *evaluation_At = B::read_pt_ECp(out_A.get());
cudaStreamSynchronize(sB1);
G1 *evaluation_Bt1 = B::read_pt_ECp(out_B1.get());
cudaStreamSynchronize(sB2);
G2 *evaluation_Bt2 = B::read_pt_ECpe(out_B2.get());
cudaStreamSynchronize(sL);
G1 *evaluation_Lt = B::read_pt_ECp(out_L.get());
print_time(t_gpu, "gpu e2e");
auto scaled_Bt1 = B::G1_scale(B::input_r(inputs), evaluation_Bt1);
auto Lt1_plus_scaled_Bt1 = B::G1_add(evaluation_Lt, scaled_Bt1);
auto final_C = B::G1_add(evaluation_Ht, Lt1_plus_scaled_Bt1);
print_time(t, "cpu 2");
B::groth16_output_write(evaluation_At, evaluation_Bt2, final_C, output_path);
print_time(t, "store");
print_time(t_main, "Total time from input to output: ");
//cudaStreamDestroy(sA);
cudaStreamDestroy(sB1);
cudaStreamDestroy(sB2);
cudaStreamDestroy(sL);
B::delete_vector_G1(H);
B::delete_G1(evaluation_At);
B::delete_G1(evaluation_Bt1);
B::delete_G2(evaluation_Bt2);
B::delete_G1(evaluation_Ht);
B::delete_G1(evaluation_Lt);
B::delete_G1(scaled_Bt1);
B::delete_G1(Lt1_plus_scaled_Bt1);
B::delete_vector_Fr(coefficients_for_H);
B::delete_groth16_input(inputs);
B::delete_groth16_params(params);
print_time(t, "cleanup");
print_time(beginning, "Total runtime (incl. file reads)");
}
int main(int argc, char **argv) {
setbuf(stdout, NULL);
std::string curve(argv[1]);
std::string mode(argv[2]);
const char *params_path = argv[3];
if (mode == "compute") {
const char *input_path = argv[4];
const char *output_path = argv[5];
if (curve == "MNT4753") {
run_prover<mnt4753_libsnark>(params_path, input_path, output_path, "MNT4753_preprocessed");
} else if (curve == "MNT6753") {
run_prover<mnt6753_libsnark>(params_path, input_path, output_path, "MNT6753_preprocessed");
}
} else if (mode == "preprocess") {
#if 0
if (curve == "MNT4753") {
run_preprocess<mnt4753_libsnark>(params_path);
} else if (curve == "MNT6753") {
run_preprocess<mnt4753_libsnark>(params_path);
}
#endif
}
return 0;
}