forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
examples-stacks.tex
1876 lines (1665 loc) · 64.1 KB
/
examples-stacks.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Examples of Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This is a discussion of examples of stacks in algebraic geometry.
Some of them are algebraic stacks, some are not.
We will discuss which are algebraic stacks in a later chapter.
This means that in this chapter we mainly worry about the descent
conditions. See \cite{Vis2} for example.
\medskip\noindent
Some of the notation, conventions and terminology in this chapter is awkward
and may seem backwards to the more experienced reader. This is intentional.
Please see Quot, Section \ref{quot-section-conventions} for an
explanation.
\section{Notation}
\label{section-notation}
\noindent
In this chapter we fix a suitable big fppf site $\Sch_{fppf}$
as in Topologies, Definition \ref{topologies-definition-big-fppf-site}.
So, if not explicitly stated otherwise all schemes will be objects
of $\Sch_{fppf}$.
We will always work relative to a base $S$ contained in $\Sch_{fppf}$.
And we will then work with the big fppf site $(\Sch/S)_{fppf}$,
see Topologies, Definition \ref{topologies-definition-big-small-fppf}.
The absolute case can be recovered by taking
$S = \Spec(\mathbf{Z})$.
\section{Examples of stacks}
\label{section-examples-stacks}
\noindent
We first give some important examples of stacks over
$(\Sch/S)_{fppf}$.
\section{Quasi-coherent sheaves}
\label{section-stack-of-quasi-coherent-sheaves}
\noindent
We define a category $\QCohstack$ as follows:
\begin{enumerate}
\item An object of $\QCohstack$ is a pair $(X, \mathcal{F})$,
where $X/S$ is an object of $(\Sch/S)_{fppf}$, and $\mathcal{F}$
is a quasi-coherent $\mathcal{O}_X$-module, and
\item a morphism $(f, \varphi) : (Y, \mathcal{G}) \to (X, \mathcal{F})$
is a pair consisting of a morphism $f : Y \to X$ of schemes over $S$
and an $f$-map (see
Sheaves, Section \ref{sheaves-section-ringed-spaces-functoriality-modules})
$\varphi : \mathcal{F} \to \mathcal{G}$.
\item The composition of morphisms
$$
(Z, \mathcal{H}) \xrightarrow{(g, \psi)}
(Y, \mathcal{G}) \xrightarrow{(f, \phi)} (X, \mathcal{F})
$$
is $(f \circ g, \psi \circ \phi)$ where $\psi \circ \phi$ is
the composition of $f$-maps.
\end{enumerate}
Thus $\QCohstack$ is a category and
$$
p : \QCohstack \to (\Sch/S)_{fppf},
\quad
(X, \mathcal{F}) \mapsto X
$$
is a functor. Note that the fibre category of $\QCohstack$ over
a scheme $X$ is the opposite of the category $\QCoh(\mathcal{O}_X)$
of quasi-coherent $\mathcal{O}_X$-modules.
We remark for later use that given
$(X, \mathcal{F}), (Y, \mathcal{G}) \in \Ob(\QCohstack)$
we have
\begin{equation}
\label{equation-morphisms-qcoh}
\Mor_{\QCohstack}((Y, \mathcal{G}), (X, \mathcal{F}))
=
\coprod\nolimits_{f \in \Mor_S(Y, X)}
\Mor_{\QCoh(\mathcal{O}_Y)}(f^*\mathcal{F}, \mathcal{G})
\end{equation}
See the discussion on $f$-maps of modules in
Sheaves, Section \ref{sheaves-section-ringed-spaces-functoriality-modules}.
\medskip\noindent
The category $\QCohstack$ is not a stack over $(\Sch/S)_{fppf}$
because its collection of objects is a proper class. On the other hand
we will see that it does satisfy all the axioms of a stack. We will
get around the set theoretical issue in
Section \ref{section-stack-of-finitely-generated-quasi-coherent-sheaves}.
\begin{lemma}
\label{lemma-quasi-coherent-strongly-cartesian}
A morphism $(f, \varphi) : (Y, \mathcal{G}) \to (X, \mathcal{F})$
of $\QCohstack$ is strongly cartesian if and only if the
map $\varphi$ induces an isomorphism $f^*\mathcal{F} \to \mathcal{G}$.
\end{lemma}
\begin{proof}
Let $(X, \mathcal{F}) \in \Ob(\QCohstack)$.
Let $f : Y \to X$ be a morphism of $(\Sch/S)_{fppf}$.
Note that there is a canonical $f$-map $c : \mathcal{F} \to f^*\mathcal{F}$
and hence we get a morphism
$(f, c) : (Y, f^*\mathcal{F}) \to (X, \mathcal{F})$.
We claim that $(f, c)$ is strongly cartesian.
Namely, for any object $(Z, \mathcal{H})$ of $\QCohstack$ we have
\begin{align*}
\Mor_{\QCohstack}((Z, \mathcal{H}), (Y, f^*\mathcal{F}))
& =
\coprod\nolimits_{g \in \Mor_S(Z, Y)}
\Mor_{\QCoh(\mathcal{O}_Z)}(g^*f^*\mathcal{F}, \mathcal{H}) \\
& =
\coprod\nolimits_{g \in \Mor_S(Z, Y)}
\Mor_{\QCoh(\mathcal{O}_Z)}((f \circ g)^*\mathcal{F}, \mathcal{H}) \\
& =
\Mor_{\QCohstack}((Z, \mathcal{H}), (X, \mathcal{F}))
\times_{\Mor_S(Z, X)} \Mor_S(Z, Y)
\end{align*}
where we have used Equation (\ref{equation-morphisms-qcoh}) twice.
This proves that the condition of
Categories, Definition \ref{categories-definition-cartesian-over-C}
holds for $(f, c)$, and hence our claim is true. Now by
Categories, Lemma \ref{categories-lemma-composition-cartesian}
we see that isomorphisms are strongly cartesian and
compositions of strongly cartesian morphisms are strongly cartesian
which proves the ``if'' part of the lemma. For the converse, note
that given $(X, \mathcal{F})$ and $f : Y \to X$, if there exists a
strongly cartesian morphism lifting $f$ with target $(X, \mathcal{F})$
then it has to be isomorphic to $(f, c)$ (see discussion following
Categories, Definition \ref{categories-definition-cartesian-over-C}).
Hence the "only if" part of the lemma holds.
\end{proof}
\begin{lemma}
\label{lemma-stack-of-quasi-coherent-sheaves}
The functor $p : \QCohstack \to (\Sch/S)_{fppf}$
satisfies conditions (1), (2) and (3) of
Stacks, Definition \ref{stacks-definition-stack}.
\end{lemma}
\begin{proof}
It is clear from
Lemma \ref{lemma-quasi-coherent-strongly-cartesian}
that $\QCohstack$ is a fibred category over $(\Sch/S)_{fppf}$.
Given covering $\mathcal{U} = \{X_i \to X\}_{i \in I}$ of
$(\Sch/S)_{fppf}$ the functor
$$
\QCoh(\mathcal{O}_X) \longrightarrow DD(\mathcal{U})
$$
is fully faithful and essentially surjective, see
Descent, Proposition \ref{descent-proposition-fpqc-descent-quasi-coherent}.
Hence
Stacks, Lemma \ref{stacks-lemma-stack-equivalences}
applies to show that $\QCohstack$ satisfies all the
axioms of a stack.
\end{proof}
\section{The stack of finitely generated quasi-coherent sheaves}
\label{section-stack-of-finitely-generated-quasi-coherent-sheaves}
\noindent
It turns out that we can get a stack of quasi-coherent sheaves
if we only consider finite type quasi-coherent modules.
Let us denote
$$
p_{fg} : \QCohstack_{fg} \to (\Sch/S)_{fppf}
$$
the full subcategory of $\QCohstack$ over $(\Sch/S)_{fppf}$
consisting of pairs $(T, \mathcal{F})$ such that $\mathcal{F}$
is a quasi-coherent $\mathcal{O}_T$-module of finite type.
\begin{lemma}
\label{lemma-stack-of-finite-type-quasi-coherent-sheaves}
The functor $p_{fg} : \QCohstack_{fg} \to (\Sch/S)_{fppf}$
satisfies conditions (1), (2) and (3) of
Stacks, Definition \ref{stacks-definition-stack}.
\end{lemma}
\begin{proof}
We will verify assumptions (1), (2), (3) of
Stacks, Lemma \ref{stacks-lemma-substack}
to prove this. By
Lemma \ref{lemma-quasi-coherent-strongly-cartesian}
a morphism $(Y, \mathcal{G}) \to (X, \mathcal{F})$ is
strongly cartesian if and only if it induces an isomorphism
$f^*\mathcal{F} \to \mathcal{G}$. By
Modules, Lemma \ref{modules-lemma-pullback-finite-type}
the pullback of a finite type $\mathcal{O}_X$-module is of finite
type. Hence assumption (1) of
Stacks, Lemma \ref{stacks-lemma-substack}
holds. Assumption (2) holds trivially.
Finally, to prove assumption (3) we have to show:
If $\mathcal{F}$ is a quasi-coherent $\mathcal{O}_X$-module
and $\{f_i : X_i \to X\}$ is an fppf covering such that each
$f_i^*\mathcal{F}$ is of finite type, then $\mathcal{F}$ is of
finite type. Considering the restriction of $\mathcal{F}$ to
an affine open of $X$ this reduces to the following algebra statement:
Suppose that $R \to S$ is a finitely presented, faithfully flat ring map
and $M$ an $R$-module. If $M \otimes_R S$ is a finitely generated
$S$-module, then $M$ is a finitely generated $R$-module.
A stronger form of the algebra fact can be found in
Algebra, Lemma \ref{algebra-lemma-descend-properties-modules}.
\end{proof}
\begin{lemma}
\label{lemma-finite-type}
Let $(X, \mathcal{O}_X)$ be a ringed space.
\begin{enumerate}
\item The category of finite type $\mathcal{O}_X$-modules has a
set of isomorphism classes.
\item The category of finite type quasi-coherent
$\mathcal{O}_X$-modules has a set of isomorphism classes.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (2) follows from part (1) as the category in (2) is a full subcategory
of the category in (1). Consider any open covering
$\mathcal{U} : X = \bigcup_{i \in I} U_i$. Denote $j_i : U_i \to X$
the inclusion maps. Consider any map $r : I \to \mathbf{N}$.
If $\mathcal{F}$ is an $\mathcal{O}_X$-module whose restriction to
$U_i$ is generated by at most $r(i)$ sections from $\mathcal{F}(U_i)$,
then $\mathcal{F}$ is a quotient of the sheaf
$$
\mathcal{H}_{\mathcal{U}, r} =
\bigoplus\nolimits_{i \in I} j_{i, !}\mathcal{O}_{U_i}^{\oplus r(i)}
$$
By definition, if $\mathcal{F}$ is of finite type, then there exists
some open covering with $\mathcal{U}$ whose index set is $I = X$
such that this condition is true. Hence it suffices to show that
there is a set of possible choices for $\mathcal{U}$ (obvious),
a set of possible choices for $r : I \to \mathbf{N}$ (obvious), and
a set of possible quotient modules of $\mathcal{H}_{\mathcal{U}, r}$
for each $\mathcal{U}$ and $r$. In other words, it suffices to show
that given an $\mathcal{O}_X$-module $\mathcal{H}$ there is at most
a set of isomorphism classes of quotients.
This last assertion becomes obvious
by thinking of the kernels of a quotient map
$\mathcal{H} \to \mathcal{F}$
as being parametrized by a subset of the power set of
$\prod_{U \subset X\text{ open}} \mathcal{H}(U)$.
\end{proof}
\begin{lemma}
\label{lemma-stack-fg-quasi-coherent}
There exists a subcategory
$\QCohstack_{fg, small} \subset \QCohstack_{fg}$
with the following properties:
\begin{enumerate}
\item the inclusion functor
$\QCohstack_{fg, small} \to \QCohstack_{fg}$ is
fully faithful and essentially surjective, and
\item the functor
$p_{fg, small} : \QCohstack_{fg, small} \to (\Sch/S)_{fppf}$
turns $\QCohstack_{fg, small}$ into a stack over $(\Sch/S)_{fppf}$.
\end{enumerate}
\end{lemma}
\begin{proof}
We have seen in
Lemmas \ref{lemma-stack-of-finite-type-quasi-coherent-sheaves} and
\ref{lemma-finite-type}
that $p_{fg} : \QCohstack_{fg} \to (\Sch/S)_{fppf}$
satisfies (1), (2) and (3) of
Stacks, Definition \ref{stacks-definition-stack}
as well as the additional condition (4) of
Stacks, Remark \ref{stacks-remark-stack-make-small}.
Hence we obtain $\QCohstack_{fg, small}$ from the discussion
in that remark.
\end{proof}
\noindent
We will often perform the replacement
$$
\QCohstack_{fg} \leadsto \QCohstack_{fg, small}
$$
without further remarking on it, and by abuse of notation we will
simply denote $\QCohstack_{fg}$ this replacement.
\begin{remark}
\label{remark-higher-rank}
Note that the whole discussion in this section works
if we want to consider those
quasi-coherent sheaves which are locally generated by at most $\kappa$
sections, for some infinite cardinal $\kappa$, e.g., $\kappa = \aleph_0$.
\end{remark}
\section{Finite \'etale covers}
\label{section-finite-etale}
\noindent
We define a category $\textit{F\'Et}$ as follows:
\begin{enumerate}
\item An object of $\textit{F\'Et}$ is a finite \'etale morphism $Y \to X$
of schemes (by our conventions this means a finite \'etale morphism
in $(\Sch/S)_{fppf}$),
\item A morphism $(b, a) : (Y \to X) \to (Y' \to X')$ of $\textit{F\'Et}$
is a commutative diagram
$$
\xymatrix{
Y \ar[d] \ar[r]_b & Y' \ar[d] \\
X \ar[r]_a & X'
}
$$
in the category of schemes.
\end{enumerate}
Thus $\textit{F\'Et}$ is a category and
$$
p : \textit{F\'Et} \to (\Sch/S)_{fppf},
\quad
(Y \to X) \mapsto X
$$
is a functor. Note that the fibre category of $\textit{F\'Et}$ over
a scheme $X$ is just the category $\textit{F\'Et}_X$ studied in
Fundamental Groups, Section \ref{pione-section-finite-etale}.
\begin{lemma}
\label{lemma-finite-etale-stack}
The functor
$$
p : \textit{F\'Et} \longrightarrow (\Sch/S)_{fppf}
$$
defines a stack over $(\Sch/S)_{fppf}$.
\end{lemma}
\begin{proof}
Fppf descent for finite \'etale morphisms follows from
Descent, Lemmas \ref{descent-lemma-affine},
\ref{descent-lemma-descending-property-finite}, and
\ref{descent-lemma-descending-property-etale}.
Details omitted.
\end{proof}
\section{Algebraic spaces}
\label{section-stack-of-spaces}
\noindent
We define a category $\Spacesstack$ as follows:
\begin{enumerate}
\item An object of $\Spacesstack$ is a morphism $X \to U$
of algebraic spaces over $S$, where $U$ is representable by an object of
$(\Sch/S)_{fppf}$, and
\item a morphism $(f, g) : (X \to U) \to (Y \to V)$
is a commutative diagram
$$
\xymatrix{
X \ar[d] \ar[r]_f & Y \ar[d] \\
U \ar[r]^g & V
}
$$
of morphisms of algebraic spaces over $S$.
\end{enumerate}
Thus $\Spacesstack$ is a category and
$$
p : \Spacesstack \to (\Sch/S)_{fppf},
\quad
(X \to U) \mapsto U
$$
is a functor. Note that the fibre category of $\Spacesstack$ over
a scheme $U$ is just the category $\textit{Spaces}/U$ of
algebraic spaces over $U$ (see
Topologies on Spaces, Section \ref{spaces-topologies-section-procedure}).
Hence we sometimes think of an object of $\Spacesstack$ as a
pair $X/U$ consisting of a scheme $U$ and an algebraic space $X$ over $U$.
We remark for later use that given
$(X/U), (Y/V) \in \Ob(\Spacesstack)$
we have
\begin{equation}
\label{equation-morphisms-spaces}
\Mor_{\Spacesstack}(X/U, Y/V)
=
\coprod\nolimits_{g \in \Mor_S(U, V)}
\Mor_{\textit{Spaces}/U}(X, U \times_{g, V} Y)
\end{equation}
The category $\Spacesstack$ is almost, but not quite a stack
over $(\Sch/S)_{fppf}$. The problem is a set theoretical
issue as we will explain below.
\begin{lemma}
\label{lemma-spaces-strongly-cartesian}
A morphism $(f, g) : X/U \to Y/V$
of $\Spacesstack$ is strongly cartesian if and only if the
map $f$ induces an isomorphism $X \to U \times_{g, V} Y$.
\end{lemma}
\begin{proof}
Let $Y/V \in \Ob(\Spacesstack)$.
Let $g : U \to V$ be a morphism of $(\Sch/S)_{fppf}$.
Note that the projection $p : U \times_{g, V} Y \to Y$
gives rise a morphism
$(p, g) : U \times_{g, V} Y/U \to Y/V$ of $\Spacesstack$.
We claim that $(p, g)$ is strongly cartesian.
Namely, for any object $Z/W$ of $\Spacesstack$ we have
\begin{align*}
\Mor_{\Spacesstack}(Z/W, U \times_{g, V} Y/U)
& =
\coprod\nolimits_{h \in \Mor_S(W, U)}
\Mor_{\textit{Spaces}/W}(Z, W \times_{h, U} U \times_{g, V} Y) \\
& =
\coprod\nolimits_{h \in \Mor_S(W, U)}
\Mor_{\textit{Spaces}/W}(Z, W \times_{g \circ h, V} Y) \\
& =
\Mor_{\Spacesstack}(Z/W, Y/V)
\times_{\Mor_S(W, V)} \Mor_S(W, U)
\end{align*}
where we have used Equation (\ref{equation-morphisms-spaces}) twice.
This proves that the condition of
Categories, Definition \ref{categories-definition-cartesian-over-C}
holds for $(p, g)$, and hence our claim is true. Now by
Categories, Lemma \ref{categories-lemma-composition-cartesian}
we see that isomorphisms are strongly cartesian and
compositions of strongly cartesian morphisms are strongly cartesian
which proves the ``if'' part of the lemma. For the converse, note
that given $Y/V$ and $g : U \to V$, if there exists a
strongly cartesian morphism lifting $g$ with target $Y/V$
then it has to be isomorphic to $(p, g)$ (see discussion following
Categories, Definition \ref{categories-definition-cartesian-over-C}).
Hence the "only if" part of the lemma holds.
\end{proof}
\begin{lemma}
\label{lemma-pre-stack-of-spaces}
The functor $p : \Spacesstack \to (\Sch/S)_{fppf}$
satisfies conditions (1) and (2) of
Stacks, Definition \ref{stacks-definition-stack}.
\end{lemma}
\begin{proof}
It is follows from
Lemma \ref{lemma-spaces-strongly-cartesian}
that $\Spacesstack$ is a fibred category over $(\Sch/S)_{fppf}$
which proves (1).
Suppose that $\{U_i \to U\}_{i \in I}$ is a covering of
$(\Sch/S)_{fppf}$. Suppose that $X, Y$ are algebraic spaces over
$U$. Finally, suppose that $\varphi_i : X_{U_i} \to Y_{U_i}$ are morphisms
of $\textit{Spaces}/U_i$ such that $\varphi_i$ and $\varphi_j$ restrict
to the same morphisms $X_{U_i \times_U U_j} \to Y_{U_i \times_U U_j}$
of algebraic spaces over $U_i \times_U U_j$.
To prove (2) we have to show that there exists a unique morphism
$\varphi : X \to Y$ over $U$ whose base change to $U_i$ is
equal to $\varphi_i$. As a morphism from $X$ to $Y$ is the same thing
as a map of sheaves this follows directly from
Sites, Lemma \ref{sites-lemma-glue-maps}.
\end{proof}
\begin{remark}
\label{remark-stack-spaces}
Ignoring set theoretical difficulties\footnote{The difficulty is not
that $\Spacesstack$ is a proper class, since by our definition of
an algebraic space over $S$ there is only a set worth of isomorphism
classes of algebraic spaces over $S$. It is rather that arbitrary disjoint
unions of algebraic spaces may end up being too large, hence lie outside
of our chosen ``partial universe'' of sets.}
$\Spacesstack$ also satisfies
descent for objects and hence is a stack. Namely, we have to show that
given
\begin{enumerate}
\item an fppf covering $\{U_i \to U\}_{i \in I}$,
\item for each $i \in I$ an algebraic space $X_i/U_i$, and
\item for each $i, j \in I$ an isomorphism
$\varphi_{ij} : X_i \times_U U_j \to U_i \times_U X_j$ of algebraic spaces
over $U_i \times_U U_j$ satisfying the cocycle condition over
$U_i \times_U U_j \times_U U_k$,
\end{enumerate}
there exists an algebraic space $X/U$ and isomorphisms
$X_{U_i} \cong X_i$ over $U_i$ recovering the isomorphisms $\varphi_{ij}$.
First, note that by
Sites, Lemma \ref{sites-lemma-glue-sheaves}
there exists a sheaf $X$ on $(\Sch/U)_{fppf}$ recovering
the $X_i$ and the $\varphi_{ij}$. Then by
Bootstrap, Lemma \ref{bootstrap-lemma-locally-algebraic-space}
we see that $X$ is an algebraic space (if we ignore the set theoretic
condition of that lemma).
We will use this argument in the next section to show that
if we consider only algebraic spaces of finite type, then we obtain
a stack.
\end{remark}
\section{The stack of finite type algebraic spaces}
\label{section-stack-of-finite-type-spaces}
\noindent
It turns out that we can get a stack of spaces
if we only consider spaces of finite type.
Let us denote
$$
p_{ft} : \Spacesstack_{ft} \to (\Sch/S)_{fppf}
$$
the full subcategory of $\Spacesstack$ over $(\Sch/S)_{fppf}$
consisting of pairs $X/U$ such that $X \to U$
is a morphism of finite type.
\begin{lemma}
\label{lemma-stack-of-finite-type-spaces}
The functor
$p_{ft} : \Spacesstack_{ft} \to (\Sch/S)_{fppf}$
satisfies the conditions (1), (2) and (3) of
Stacks, Definition \ref{stacks-definition-stack}.
\end{lemma}
\begin{proof}
We are going to write this out in ridiculous detail (which may make
it hard to see what is going on).
\medskip\noindent
We have seen in
Lemma \ref{lemma-spaces-strongly-cartesian}
that a morphism $(f, g) : X/U \to Y/V$ of $\Spacesstack$ is
strongly cartesian if the induced morphism $f : X \to U \times_V Y$
is an isomorphism. Note that if $Y \to V$ is of finite type
then also $U \times_V Y \to U$ is of finite type, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-type}.
So if $(f, g) : X/U \to Y/V$ of $\Spacesstack$ is
strongly cartesian in $\Spacesstack$ and $Y/V$ is an object
of $\Spacesstack_{ft}$ then automatically also $X/U$ is an
object of $\Spacesstack_{ft}$, and of course $(f, g)$ is
also strongly cartesian in $\Spacesstack_{ft}$. In this way
we conclude that $\Spacesstack_{ft}$ is a fibred category over
$(\Sch/S)_{fppf}$. This proves (1).
\medskip\noindent
The argument above also shows that the inclusion
functor $\Spacesstack_{ft} \to \Spacesstack$ transforms
strongly cartesian morphisms into strongly cartesian morphisms.
In other words $\Spacesstack_{ft} \to \Spacesstack$ is
a $1$-morphism of fibred categories over $(\Sch/S)_{fppf}$.
\medskip\noindent
Let $U \in \Ob((\Sch/S)_{fppf})$.
Let $X, Y$ be algebraic spaces of finite type over $U$. By
Stacks, Lemma \ref{stacks-lemma-presheaf-mor-map-fibred-categories}
we obtain a map of presheaves
$$
\mathit{Mor}_{\Spacesstack_{ft}}(X, Y)
\longrightarrow
\mathit{Mor}_{\Spacesstack}(X, Y)
$$
which is an isomorphism as $\Spacesstack_{ft}$ is a full subcategory of
$\Spacesstack$. Hence the left hand side is a sheaf, because in
Lemma \ref{lemma-pre-stack-of-spaces}
we showed the right hand side is a sheaf. This proves (2).
\medskip\noindent
To prove condition (3) of
Stacks, Definition \ref{stacks-definition-stack}
we have to show the following: Given
\begin{enumerate}
\item a covering $\{U_i \to U\}_{i \in I}$ of $(\Sch/S)_{fppf}$,
\item for each $i \in I$ an algebraic space $X_i$ of finite type over $U_i$,
and
\item for each $i, j \in I$ an isomorphism
$\varphi_{ij} : X_i \times_U U_j \to U_i \times_U X_j$ of algebraic spaces
over $U_i \times_U U_j$ satisfying the cocycle condition over
$U_i \times_U U_j \times_U U_k$,
\end{enumerate}
there exists an algebraic space $X$ of finite type over $U$ and isomorphisms
$X_{U_i} \cong X_i$ over $U_i$ recovering the isomorphisms $\varphi_{ij}$.
This follows from
Bootstrap, Lemma \ref{bootstrap-lemma-descend-algebraic-space} part (2). By
Descent on Spaces, Lemma
\ref{spaces-descent-lemma-descending-property-locally-finite-presentation}
we see that $X \to U$ is of finite type which concludes the proof.
\end{proof}
\begin{lemma}
\label{lemma-stack-ft-spaces}
There exists a subcategory
$\Spacesstack_{ft, small} \subset \Spacesstack_{ft}$
with the following properties:
\begin{enumerate}
\item the inclusion functor
$\Spacesstack_{ft, small} \to \Spacesstack_{ft}$ is
fully faithful and essentially surjective, and
\item the functor
$p_{ft, small} : \Spacesstack_{ft, small} \to (\Sch/S)_{fppf}$
turns $\Spacesstack_{ft, small}$ into a stack over
$(\Sch/S)_{fppf}$.
\end{enumerate}
\end{lemma}
\begin{proof}
We have seen in
Lemmas \ref{lemma-stack-of-finite-type-spaces}
that $p_{ft} : \Spacesstack_{ft} \to (\Sch/S)_{fppf}$
satisfies (1), (2) and (3) of
Stacks, Definition \ref{stacks-definition-stack}.
The additional condition (4) of
Stacks, Remark \ref{stacks-remark-stack-make-small}
holds because every algebraic space $X$ over $S$ is of the
form $U/R$ for $U, R \in \Ob((\Sch/S)_{fppf})$, see
Spaces, Lemma \ref{spaces-lemma-space-presentation}.
Thus there is only a set worth of isomorphism classes of objects.
Hence we obtain $\Spacesstack_{ft, small}$ from the discussion
in that remark.
\end{proof}
\noindent
We will often perform the replacement
$$
\Spacesstack_{ft} \leadsto \Spacesstack_{ft, small}
$$
without further remarking on it, and by abuse of notation we will
simply denote $\Spacesstack_{ft}$ this replacement.
\begin{remark}
\label{remark-higher-cardinality-spaces}
Note that the whole discussion in this section works
if we want to consider those algebraic spaces $X/U$ which are
locally of finite type such that the inverse image in $X$ of an affine open
of $U$ can be covered by countably many affines.
If needed we can also introduce the notion of a morphism of
$\kappa$-type (meaning some bound on the number of generators of
ring extensions and some bound on the cardinality of the affines over
a given affine in the base) where $\kappa$ is a cardinal, and then
we can produce a stack
$$
\Spacesstack_\kappa \longrightarrow (\Sch/S)_{fppf}
$$
in exactly the same manner as above (provided we make sure that
$\Sch$ is large enough depending on $\kappa$).
\end{remark}
\section{Examples of stacks in groupoids}
\label{section-examples-stacks-in-groupoids}
\noindent
The examples above are examples of stacks which are not stacks in
groupoids. In the rest of this chapter we give
algebraic geometric examples of stacks in groupoids.
\section{The stack associated to a sheaf}
\label{section-stack-associated-to-sheaf}
\noindent
Let $F : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$ be a presheaf.
We obtain a category fibred in sets
$$
p_F : \mathcal{S}_F \to (\Sch/S)_{fppf},
$$
see
Categories, Example \ref{categories-example-presheaf}.
This is a stack in sets if and only if $F$ is a sheaf, see
Stacks, Lemma \ref{stacks-lemma-stack-in-setoids-characterize}.
\section{The stack in groupoids of finitely generated quasi-coherent sheaves}
\label{section-stack-in-groupoids-of-quasi-coherent-sheaves}
\noindent
Let $p : \QCohstack_{fg} \to (\Sch/S)_{fppf}$ be the stack
introduced in
Section \ref{section-stack-of-finitely-generated-quasi-coherent-sheaves}
(using the abuse of notation introduced there).
We can turn this into a stack in groupoids
$p' : \QCohstack_{fg}' \to (\Sch/S)_{fppf}$ by
the procedure of
Categories, Lemma \ref{categories-lemma-fibred-gives-fibred-groupoids},
see
Stacks, Lemma \ref{stacks-lemma-stack-gives-stack-groupoids}.
In this particular case this simply means $\QCohstack_{fg}'$ has
the same objects as $\QCohstack_{fg}$ but the morphisms are
pairs $(f, g) : (U, \mathcal{F}) \to (U', \mathcal{F}')$
where $g$ is an isomorphism $g : f^*\mathcal{F}' \to \mathcal{F}$.
\section{The stack in groupoids of finite type algebraic spaces}
\label{section-stack-in-groupoids-of-finite-type-spaces}
\noindent
Let $p : \Spacesstack_{ft} \to (\Sch/S)_{fppf}$ be the stack
introduced in
Section \ref{section-stack-of-finite-type-spaces}
(using the abuse of notation introduced there).
We can turn this into a stack in groupoids
$p' : \Spacesstack_{ft}' \to (\Sch/S)_{fppf}$ by
the procedure of
Categories, Lemma \ref{categories-lemma-fibred-gives-fibred-groupoids},
see
Stacks, Lemma \ref{stacks-lemma-stack-gives-stack-groupoids}.
In this particular case this simply means $\Spacesstack_{ft}'$
has the same objects as $\Spacesstack_{ft}$, i.e., finite type morphisms
$X \to U$ where $X$ is an algebraic space over $S$ and $U$ is a scheme
over $S$. But the morphisms $(f, g) : X/U \to Y/V$ are now
commutative diagrams
$$
\xymatrix{
X \ar[d] \ar[r]_f & Y \ar[d] \\
U \ar[r]^g & V
}
$$
which are cartesian.
\section{Quotient stacks}
\label{section-quotient-stacks}
\noindent
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $S$.
In this case the quotient stack
$$
[U/R] \longrightarrow (\Sch/S)_{fppf}
$$
is a stack in groupoids by construction, see
Groupoids in Spaces,
Definition \ref{spaces-groupoids-definition-quotient-stack}.
It is even the case that the $\mathit{Isom}$-sheaves are
representable by algebraic spaces, see
Bootstrap, Lemma \ref{bootstrap-lemma-quotient-stack-isom}.
These quotient stacks are of fundamental importance to the theory of
algebraic stacks.
\medskip\noindent
A special case of the construction above is the quotient stack
$$
[X/G] \longrightarrow (\Sch/S)_{fppf}
$$
associated to a datum $(B, G/B, m, X/B, a)$. Here
\begin{enumerate}
\item $B$ is an algebraic space over $S$,
\item $(G, m)$ is a group algebraic space over $B$,
\item $X$ is an algebraic space over $B$, and
\item $a : G \times_B X \to X$ is an action of $G$ on $X$ over $B$.
\end{enumerate}
Namely, by
Groupoids in Spaces,
Definition \ref{spaces-groupoids-definition-quotient-stack}
the stack in groupoids $[X/G]$ is the
quotient stack $[X/G \times_B X]$ given above. It behooves us to
spell out what the category $[X/G]$ really looks like. We will do this in
Section \ref{section-group-quotient-stacks}.
\section{Classifying torsors}
\label{section-torsors}
\noindent
We want to carefully explain a number of variants of what it could
mean to study the stack of torsors for a group algebraic space $G$
or a sheaf of groups $\mathcal{G}$.
\subsection{Torsors for a sheaf of groups}
\label{subsection-torsors-sheaf}
\noindent
Let $\mathcal{G}$ be a sheaf of groups on $(\Sch/S)_{fppf}$.
For $U \in \Ob((\Sch/S)_{fppf})$ we denote
$\mathcal{G}|_U$ the restriction of $\mathcal{G}$ to $(\Sch/U)_{fppf}$.
We define a category $\mathcal{G}\textit{-Torsors}$ as follows:
\begin{enumerate}
\item An object of $\mathcal{G}\textit{-Torsors}$ is a pair
$(U, \mathcal{F})$ where $U$ is an object of $(\Sch/S)_{fppf}$
and $\mathcal{F}$ is a $\mathcal{G}|_U$-torsor, see
Cohomology on Sites, Definition \ref{sites-cohomology-definition-torsor}.
\item A morphism $(U, \mathcal{F}) \to (V, \mathcal{H})$ is given
by a pair $(f, \alpha)$, where $f : U \to V$ is a morphism of schemes
over $S$, and $\alpha : f^{-1}\mathcal{H} \to \mathcal{F}$ is an
isomorphism of $\mathcal{G}|_U$-torsors.
\end{enumerate}
Thus $\mathcal{G}\textit{-Torsors}$ is a category and
$$
p : \mathcal{G}\textit{-Torsors} \longrightarrow (\Sch/S)_{fppf},
\quad
(U, \mathcal{F}) \longmapsto U
$$
is a functor. Note that the fibre category of $\mathcal{G}\textit{-Torsors}$
over $U$ is the category of $\mathcal{G}|_U$-torsors which is a groupoid.
\begin{lemma}
\label{lemma-torsors-sheaf-stack-in-groupoids}
Up to a replacement as in
Stacks, Remark \ref{stacks-remark-stack-make-small}
the functor
$$
p : \mathcal{G}\textit{-Torsors} \longrightarrow (\Sch/S)_{fppf}
$$
defines a stack in groupoids over $(\Sch/S)_{fppf}$.
\end{lemma}
\begin{proof}
The most difficult part of the proof is to show that
we have descent for objects.
Let $\{U_i \to U\}_{i \in I}$ be a covering of $(\Sch/S)_{fppf}$.
Suppose that for each $i$ we are given a $\mathcal{G}|_{U_i}$-torsor
$\mathcal{F}_i$, and for each $i, j \in I$ an isomorphism
$\varphi_{ij} :
\mathcal{F}_i|_{U_i \times_U U_j} \to \mathcal{F}_j|_{U_i \times_U U_j}$
of $\mathcal{G}|_{U_i \times_U U_j}$-torsors
satisfying a suitable cocycle condition on $U_i \times_U U_j \times_U U_k$.
Then by
Sites, Section \ref{sites-section-glueing-sheaves}
we obtain a sheaf $\mathcal{F}$ on $(\Sch/U)_{fppf}$
whose restriction to each $U_i$ recovers $\mathcal{F}_i$ as well
as recovering the descent data. By the equivalence of categories in
Sites, Lemma \ref{sites-lemma-mapping-property-glue}
the action maps $\mathcal{G}|_{U_i} \times \mathcal{F}_i \to \mathcal{F}_i$
glue to give a map $a : \mathcal{G}|_U \times \mathcal{F} \to \mathcal{F}$.
Now we have to show that $a$ is an action and that $\mathcal{F}$ becomes
a $\mathcal{G}|_U$-torsor. Both properties may be checked locally, and
hence follow from the corresponding properties of the actions
$\mathcal{G}|_{U_i} \times \mathcal{F}_i \to \mathcal{F}_i$.
This proves that descent for objects holds in
$\mathcal{G}\textit{-Torsors}$.
Some details omitted.
\end{proof}
\subsection{Variant on torsors for a sheaf}
\label{subsection-variant-torsor-sheaf}
\noindent
The construction of
Subsection \ref{subsection-torsors-sheaf}
can be generalized slightly.
Namely, let $\mathcal{G} \to \mathcal{B}$ be a map of sheaves
on $(\Sch/S)_{fppf}$ and let
$$
m :
\mathcal{G} \times_\mathcal{B} \mathcal{G}
\longrightarrow
\mathcal{G}
$$
be a group law on $\mathcal{G}/\mathcal{B}$. In other words, the pair
$(\mathcal{G}, m)$ is a group object of the topos
$\Sh((\Sch/S)_{fppf})/\mathcal{B}$. See
Sites, Section \ref{sites-section-localize-topoi}
for information regarding localizations of topoi.
In this setting we can define a category
$\mathcal{G}/\mathcal{B}\textit{-Torsors}$ as follows
(where we use the Yoneda embedding to think of schemes as sheaves):
\begin{enumerate}
\item An object of $\mathcal{G}/\mathcal{B}\textit{-Torsors}$ is a triple
$(U, b, \mathcal{F})$ where
\begin{enumerate}
\item $U$ is an object of $(\Sch/S)_{fppf}$,
\item $b : U \to \mathcal{B}$ is a section of $\mathcal{B}$ over $U$, and
\item $\mathcal{F}$ is a $U \times_{b, \mathcal{B}}\mathcal{G}$-torsor
over $U$.
\end{enumerate}
\item A morphism $(U, b, \mathcal{F}) \to (U', b', \mathcal{F}')$ is given
by a pair $(f, g)$, where $f : U \to U'$ is a morphism of schemes
over $S$ such that $b = b' \circ f$, and
$g : f^{-1}\mathcal{F}' \to \mathcal{F}$ is an
isomorphism of $U \times_{b, \mathcal{B}} \mathcal{G}$-torsors.
\end{enumerate}
Thus $\mathcal{G}/\mathcal{B}\textit{-Torsors}$ is a category and
$$
p :
\mathcal{G}/\mathcal{B}\textit{-Torsors}
\longrightarrow
(\Sch/S)_{fppf},
\quad
(U, b, \mathcal{F}) \longmapsto U
$$
is a functor. Note that the fibre category of
$\mathcal{G}/\mathcal{B}\textit{-Torsors}$
over $U$ is the disjoint union over $b : U \to \mathcal{B}$
of the categories of $U \times_{b, \mathcal{B}} \mathcal{G}$-torsors,
hence is a groupoid.
\medskip\noindent
In the special case $\mathcal{B} = S$ we recover the category
$\mathcal{G}\textit{-Torsors}$ introduced in
Subsection \ref{subsection-torsors-sheaf}.
\begin{lemma}
\label{lemma-variant-torsors-sheaf-stack-in-groupoids}
Up to a replacement as in
Stacks, Remark \ref{stacks-remark-stack-make-small}
the functor
$$
p :
\mathcal{G}/\mathcal{B}\textit{-Torsors}
\longrightarrow
(\Sch/S)_{fppf}
$$
defines a stack in groupoids over $(\Sch/S)_{fppf}$.
\end{lemma}
\begin{proof}
This proof is a repeat of the proof of
Lemma \ref{lemma-torsors-sheaf-stack-in-groupoids}.
The reader is encouraged to read that proof first since
the notation is less cumbersome.
The most difficult part of the proof is to show that
we have descent for objects. Let $\{U_i \to U\}_{i \in I}$
be a covering of $(\Sch/S)_{fppf}$.
Suppose that for each $i$ we are given a pair $(b_i, \mathcal{F}_i)$
consisting of a morphism $b_i : U_i \to \mathcal{B}$ and a
$U_i \times_{b_i, \mathcal{B}} \mathcal{G}$-torsor
$\mathcal{F}_i$, and for each $i, j \in I$
we have $b_i|_{U_i \times_U U_j} = b_j|_{U_i \times_U U_j}$ and
we are given an isomorphism
$\varphi_{ij} :
\mathcal{F}_i|_{U_i \times_U U_j} \to \mathcal{F}_j|_{U_i \times_U U_j}$
of $(U_i \times_U U_j) \times_\mathcal{B} \mathcal{G}$-torsors
satisfying a suitable cocycle condition on $U_i \times_U U_j \times_U U_k$.
Then by
Sites, Section \ref{sites-section-glueing-sheaves}
we obtain a sheaf $\mathcal{F}$ on $(\Sch/U)_{fppf}$
whose restriction to each $U_i$ recovers $\mathcal{F}_i$ as well
as recovering the descent data. By the sheaf axiom for $\mathcal{B}$
the morphisms $b_i$ come from a unique morphism $b : U \to \mathcal{B}$.
By the equivalence of categories in
Sites, Lemma \ref{sites-lemma-mapping-property-glue}
the action maps
$(U_i \times_{b_i, \mathcal{B}} \mathcal{G}) \times_{U_i} \mathcal{F}_i
\to \mathcal{F}_i$
glue to give a map
$(U \times_{b, \mathcal{B}} \mathcal{G}) \times \mathcal{F} \to \mathcal{F}$.
Now we have to show that this is an action and that $\mathcal{F}$ becomes
a $U \times_{b, \mathcal{B}} \mathcal{G}$-torsor.
Both properties may be checked locally, and
hence follow from the corresponding properties of the actions
on the $\mathcal{F}_i$.
This proves that descent for objects holds in
$\mathcal{G}/\mathcal{B}\textit{-Torsors}$.
Some details omitted.
\end{proof}
\subsection{Principal homogeneous spaces}
\label{subsection-principal-homogeneous-spaces}
\noindent
Let $B$ be an algebraic space over $S$.
Let $G$ be a group algebraic space over $B$.
We define a category $G\textit{-Principal}$ as follows:
\begin{enumerate}
\item An object of $G\textit{-Principal}$ is a triple $(U, b, X)$ where
\begin{enumerate}
\item $U$ is an object of $(\Sch/S)_{fppf}$,
\item $b : U \to B$ is a morphism over $S$, and
\item $X$ is a principal homogeneous $G_U$-space over $U$ where
$G_U = U \times_{b, B} G$.
\end{enumerate}
See
Groupoids in Spaces,
Definition \ref{spaces-groupoids-definition-principal-homogeneous-space}.
\item A morphism $(U, b, X) \to (U', b', X')$ is given
by a pair $(f, g)$, where $f : U \to U'$ is a morphism of schemes
over $B$, and $g : X \to U \times_{f, U'} X'$ is an
isomorphism of principal homogeneous $G_U$-spaces.
\end{enumerate}
Thus $G\textit{-Principal}$ is a category and