diff --git a/dynamight/deformations/optimize_deformations.py b/dynamight/deformations/optimize_deformations.py index 3b44736..75e1d88 100644 --- a/dynamight/deformations/optimize_deformations.py +++ b/dynamight/deformations/optimize_deformations.py @@ -158,15 +158,7 @@ def optimize_deformations( angles_op = torch.optim.Adam([angles], lr=1e-3) shifts = torch.nn.Parameter(torch.tensor( shifts, requires_grad=True).to(device)) -<<<<<<< HEAD -<<<<<<< HEAD shifts_op = torch.optim.Adam([shifts], lr=1e-3) # 1e-3) -======= - shifts_op = torch.optim.Adam([shifts], lr=lr_shifts) # 1e-3) ->>>>>>> 616360b790febf56edf08aef5d4c414058194376 -======= - shifts_op = torch.optim.Adam([shifts], lr=1e-3) # 1e-3) ->>>>>>> 42e2c58d5c0cd22b012f0b5e2dc8d0fb1376beda # initialise training dataloaders if checkpoint_file is not None: # get subsets from checkpoint if present @@ -514,11 +506,7 @@ def optimize_deformations( decoder_half2.compute_neighbour_graph() decoder_half1.compute_radius_graph() decoder_half2.compute_radius_graph() -<<<<<<< HEAD - print('computing noise shit') -======= ->>>>>>> 42e2c58d5c0cd22b012f0b5e2dc8d0fb1376beda if mask_file != None and epoch > n_warmup_epochs: noise_h1, noise_h2, signal_h1, signal_h2, snr1, snr2, w1, w2, snr_dis1, snr_dis2, snr_e1, snr_e2 = get_edge_weights_mask( encoder_half1, @@ -544,11 +532,7 @@ def optimize_deformations( shifts, data_preprocessor, ) -<<<<<<< HEAD - print('noise shit finished') -======= ->>>>>>> 42e2c58d5c0cd22b012f0b5e2dc8d0fb1376beda w1 = 1/torch.maximum(snr_e1, torch.tensor(0.05)) w2 = 1/torch.maximum(snr_e2, torch.tensor(0.05))