forked from HubertJN/Half-SPM-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
179 lines (149 loc) · 6.32 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import netCDF4 as NC
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.cm as cm
from matplotlib import animation
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.ticker import (StrMethodFormatter, AutoMinorLocator)
from matplotlib.animation import FuncAnimation
# reading in the NetCDF data from SP_output.nc
dat = NC.Dataset("SP_output.nc", "r", format="NETCDF4")
do_volt = dat['volt_do'][:][0]
dt = dat['dt'][:][0]
#creating figure and axes dependent on whether voltage data is to be written or not
if do_volt == 1:
fig = plt.figure(figsize=(10,8))
ax1 = plt.subplot2grid((2,2),(0,0))
ax2 = plt.subplot2grid((2,2),(0,1))
ax3 = plt.subplot2grid((2,2),(1,0), colspan=2)
else:
fig = plt.figure(figsize=(10,4))
ax1 = plt.subplot2grid((1,2),(0,0))
ax2 = plt.subplot2grid((1,2),(0,1))
# Subplot 1 - Animtion of lithium concentration
# accessing the 2d concentration data and creating a time and space axis
c = dat['conc'][:]
t_steps = np.shape(c)[0]
r_steps = dat['space_steps'][:][0]
rad = dat['rad'][:][0]*10**(6)
time_axis = np.linspace(0, t_steps-1, t_steps-1).astype(int)
x_axis = np.linspace(0, rad, r_steps, endpoint=True)
# animation of the concentration data
# the main parts of the animation code were taken from:
# https://brushingupscience.com/2016/06/21/matplotlib-animations-the-easy-way/
intervaltime = 10 #time between each animations step in ms
# plotting the first graph which is a 2D line of lithium ion concentration
# with respect to the particle radius
line, = ax1.plot(x_axis, c[0])
# function evolving the animation, which is called each frame
# the x-axis is the particle radius, so only the x-axis data
# i.e. the lithium concantration changes with simulation time
def animate(t):
line.set_ydata(c[t,:])
return line,
# creating the animation using matplotlib's FunAnimation
# the arguments to be passed:
# figure of the graph - fig from fix,ax = plt.subplots())
# function evolving the animation - animate(t)
# interval time between each timesetep - intervaltime
# frames, the array to iterate over - time_axis
# blit - blitting set to true
animation = FuncAnimation(fig, animate, interval=intervaltime, frames=time_axis, blit=True)
# customise the graph with axes labels, major and minor ticks, labels etc.
ax1.set_xlabel('Distance from particle centre [$\mu m$]', size=8)
ax1.xaxis.set_minor_locator(AutoMinorLocator())
ax1.tick_params(axis='x', labelsize=7)
ax1.set_ylabel('Lithium concentration $mol*m^{-3}$', size=8)
ax1.set_ylim(np.min(c)-1*10**(-9), np.max(c)+1*10**(-9))
ax1.yaxis.set_minor_locator(AutoMinorLocator())
ax1.tick_params(axis='y', labelsize=7)
ax1.ticklabel_format(axis='both', style="sci", useMathText=True)
ax1.xaxis.offsetText.set_fontsize(7)
ax1.yaxis.offsetText.set_fontsize(7)
ax1.set_title('Lithium Concentration Across Particle Radius', size=10, pad=15.0)
# Subplot 2 - pcolorplot of concentration data
# most of the required data is the same as in subplot 1
# get the discretisation steps of the radius
dr = rad/(r_steps-1)
# reversed virdis colormap, values over the range are black, under goes white
colour = cm.get_cmap('viridis_r').copy()
colour.set_under(color='w')
colour.set_over(color='k')
max_colour = np.max(c)
min_colour = np.min(c)
colour_range = max_colour - min_colour
ticklist = np.linspace(min_colour, max_colour, 6)
#create grid for plotting
#invert arrays to make sure smallest circle is on top
rs = np.linspace(0,rad,r_steps,endpoint=True)
rs = rs[::-1]
cinv = c[:,::-1]
#draw patches of circles
#zorder to ensure smallest circle is on top
patches = []
for i, r in enumerate(rs):
circle = mpl.patches.Circle((0,0), r, zorder=i)
patches.append(circle)
#set limits for colourmap and set colours of circles for initial plot
#add circles to collection
p = mpl.collections.PatchCollection(patches, cmap=colour)
p.set_clim([min_colour,max_colour])
colours = np.array(cinv[0,:])
p.set_array(colours)
ax2.add_collection(p)
#set figure labels
ax2.set_xlim(-rad,rad)
ax2.set_ylim(-rad,rad)
ax2.set_xlabel('Distance from particle centre [$\mu m$]', size=8)
ax2.xaxis.set_minor_locator(AutoMinorLocator())
ax2.tick_params(axis='x', labelsize=7)
ax2.set_ylabel('Distance from particle centre [$\mu m$]', size=8)
ax2.yaxis.set_minor_locator(AutoMinorLocator())
ax2.tick_params(axis='y', labelsize=7)
ax2.ticklabel_format(axis='both', style="sci", useMathText=True)
ax2.xaxis.offsetText.set_fontsize(7)
ax2.yaxis.offsetText.set_fontsize(7)
ax2.set_title('Contour Plot of Concentration inside Particle', size=10, pad=15.0)
cbar = ax2.figure.colorbar(p, ax=ax2, cmap=colour, ticks=ticklist)
cbar.ax.tick_params(labelsize=7)
cbar.ax.set_ylabel('Lithium concentration $mol*m^{-3}$', size=8)
cbar.ax.yaxis.set_major_formatter(StrMethodFormatter("{x:.10f}"))
# animation function for the circle plot animation
#only changes the colours of the circles without redrawing them
# the concentration data for each timestep is feeded into a colour map
# the inteval and frames are the same as in subplot 1 and blitting is set to true
def animate_pcol(t):
colours = np.array(cinv[t,:])
p.set_array(colours)
return p,
animation_pcol = FuncAnimation(fig, animate_pcol, interval=intervaltime, frames=time_axis, blit=True)
# Subplot 3 - plot of voltage output if do_volt set to true
if do_volt == 1:
# accessing the voltage data and setting the number of time steps as x-axis
volt = dat['volt'][:][:,0]
time = np.linspace(0, t_steps, t_steps)
# plotting the 2D graph and customising it
ax3.plot(time*dt, volt)
ax3.set_xlabel('Time [s]', size=8)
ax3.xaxis.set_minor_locator(AutoMinorLocator())
ax3.tick_params(axis='x', labelsize=7)
ax3.set_ylabel('Voltage [V]', size=8)
ax3.yaxis.set_minor_locator(AutoMinorLocator())
ax3.tick_params(axis='y', labelsize=7)
ax3.ticklabel_format(axis='both', style="sci", useMathText=True)
ax3.xaxis.offsetText.set_fontsize(7)
ax3.yaxis.offsetText.set_fontsize(7)
ax3.set_title('Voltage output', size=10, pad=15.0)
# animation of an curser that moves with the time axis with the same interval and frames
# as the other two animations
vl = ax3.axvline(time[0]*dt, color='black', linestyle=':')
ax3.set_xlim()
def animate_t_bar(t):
vl.set_xdata(time[t]*dt)
return vl,
animation_t_bar = FuncAnimation(fig, animate_t_bar, interval=intervaltime, frames=time_axis, blit=True)
plt.draw()
plt.tight_layout()
dat.close()
plt.show()