forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
75 lines (58 loc) Β· 2.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class PairwiseMatching(nn.Layer):
def __init__(self, pretrained_model, dropout=None, margin=0.1):
super().__init__()
self.ptm = pretrained_model
self.dropout = nn.Dropout(dropout if dropout is not None else 0.1)
self.margin = margin
# hidden_size -> 1, calculate similarity
self.similarity = nn.Linear(self.ptm.config["hidden_size"], 1)
@paddle.jit.to_static(
input_spec=[
paddle.static.InputSpec(shape=[None, None], dtype="int64"),
paddle.static.InputSpec(shape=[None, None], dtype="int64"),
]
)
def predict(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
_, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids, attention_mask)
cls_embedding = self.dropout(cls_embedding)
sim_score = self.similarity(cls_embedding)
sim_score = F.sigmoid(sim_score)
return sim_score
def forward(
self,
pos_input_ids,
neg_input_ids,
pos_token_type_ids=None,
neg_token_type_ids=None,
pos_position_ids=None,
neg_position_ids=None,
pos_attention_mask=None,
neg_attention_mask=None,
):
_, pos_cls_embedding = self.ptm(pos_input_ids, pos_token_type_ids, pos_position_ids, pos_attention_mask)
_, neg_cls_embedding = self.ptm(neg_input_ids, neg_token_type_ids, neg_position_ids, neg_attention_mask)
pos_embedding = self.dropout(pos_cls_embedding)
neg_embedding = self.dropout(neg_cls_embedding)
pos_sim = self.similarity(pos_embedding)
neg_sim = self.similarity(neg_embedding)
pos_sim = F.sigmoid(pos_sim)
neg_sim = F.sigmoid(neg_sim)
labels = paddle.full(shape=[pos_cls_embedding.shape[0]], fill_value=1.0, dtype="float32")
loss = F.margin_ranking_loss(pos_sim, neg_sim, labels, margin=self.margin)
return loss