From 9c3b8bb929746680f99e20c9c1641daad68b1c5b Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 11:57:32 +0800 Subject: [PATCH 1/8] Revert "typo" This reverts commit 9c4e55a9ec659790e47f88af3fc9536c4aecaacc. --- README.md | 4 +- nbs/index.ipynb | 4 +- nbs/myplot.svg | 2510 +++++++++++++++++++++++------------------------ 3 files changed, 1259 insertions(+), 1259 deletions(-) diff --git a/README.md b/README.md index 8581ce6..cf9077f 100644 --- a/README.md +++ b/README.md @@ -15,7 +15,7 @@ Duke-NUS Medical School The goal of this class is to introduce biomedical scientists to data analysis with Python notebooks. There are two parts to the session: a lecture on the key issues in data analysis and a hands-on tutorial. -Please prepare for class as follows: +Please do the following preparations before class. 1. Read the [Introduction](https://github.com/sangyu/moda/blob/main/nbs/01_Introduction.ipynb) @@ -29,4 +29,4 @@ Please prepare for class as follows: If we have more time in class, you will also be introduced to our estimation statistics package [DABEST -Introduction](https://github.com/sangyu/moda/blob/main/nbs/04_Dabest_introduction.ipynb). +Introduction](https://github.com/sangyu/moda/blob/main/nbs/04_Dabest_introduction.ipynb) diff --git a/nbs/index.ipynb b/nbs/index.ipynb index de836d5..5f52dd4 100644 --- a/nbs/index.ipynb +++ b/nbs/index.ipynb @@ -30,13 +30,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The goal of this class is to introduce biomedical scientists to data analysis with Python notebooks. There are two parts to the session: a lecture on the key issues in data analysis and a hands-on tutorial. Please prepare for class as follows:\n", + "The goal of this class is to introduce biomedical scientists to data analysis with Python notebooks. There are two parts to the session: a lecture on the key issues in data analysis and a hands-on tutorial. Please do the following preparations before class.\n", "\n", "1. Read the [Introduction](https://github.com/sangyu/moda/blob/main/nbs/01_Introduction.ipynb) and install the prerequisite software on your laptop.\n", "2. Go through a [Quick Tour of the Notebook](https://github.com/sangyu/moda/blob/main/nbs/02_Quick_tour_of_the_Notebook.ipynb) to familiarise yoruself to the jupyter notebook environment.\n", "3. Bring your laptop to class, and we will go through the examples in [Data Analysis with Jupyter](http://localhost:8890/notebooks/nbs/03_Data_Analysis_with_Jupyter.ipynb)\n", "\n", - "If we have more time in class, you will also be introduced to our estimation statistics package [DABEST Introduction](https://github.com/sangyu/moda/blob/main/nbs/04_Dabest_introduction.ipynb).\n" + "If we have more time in class, you will also be introduced to our estimation statistics package [DABEST Introduction](https://github.com/sangyu/moda/blob/main/nbs/04_Dabest_introduction.ipynb)\n" ] } ], diff --git a/nbs/myplot.svg b/nbs/myplot.svg index 22f9b68..3320223 100644 --- a/nbs/myplot.svg +++ b/nbs/myplot.svg @@ -6,7 +6,7 @@ - 2023-02-01T11:24:23.006339 + 2023-02-01T11:20:59.843343 image/svg+xml @@ -43,10 +43,10 @@ z +" id="m7d28ab93c6" style="stroke:#262626;stroke-width:1.25;"/> - + @@ -214,7 +214,7 @@ z - + @@ -308,7 +308,7 @@ z - + @@ -432,10 +432,10 @@ z +" id="m13c854b597" style="stroke:#262626;stroke-width:1.25;"/> - + @@ -475,7 +475,7 @@ z - + @@ -515,7 +515,7 @@ z - + @@ -549,7 +549,7 @@ z - + @@ -597,7 +597,7 @@ z - + @@ -652,7 +652,7 @@ z - + @@ -815,157 +815,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C0_0_c9fb638d99"/> +" id="C0_0_aa27757526"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -980,157 +980,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C1_0_c618eb8821"/> +" id="C1_0_2befca62b2"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1145,157 +1145,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C2_0_4b8a30b139"/> +" id="C2_0_aa799d860d"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1336,7 +1336,7 @@ z - + @@ -1354,7 +1354,7 @@ z - + @@ -1376,7 +1376,7 @@ z - + @@ -1411,7 +1411,7 @@ z - + @@ -1424,7 +1424,7 @@ z - + @@ -1437,7 +1437,7 @@ z - + @@ -1450,7 +1450,7 @@ z - + @@ -1463,7 +1463,7 @@ z - + @@ -1476,7 +1476,7 @@ z - + @@ -1594,157 +1594,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C3_0_e8568eaac3"/> +" id="C3_0_5f37d6587a"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1759,157 +1759,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C4_0_9d060e0adf"/> +" id="C4_0_0b6f5400d5"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1924,157 +1924,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C5_0_bffb308629"/> +" id="C5_0_bd3093327b"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2139,7 +2139,7 @@ z - + @@ -2157,7 +2157,7 @@ z - + @@ -2179,7 +2179,7 @@ z - + @@ -2214,7 +2214,7 @@ z - + @@ -2227,7 +2227,7 @@ z - + @@ -2240,7 +2240,7 @@ z - + @@ -2253,7 +2253,7 @@ z - + @@ -2266,7 +2266,7 @@ z - + @@ -2279,7 +2279,7 @@ z - + @@ -2348,157 +2348,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C6_0_8a80578dbb"/> +" id="C6_0_ace4bef9f6"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2513,157 +2513,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C7_0_0d84647a7a"/> +" id="C7_0_c1828add7c"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2678,157 +2678,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C8_0_1d8f9dfa4a"/> +" id="C8_0_5be413a960"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2874,7 +2874,7 @@ z - + @@ -2892,7 +2892,7 @@ z - + @@ -2914,7 +2914,7 @@ z - + @@ -2949,7 +2949,7 @@ z - + @@ -2962,7 +2962,7 @@ z - + @@ -2975,7 +2975,7 @@ z - + @@ -2988,7 +2988,7 @@ z - + @@ -3001,7 +3001,7 @@ z - + @@ -3014,7 +3014,7 @@ z - + @@ -3082,157 +3082,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C9_0_57233312fd"/> +" id="C9_0_82490e5855"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3247,157 +3247,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Ca_0_030f0ad690"/> +" id="Ca_0_faee9d0764"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3412,157 +3412,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Cb_0_c879116b92"/> +" id="Cb_0_134ad9c9a3"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3603,16 +3603,16 @@ z - + - + - + - + From bbf6a221c2189a676335157811089fa5d8e9b4d9 Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 11:57:37 +0800 Subject: [PATCH 2/8] Revert "changed title" This reverts commit f06045fed9d077aa3fa43c0763186f7a2784b23d. --- README.md | 2 +- nbs/index.ipynb | 2 +- nbs/myplot.svg | 2510 +++++++++++++++++++++++------------------------ 3 files changed, 1257 insertions(+), 1257 deletions(-) diff --git a/README.md b/README.md index cf9077f..c9ebc72 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -Modern Data Analysis +moda (Modern Data Analysis) ================ diff --git a/nbs/index.ipynb b/nbs/index.ipynb index 5f52dd4..b43db30 100644 --- a/nbs/index.ipynb +++ b/nbs/index.ipynb @@ -7,7 +7,7 @@ "---\n", "description: A data analysis tutorial for biomedical scientists (v23.2)\n", "output-file: index.html\n", - "title: Modern Data Analysis\n", + "title: moda (Modern Data Analysis) \n", "\n", "---\n", "\n" diff --git a/nbs/myplot.svg b/nbs/myplot.svg index 3320223..0fb4323 100644 --- a/nbs/myplot.svg +++ b/nbs/myplot.svg @@ -6,7 +6,7 @@ - 2023-02-01T11:20:59.843343 + 2023-02-01T11:15:36.983026 image/svg+xml @@ -43,10 +43,10 @@ z +" id="m8829f5154c" style="stroke:#262626;stroke-width:1.25;"/> - + @@ -214,7 +214,7 @@ z - + @@ -308,7 +308,7 @@ z - + @@ -432,10 +432,10 @@ z +" id="m16616de7b4" style="stroke:#262626;stroke-width:1.25;"/> - + @@ -475,7 +475,7 @@ z - + @@ -515,7 +515,7 @@ z - + @@ -549,7 +549,7 @@ z - + @@ -597,7 +597,7 @@ z - + @@ -652,7 +652,7 @@ z - + @@ -815,157 +815,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C0_0_aa27757526"/> +" id="C0_0_5aefee402c"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -980,157 +980,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C1_0_2befca62b2"/> +" id="C1_0_d7dccffb3f"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1145,157 +1145,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C2_0_aa799d860d"/> +" id="C2_0_e1d110cd2f"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1336,7 +1336,7 @@ z - + @@ -1354,7 +1354,7 @@ z - + @@ -1376,7 +1376,7 @@ z - + @@ -1411,7 +1411,7 @@ z - + @@ -1424,7 +1424,7 @@ z - + @@ -1437,7 +1437,7 @@ z - + @@ -1450,7 +1450,7 @@ z - + @@ -1463,7 +1463,7 @@ z - + @@ -1476,7 +1476,7 @@ z - + @@ -1594,157 +1594,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C3_0_5f37d6587a"/> +" id="C3_0_1b10eebb6a"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1759,157 +1759,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C4_0_0b6f5400d5"/> +" id="C4_0_e219136031"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1924,157 +1924,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C5_0_bd3093327b"/> +" id="C5_0_98aa8a7da7"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2139,7 +2139,7 @@ z - + @@ -2157,7 +2157,7 @@ z - + @@ -2179,7 +2179,7 @@ z - + @@ -2214,7 +2214,7 @@ z - + @@ -2227,7 +2227,7 @@ z - + @@ -2240,7 +2240,7 @@ z - + @@ -2253,7 +2253,7 @@ z - + @@ -2266,7 +2266,7 @@ z - + @@ -2279,7 +2279,7 @@ z - + @@ -2348,157 +2348,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C6_0_ace4bef9f6"/> +" id="C6_0_8d1603cf25"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2513,157 +2513,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C7_0_c1828add7c"/> +" id="C7_0_e3fb385399"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2678,157 +2678,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C8_0_5be413a960"/> +" id="C8_0_352a0ea3d8"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2874,7 +2874,7 @@ z - + @@ -2892,7 +2892,7 @@ z - + @@ -2914,7 +2914,7 @@ z - + @@ -2949,7 +2949,7 @@ z - + @@ -2962,7 +2962,7 @@ z - + @@ -2975,7 +2975,7 @@ z - + @@ -2988,7 +2988,7 @@ z - + @@ -3001,7 +3001,7 @@ z - + @@ -3014,7 +3014,7 @@ z - + @@ -3082,157 +3082,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C9_0_82490e5855"/> +" id="C9_0_8a4a7f1d58"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3247,157 +3247,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Ca_0_faee9d0764"/> +" id="Ca_0_5cfec01bc4"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3412,157 +3412,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Cb_0_134ad9c9a3"/> +" id="Cb_0_b795bd1c51"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3603,16 +3603,16 @@ z - + - + - + - + From 70d0576d0826e05cf0ab5585210430fa5f47cae0 Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 11:57:51 +0800 Subject: [PATCH 3/8] Revert "moved version number" This reverts commit 78b2c47a83432afcdf2aa255649a7cc82400856f. --- nbs/01_Introduction.ipynb | 4 +++- nbs/02_Quick_tour_of_the_Notebook.ipynb | 4 +++- nbs/03_Data_Analysis_with_Jupyter.ipynb | 4 +++- nbs/04_Dabest_introduction.ipynb | 4 +++- nbs/index.ipynb | 4 ++-- 5 files changed, 14 insertions(+), 6 deletions(-) diff --git a/nbs/01_Introduction.ipynb b/nbs/01_Introduction.ipynb index 889199f..04c9567 100644 --- a/nbs/01_Introduction.ipynb +++ b/nbs/01_Introduction.ipynb @@ -19,7 +19,9 @@ "source": [ "by [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n" + "Claridge-Chang](http://www.claridgechang.net/)\n", + "\n", + "Version 23.2" ] }, { diff --git a/nbs/02_Quick_tour_of_the_Notebook.ipynb b/nbs/02_Quick_tour_of_the_Notebook.ipynb index 46cc705..b95bc30 100644 --- a/nbs/02_Quick_tour_of_the_Notebook.ipynb +++ b/nbs/02_Quick_tour_of_the_Notebook.ipynb @@ -18,7 +18,9 @@ "source": [ "by [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n" + "Claridge-Chang](http://www.claridgechang.net/)\n", + "\n", + "Version 23.2" ] }, { diff --git a/nbs/03_Data_Analysis_with_Jupyter.ipynb b/nbs/03_Data_Analysis_with_Jupyter.ipynb index 53a7d92..f9d208d 100755 --- a/nbs/03_Data_Analysis_with_Jupyter.ipynb +++ b/nbs/03_Data_Analysis_with_Jupyter.ipynb @@ -17,7 +17,9 @@ "source": [ "By [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n" + "Claridge-Chang](http://www.claridgechang.net/)\n", + "\n", + "Version 23.2" ] }, { diff --git a/nbs/04_Dabest_introduction.ipynb b/nbs/04_Dabest_introduction.ipynb index ca34560..55a244f 100644 --- a/nbs/04_Dabest_introduction.ipynb +++ b/nbs/04_Dabest_introduction.ipynb @@ -17,7 +17,9 @@ "source": [ "By [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n" + "Claridge-Chang](http://www.claridgechang.net/)\n", + "\n", + "Version 23.2" ] }, { diff --git a/nbs/index.ipynb b/nbs/index.ipynb index b43db30..a13d478 100644 --- a/nbs/index.ipynb +++ b/nbs/index.ipynb @@ -5,9 +5,9 @@ "metadata": {}, "source": [ "---\n", - "description: A data analysis tutorial for biomedical scientists (v23.2)\n", + "description: A data analysis tutorial for biomedical scientists.\n", "output-file: index.html\n", - "title: moda (Modern Data Analysis) \n", + "title: moda (Modern Data Analysis)\n", "\n", "---\n", "\n" From 264c5dfc274fe3ec86015a244cdc92221763883c Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 11:57:56 +0800 Subject: [PATCH 4/8] Revert "Update with version number" This reverts commit a5053dc4516f15d816fb6a1b0e48c11826bdb05e. --- nbs/01_Introduction.ipynb | 4 +- nbs/02_Quick_tour_of_the_Notebook.ipynb | 4 +- nbs/03_Data_Analysis_with_Jupyter.ipynb | 4 +- nbs/04_Dabest_introduction.ipynb | 11 - nbs/index.ipynb | 2 +- nbs/myplot.svg | 2510 +++++++++++------------ 6 files changed, 1259 insertions(+), 1276 deletions(-) diff --git a/nbs/01_Introduction.ipynb b/nbs/01_Introduction.ipynb index 04c9567..c3898bb 100644 --- a/nbs/01_Introduction.ipynb +++ b/nbs/01_Introduction.ipynb @@ -19,9 +19,7 @@ "source": [ "by [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n", - "\n", - "Version 23.2" + "Claridge-Chang](http://www.claridgechang.net/)" ] }, { diff --git a/nbs/02_Quick_tour_of_the_Notebook.ipynb b/nbs/02_Quick_tour_of_the_Notebook.ipynb index b95bc30..0835ef5 100644 --- a/nbs/02_Quick_tour_of_the_Notebook.ipynb +++ b/nbs/02_Quick_tour_of_the_Notebook.ipynb @@ -18,9 +18,7 @@ "source": [ "by [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n", - "\n", - "Version 23.2" + "Claridge-Chang](http://www.claridgechang.net/)" ] }, { diff --git a/nbs/03_Data_Analysis_with_Jupyter.ipynb b/nbs/03_Data_Analysis_with_Jupyter.ipynb index f9d208d..48a84b5 100755 --- a/nbs/03_Data_Analysis_with_Jupyter.ipynb +++ b/nbs/03_Data_Analysis_with_Jupyter.ipynb @@ -17,9 +17,7 @@ "source": [ "By [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n", - "\n", - "Version 23.2" + "Claridge-Chang](http://www.claridgechang.net/)" ] }, { diff --git a/nbs/04_Dabest_introduction.ipynb b/nbs/04_Dabest_introduction.ipynb index 55a244f..3f6a9df 100644 --- a/nbs/04_Dabest_introduction.ipynb +++ b/nbs/04_Dabest_introduction.ipynb @@ -11,17 +11,6 @@ "---\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", - "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)\n", - "\n", - "Version 23.2" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/nbs/index.ipynb b/nbs/index.ipynb index a13d478..18a5c00 100644 --- a/nbs/index.ipynb +++ b/nbs/index.ipynb @@ -5,7 +5,7 @@ "metadata": {}, "source": [ "---\n", - "description: A data analysis tutorial for biomedical scientists.\n", + "description: A tutorial for introducing biomedical scientists to data analysis with Python notebooks.\n", "output-file: index.html\n", "title: moda (Modern Data Analysis)\n", "\n", diff --git a/nbs/myplot.svg b/nbs/myplot.svg index 0fb4323..e79ead5 100644 --- a/nbs/myplot.svg +++ b/nbs/myplot.svg @@ -6,7 +6,7 @@ - 2023-02-01T11:15:36.983026 + 2023-02-01T11:05:12.042962 image/svg+xml @@ -43,10 +43,10 @@ z +" id="m38b04cbe5f" style="stroke:#262626;stroke-width:1.25;"/> - + @@ -214,7 +214,7 @@ z - + @@ -308,7 +308,7 @@ z - + @@ -432,10 +432,10 @@ z +" id="ma54062e97c" style="stroke:#262626;stroke-width:1.25;"/> - + @@ -475,7 +475,7 @@ z - + @@ -515,7 +515,7 @@ z - + @@ -549,7 +549,7 @@ z - + @@ -597,7 +597,7 @@ z - + @@ -652,7 +652,7 @@ z - + @@ -815,157 +815,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C0_0_5aefee402c"/> +" id="C0_0_b7df7a9159"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -980,157 +980,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C1_0_d7dccffb3f"/> +" id="C1_0_08624f4a7b"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1145,157 +1145,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C2_0_e1d110cd2f"/> +" id="C2_0_2188a6ebbe"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1336,7 +1336,7 @@ z - + @@ -1354,7 +1354,7 @@ z - + @@ -1376,7 +1376,7 @@ z - + @@ -1411,7 +1411,7 @@ z - + @@ -1424,7 +1424,7 @@ z - + @@ -1437,7 +1437,7 @@ z - + @@ -1450,7 +1450,7 @@ z - + @@ -1463,7 +1463,7 @@ z - + @@ -1476,7 +1476,7 @@ z - + @@ -1594,157 +1594,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C3_0_1b10eebb6a"/> +" id="C3_0_ab1550122e"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1759,157 +1759,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C4_0_e219136031"/> +" id="C4_0_31c39ae79e"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1924,157 +1924,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C5_0_98aa8a7da7"/> +" id="C5_0_6ba82550e0"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2139,7 +2139,7 @@ z - + @@ -2157,7 +2157,7 @@ z - + @@ -2179,7 +2179,7 @@ z - + @@ -2214,7 +2214,7 @@ z - + @@ -2227,7 +2227,7 @@ z - + @@ -2240,7 +2240,7 @@ z - + @@ -2253,7 +2253,7 @@ z - + @@ -2266,7 +2266,7 @@ z - + @@ -2279,7 +2279,7 @@ z - + @@ -2348,157 +2348,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C6_0_8d1603cf25"/> +" id="C6_0_9ead9f085d"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2513,157 +2513,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C7_0_e3fb385399"/> +" id="C7_0_882a1a559e"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2678,157 +2678,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C8_0_352a0ea3d8"/> +" id="C8_0_2d49657909"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2874,7 +2874,7 @@ z - + @@ -2892,7 +2892,7 @@ z - + @@ -2914,7 +2914,7 @@ z - + @@ -2949,7 +2949,7 @@ z - + @@ -2962,7 +2962,7 @@ z - + @@ -2975,7 +2975,7 @@ z - + @@ -2988,7 +2988,7 @@ z - + @@ -3001,7 +3001,7 @@ z - + @@ -3014,7 +3014,7 @@ z - + @@ -3082,157 +3082,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C9_0_8a4a7f1d58"/> +" id="C9_0_bf0e374b65"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3247,157 +3247,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Ca_0_5cfec01bc4"/> +" id="Ca_0_3cedba51af"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3412,157 +3412,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Cb_0_b795bd1c51"/> +" id="Cb_0_cb7ac4ce12"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3603,16 +3603,16 @@ z - + - + - + - + From b23e7ca446674d25a8472a45cd6cdf4c53964fa5 Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 13:31:17 +0800 Subject: [PATCH 5/8] Fixed Overwrite --- README.md | 15 +- nbs/01_Introduction.ipynb | 18 +- nbs/02_Quick_tour_of_the_Notebook.ipynb | 13 +- nbs/03_Data_Analysis_with_Jupyter.ipynb | 1539 ------ ...ata_Analysis_with_Jupyter_and_Python.ipynb | 1659 +++++++ nbs/04_Dabest_introduction.ipynb | 21 +- nbs/index.ipynb | 19 +- nbs/myplot.png | Bin 305055 -> 234968 bytes nbs/myplot.svg | 4350 ++++++++--------- nbs/sidebar.yml | 4 +- 10 files changed, 3858 insertions(+), 3780 deletions(-) delete mode 100755 nbs/03_Data_Analysis_with_Jupyter.ipynb create mode 100644 nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb diff --git a/README.md b/README.md index c9ebc72..09737dc 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -moda (Modern Data Analysis) +Modern Data Analysis ================ @@ -17,16 +17,15 @@ analysis with Python notebooks. There are two parts to the session: a lecture on the key issues in data analysis and a hands-on tutorial. Please do the following preparations before class. -1. Read the - [Introduction](https://github.com/sangyu/moda/blob/main/nbs/01_Introduction.ipynb) - and install the prerequisite software on your laptop. +1. Read the [Introduction](introduction.html) and install the + prerequisite software on your laptop. 2. Go through a [Quick Tour of the - Notebook](https://github.com/sangyu/moda/blob/main/nbs/02_Quick_tour_of_the_Notebook.ipynb) - to familiarise yoruself to the jupyter notebook environment. + Notebook](quick_tour_of_the_notebook.html) to familiarise yoruself + to the jupyter notebook environment. 3. Bring your laptop to class, and we will go through the examples in [Data Analysis with - Jupyter](http://localhost:8890/notebooks/nbs/03_Data_Analysis_with_Jupyter.ipynb) + Jupyter](data_analysis_with_jupyter_and_python.html) If we have more time in class, you will also be introduced to our estimation statistics package [DABEST -Introduction](https://github.com/sangyu/moda/blob/main/nbs/04_Dabest_introduction.ipynb) +Introduction](dabest_introduction.html) diff --git a/nbs/01_Introduction.ipynb b/nbs/01_Introduction.ipynb index c3898bb..1196a35 100644 --- a/nbs/01_Introduction.ipynb +++ b/nbs/01_Introduction.ipynb @@ -6,7 +6,7 @@ "metadata": {}, "source": [ "---\n", - "output-file: 01_introduction.html\n", + "output-file: introduction.html\n", "title: 01. Introduction\n", "\n", "---" @@ -17,7 +17,7 @@ "id": "e97fe986", "metadata": {}, "source": [ - "by [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", + "[Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", "Xu](https://xusangyu.com/), and [Adam\n", "Claridge-Chang](http://www.claridgechang.net/)" ] @@ -47,7 +47,7 @@ "\n", "1. You'll need to get set up with a [version-control](https://en.wikipedia.org/wiki/Version_control) system. Go to [GitHub](https://github.com/) and get an account. Download and install [GitHub Desktop](https://desktop.github.com/).\n", "\n", - "2. Retrieve the course materials from GitHub. Go to the course repository (\"repo\") at https://github.com/ACCLAB/moda. Click the green Code button and then select Open with GitHub Desktop.\"clone You will be prompted to select a directory for the local repository. If you are using a PC it can be something like \"C:\\\\Users\\YOURUSERNAME\\Documents\\GitHub\\moda\". If you are using a mac, it can be \"//Users/YOURUSERNAME/Documents/GitHub/moda\".\"clone\n", + "2. Retrieve the course materials from GitHub. Go to the course repository (\"repo\") at https://github.com/ACCLAB/moda. Click the green Code button and then select Open with GitHub Desktop.\"clonemoda.png\" You will be prompted to select a directory for the local repository. If you are using a PC it can be something like \"C:\\\\Users\\YOURUSERNAME\\Documents\\GitHub\\moda\". If you are using a mac, it can be \"//Users/YOURUSERNAME/Documents/GitHub/moda\".\"clonedir.png\"\n", "\n", "3. To get set up with Python and [Jupyter](https://en.wikipedia.org/wiki/Project_Jupyter) notebooks, install the [Anaconda\n", " Distribution](https://www.anaconda.com/download/) on your laptop." @@ -58,9 +58,9 @@ "id": "666c283a-337a-4e42-a71d-da7a4b70f7ea", "metadata": {}, "source": [ - "4. Open Anaconda Navigator and launch [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/user/interface.html) by clicking on it.\"cloneJupyterLab will open in a browser tab.\n", + "4. Open Anaconda Navigator and launch [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/user/interface.html) by clicking on it.\"launchjupyterlab.png\"JupyterLab will open in a browser tab.\n", "\n", - "5. In the File Browser panel in JupyterLab, navigate to the folder where you cloned the course repo (refer to step 2). Double click on 'nbs'. You should see a list of notebook files. Open \"02_Quick_tour_of_the_Notebook.ipynb\" by double-clicking on the icon shown in the JupyterLab browser window.\"clone\n", + "5. In the File Browser panel in JupyterLab, navigate to the folder where you cloned the course repo (refer to step 2). Double click on 'nbs'. You should see a list of notebook files. Open \"02_Quick_tour_of_the_Notebook.ipynb\" by double-clicking on the icon shown in the JupyterLab browser window.\"opennotebook.png\"\n", "\n", "6. Work through the notebook. Familiarize yourself with basic Python,\n", " and with working in the JupyterLab environment.\n", @@ -195,7 +195,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2df926e4", + "id": "66d8d30a", "metadata": {}, "outputs": [ { @@ -203,7 +203,7 @@ "text/html": [ "The social reasons to learn programming also apply to research programming.\n", "\n" ], "text/plain": [ @@ -218,14 +218,14 @@ "%%HTML\n", "The social reasons to learn programming also apply to research programming.\n", "" ] }, { "cell_type": "code", "execution_count": null, - "id": "3d2dbe91-0f99-4047-9d62-ba7052867fa2", + "id": "cef28733", "metadata": {}, "outputs": [], "source": [] diff --git a/nbs/02_Quick_tour_of_the_Notebook.ipynb b/nbs/02_Quick_tour_of_the_Notebook.ipynb index 0835ef5..91c2a16 100644 --- a/nbs/02_Quick_tour_of_the_Notebook.ipynb +++ b/nbs/02_Quick_tour_of_the_Notebook.ipynb @@ -5,7 +5,7 @@ "metadata": {}, "source": [ "---\n", - "output-file: 02_quick_tour_of_the_notebook.html\n", + "output-file: quick_tour_of_the_notebook.html\n", "title: 02. A Quick Tour of The Notebook\n", "\n", "---\n", @@ -21,15 +21,6 @@ "Claridge-Chang](http://www.claridgechang.net/)" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -113,7 +104,7 @@ "\n", "One of the most useful things about IPython notebook is its tab completion. \n", "\n", - "Try this: remove the \"`#`\" in the cell below and click just after `read_csv(` in the cell below and press Shift+Tab." + "Try this: remove the \"`#`\" in the cell below (called uncommenting) and click just after `read_csv(` in the cell below and press Shift+Tab. " ] }, { diff --git a/nbs/03_Data_Analysis_with_Jupyter.ipynb b/nbs/03_Data_Analysis_with_Jupyter.ipynb deleted file mode 100755 index 48a84b5..0000000 --- a/nbs/03_Data_Analysis_with_Jupyter.ipynb +++ /dev/null @@ -1,1539 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "---\n", - "output-file: 03_data_analysis_with_jupyter_and_python.html\n", - "title: 03. Data Analysis with Jupyter and Python\n", - "\n", - "---\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", - "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import seaborn as sns\n", - "import pandas as pd\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# plot settings\n", - "sns.set(style='ticks', font_scale=1.2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "exploration_times = pd.read_csv(\"exploration_times.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
WTCCR5 KO
03.4785494.983642
12.2341003.502187
21.7244682.469726
31.7230562.210396
40.9658812.508039
50.7262491.465072
60.4905571.202951
70.2179631.474133
80.4799530.976419
9-0.0533500.752514
100.5050030.742008
110.2561781.004063
\n", - "
" - ], - "text/plain": [ - " WT CCR5 KO\n", - "0 3.478549 4.983642\n", - "1 2.234100 3.502187\n", - "2 1.724468 2.469726\n", - "3 1.723056 2.210396\n", - "4 0.965881 2.508039\n", - "5 0.726249 1.465072\n", - "6 0.490557 1.202951\n", - "7 0.217963 1.474133\n", - "8 0.479953 0.976419\n", - "9 -0.053350 0.752514\n", - "10 0.505003 0.742008\n", - "11 0.256178 1.004063" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "exploration_times" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Loading data\n", - "\n", - "Let's load in an example dataset. We shall load the [iris flower dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set).\n", - "\n", - ">The Iris flower data set or Fisher's Iris data set is a multivariate data set introduced by the British statistician and biologist [Ronald Fisher](https://en.wikipedia.org/wiki/Ronald_Fisher) in 1936. It is sometimes called Anderson's Iris data set because [Edgar Anderson](https://en.wikipedia.org/wiki/Edgar_Anderson) collected the data to quantify the morphologic variation of Iris flowers of three related species. Two of the three species were collected in the Gaspé Peninsula \"all from the same pasture, and picked on the same day and measured at the same time by the same person with the same apparatus\".\n", - "\n", - "
\n", - "\n", - "
\n", - "\n", - ">The data set consists of 50 samples from each of three species of Iris (*iris setosa*, *iris virginica* and *iris versicolor*). Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.\n", - "\n", - "\"Parts" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Read iris data from the sheet with pandas\n", - "iris = pd.read_csv(\"https://www.bitly.com/dukenusda\")\n", - "\n", - "## If you're using Windows, you need to use:\n", - "# iris = pd.read_csv('C://Users//whho//Downloads//IrisData - iris.csv')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You have created a new object known as a pandas `DataFrame`, with the contents of the CSV. Think of it as a spreadsheet, but with a lot more useful features for data analysis.\n", - "It has several methods we can use to handle, analyse, and plot the data.\n", - "\n", - "We can peak at the data using the `.head()` method." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "1 4.9 3.0 1.4 0.2 setosa\n", - "2 4.7 3.2 1.3 0.2 setosa\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris.head() # Gives us the first 5 rows of the dataframe.\n", - "# iris.head(10) # Gives us the first 5 rows of the dataframe.\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get a summary of the data." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_width
count150.000000150.000000150.000000150.000000
mean5.8433333.0573333.7580001.199333
std0.8280660.4358661.7652980.762238
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width\n", - "count 150.000000 150.000000 150.000000 150.000000\n", - "mean 5.843333 3.057333 3.758000 1.199333\n", - "std 0.828066 0.435866 1.765298 0.762238\n", - "min 4.300000 2.000000 1.000000 0.100000\n", - "25% 5.100000 2.800000 1.600000 0.300000\n", - "50% 5.800000 3.000000 4.350000 1.300000\n", - "75% 6.400000 3.300000 5.100000 1.800000\n", - "max 7.900000 4.400000 6.900000 2.500000" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see what is in the `species` column." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['setosa', 'versicolor', 'virginica'], dtype=object)" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris.species.unique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot the old-fashioned bar chart" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "1 4.9 3.0 1.4 0.2 setosa\n", - "2 4.7 3.2 1.3 0.2 setosa\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris.head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlLUlEQVR4nO3deVxU9f4/8NcgDIKImpmgKLJcQFNjBEXkuqHkCgqVy0VUJHOhq4mlaC7XBZdcUARxFyj3NUmvlKZcK0HReyVxZ3GBEIxsUJYBOr8//DVfhwHOkDAD8no+HjyY+cyHM2/OMV59zpnz+UgEQRBARERUBT1dF0BERHUfw4KIiEQxLIiISBTDgoiIRDEsiIhIlL6uC6hpRUVFuH79Olq1aoVGjRrpuhwionqhrKwMubm56Ny5Mxo3bqz2+msXFtevX4evr6+uyyAiqpf27NkDZ2dntfbXLixatWoF4MUvbGZmpuNqiIjqh+zsbPj6+ir/hpb32oXFn6eezMzMYGFhoeNqiIjql8pO3/MCNxERiWJYEBGRKIYFERGJYlgQEZEohgUREYliWBARkSiGBRGRBhISEhAUFISEhARdl6ITr919FkREtSEqKgp3795FQUEBevbsqetytI4jCyIiDRQUFKh8b2gYFkREJIphQUREohgWREQkimFBRESitBoWP/74I3x8fNCtWzd4eHhg//79FfbLysqCv78/ZDIZBg4ciPj4eG2WSURE5WgtLH755Rf885//xLRp05CUlIR169Zh/fr1uHDhglrfoKAg2NvbIzExEcuWLcOsWbPw8OFDbZVKRETlaC0sMjMzMXz4cHh4eEBPTw9du3ZFjx49cPXqVZV+6enpuH79OmbMmAGpVApXV1e4u7vj8OHD2iqViLREUVqi6xJeezW1j7V2U56zs7PKUn1Pnz5FUlISRowYodIvNTUV5ubmMDY2VrZZW1sjOTlZbZtyuRxyuVylLTs7u4YrJ6LaItU3wMTdM3VdhkYey3OV3+tLzQAQ5b+xRrajkzu48/PzMW3aNLzzzjsYMGCAymvPnz9XWyzcyMgIRUVFatuJjo5GeHh4rdZKREQ6CIv09HRMnz4dtra2WLt2LfT0VM+EGRsbo7i4WKWtsLBQZaTxpwkTJsDb21ul7c91ZImIqOZoNSwuX76M6dOnY8yYMQgKCoJEIlHrY2Njg6ysLBQVFSlHGGlpabC1tVXra2pqClNT01qvm4ioodPaBe4HDx5gypQpmDFjBmbPnl1hUAAvrk84ODggNDQUCoUCCQkJOHv2LIYPH66tUomIqBythcWePXvw/PlzrF+/HjKZTPm1Zs0anDhxAjKZTNl306ZNSE1NhaurKxYsWICQkBDY2dlpq1QiIipHa6eh5s2bh3nz5lX6upeXl/Kxubk5duzYoY2yiIg0IjHQU/ne0DTM35qIqJqadW0Nw9ZN0Kxra12XohNc/IiISANGFk1hZNFU12XoDEcWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkSidhkZycDFdX10pfv3jxIjp27AiZTKb8ioiI0GKFRET0Mn1tvpkgCDh8+DBWr15dZb8bN25g8ODBCA0N1VJlRERUFa2OLMLCwrBv3z5Mmzatyn4pKSno2LGjlqoiIiIxWh1ZjBkzBjNnzkRiYmKV/VJSUpCXl4d9+/ZBEAQMGTIEs2bNglQqVeknl8shl8tV2rKzs2u8biKihk6rYdG6dWvRPqWlpTAzM4OHhwd8fHyQk5ODmTNnQiKRYM6cOSp9o6OjER4eXlvlEhHR/6fVsNCEvr4+oqOjlc8tLS0xdepUrF27Vi0sJkyYAG9vb5W27Oxs+Pr6aqVWIqKGos6FxePHjxEVFaVy2qmkpASGhoZqfU1NTWFqaqrtEomIGpw6d59F8+bNERsbi8jISJSWliIjIwORkZHw8fHRdWlERA1WnQiLEydOQCaTAQAMDQ2xfft2JCUlwcXFBePGjcPgwYPh7++v4yqJiBquap+GysvLQ3FxMQRBUGlv06aNxttwcXFBUlKS8rmXlxe8vLyUzzt27Igvv/yyuqUREVEt0TgsLl++jE8//RQ5OTkq7YIgQCKR4ObNmzVeHBER1Q0ah8XSpUvRqVMnrF+/nheViYgaGI3D4v79+4iIiED79u1rsx4iIqqDNL7AbW9vj/v379dmLUREVEdVObKIj49XPu7bty/mzZuHyZMno127dmjUqJFK3759+9ZOhUREpHNVhsWUKVPU2lauXKnWxgvcRJpJSEjAwYMHMWrUKPTs2VPX5RBprMqwuHXrlrbqIGoQoqKicPfuXRQUFDAsqF7R+JrF+PHj1WZ4BV7cd8G7q4k0U1BQoPKdqL6ocmSRmJiIe/fuAXhxn8X+/fvRpEkTlT5paWl48OBB7VVIREQ6V2VYNG/eHLt27YIgCBAEAXv37oWe3v8NRiQSCYyNjTF37txaL5SIiHSnyrCwt7fH2bNnAQB+fn4IDw9Hs2bNtFIYERHVHRrflMe5moiIGq4qw8LBwQESiUSjDfGjs6QLf5SWQE/fQNdlvNa4jwkQCYstW7YoH9+7dw/bt29HQEAAunbtCgMDA6SkpGDbtm0ICAio9UKJKqKnb4ArX3yo6zI0VvzbY+X3+lK305wdui6B6oAqw6Jfv37Kxxs3bkRISAgGDhyobHNycoKlpSVWrVrF9SaIiF5jGt9nkZ6eDmtra7V2c3NzZGdn12hRRERUt2gcFo6Ojli/fj3y8/OVbXl5efjiiy/g4uJSK8UREVHdUK31LCZPnoy///3vaNOmDQRBQGZmJmxsbLBt27barJHotWGor6fynai+0Dgs2rdvj5MnT+LHH39U3tVtb28PV1dXtRloiahi79q2QHz67+hrxfuVqH6pMiwKCwthZGSkfAwAPXr0QI8ePZR9FAoFACj7EVHlOrYyRsdWxroug6jaqgyLbt264YcffkDLli0hk8kqvOeCa3ATEb3+qgyL6Oho5fQeMTExWimIiIjqnirD4uXTTYmJiejXrx+6dOlS60UREVHdovEF7mvXrmHnzp0wNjZGnz590KdPH/Tu3RtNmzatzfqIiKgO0Pjzezt27MClS5ewZs0atGjRAlu2bIGrqyvGjRuH7du312aNRESkYxqPLABAKpXCzc0NXbp0Qffu3XHy5EmcOnUKV65cweTJk2urRiIi0jGNw+LUqVNISkpCUlIS7t27h/bt26N79+744osvVK5tEBHR60fjsAgKCoKenh769euH5cuXo2vXrrVZFxER1SEah8WhQ4eQmJiIxMRETJw4ES1atECPHj3QvXt3dO/eHe3atavNOomISIc0DosuXbqgS5cu+PDDD1FWVobr16/j2LFjWLx4MUpLS3lTHhHRa6xaF7hzc3ORkJCg/MrNzUWPHj3Qu3fv2qqPiIjqAI3DYsiQIcjIyEDbtm3Rp08fLFy4ED179kTjxo1rsz4iIqoDNA6LMWPGoE+fPrCysqqy34YNG+Dv76+cJoSIiOo/jW/KmzBhgmhQAC/mkJLL5a9UFBER1S01vgKLIAg1vUkiItIxLtdFRESiGBZERCSKYUFERKIYFkREJIphQUREomo8LKysrGBgYFBln+TkZLi6ulb6elZWFvz9/SGTyTBw4EDEx8fXdJlERFQNVd6UV50/0n379gUAHD16tNI+giDg8OHDWL16dZXbCgoKgqOjI7Zu3YorV64gMDAQX3/9NScrJCLSkSrDYsqUKRptRCKRaDSRYFhYGOLj4zFt2jRERkZW2Cc9PR3Xr1/Hrl27IJVK4erqCnd3dxw+fBizZs3SqB4iIqpZVYbFrVu3avTNxowZg5kzZyIxMbHSPqmpqTA3N4exsbGyzdraGsnJyWp95XK52t3i2dnZNVcwEREBqOass6Wlpfj1119RVlYG4MVpJYVCgZSUFAwfPlz051u3bi3a5/nz52qTExoZGaGoqEitb3R0NMLDwzWsnoiI/iqNw+L777/H/Pnz8fvvv6u9ZmpqqlFYaMLY2BjFxcUqbYWFhSojjT9NmDAB3t7eKm3Z2dnw9fWtkVqIiOgFjcMiNDQUbm5u8Pf3x8SJExEZGYnc3FysXLkSwcHBNVaQjY0NsrKyUFRUpBxhpKWlwdbWVq2vqakpTE1Na+y9iYioYhp/dDYjIwOBgYHo3LkzOnXqhIKCAgwdOhSLFi3Czp07a6wga2trODg4IDQ0FAqFAgkJCTh79myNjVyIiKj6NA6Lxo0bQ0/vRfcOHTrg9u3bAIC3334b6enpr1TEiRMnIJPJlM83bdqE1NRUuLq6YsGCBQgJCYGdnd0rvQcREf11GoeFs7MzNm/eDLlcji5duuC7775DSUkJLl26BBMTk2q9qYuLC5KSkpTPvby88N///lf53NzcHDt27MCVK1dw5swZDB06tFrbJyKimqVxWMydOxc///wzjhw5guHDh6OwsBBOTk6YN28exo0bV5s1EhGRjml8gbtDhw7497//rbzwfOjQIVy6dAnNmzfHO++8U5s1EhGRjmk8shgwYACePn2q/ISSkZER+vbtCzMzsyrneSIiovqvypHF2bNnceXKFQBAZmYmwsLC1G6Ye/DgQe1VR0REdUKVYeHg4IDo6Gjluto3btxQmVFWIpHA2NgYq1atqt0qiYhIp6oMi7Zt2yImJgYAMG/ePHz++efV/uQTERHVfxpfs1i5ciWMjY0RHx+PqKgoyOVyJCcn49mzZ7VZHxER1QEafxoqJycHAQEByMzMRFFREQYMGIBt27bh2rVr2L17d4XTcRAR0etB45FFSEgIbG1tkZCQAENDQwDAmjVr4OjoiBUrVtRagUREpHsah0VCQgICAwMhlUqVbUZGRvjkk09w7dq1WimOiIjqhmqtwV1+6nAA+O2330TX3CYiovpN47B49913sWrVKuTk5EAikQB4sZLe0qVLMWDAgForkIiIdE/jsAgODkarVq3Qp08f5fTk3t7esLCwwLx582qzRiIi0jGNPw3VpEkTrF+/HrNmzUJqaipKS0thY2MDKyur2qyPiIjqgGqtwV1WVoaMjAykpaVBT08PTZs2RYcOHZSnpYiI6PWkcVg8evQIH374ITIzM9GmTRsIgoCsrCzY2dlh27ZtePPNN2uzTiIi0iGNr1ksXrwYFhYWOH/+POLi4vDtt9/i3LlzaN68OZYuXVqbNRIRkY5pPLK4evUqDh06hJYtWyrbWrVqhblz52Ls2LG1UhwREdUNGo8sLCwscO/ePbX27OxsvPXWWzVaFBER1S0ajyzGjx+PJUuWICMjA05OTmjUqBFu3LiByMhIjBo1CvHx8cq+ffv2rZViiYhINzQOi4ULFwIANmzYoPZaZGSk8rFEIsHNmzdfvTIiIqozNA6LW7du1WYdRERUh1VrbigiImqYGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREorQaFrdu3cLo0aPh6OgIT09PJCcnV9jv4sWL6NixI2QymfIrIiJCm6USEdFLNF5W9VUpFApMnz4d48ePx1dffYVvv/0WAQEBOHfuHExMTFT63rhxA4MHD0ZoaKi2yiMioipobWRx6dIllJSUYOLEiTAwMMCwYcNga2uLU6dOqfVNSUlBx44dtVUaERGJ0NrI4t69e7CxsVFps7a2xp07d9T6pqSkIC8vD/v27YMgCBgyZAhmzZoFqVSq0k8ul0Mul6u0ZWdn13zxREQNnNbCoqCgAI0bN1ZpMzIyQmFhoUpbaWkpzMzM4OHhAR8fH+Tk5GDmzJmQSCSYM2eOSt/o6GiEh4fXeu1ERA2d1sLC2NgYxcXFKm2FhYUwNjZWLUhfH9HR0crnlpaWmDp1KtauXasWFhMmTIC3t7dKW3Z2Nnx9fWu4eiKihk1r1yxsbGyQnp6u0paWlgZbW1uVtsePH2P16tVQKBTKtpKSEhgaGqpt09TUFBYWFipfZmZmtfMLEBE1YFoLCxcXFwiCgKioKJSUlODkyZO4ffs2PDw8VPo1b94csbGxiIyMRGlpKTIyMhAZGQkfHx9tlUpEROVoLSykUim2b9+OuLg49OjRA1u2bEFERATeeOMNnDhxAjKZDABgaGiI7du3IykpCS4uLhg3bhwGDx4Mf39/bZVKRETlaO2aBQDY2dlh3759au1eXl7w8vJSPu/YsSO+/PJLbZZGRERV4HQfREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYVHPJCQkICgoCAkJCbouhYgaEK0ufkSvLioqCnfv3kVBQQF69uyp63KIqIHgyKKeKSgoUPlORKQNDAsiIhLFsACgKCnTdQmvPe5jovqN1ywASA0a4R9z9ui6DI08eZIPAMh+kl9vagaAvV/46roEInoFHFkQEZEohkU9I2lkoPKdiEgbGBb1jEmbbjAwMYNJm266LoWIGhBes6hnDJu1g2Gzdroug4gaGI4siIhIFMOCiIhEMSyIiEgUw4KIiEQxLIiISBTDgoiIRDEsiIhIFMOCiIhEMSyIiEgUw4KIiEQxLIiISBTDgoiIRDEsiIhIFMOCiIhEaTUsbt26hdGjR8PR0RGenp5ITk6usF9WVhb8/f0hk8kwcOBAxMfHa7NMIiIqR2thoVAoMH36dAwZMgSXL1/G1KlTERAQgGfPnqn1DQoKgr29PRITE7Fs2TLMmjULDx8+1FapRERUjtbC4tKlSygpKcHEiRNhYGCAYcOGwdbWFqdOnVLpl56ejuvXr2PGjBmQSqVwdXWFu7s7Dh8+rK1SiYioHK2tlHfv3j3Y2NiotFlbW+POnTsqbampqTA3N4exsbFKv4pOWcnlcsjlcpW2zMxMAEB2dna16isueFqt/lQ9jx49qrVt5+YX1dq2qXaPHQAUPS2o1e03dJoevz//ZpaVlVX4utbCoqCgAI0bN1ZpMzIyQmFhoUrb8+fPK+xXVKT+ByE6Ohrh4eEVvp+vr+8rVkw1acB3Ybougf6qgwN0XQG9ggFbqnf8cnNzYWlpqdautbAwNjZGcXGxSlthYaHKCKI6/QBgwoQJ8Pb2VmlTKBR4+PAhOnTogEaNGtVQ9XVHdnY2fH19sWfPHpiZmem6HKomHr/663U/dmVlZcjNzUXnzp0rfF1rYWFjY4OoqCiVtrS0NIwcOVKtX1ZWFoqKipQjjLS0NNja2qpt09TUFKampmrt1tbWNVZ3XWVmZgYLCwtdl0F/EY9f/fU6H7uKRhR/0toFbhcXFwiCgKioKJSUlODkyZO4ffs2PDw8VPpZW1vDwcEBoaGhUCgUSEhIwNmzZzF8+HBtlUpEROVoLSykUim2b9+OuLg49OjRA1u2bEFERATeeOMNnDhxAjKZTNl306ZNSE1NhaurKxYsWICQkBDY2dlpq1QiIipHa6ehAMDOzg779u1Ta/fy8oKXl5fyubm5OXbs2KHN0oiIqAqc7qOeMTU1xccff1zhtRqq+3j86q+GfuwkgiAIui6CiIjqNo4siIhIFMOijisqKsKTJ090XQYRNXAMizpu3Lhx+N///qfrMugVyWQy3L59+y///KNHj2Bvb682vQ1pZsuWLQgKCvpLP/vhhx9iz549ov1OnDiBMWPG/KX3qA94zaKOc3d3x/z58zFw4EBdl0I69OjRIwwYMACXL19usBdYSbc4stCSP/74AytWrECvXr3g6uqKgIAAPHjwAABw8OBBDBo0CN27d0dAQIByOvbAwEBkZWUhKCgI27dvBwB8+eWXGDhwIJydneHn54dbt26Jbl+hUGD58uV499134ejoCA8PD5w8eVIHe6Fumj17NkJCQpTPy8rK0KtXLyQmJlZ6bB49egSZTIYFCxbA2dkZ+/fvx7Vr1/Dee+/B2dkZgwcPVvn4t729PW7evAngxYwE/v7+6NatG/r374+9e/cq+1V2fMv76aef8N5776Fbt27w9PTE6dOnla+5u7tj0aJF6NmzJ+bMmVOj+6quq+xY+vn5Yfr06QBe3Mf10UcfwdPTE25ubsjLy0NSUhK8vLzg7OyMwMBABAYGYtOmTQAAPz8/5ewTfn5+CA0Nhbe3N7p164Z//OMfSE1NBQAcPXoUI0aMUL73kSNHMGjQIMhkMowdO1Y5aeovv/yCwMBA9OvXD127dsUHH3xQ6XGuUwTSitOnTwuDBg0Snj59KigUCiE4OFiYP3++EBcXJ7i5uQnXr18XiouLhS1btgiDBg0SSkpKBEEQhP79+wvfffedIAiCcODAAcHNzU1ISUkRFAqFsGPHDqFXr17C77//Xun2BUEQIiMjhdGjRwtPnz4VysrKhJiYGKFbt27K92joLly4ILi5uQmlpaWCIAhCfHy80L9/f+H06dOVHpuHDx8KdnZ2wrp164Ti4mLh+fPnwvDhw4U9e/YIgiAIt27dEmQymfDgwQNBEATBzs5OuHHjhlBcXCz0799fWLt2rVBcXCzcvHlTcHJyEq5cuVLl8f3z/X7//Xfhzp07QufOnYWTJ08KJSUlwk8//SQ4OjoKSUlJgiC8+Dfj5+cnFBQUCHK5XDc7VUcqO5YbN24Upk2bJgiCIISFhQmdO3cWbt68KcjlcuG3334TnJ2dhYMHDwolJSXC8ePHBTs7OyEsLEwQBEEYN26csHv3buXjPn36CGlpaUJ+fr4wadIkYebMmYIgCMKRI0cELy8vZR0ymUy4fPmyUFZWJoSHhwvvvvuuIAiC4O/vLyxbtkxQKBRCYWGhEBQUJEyePFmLe+mv4chCS5o2bYqcnBx8/fXXyM7ORkhICEJCQnDw4EGMHz8eb7/9NqRSKT766CM8e/YMiYmJats4fvw4xo8fj06dOsHAwAABAQFo2rQpzp8/X+n2AWDMmDHYvHkzTE1NkZOTAyMjIzx79kxtxt+GqlevXtDT01Pu89jYWHh6euLQoUOix8bT0xNSqRTGxsYwMTHB+fPn8cMPP6BDhw5ISkpCu3btVN7r6tWrkMvlmDlzJqRSKRwcHLBnzx5YW1tXeXxfdvLkSbi4uGDo0KHQ19eHq6srPD09cezYMWWfQYMGwcjICE2bNq29HVcHVXYsJRKJSj87Ozs4ODgo96+ZmRk++OAD6OvrY8SIESozSpTn5eUFKysrmJiYYNCgQcoR/MtiY2MxYsQIODs7Q09PD5MnT8YXX3yBP/74AyEhIZg9ezaAF6uCNmvWDDk5OTW4F2oHw0JLevXqhUWLFuHUqVMYNGgQhgwZgu+//x5ZWVnYvHkznJ2d4ezsjO7duyM/Px9ZWVlq2/j111/Rtm1blba2bdsiOzu70u0DwLNnzxAcHIyePXti+vTpuHjxIgBA4OUqAICenh68vLwQGxuLwsJCnDlzBiNHjtTo2Lz11lvKxxs2bEDLli0RHByM7t27Y968eWorQf76669o1aoV9PX/b/IEe3t7NG/evMrj+7K8vDy0adNGpc3CwgK//PJLhXU1JJUdy/Je3j+PHz9G69atVV43Nzev9D1atmypfKyvr1/h+g9PnjxR2YZUKsU777wDPT09ZGRkwNfXF3369MGiRYtw//79evHfIsNCSx4+fIhOnTph//79SExMhI+PDz755BO0atUKwcHBSEpKUn4dPXq0wokT27Rpo1zc6U+PHj1Cy5YtK91+SUkJFi9eDAsLC/z44484evQoAgICtPVr1xve3t44c+YMvv32W9jZ2cHKygpvvfWW6LH58/9YS0tLkZaWhqVLl+KHH37A/v378fPPPyMmJkblfVq3bo0nT56o/IE5evQoEhISqjy+LzM3N1fr9/DhQ7z55ptqdTVEFR3L8l7eP2ZmZmqBXN3F08pr3bo1Hj9+rHxeUlKC1atXIz8/H9OnT0dAQAAuXryIr776Cr17936l99IWhoWWJCQk4OOPP0ZWVhZMTEzQrFkzNG3aFN7e3ti9ezdSU1MhCIJy+PrnPzQDAwPk5+cDAEaOHImYmBjcvHkTJSUl2LlzJ/Ly8tCvX79Kt6+vr4/8/HwYGhpCT08POTk5WLduHYAX/4DpBRsbG1haWmLDhg3Ki5QjR46s8ti8rFGjRpg/fz6ioqJQVlYGMzMz6OnpoVmzZir9unbtihYtWmDz5s0oKSnB7du3sXr1ahgYGFR5fF82dOhQJCUl4dSpUygrK8PFixeVp1uo4mNZlQEDBiA3NxeHDx9GaWkpTp8+jatXr75SDZ6enjhx4gSSk5NRVlaGXbt24dy5c5BIJCguLlYuv5CSkoKYmJh68d+iVicSbMjee+89pKenY9SoUXj+/DmsrKwQFhYGJycnyOVyTJ8+HTk5OWjfvj0iIiLQoUMHAICPjw+WLFmC9PR0BAUF4bfffsOMGTPw5MkTODg4YOfOnWjZsmWl25dIJPj888+xYMEC7N+/Hy1atMCoUaOQkpKCO3fuwNXVVbc7pg7x9vbGypUrMXToUAAvwqKyY1N+qUqJRIKNGzciJCQEkZGRkEqlGD58OEaPHq3STyqVIjIyEsuXL0evXr3QtGlTfPbZZ3BycoKTk1Olx/fl97O0tMTmzZuxbt06fP7552jdujWWLFmCv//977W/k+qJ8seyKiYmJggLC8OSJUuwcuVKuLm5oUuXLjAwMPjL7+/q6op58+Zhzpw5yM3NRadOnRAREQETExMsXboUS5YswZw5c9C2bVuMHj0akZGReP78OZo0afKX37O28T4LImrQ8vLykJWVpbJC3AcffID3339fLewbMp6GIqIGTaFQwM/PDykpKQCA8+fP49atW+jZs6eOK6tbOLIgogYvNjYW4eHhyMnJQdu2bTFz5ky1VTwbOoYFERGJ4mkoIiISxbAgIiJRDAsiIhLFsCCqI4KDgzFjxgxdl0FUIV7gJqoj8vPzIQgC16ugOolhQUREongaiqgCBw4cgIeHBzp37ozBgwfj+PHjAF4sLLR7926MHj0aXbt2xejRo5U3cwEv5ttau3Yt3Nzc4OTkhICAAKSlpSlfLyoqwooVK5SvT5s2TTnXVPnTUPHx8RgxYgS6du2KYcOG4ciRI8rXnj17htmzZ8PFxQWOjo4ICAhARkZG7e4UatAYFkTlpKSkYNmyZQgODkZcXBz8/PwQHBys/GO8ceNGeHl54dixY7CyssKkSZPw9OlTAEBYWBji4+MRGhqKgwcPwsrKCn5+fsrJIBcvXoyzZ89izZo1OHjwIBQKBT755BO1Gu7evYsZM2ZgzJgx+OabbxAYGIjVq1crVzjcsGEDHj16hJiYGBw9ehR6enqYP3++NnYPNVCcSJConKysLOjp6aFt27Zo27YtfH190aFDB7zxxhsAXsz66uvrCwBYunQp+vfvj1OnTsHHxwdRUVGIioqCk5MTAGDBggW4cOECvv76a4wYMQLffPMNNm7ciF69egEA/vWvf+HAgQNQKBQqNezYsQOenp4YO3YsAKB9+/Z48OABdu7ciWHDhiEzMxNNmjSBhYUFmjRpguXLl6tNW05UkxgWROX07t0b3bp1w4gRI/C3v/0N/fr1g4+Pj/LCs7Ozs7KvVCqFvb097t69iwcPHkChUCAgIEBlvYTi4mKkp6cjPT0dpaWl6NKli/K1du3a4dNPP1Wr4e7du7hz547KWumlpaXKRZOmTJmCKVOmwNXVFd27d8fAgQM1mo6b6K9iWBCV07hxY+zevRtXr17FuXPncP78ecTExGDr1q0AXqxd8bI//vgDjRo1Ui5otGvXLrUFi0xMTJCbmwtAs4WJysrK4OfnhzFjxlT4uqOjI86ePYtz587hP//5D0JDQ7F3714cPnwYhoaG1f6dicTwmgVROYmJiYiMjISTkxM+/fRTfPPNN+jUqRPi4uIAADdu3FD2LS4uxu3bt2Fvb4/27dtDX18feXl5sLS0hKWlJdq3b49NmzYhOTkZFhYWaNSokcrPZ2ZmokePHmoLKtnY2OD+/fvK7VhaWuLSpUvYu3cvAGDr1q1ITk6Gp6cn1qxZgwMHDuDOnTu4ffu2FvYQNUQMC6JyjIyMEBERgYMHDyIzMxMXLlxAWlqa8vTRgQMHEBsbi9TUVCxcuBD6+voYMmQImjRpgrFjxyIkJATx8fG4f/8+li5dirNnz8LGxgYmJiZ4//33sXLlSly+fBn37t3D4sWLYW9vr7YG9KRJk3D+/Hls2bIF9+/fR1xcHFasWKEcsWRnZ2P58uW4evUqHj58iGPHjsHExES5aBZRTeN9FkQVOH78OLZu3apcA3v06NGYNm0a3N3d4e7ujqtXryI1NRWOjo5YtGgRbGxsALxYG2H9+vWIjY3Fs2fP4ODggM8++0x5naOgoACrVq1CXFwcysrK4ObmhoULF+LNN99EcHAwCgoKEBYWBgA4c+YMwsLCkJaWhlatWmHUqFGYOnUqJBIJCgoKsGLFCnz//ffIz89Hx44dMXfuXOWFdaKaxrAgqgZ3d3dMmjQJ48aN03UpRFrF01BERCSKYUFERKJ4GoqIiERxZEFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCTq/wERRjhijQAFOwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ax1 = sns.barplot(data = iris, \n", - " x = 'species', \n", - " y = 'petal_width')\n", - "\n", - "# Axes should always be labelled.\n", - "# ax1.set(xlabel='Species', ylabel='Mean Sepal length (cm)')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot a swarmplot, which shows all the data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\xusy\\.conda\\envs\\nbdevdabestdev\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 14.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", - " warnings.warn(msg, UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEPCAYAAABLIROyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABjSUlEQVR4nO3dd3iTVfvA8W9G05UOumlLSym0BcpsGS2yQWZZDlAEforjFV/BV30RRUEQRF5RERmCA0FRlgxZIntvZBVaRqG7dNE9kibP749CIIRRsG06zue6uC5ynnUngXPnGefcMkmSJARBEIRaR27uAARBEATzEAlAEAShlhIJQBAEoZYSCUAQBKGWEglAEAShllKaO4CyKCoq4ty5c7i6uqJQKMwdjiAIQrWg0+lIS0sjODgYKysrk+XVIgGcO3eO4cOHmzsMQRCEamnZsmWEhoaatFeLBODq6gqUvgkPDw8zRyMIglA9pKSkMHz4cEMferdKSwB//PEHkydPNmorKioiLCyMH3/88YHb3rrs4+Hhgbe3d4XFKAiCUBPd79J5pSWAAQMGMGDAAMPr8+fP89JLLzF+/PjKCkEQBEG4g1meAtJqtbz77ru8+eabBAUFmSMEQRCEWs8s9wCWLVuGlZUVzz//vMmynJwccnJyjNpSUlIqKzRBEIRao9ITgEaj4YcffmDKlCnIZDKT5UuWLGHu3LmPtE+9Xk9CQgL5+fnlFaZQDiwsLHBzc8Pe3t7coQiCcA+VngD27duHXC6nS5cu91w+atQoBg8ebNR26072/aSnpyOTyQgMDEQuF2PbqgJJkigsLCQxMRFAJAGhyknJS2PN+S3cKMymo29bOtVvZ+6QKl2lJ4AdO3bQp0+f+3bU9vb2j9xZZGVlUb9+fdH5VyEymQwbGxu8vLxISkoSCUCoUkp0JUzZ+RUZhTcAOJ1yHqVcQbiP6bPyNVml95inT5+mdevW5bpPnU6HhYVFue5TKB/W1tZotVpzhyEIRqIzYgyd/y0H4o6bKRrzqfQEkJiYiJubW7nv9173EwTzE9+LUBU529RBhvG/TVcbJzNFYz6VngBOnTpFy5YtK/uwgiAIBh5qVwY36WX4geJl78HAxr3MHFXlqxZTQQilJkyYQEFBAXPmzDF3KIJQ7Q1rNpAe/h3JLsrFr0495LLadw9RJIBqZOLEiYgSzoLw+CRJQqsvQaUovWfoYuOEyx2XfvR6PXpJj1JRO7rG2vEuawg7OztzhyAI1dap5PN8d3wZaQWZtPBowtj2L2JnqTYs33JxFyvPbaBYp6WLXxgvtx5W458srNnvrgKtWLGCnj17EhwcTO/evVm3bh0A3bp1Y/HixQwdOpTmzZszdOhQIiMjDdtptVpmzZpFhw4dCAkJYfTo0cTExBiWFxUV8emnnxqWv/7661y/fh0ovQQ0duxYw7p79uxh4MCBNG/enH79+vH7778bluXl5fHOO+/Qrl07WrZsyejRo7l27VrFfiiCUEVpdFrmHP6RtIJMoPSxz9/OrDcsj89OYvHfK8nXFlKiL2H7lX3sunrQXOFWGpEAHkNkZCSffPIJEyZMYOvWrYwYMYIJEyYYOtivv/6aAQMGsHbtWvz8/HjppZfIysoCYM6cOezZs4evvvqKlStX4ufnx4gRI8jNzQVg8uTJ7Nixg88//5yVK1ei0Wh46623TGK4dOkSY8eOZdiwYWzcuJE33niDmTNnsmnTJgBmz55NQkICS5cuZc2aNcjlcj744IPK+HgEocpJzU8nT2M8U8CVG7GGv8dkxplsc+WGaVtNIy4BPYakpCTkcjleXl54eXkxfPhw6tevj5NT6bXEvn37GkYuT506la5du7J582aGDBnCTz/9xE8//URISAgAH374Ifv27WP9+vUMHDiQjRs38vXXXxMeHg7Axx9/zIoVK9BoNEYxfP/990RERPDcc88B4OPjQ1xcHD/88AP9+vUjMTERW1tbvL29sbW1Zdq0aYZRuYJQ29RVu+Fk7UhmYZahzd+pPotPruRGYTbNPIKQy+ToJb1hebBboBkirVwiATyGjh070rp1awYOHEijRo3o0qULQ4YMMYx2vbPyjkqlIjAwkEuXLhEXF4dGo2H06NFGz8cXFxdz9epVrl69SklJCc2aNTMsq1evHu+++65JDJcuXeLixYuGX/wAJSUlKJWlX+lrr73Ga6+9RlhYGG3atKFHjx4MHDiw3D8LQagOFHIF45/4F4tPriQpL5VQz+acST5PakEGAIcTTjIgsCcnk89RqC2iZ8OOhPuEmDnqiicSwGOwsrJi8eLFnDx5kl27drF7926WLl3KwoULAdPiC3q9HoVCgU6nA+DHH3/E2dnZaB21Wk1aWhpQtsFTOp2OESNGMGzYsHsub9myJTt27GDXrl3s3buXr776il9//ZXVq1djaWn5yO9ZEKq7Bk6+fNLjvwCcT71oco0/JT+NL/tMMkdoZiPuATyGI0eOsGDBAkJCQnj33XfZuHEjTZo0YevWrUBpsZtbiouLiY6OJjAwEB8fH5RKJZmZmfj6+uLr64uPjw/ffPMNZ86cwdvbG4VCYbR9YmIibdu2NdwIvsXf35/Y2FjDfnx9fTl69Ci//vorAAsXLuTMmTNERETw+eefs2LFCi5evEh0dHQlfEKCULU5WjuYtNWxMm2r6UQCeAzW1tbMmzePlStXkpiYyL59+4iJiTFculmxYgUbNmzgypUrfPTRRyiVSvr06YOtrS3PPfcc06dPZ8+ePcTGxjJ16lR27NiBv78/arWap59+mhkzZnDs2DEuX77M5MmTCQwMxN3d3SiGl156id27d/Ptt98SGxvL1q1b+fTTTw1nFikpKUybNo2TJ08SHx/P2rVrUavV1K9fv7I/LkGocjzt3OnTqKvhtautMwODnjRjRGYiVQPx8fFSQECAFB8ff8/l58+fr+SIJGnt2rVS7969peDgYKlz587S/PnzJUmSpK5du0qffPKJNHjwYKl58+bSyJEjpcuXLxu2Ky4ulmbMmCGFh4dLzZs3l5599lnp2LFjhuX5+fnSRx99JLVt21YKCQmRxo4dK6WlpUmSJEnvvfee9OabbxrW3bZtmxQRESE1bdpU6tKlizR//nxJr9cb9jNx4kQpLCxMCg4Olp555hnp+PHjlfHRmDDH9yMIZZGQnSydTYmStCVac4dSIR7Wd8okqeoPLU1ISKB79+7s2LHjnkXhL1y4QOPGjc0Qmalu3brx0ksv8cILL5g7lCqjKn0/glCbPKzvFDeBBUGoFc6nXuL7E7+RnJdKG88W/KvNC9iorM0dllmJewCCINR4JboSvjr4HQk5yej0Og4nnGT52T/MHZbZiTOAcrZz505zhyAIwl1S8tPILs41aovOuGKmaKoOkQAEQajxPGxdcbCyJ7sox9Dm51iP5WfXk3mzJnAz9yAzRmge4hKQIAg1nlKh5J3wV/Bx8MJCriSsXggX0i+z5vyf7L56iGm75/B38jlzh1npRAIQBKFWCHJtyKzeH7LsmW/o06gLybmphmUSErtiDpkxOvMQCUAQhFpHrbI1bbM0bavpRAIQBKHW8XaoS1e/cMNrRyt7BgT2MGNE5iFuAlcDRUVF5OXl4eLiYu5QBKHGeL3tCHr6d+RGUTbN3IOwUta+SRLFGUA18MILL3Dq1ClzhyEINU5D5/q08WpRKzt/EGcA6PUSe/9OYP3eK6RnFeHiaMXATv50auWNXP7waZkrQ2ZmprlDEIRqZe+1I6yO3IRGp6VPo64MbPzwid4Oxp1gxbk/KNIW07NhR55u2o/YrAS+P7GchJxkWtUN5uWQYdhY1JzRw7X6DECvl5ix5CjzVp/mckI2WXnFXE7IZt7q08xYchS9vnynSdLr9Xz66aeEh4cTFhbG6NGjiYsrLTu3cuVKevXqRZs2bRg9ejTx8fEAvPHGGyQlJfH222/z3XffAfDzzz/To0cPQkNDGTFiBFFRUQ/dv0ajYdq0aTz55JO0bNmSnj17GhWTEYSaIj47iXlHlpCSl0ZmYRbLzqzleOKZB25zPS+NOYd/JDk3lRtF2aw8t5H9sUeZdWAR0elXyNcUsD/2KL+cXltJ76JyVGoCSE1NZcyYMYSEhBAeHs7s2bMr8/Am9v6dwKmLaRRpdEbtRRodpy6msfdU+ZZQ3LZtG3v37mXLli3s3bsXNzc3Fi5cyF9//cWcOXP48ssvOXDgAG3btuWVV16hpKSEefPm4enpyZdffskrr7zCypUrWbhwIXPmzOHQoUN06dKF0aNHk5OTc9/9Q2kRmnPnzrFq1SpOnjzJyJEjmTRpEiUlJeX6HgXB3C6kXULC+Mfb+dSLD9wmKu2KUTlIgJNJ57iel/ZI+6luKjUBjBkzBldXVw4ePMiKFStYt24dGzZsqMwQjKzfe8Wk87+lSKNj/Z7L5Xo8Ozs7UlNTWb9+PSkpKUyfPp3p06ezcuVKRo4cSdOmTVGpVLz66qvk5eVx5MgRk32sW7eOkSNH0qRJEywsLBg9ejR2dnbs3r37vvsHGDZsGPPnz8fe3p7U1FSsra3Jy8ujsLCwXN+jIJibv1N9kzZnmzosO72W5WfXk55fekk1X1PAugtbWXxyJQqZaVfYxK0Rde4qHOPv5FshMZtLpd0DOH36NPHx8fz2229YWFhQr149fv75Z7OWJ0zPKvpHyx9VeHg4kyZNYvny5Xz22WfUq1eP9957j6SkJObPn8+iRYsM62q1WpKSkkz2kZGRgZeXl1Gbl5cXKSkpDBgw4J7779atG3l5eUydOpXTp0/j5eWFn58fANVgNnBBeCT+Tr680GIIa85vQasv4QmfNqw4t4GikmIAtl/Zz6xeH/Lp3rlcy0oAYKtMTp9GXdgbexRNiYauDcLp5tcBTzsPvj32Myl5aTRzD2JEy6fM+dbKXaUlgHPnzhEQEMDcuXNZs2YNlpaWPP/887z00ktG6+Xk5JCTk2PUlpKSUiExuThakZVX/MDl5Sk+Pp4mTZqwfPlycnNz+fXXX3nrrbdo1aoVI0eONKrve+XKFTw9PU324enpSWKi8aWphIQE+vbte9/9nzhxgsmTJ+Pr68v8+fNRKpWcP3+ejRs3luv7E4SqYkBQT/oHdEdCYn3UX4bOHyCnOI8N0dsNnT+AXtKTVZTLD4M+Ry9JKOWldb2buDViTr+paHVaLBQWlf4+KlqlXQLKzs7mxIkTKJVKduzYwdy5c/nxxx9NLgEtWbKE7t27G/0ZPnx4hcQ0sJM/VirFPZdZqRQM7NywXI93+PBh/v3vf5OUlIRarcbBwQE7OzsGDx7M4sWLuXLlCpIksWHDBgYOHGioA2xhYUFubulMhoMGDWLp0qVcuHABrVbLDz/8QGZmJl26dLnv/pVKJbm5uVhaWiKXy0lNTeWLL74ASs80BKEmSs5LJT476Z6PeNqqbEzarJWWXM9LJy4rweTMuCZ2/lCJZwAqlQq1Ws2bb74JQFBQEE8//TTbtm0jIiLCsN6oUaMYPHiw0bYpKSkVkgQ6tfLmwJkkkxvBVioFLQNc6dTS6wFbP7qnnnqKq1ev8uyzz5Kfn4+fnx9z5swhJCSEnJwcxowZQ2pqKj4+PsybN89Qv3fIkCFMmTKFq1ev8vbbb3Pjxg3Gjh1Leno6QUFB/PDDDzg7O993/zKZjIkTJ/Lhhx+yfPly6tSpw7PPPktkZCQXL14kLCysXN+nIJiTXtIz59CPHIw/AUCAsx911W4k55XO/ePnWI/+Ad2JzUrk0M11bFU25BbnM27zZAAaOtXnw85ja3zBmEorCblz507GjRvHiRMnUKlUAHzxxRfExsYyZ86cB25bkSUh9XqJvacSWb/n8u1xAJ0b0qmlV5UZB1DdiZKQQmU6lRzJp3vnGrWNbPk0LjZ1UMgVtKobjFKuQJIkIlOjySzMxlZlzcx9C4y2Gd58cJnGD1RlVaYkZIcOHXBycmLmzJm89957XL16ldWrV/Pxxx9XVgj3JJfL6NLamy6tTT8cQRCqn/SCGyZtWUU59A/sbtQmk8kIvlkDYH/s0Xvsp+YPwKy0BGBpackvv/zCJ598QseOHVGpVLz88sv06tWrskIQBKGGOnc9it/O/kFOcR7tvVthpbQ03PiVy+Qo5Qre3jIVhUzO4Ca9CfcJJSrtCsvOrOVGYRZtvVphY2FNgbb0sWgZMsJ9Qsz5lipFpU4FUa9ePaNHHQVBEP6p3OI8Zu5bQLFOA8D6qL94umk/knOvo9FpCXJpyM+nfzes//XhH3GxceKzffMMHf7Gi9sZ1LgXGQU3KNQW0cO/I41dG5nl/VSmWj8XkCAI1VtU+hVD539Lcu51xoWNBjAp/i5JEnuuHTZ0/rfEZyfxXscxFRtsFSMSgCAI1Zqvgxcymczo0U0PtRt/RG1Do9NSx8rBZJtgt0B2xhxAd8f0D5527myM3k6htoiO9dvhoXZFp9dxIO74zcngmta4swKRAARBqNbc1C682OpZfju7niJtMSGezdhz9RDphaU3g22UVnTybceB+OPIkdEvsDthPiEUlhTx86nfydcW0qpuU44mnuJ6XjoAG6K3M6PnBNae/5O9saVTsqy7sJV/t/s/OtVvZ7b3Wt5EAhAEodrr3agL3Rt0QKsr4XjSGY4n3Z79s6CkCDe1C4sHzUImk2OpLH0MvVuDDnTybUexTsO51Gi+OHD7/mRRSTFbLu5iX5zx00FbLu6qUQmgVk8HLQhC9ZSSm0rGXY975msLuVGUbZjG4U5KuYLs4lxyi/OM2gu0hdwozEYpN/0tbKGwQI7xWCClXEFucR7x2UlGl5w0Oi3XbiSg0VWvkfXiDEAQhGpDU6Lh8wMLOZ1yHhkyujfowKtthrP87HrWXfgLvaTH38mXeg6exGeXTqboZO1IVNplw83gTr7tGNNuJOsubGVV5CZ0eh31Hb3xc6zH1azSOhwOlnb0C+gGwKaLOwBQyOR42Xvw2h/vU6IvoZ6DJxM7vUlKXhpfHFxEbnEeapUtb4e/bBhfUNWJBFDDtGrViuXLlxMYGPhY298aOXjs2DHs7e3LOTpB+Gd2XT3E6ZTzAEhIbI/ZTyNnP9ac/9OwzpXMWAY37sXgxr3R6LSU6Er4/uRvhuV7Y4/Q2K0RK85uMNQNuJaVQJ9G3RjYuBeF2kLaerfEzlLNqFZPE+IZTHx2Mg3q1OPjXV8ZbhzHZyfx+/nNRKVfMZxZ5Gny+eHECr7qO7myPpJ/pNYnAEnSkxe5n+wjGyjJzUBp54xDuwjUTZ9Ado85wqu6v//+29whCEKFubtAC0DMjTiTtrSCGzzXfBAAK8+Z1hy5mhlnUjQmrSCDF32eMVk32D2IYPcgLmdcM3pqCCAlL80kppR80xirqurXw5UjSdJzffXnpG/+Fk1KDPr8bDQpMaRv/pbrqz9HuuvL/qfeeecdQ4EWAJ1OR3h4OEeOHLlvSciEhARatWrFhx9+SGhoKMuXL+f06dM89dRThIaG0rt3b77//nvDPgMDA7lw4QIAMTExvPjii7Ru3ZquXbvy66+/Gta7X1nJux08eJCnnnqK1q1bExERwZ9/3v6l1a1bNyZNmkT79u0ZP358uX5WgnAvbb1bIrvjurxKYUHvhl1Qq2yN1nOzdWbyzi/5YNtM5DI5MtntbZRyJU826oyjlfEZrre9B1N2fcWEv2awM+YAAKn5GXx18Hve2TKVg/EncLFxMtqmnXcr2nq1NG6763VVVqvPAPIi91N49TSS1rgmgKQtpvDqafIjD6AO7lhuxxs8eDATJkxgwoQJKBQKDhw4gJWVFVlZWcyZM4eFCxfSqFEjFi9ezCuvvGKYr7+goAAnJycOHjxISUkJQ4cO5bnnnuP5558nOjqa5557jl69elGvXj3DsTQaDS+//DL9+vVj4cKFxMTE8MILLxAUFMTly5dZuHAhixYtolGjRixdupTRo0ezZcsWo3gvXbrEa6+9xsyZM3nyySc5duyYoapbSEjpMPlr166xa9cuUVpSqBRBrg15p8OrbL28G5VCxcCgXng5eDCpy1v8fn4zOcV5hHgG89vZP9DpS2f4vZx5jeebD+Lc9WgUcgURgT3wcfBkUte3WH1uEzeKsmldtxkrIzeivXkT99tjv+Bo5cBvZ9YRm11afyM+J5luDTqg0WlJy88gvF4IPf070sm3LY7WDkSnXyHAuQHPBvc32+fzqGp1Asg+ssGk879F0haTdWRDuSaA8PBw5HI5R44cITw8nA0bNhAREcGqVasMJSEBXn31VX7++WeOHDmCr29pCbqIiAhUKpVhWu3du3fj4+NDmzZtOH78OHK58cncyZMnycnJYdy4cSiVSoKCgli2bBnu7u7MmjXLUFYSYPTo0axatYrdu3fTunVrwz42bdpEu3bt6Nu3LwBhYWFERESwdu1aQwLo1asX1tY1e8pcoWpp692Stt4tjdrq1/HmnQ6vAvDX5b2Gzv+W3OI8Puwy1qjN274ub4W/DMDea0cMnf8tB+OOGTr/W6LTr/BVH+Pr+1YWVoysppXCavUloJLcjAcu1+Wml+vx5HI5AwYMYMOGDRQWFrJ9+3YGDRpkKAkZGhpKaGgobdq0ITc316gkpJubm+Hvs2fPxtnZmQkTJtCmTRvef/998vKMH2/LyMjA1dUVpfJ2jg8MDMTR0fGBZSXvlJmZaVKVzNvbm+Tk5HvGJQhVgbe9h0mbs3UdNl/cydZLe8jXFACg1WnZe+0I6y5sxUqhMtmmvmM97O66tOR1j31XZ7X6DEBp54wmP/u+yxV2LuV+zMGDBzNs2DDat29PQEAAfn5+uLm53bckZEZGaZK6dQ2zpKSEmJgYpk6dioWFBefPn+fdd99l6dKljBlzex4Td3d30tPT0el0KBSlz0WvWbMGT0/PB5aVvFPdunU5fvy4UVt8fDwuLrc/lzuvrQpCVdDELYD+Ad3ZcmkXekkixKsZ6y5sJau4tNTshuht/K/XRGbtX8i51Gig9Jn/LvXD2B93jBJ9CW28WvBko864qV349tgv5GnyqWdflxdaDDHnWyt3tfoMwKFdBDKLexell1lY4tgu4p7L/gl/f398fX2ZPXs2AwcOBErLPD6oJOSdFAoFH3zwAT/99BM6nQ4PDw/kcjkODsbznTRv3pw6deowf/58tFot0dHRzJw5EwsLiweWlbxT3759OX78OJs3b0an03Ho0CHDZStBqMpGtnqa7wb+j4UDPyPIpaGh84fSG7t/RG0zdP5Qejagk3R8N3AmCwd8xn+f+BcqhQVtvVvy7YAZzO0/jS/6TMJD7WqOt1NhavUZgLrpE+RfOGRyI1hmYYm1Xwtsm3aokOMOHjyYGTNmGH5xDxo06L4lIRMSEoy2lclkfP3110yfPp0FCxagUqno378/Q4cONVpPpVKxYMECpk2bRnh4OHZ2dvz3v/8lJCSEkJCQ+5aVvPN4t4rIf/HFF0ycOBF3d3emTJnCE088USGfiyCY292PhkLpk0Zuts5miKbiVVpJyH+iIktCSpKe/MgDZB3ZgC43HYWdC47tIrBt2qFajgOoikRJSKGyLfl7NX/eugTk2YzLmdfIKio9C3C3dWFmrw+MLgGpFBaE+4SyL/YoOr2OUK8WvBU2GlU1LwZfZUpCVlUymRx1cMdyfdpHEATzOZ960TB9A8DxpDOMavkMcpkMhVxOB5822FhY836nNzgc/zeZhVnUtXNj1oGFt7dJPM2OK/vpE9DVHG+h0tT6BCAIQs2SkJNi0pZZeIMRdz2qaaGwoGP9tkDpY6B3S7zHfmoakQAEQahRWng0RiFXGI0FUKtsmbZ7Dgq5nIjAngS7B5KQncyqyE3cKMyidd1mWCgsjMYCtPZsZo7wK5VIAIIg1Cjualfee2IM6y78iUanJcQzmOXn/jBM33z2ejSfPfk+03Z/bbgvEJV+hUGNe3E54xqF2iJ6NuxIa89gc76NSiESgCAINU7Luk1oWbd0pPvKcxuM5u4v0Zfw16U9hs7/loScFCZ1fasywzQ7kQAE4R/QpCdQePU0KlcfrOvX/EsG5lBUUsyR+L+RkGjr3RIbC2v0kp5TyZGk5mcQ4tkM17se09SUaDiaeAqNTovjPWoC+zn5IIsxriPsZuPMgbhjFGqLaXdzOmiAs9ejSMhOpoVHYzxvjgROyEnmTMoFfB29aeoWAEBOUS5HE09hY2FDW68WKBVVv3ut+hEKQhWVH3WE62tmwc1ZYx3CBuHcbYSZo6pZCrVFvL/tM5JySwdFro7cxGc93+fHkyvYH3cMgJ9Pr2FSl3EEuvgDpdW5Jm7/n2EenzpWDrTyaMrfKZHIkNGxflu6+oWRXZRjKAjj51iP82kX2XxpJwArzv7BjJ4T2HRxp1FBmHef+Bc6vY4vD36H/ub3PjDoSXr4P8EH22aSq8kHINC5AVO6vWMyR1dVU6kJYPXq1UyePBmV6va8G5MmTWLw4MGVGYYglIusg78bOn+A7KMbqdPhaeSWYnK88nIo/qSh84fSUbybLu40dP5QOop3Q9R2Ap8oTQDHE08bTeJ2oyibXq6dGR0yDLlMjott6ZTOQ5r0oUeDJ8jR5HE9L52Z++YbtskuzmXTxZ38eWmXoU0n6Vl3/k+0+hJD5w+w+eJONDqNofMHiM6I4VxqNM09qvb4l0pNAOfPn+fFF1/k3XffrczDCkK50hXmIldZI+numgJbry/3GhK1XYnedJpxjU5j0qbVl6DVadHqSii5aybQ0v3osLdUw11zV9lYWKOQK+75yKdWp0V/18jgEr3OZP86SY/27n8L94m9qqnU85PIyEgxIvQevv32W95+++3H2vbll19m2bJlD13vjz/+MJpsTnh0uoIckpZ9TOyX/0fsnFew9DYuu2nXvCsKK9v7bC08jrB6raljffsavr2lmv6BPWjh0cTQJpfJcbVx4uX143lx7Tscjj+J6x2FW2wtrLmel8aL695l9Np3WXZ6LQA7Yw7wys1tdsQcMJrnx0ppSd+ArnT0aWsUT9+AbvS9WSv4li5+YfRu1AXLO2YU9bavS/M7YqyqyjwVRF5eHt999x1RUVEUFRVx92ZLly594PY6nY6QkBDatm3L+fPnsba25plnnuGVV14xmlEyJyeHnBzju/MpKSkMHz68QqaC0Et6DsQeZ9PFHWQU3MDZpg79ArrTwTcUuZgKolzUlKkg0v/8jpwTtyuiySwscRv8NsUJUahcfbFtEo5MrjBjhDVTVmE2u68dRi/p6VI/DCcbRzQ6LfuuHSE1P4OGzvWZtX+h0Tw+Q5r0wcbCGo1Oi73Klu9PLjfa51thL/PN4R+NSjz2D+yBk7UjhdpCOtZvh4faFZ1ex4G44yTkJNOqblMauzYCIDL1IqdTzuPj4El4vVDkcjnJuansiz2KWmVDl/ph2KjMfymw3KaCmDhxIocPH6Znz57Y2dk9ciCZmZkEBwczaNAg5s6dy5UrVxgzZgy2trYMHz7csN6SJUuYO3fuI+//ceglPV8cWMSZlAsU3zytzC7OZdHxZRxOOMk7HV4t1yTwzjvv4OTkxMSJE4HSpNixY0f8/f2xs7Nj/vz5fPPNN5w9e5bk5GQyMzPZsGGDYfrnpKQk2rVrB0BQUBBvvvkmI0aMoHv37vzf//0fI0aMoHXr1uzdu5fY2FiCgoL45JNP8Pf3Z82aNSxZsoT169cD8Pvvv7No0SJSU1MJCgpiypQpBAQEkJyczLRp04iMjCQzM5PAwEA++eQTgoKCyu1zqK40qbFGryVtMUp1HWy7vmCmiGoHR2sHBjXuZdSmUljQ3b90UsJjiadNJnG7npfGuLDRACw/+4fJPiNTo03q+ybnXjcp7KKQK+hUv53J9k3dAgxP/9xS186tWlUDg0dIAHv37uW7774jNDT0sQ7k6urKL7/8YnjduHFjXnjhBf766y+jBDBq1CiTm8K3zgDK24HY40ad/y3FOg1nUi5wMO44T/i2vc/Wj+5+JSHbtGljVJP30KFDrFq1Ci8vL3Q6Ha+//jrjx49n8ODBbNq0ifHjx9+3Q163bh0//fQTrq6ujBs3jm+++YbZs2cbrbN//36mT5/OokWLaN26NQsWLODNN99k69atTJw4kQYNGjB79mx0Oh0TJ07kyy+/ZNGiReX2OVRX1n4tKIq/YHitUNeh4OoZMnctQ+Xmg2OHp1BY25F/8Ri5f29Dbq3GMWwQKlcfM0Zd8wW5+GOpUBn9P65r58bsQz+g1WkJcmlotL5MJqNz/fYciDtOgbbQ0F7PwZM5hxdTqC2kp39HWns2I6c4jzXnt5CQnUxrz2B6N+pSo64MlDkBqNVq6tSp89gHunTpElu2bGHs2Ntl2bRaLZaWxvPx29vbY29vf/fmFWLTxR0mnf8txToNG6N3lGsCuF9JyLuLqgQEBBg6+HXr1uHh4cEzzzwDwMCBA/ntt9/ue4wBAwbg5+cHlJZrXL58uck6t+oN3Ermr7zyCk888QR6vZ7p06fj6OgIQFJSEg4ODly5cuUfv/eawDF8MHpNAfkXDqOs447S0Y0bu0p/1BRePU3x9WvUCR/C9VWfGbYpuHwCnzHzkYt7AxXGzlLNex3HsPzsH+QU59LOuxV/RG033Cw+kXSWIU36cCzhFHK5gsGNexHg0oAJHd/gt7PryCzIoq13S7Ze2kNhSREAJ5PO8XG3//DbmfVEpZf++z9z/QKF2iKeatr3vrFUN2VOAC+++CKzZs3is88+Myk+Uhb29vYsXrwYDw8Pnn76ac6fP8/PP//MRx999Mj7Ki8ZBTf+0fJHdWdJyFatWrF9+3bWrFljKP5+y51lFq9fv467u7vR8rp16973GM7OtwfEKJVKdDrTJyLS09MNl5KgtHZAixYtgNIi759//jnJycn4+/tjaWlpcr+ntpIplDh3H4Vz91EAxC9402h50bWz5KqdjNr0hXkUXD2NunF4pcVZGwW7BzLN/b8AbL+y3+hJIb2kp0Sv44s+k4y2CXL1Z0q3dwDYH3vU0PlDaV2AnTEHDZ3/LQfjjteeBNC+fXvDr1NJksjKyiIsLAw7OzuTAQ6HDh164IHc3d2ZP38+n3/+OTNmzKBOnTqMGTOG3r17/8O38PicbeqQXZz7wOXl7V4lIe925xmBh4eHSa3elJQUGjRo8NgxuLu7G1Ub02q1fPnll4wZM4YxY8Ywbdo0+vXrB8BPP/3E2rVrH/tYNU1JXhaFMadQOrqhtHdGm3m7brPcyhZlHXeTbeQqa3LP7kZp54yVb7Aoo1nBXO7x/7aOlT2H408il8lpXTcYpUKJJEmcS43mRmE2agsbk2081K5YK62MEsOtMQQ1xQMTwHvvvVeuBwsLC2PNmjXlus9/ol9AdxYdX3bPy0CWChX9A7uX+zHvLAn5yiuvPHT97t278+mnn7J69WoGDRrE9u3bOXnyJOHhj/+LMiIigrFjxzJw4ECaNm3Kjz/+yK5du3jjjTcoLi7GysoKKH1sd+nSpYbXtV1R0mWSl01G0pR2CDaB7ZDb2KMvyEGmsMC5x/9hE9CWgksn0KSU/nK0DWpP6tov0ReXFiJXB3fCbeA4s72H2qC5R2PCfUI5GFdazzrAuQF/Xt7D9bw0APwc6/FJ93eZd3Qph+JPAGCrsqGtV0uOJp4CoKFTffo06oqDlT0/nlxBib4EByt7nms20CzvqaI8MAHceTN23bp19O3b12gUL0BBQQErV66smOgqWAffUA4nnDS5EWypUBn+EVWEu0tCPoharWbOnDlMmTKFGTNm0KFDB5o1a4aFxeNXKgoLC+P9999n/PjxpKWl0aRJE+bNm4darWbq1KlMmTKF8ePH4+XlxdChQ1mwYAH5+fnY2tbu69hZB9cYOn+Aguij1PvXHHSFOVg4eaKwKb135fXSTDQpMcitbLmxb6Wh8wfIO7cXxw5PoXIxfSRPKB9ymZy3wkbzbNN+aHRazqdd4qe/VxmWX82KZ+PFHYbOHyBfU4BaZcPXfadQqC2igVPpjfse/k/Qxqs5KXlpNKjjg0U1rxB2tweOA9BoNOh0OiRJIiQkhO3bt+PkZHwKdO7cOUaPHs2ZM2cqLMiKLAmpl/QcjDvOxujb4wD6B3Yn3KdqjAPIzMwkKSmJ4ODbU9M+88wzPP300yZ1gKuq6jQOQCrRIlPe+z958m9TKYw5bdTm/drXWDi6m2wj6UpALuf677MoiDYuNuL14kxUbr733kYmE2MJytma81tMHgWNCOzBhujtRm3h9UJ4K/zlygytwv2jcQDr16/no48+Mlyz7NGjxz3X69y5czmEah5ymZwnfNuW69M+5Umj0TBixAh++eUXmjZtyu7du4mKiqJ9+/bmDq1G0Wankrrua4oTorBw8cZtwFgs6/obrWPfqheFMWfg5jPnll6BpP+5iKLYSCycPHGNeANLz0akb1lE7pndyC2tUTftCDK5Yc4glbsfGbuXUXT1DEpHd1z7vY6Vb1My/lpM7t/bkFmoqNPxWRzaVq/nyauyjr5tWR/1F4Xa0rM3e0s1EUE9OXc9mqtZ8UBpP9Dj5riC2uShI4GPHTuGXq9n1KhRfPPNN0ZPAMlkMmxsbAgICPhHlyQepiLPAKqDDRs2MHfuXFJTU/Hy8mLcuHH07NnT3GGVWXX4flJWfErB5duXBCycvaj3rzkm6xXGRpIfdRiloxtFCVEURB02LFPau+AQPpiMP7+7YwsZboPfoighGqW9C5rr18g7t9ewVGHrQJ2uw0nfOJ87eb38BZbu9cvt/dV2Kbmp7Ig5gEKuoEeDJ3CxdSJfU8D2K/u5UZhFB982NHI2fSCjuvvHI4HbtGkDwI4dO/D09BRPMJhBREQEERER5g6jRitOvmz0WpuRiL640GRmT2vfplj7NgUg7vgWo2UlOekUxV3AmASShMuTpaNSE777j9FSXX42RbGRpvEkXRYJoBx52LkxvIXxAFNblQ0DGz9ppoiqhjKPA7jf9AwymQwLCwvc3d3p1asX/v7+91xPEKoyK5+m5F84aHitcvcj58SfFCVdwtqnCfahfZDJFeSdP0D+hUMo67hj6dWIkqzbj9NaOHth7d+K/PP7b+9YrkBfXMT1NbNQ2rugqtsQTWqcYbHSwRWbRqHknd1zexuZHCufqj+RmFD9lTkB2NrasmzZMpo3b07Lli0BOHv2LCdPnqRHjx6kpKSwaNEi5syZQ6dOnSoq3vuSJEmcnVRB1WUQmUvvV0CSKLx2BpVHA+SW1mTeHOVbEH0EbVYqlu71Sds4z7CNhasPtk2eoDDmFCo3H1x6v4KFSz1KbqSQe2o7citbbPxbk77lW8M2SicP1M06U3D5BBbOXrj0ehlLjwZou6SQc2ILcgsr6nR6FpWzZ6V/BkLtU+YEkJCQwKuvvsp//mN8Cjtv3jzOnz/PwoULWbFiBbNnz670BKBQKNBqtSaPqArmV1hYWKH3h8qLwsYe96dK61RIeh1XZz5ntDzv7B6TyeC0aXG4DRyH+2Dj/xNOnYfh1Ll06u2UlTOMlpVkpmAfMRa3AWON2ut0GEKdDkPK5b0IQlmV+TnHw4cP37NyV79+/di/v/SUt2PHjsTExJRfdGXk6OjI9evX0etFMY6qQpIkCgoKSExMNJrawhxxFMaeo+DySaMCLprUOPKjDqMrzDO0leTdIO/CIUqy01DYGE93olA7olA7Gu9cJgeZjLyoQ2gybleg0pdoyL90nKL4KBS2d22DDIWt6VQqkk5LweUTFMZFGp01FSVEk3/xGHpt8SO/d+HhLmdc41jiaYpKaufnW+YzAA8PD/bv30/9+vWN2vft24eLiwtQOnlYZU3kdicXFxcSEhKIjo6u9GML93fr3pA5/k1A6S/55F+nUhR7rjQeF288R04n+8gGsg6sBkBmaUPd5yejL8jm+urPkXRaQIZdi27kntsDuhJkShXO3UairONO0bVz6PKzABnqpk+QtHgCUknpIEKn7qNQB3ckackHlGSlAmBVvxkKO2d0uRkAOLTrj0UdD6M4dQW5JC39AG1G6bQS1n4t8Bg2kdS1X5EfVTrFitLeBc9Rn6K0Ny5+Ljy+BUd/ZtfV0vs+jlb2TO32Dh525vuxYg5lTgBjx45l/PjxHD16lODgYCRJIjIykp07dzJjxgwuX77Mu+++a5hDpjLJ5XJ8fMSUu4KxgksnDJ0/gDY9gZzjm8k6dHtuI6m4gKx9KynJzbzZ+QNI5Ecfod6Y+WjT4rCs2xCFTWkNjHpvzKcoPgoLR1fSNs43dP4AN/auQFeQbej8oXSCOI/nSychU9o533MEcO6pbYbOH0pnFs0+utnQ+UPpE0bZxzeLovPlJCE72dD5A2QV5fBH9HZeDX3ejFFVvjIngL59++Lh4cGyZcvYsGEDSqWSRo0asXz5coKDgzlz5gwvv/wyzz9fuz5AoerSF+WZtJXkZcHdNV0L89AXGk8KqC8uQGGtxsK/lVG73MISmwYtbm5nvI2kLUaXb1zNDkAqLsI2yLSoyO3jm05IWJKXYdKmL7j/xIXCo8m7o4C7oa3YtK2me6Si8K1bt6Z169b3XNa8eXOaN29eLkEJQnmwadTGMFkbgExhgUNoH7QZiUZnBnYtu6PLzeDG3hV3bBtCym+fUJR4EWufJrj2fwO5tR3pWxYaBoJZ+TRBm55we5vAtti37kneuT2GJKOwcyL/4hFS189Gae+Mc8+XsGnYmqwjf5B1cC1IEurgTqBQws17FApbBxzbD6Qg6ggl2TfPJmRy7Fp0reiPrNYIcG6Al72HoRi8DBldG4SZOarKV+aawEVFRSxfvpxz585RUlJi8njf119/XSEBwsNHswnC/WhvpJBzfAv6Eg32rXpi6dEAfXEh2cc3o81MwrZRW2yD2iFJEnlnd1N47SyWHg3IPbcXTfLtueCtG7RE5V6f7EPrDG1yKzVOPUZRFBuJys0H+5DeyC0sKUqIJvf0TuTWatDryT5yex4amYUV7kPeJmXFp0ZxuvR+heLrschVltiH9sXC0Y2S3Eyyj21CX5iHXfMuWNWr2qOpq5vsohy2XNrNjcJsnvBtQzP3mlf2tNxqAn/00Uds27aNjh07olaryzVIQagoFnU8cO75olGb3NKaOh2Ma7/KZDLsmnfFrnlXJL2OjG2LjZYXJUQh3fUkjr4oD0s3X+xbdDNqt/IOxMo7EIDk3z4xWiZpi8i/eNQkTl1BDq59XzNqU9o5iWv+FcjByp5hzQaYOwyzKnMC2LdvH7NmzbrvhHCCUFPI5Aos6zY0mh7CyjsQlVt9o5rAcis1mtQ4so9vRuXqi31ob+RKFUWJF8k9vQu5lQ0qVx8KY07d3reFFbYBbcn923gmSsubCUMQKlOZE4BSqbxn9SpBqIlcB44lbeM8ihMvYeXbFNe+ryO3VqPLzSQv6hAWju5Y+TYlbePtKVKKEqJwDBtM0tIPDfcA5Gon1M06k3/hEAo7J1yefAmbhiE4dR9V+jSSpMex/UBs/FqY660KtViZE8D//d//MWvWLKZPn25SE0AQahqVsxdeoz41aXcb9BZuvAVA/ELjyl4F0UdLi7/f8ZSRPi8T24B2JiN/HdsPwLF97b78IJhfmRPAli1biI6OpkOHDtja2poM739YTWBBqA4kSU9xQjQypSWWdU3rLuu1xRQlRGHh6I7cyvhemMxCZagKZtSusqLw6hkU9s6onL0M7UWJFwGw9Gwk5rESzKLMCeCFF16oyDgEwez0xQUk/TIZTUrpdCY2jdrg/sx4ZDcrw2nSE0j+ZbJhJLBtcCc0KTGGwWB1Oj6LOrgz+ecPGh7ftPINJnXjPPS3RgK3H4BT5+dJXj7N8CiqVb3GeDw/CblSzGUlVK4yJ4B7zQMkCDVJzqkdhs4foODSMQqv/I1NwxAAbuxfdbPzB5DIj9yH1+hZaDMTUbn6GEb5ev/rawpjTiO3siXv7B6jMQfZhzegsHM2aiuKv0B+5H7s7nqaSBAq2iMVvd28eTNPPfUUoaGhxMfH89lnn/HDDz9UVGyCUKlud+63leTdbtPl3bVc0gMS6sbhRlM8yJUqbAPaYO3TBF3ejbv2KFFyI+WBxxGEylLmBLBmzRqmTJnCk08+iVZbOmeKv78/8+bNY9GiRRUWoCBUFnWTJ+COguxyK1s0qdeInT2ahO/+g8qtvtH6Fq4+ZB1cy7UvR5H08yQ0afFIkkTm3hXEfv0K8QvHYXHHNX8AC2dP7Nv0Q2ZhaWiTKVWoG9e+UaiC+ZX5EtDixYv5+OOP6dOnD99+W1rg4plnnsHe3p6ZM2fy6quvVliQglAZLD388HxhCjkn/0KmVKFQ1yFr/yqg9OxAm5mCS5/XKLx6GqWjGyU5N8g/vw+AorhIrv/+OY4dniJr38rSbfIyyc5MvrnNGZT2zji0H4jSzgnPkdPIPrYZJAmH0D5YONU12/sWaq8yJ4C4uDiCg4NN2hs3bkx6enqZD5iTk8OAAQMYO3YsQ4aIAhhC1WJVr7FhyoXra74wWiaVaFCo6+D+1H8BiJs3xmi5NiORgssnjXeo1yG3tDYUm7nF0qMBbhH/LufoBeHRlDkB+Pn5cejQIerVq2fUvmXLFho0MH1c7n4mT57M9evXH76iIFSwwqtnyL94DAtnT+xadkeuVKHJSCydx0dpiYXTXWUZZXIknZb0v37EwtENlXt9o5rASnsXrOoFGdcERgbISd+2GKWdM/ateiK3tEabnUru3ztA0mPXqgcWju6V8p4F4U5lTgD/+c9/GDduHOfOnUOn0/Hbb78RFxfH7t27yzwR3Nq1a8nLyyMgIOCxAxaE8pB3bh+p62cbXhde+RunHv9H4g/jkbRFAMjVdbBt0oH8C4eQW6tRN+lA6povgdKJEC29ArDyaUpRXCQWTnVx7f9vLL0aobl+jdwzu5FbWqFu2qn0OFJptbr8Cwdxe3o8iT++Z5ilNOfkX3i/8qUo9iJUujIngM6dO7Nq1Sp++OEHGjVqxMGDB/H392fFihU0bdr0odvHx8czd+5cli9fzssvv3zf9XJycsjJMZ5TPSXF9KkJQfgnsk/8afS64PIJlI5uhs4fQJ93A5uGrXGLeBMUClKWT+NW5w9QnHgR79e+RungivyOm7qu/V7HpffLIJOXXkaSbpcqLU66RM6RDYbOH0onlcs7vx/H9gMr4J0Kwv09Uj2ARo0a8dlnnz3yQXQ6Hf/973957733cHV1feC6S5YsYe7cuQ9cRxD+KbnK0rhBJkemsjFZT6a0RJMWh9zGDpmF1d1LQSZDc/0aFk6ehqphkiShSY1HbmWDXHX3NqVPF5m0mexbECreAxPA//73vzLvaPz48fddNn/+fPz8/HjyyScfup9Ro0aZDDpLSUlh+PDhZY5FEB7GscNTFMVdMIzidWjTF8e2/ciP3GcYxavyaMCNfSvQpsUDMmybdkBmYWU4S7AJaEvyzx+hy89GprDApe9r2AS0JeXXKRTfrCVgExSG3NIGfXEBAOqmHXFo24/8CwfQpMYBpbWK1cEdK/kTEISHJICzZ8+WaScPm8dk06ZNpKamsm3bNgDy8/OZMmUKZ86c4eOPPzZa197e3mxFxIXaw9qnKfVen0vh1dNYOHti5V1aDMT71a8ouHwCmVJFUfwFsg+vv7mFRH7kfuq+MJWSrOso67iTtX81uvzs0qU6LRnbFlOSlWbo/AEKog7hPuwj9PlZKO2dsfINRiaT4fXi/yi4fAJJkrBpFCKmgRDM4oEJ4Oeff37kHc6ePZsXX3wRBwcHQ9uffxpfbx04cCCjRo0Sj4EKZqW0dzaZfkGuskLdpAMA+ecPmGwjaYsM26RnLzBapi/KR3sj2XQbTQF2zbsYtcmUFtgGtf8n4QvCP/ZIU0GUxdKlS01u4gpCdWR7MxHcorB1oODqGeLmjSF52cdY+TQxWm7lG4z6ro5ebqXGWsz1L1RRj3QTuCzKUmJ4/fr1D11HEMzNNqANboPfJvfMLhS2Dsgtbck5uhGAkqzryG0dcer6AoXXzqBy9cHxiadRWNvh/vR75J7ajtzKFsewwSjucdNXEKqCck8AglCTqJt0MFwSSlr6odEyfX4W1n7NcQw3fmjBNrAttoFtKy1GQXhc5X4JSBBqKpWbr9FrmYUlJflZZO5aRl7kPqQ7KoEJQnUgzgAEoYzqdBqKJj2eothI5NZ22AaFcX3F7bKRdtfO4drvdTNGKAiPRiQAQSgjhY09ni9MRVeQi9zSmsQfjce+5J7eiVP3keKav1BtiEtAgvCIFDZ2yBRKZIq7fj/J5aDToUmNRX9zgJkgVGXlngD8/PxMCsYLQk3kGD4EZLf/C9kGtSd+0TgSvnubuDmvUnitbAMpBcFcHngJaM+ePWXeUefOnYHSymGCUBvYBrXH+5UvKbx6GpWbLxnbFhsmedMX5pL+53fU+9ccM0cpCPf3wATw2muvlWknMpmMCxculEtAglCdqFzroXItrZGhzTQeBay9R+1fQahKHpgAoqKiKisOQajSSrLTyNj5M9r0eKz9W+PUaRgSEjf2/EZhzClUrr5YN2hJwcWjhm1sA8RYAKFqe6SngEpKSsjIyECnK33eWZIkNBoNkZGR9O/fv0ICFISqIGXVTDTXrwKUzuIpSUh6nWFksCY1DpV7AxzaRVAUH4WlVwBOnYeZM2RBeKgyJ4CdO3fywQcfkJ2dbbLM3t5eJAChxirJyTB0/rcUXDpuMvBLcz0Gj2ETce7hWInRCcLjK/NTQF999RUdOnRg1apV2NrasnTpUr744gtcXFyYNGlSRcYoCGalsLFHbm1n1Gbh7IXK2ct4PVsHFNbqygxNEP6RMp8BXLt2ja+//poGDRrQpEkTCgoK6Nu3LxYWFixYsIB+/fpVZJyCYDYypQWufV8nbdN89EV5WDh74dx9JJKkR5uZjDYzCbm1Gpe+r5uODRCEKqzM/1qtrKyQy0tPGOrXr090dDSdO3emadOmXL169SFbC0L1ZhvUDmv/lujybqB0dDcUQfL+1xxKsq6jsHMSRV2EaqfMl4BCQ0OZP38+OTk5NGvWjG3btqHVajl69ChqtTjtFWo+mUyOTK4wrYAnlz+0Kp4gVEVlPgN47733eP311/n9998ZNmwYS5YsISQkBK1Wy1tvvVWBIQqC+eVHHy29BFSYi4WrDx7PvAeSnpRVM9GmJyC3scet/7+xaRRi7lAFoczKnADq16/Pli1bKCoqwsrKilWrVnH06FEcHR1p0UJUPBJqLqlEa+j8AbRpcWTsWAp6Hdr0BAD0BTmkbZqPz5sLxX0Aodoo8yWg7t27k5WVhZWVFQDW1tZ07twZDw8PwsLCKixAQTA3XUGOofO/RZsej+Zm529YLz8L3V3rCUJV9sCfKjt27ODEiRMAJCYmMmfOHEMCuCUuLq7iohOEKkBp74zKzRdNaqyhzaZhKJK+hJxjmw1tKg9/lOo65ghREB7LAxNAUFAQS5YsMdT5PX/+vNFMnzKZDBsbGz777LOKjVIQzMz9mQlk7liKJj0eG//WOHV5HknSI5PJKYg5hcrVB+fuI80dpiA8kgcmAC8vL5YuXQrA+++/z8SJE8UTP0KtZOHohvtT7xq1yQDnni/ibJ6QBOEfK/M9gBkzZmBjY8OePXv46aefyMnJ4cyZM+Tl5VVkfIIgCEIFKfPjCqmpqYwePZrExESKioro3r07ixYt4vTp0yxevJiGDRtWZJyCIAhCOSvzGcD06dNp2LAhhw8fxtLSEoDPP/+cli1b8umnnz5k61K7du0iIiKCVq1a0aNHD5YvX/54UQuCIAj/WJnPAA4fPsyyZctQqW4Pd7e2tuatt97i2Weffej2qampjB07lrlz59K5c2ciIyN57rnnaNasGU2bNn286AWhCtAV5iK3skUmEyW2herlkUasFBcXm7TduHGjTDWA3dzcOHToEGq1Gr1eT1ZWFgqFAltb20cJQRCqDG12Kqm/f0Fx8mUU9i64Rfwb6/rNzB2WIJRZmRPAk08+yWeffcYXX3xhmPckKiqKqVOn0r179zLtQ61WU1hYSGhoKCUlJbzyyivUr1/faJ2cnBxycnKM2lJSRGk9oerJ2PYTxcmXAdDlpJO6fg4+b36LTK4wc2SCUDZlTgATJkzgo48+olOnTgD07duXkpISunbtyvvvv1/mA1paWvL3338THR3Nq6++iq+vL88884xh+ZIlS5g7d+4jvAVBMA/N9WtGr3V5megKcsRgMKHaKHMCsLW15csvv+Q///kPV65coaSkBH9/f/z8/B7pgHK5HJVKRbNmzXj22WfZsWOHUQIYNWoUgwcPNtomJSWF4cOHP9JxBKGiWfu1IPfvvwyvVW4+ovMXqpVHugeg0+m4du0aMTExyOVy7OzsqF+/fpmmwj169CifffYZa9asMbRpNBrs7e2N1rO3tzdpE4SqyLnHSJD0FFz5G5WbDy5PvmTukAThkZQ5ASQkJPDyyy+TmJiIp6cnkiSRlJREQEAAixYtwsXF5YHbN27cmOvXr7N48WJGjhzJ6dOn+f3338XlHqHakqusce33urnDEITHVubn1iZPnoy3tze7d+9m69at/PXXX+zatQtHR0emTp360O3t7OxYtGgRf/31F23btmXSpElMmzaNtm3b/qM3IAiCIDyeMp8BnDx5klWrVuHsfHvmE1dXV9577z2ee+65Mu2jadOm/Pbbb48epSAIglDuynwG4O3tzeXLl03aU1JScHNzK9egBEEQhIpX5jOAkSNHMmXKFK5du0ZISAgKhYLz58+zYMECnn32Wfbs2WNYt3PnzhUSrCAIglB+ypwAPvroIwBmz55tsmzBggWGv8tkMi5cuPDPIxMEQRAqVJkTQFRUVEXGIQiCIFQyMXuVIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi1VqQngwIEDDBkyhNatW9OzZ0+WL19emYcXBEEQ7qCsrAMlJyfz5ptvMnPmTLp37865c+d4+eWX8fLyomPHjpUVhiAIgnBTpZ0BJCYm0r9/f3r27IlcLqd58+a0bduWkydPVlYIgiAIwh0q7QwgNDSU0NBQw+usrCyOHz/OwIEDjdbLyckhJyfHqC0lJaVSYhQEQahNKi0B3Ck3N5fXX3+dFi1a0L17d6NlS5YsYe7cueYIq8Lp9RJXErNwsrfC2cHa0J6QmoskQT13OzNGJwhCbVPpCeDq1auMGTOGhg0bMmvWLORy46tQo0aNYvDgwUZtKSkpDB8+vDLDLHcZ2YV8+O1BElLzkMtlDOsZyLPdG/HZ0mMcPld6hhPa2J0P/q8tFkrxcJYgCBWvUhPAsWPHGDNmDMOGDePtt99GJpOZrGNvb4+9vX1lhlUpVm6/SEJqHlB6JrD8ryjsbS0MnT/A8QvX2X86ka4h9cwVpiAItUilJYC4uDhee+01/vOf/zBixIjKOmyVkXqj0Oi1XoK4lFzT9TILKiskQRBquUq71rBs2TLy8/P58ssvadWqleHP559/XlkhmFXHlp5Gr93qWNO/g5/R5R6lQkb7ZnUrOzRBEGqpSjsDeP/993n//fcr63BVTrdQH/R62PN3Ai4O1gztGYCHsy2fvBbO+r1X0OslBnbyx9ej5l3+EgShajLLU0C1VY+2PvRo62PU1rSBM00bOJspIkEQajORACpQSkY+e04mYGttQdeQethaW5BfqGXn8XgKirV0buWNh7PtQ/dTUKRl14kEcgs0dGrphaerGkmSOHgmmZikbFo2cqVZQ5dKeEeCINQkIgFUkLiUHN6ds5fCYh0AWw5dY9bYjvz3m73EXy99Guj3nZf58q1OeLvd//l/nV7i/fkHiEnMBmDVjkvMGtuRv47EsnH/VaD0CaM3nm5B77D6FfumBEGoUcQD5xVk6+FYQ+cPpU/8rNpxydD5AxQWl7D1cOwD93P2cpqh8wfQaHVs3BfDn4eMt1u/90o5RS4IQm1RqxNA6o0CMrKNH8/MLdCQmJZn1KbR6ohNyaFEpy/zvhUK04/2XgO8lAo5GdmFpN31mGheoZb467ko5KbbKOQy5DLTtnsp0emJTcmhWKszak9KyyMnX/OwtyEIQg1WKy8Blej0zFp2ggOnk5DJoFtoPcY+24p1ey7z85YoSnR6GtVzZPLL7bmWnMPMpcfJLdBQx86SD15sS5Cv00OP0SesPtuPxpFbUNrJBvrU4amujTh6/jqX47MAsLdVkZCay4uf/IUkQceWXrzzfGu2HLrG4g2RaEr0+HrYEeDjyMW40m1srS0Y0NkfO7UlK7dfBEAmg2e6B5jEcDk+i2mLj5CRXYTa2oJ3XwghwKcOU78/TFTsDZSK0hHJQ3sGls8HKwhCtVIrE8D+U4kcOJ0EgCTBjmPxNG3gzJJN59FLpetcis9i9c5LHIlMMXTiN3KLWbjmDF/9p8tDj1HXxZb547tx8GwStlYWhDWri8pCwcw3nuDg2WQKirSolAq+XvG3YZt9pxJp1tCZH/44R4muNJDYlFyebOfLoE4NyckvJqy5J072Vozo05gWjVyIScyhRSMX/DwdTGJYtO4sGdlFQOkZxbzVp+nS2puo2BsAlOgklm2NomMrLzxd1I/7cQqCUE3VygSQlJ5v0nY5PsvQ+d+SmJbH9Yz8u9pMt70fRztL+ob7GbWpLBR0ae0NwJpdl0y2iUnMNnT+t6Rk5NPx2ZYm6zZv6Erzhq73PX5SuvGlrLQbhYbpKG6RJEhOzxcJQBBqoRqVAI5GpvC/X46j0eioY2/FnHc64aC2NlmvbRMPVmyLNnT4SoWM3mH1OXg2mazcYsN64c3qIpfJOBJ5e76eVgGufLHsBLEpOYQ2due5J4MAiWV/RnEyOhXfuvaM6tsEF0dr/joSy1+HY7G1tmBozwCa+DkTGZPB8m3RFBaV0KaJOwq5DN3NQORyGU+28+VkVKrR1BENvOz5+LtD5ORr6NnWhz7hftzIKeKnTeeJScymZYArL/RpjEIuY/m2aI5FXsfLTU3zhq7sO5Vo2E/rQDfCm3ty6Gyyoc3ORkVTv7KPQ8gr1PDmrF1kZBWhslAwblgrOrb0KvP2giBUHTUqAUxbfATpZqeemVPEv2ft4eePe5us17CeIxNfbMf6vVeQy2UM6dIQP08Hpv0rnF+3RpGZXUSX1t70aOtL+2ae/LLlAtFxNwhu4MzpS2lcTSqtV3A1KQe9XkKnl1i354qhLSktj6E9Avlm5SnDMc9fzWDWuE5M/u4QxZrSG7LRcTcY3juIyCsZ6CWJQZ39aVSvDlNfC2fZn1GkZhbQpqk7v++8ZHii6FJ8Fna2Kjbuv0pkTAYA15Jz0Gh12NmqWLGt9L5ATFI23u5qnurakNOX02no7ciIPo2xt1VRVFzCzuPxONpZ8tyTgVhZlv2fwb8/32W4rFSs1fG/n4+LBCAI1VSNSQB/R6caOv9b7vw1f7e2TT1o29TDqM3Xw573R7U1alNbW/CvIc2B0imdb3X0txw+l4L+rgNfjMti79+JRm1FGh1bDlw1dP63ZGQX8cm/wo3avFzVjB9RWjzn0Nlko8dJAfafTjJ0/rccjUzBzlZl1JZwPY9JL9Xn//o3NWrvHVb/sccM3Or877Tn7wQ6t/J+rP0JgmA+NeYxUH8vR5M25c1HMRPT8liz6zIHziQZLrfk5GvYdOAqfx66Rn6hFgBtiZ69fyewdvdlUu649n/2cjqrdlwkKS0fOxsLo2N4u6nxcjW+fu6gVlG/rumcPkH1TZ8ecq1jzZZD19h88KrhZrNOp+fA6STW7LqM6h6PjvrWtcPJ3uquOOxMBpTZWCnJyC5k9c5LnLqYamhPzSxg3Z4r7D4Rj7akNLkUFGnZejiWTftjyM4rTZw6vcShs0ms2XWJ+OulM5eqLEzjEVNZCEL1VGPOAOzVKtTWSvIKSwxtjeo5cPZyOpMWHTI8w9+huSevP9WccV/uNvyaXbPrMrPf7sxnS47x98U0AH75M4rP3ujAqYtpLN18wbDPJ9v6cOBsMvmFWrxcbXkpoil6SSIpLY+k9HzU1ha88XRLWgW4cjYmnZNRqSgVMoZ0bUSXkHrEpuSybs9lSnQSLQNc2XromuF6/6odl/j67S7MXXXKcJ1eqZDTs60Pu04kUKLT06KRCwM7+tPIuw5f/nqS3AINHs42vDwwGEuVgmvJOcRfz8XGSskTLbx4f/4BQ+zDegYS3rwu47/ZR9HNM5GtR2KZ9FI73p691zD+YcX2i8x+uwuLN0ay+0QCAEs3X2DSy+3p3MqbbUfjDPus62yDi4PpfRZBEKq+GpMA8go0Rp0/lF4vX7fnitEArgNnkvB0tTW6lJGckc+a3ZcNnT+UDv76Y28MR88b1yM+GZ3Kksm9yMgupK6zraGozbcTupOckY+zgzWWFgoAprwSRtqNQqwsFdjZlF6eGdWvCYO7NKRYo+N41HXmrz5t2Hd6ViHrdl82uklbotOTW6Dh5497UVBcglsdG6C0ethPk54kPasQD2db5DcHgs37b1eSM/Jxsrdi7KzdRrGv23OZ9KxCQ+cPcO5KBmt2XzEa/HYjt5j1e64YOn8oPRtYu/sy1zOM6xXcyC2mRKc3nG0JglB91JgEIN2rTcLk+jyATmfapr/7GVBAkiST+wp6CeQyGRYKhVFFM9nNNvldVc4slHKTUbpKhQy9Uo50j9juFa8klY4svnsksVwuQ6mUc+chZTIZKqUChVyGdNenopcwabv/Me/zedxjn4IgVE81JgHY2aho6O3A5YTb8+Z0auVFt9B6/B2darj2366pB4O6+LPrRDw3bt4kdqtjzZCujYiOvcGZy+lAacfdv2MDvFzV/PpXtGGfoY3dePGTrWTnaahf156JL7ZFL0l8uvgosSm5OKhVvDWsNc0aujDrl+McPpeCSinn2R4BDO0ZyG9bo1i18xIlOj0hQe64OFiRfvNsxMnekkGdGxKbksvxC9eB0mThqLbkhcl/otHqCG3sznsjQomKzeTLX09yI7cYbzc1H/xfWyxVCqYvPkpMYjZ2NhaEN/MkJeP2nEEDOjagQwtP9p1KQnNzaojG9Z14qmtD9v2dSPLN+x4OahUDOvmTllXI/psD5uRyGYM6NyT1RgELfj9jtE/x618QqieZdK+felVMQkIC3bt3Z8eOHXh73/9pE72+dGTrhasZdGjhSb8ODQCITc7h8Llk3J1teaKFJ0qFnKzcYnafTEAhl9ElxBs7GxUarY59pxLJyC6iQwtPw83dE1HXuRh7g8D6Tnyx7ITRHDphzeqi10tGYwUc7SwZ3LkhizdGGsU3fkQI//v5hFHbyL6NsVQpkCTo3MobRztLtCV6DpxO5PqNAvzq2vPJj0eNthnRJ4gtB68ZEgeUjk+ws1UZPX1ka23BeyNDibp2g4beDrRpUvrUU1J6HgdOJ+GotqRTa28sLRTkFWjYczIBTYmezq29cbK3Kr0ZfSaJpPR82jX1MIw2jozJ4MzldKN9CoJQ9Tys76wxZwBQ+it1RJ/GJu2+de3xveupHEc7SwZ19jdqU1ko6N7GuGALQEiQOyFB7qRnFZpMoBaXkmty+Sgrt5grCVkm+zl3JcOkLfVGIW883cKozUIpp8vNwvB33g+4JSYxx6jzB4i7nov9XY+B5hdqcXeyoVWAm1G7p4vaZO4gtY2Kfk80MGpTKOR0usfjnaKIjSDUDOLc/RG4OFqbPN4Z2tidkMbGHWwDLwc6tDCuAayyUNCrva/JdXwXByum/nCYKd8f5u/o0kc1UzLy+eq3k0yYt5+k1FysLRVG27RvVpcg3zomcYQ2djdq83JVU7cMBWcEQaidatQZQGWY+GJbFm+MJC4ll9DG7ozo0xiJ0rOPk1GlU0G81L8pbk42/GtIc7YevoattQXPPxlEA6/SGUZ/+6t0Koh2wR4s3xZtmPvn7+hUvnyrMzOWHCXl5tM2kTEZDO7sz5XEbMNUEF1aexPcwJkfN0QSk5hNqwBXRvVrgkIhN1yO8nZT82L/pkY3qgVBEO5Uo+4BVDdrdl1i8cbzRm29w3xNir20aOTCtH91qMzQBEGoAWrVPYDqQFui5+j5FAqLtDioLU2W16/rYDRBHFCmusGCIAiPSiSASqTTS3wwf79hPn4HtYo2Tdw5dr70kc/2wR70au+LtkTHkk3nKdFJeLupGdpDFGwRBKH8mSUBnDlzhtdee41Dhw6Z4/Bm83d0qqHzBwxjCV4d1Ay9JBnm5B/UuSFdQ+qRmVOEr4e9YZSvIAhCearUBCBJEqtXr2bmzJmVedgq49bEa3fSaPU42VuZjM91UFve8xKRIAhCeanUx0DnzJnDb7/9xuuvv16Zh60yQoLc8XS5fT3fUqWgoEjLcx9u5rkPN/PDH+fuOQWDIAhCRajUM4Bhw4Yxbtw4jhw5ct91cnJyyMnJMWpLSUm5z9rVi8pCwedjO7H9aBwFRVrcnGyMisas23OF4AbOtAuua74gBUGoNSo1Abi7uz90nSVLljB37txKiMY87G1VDOnaEIDVO+9dE1gkAEEQKkOVewpo1KhRDB482KgtJSWF4cOHmymiitOikQsyGUYzjrYIuH+Rd0EQhPJU5RKAvb099vam1bRqokb16vDWsFas3nkZSZIY3KUhTR6hQLsgCMI/UeUSQG3TLdSHbqGmE9AJgiBUNDEZnCAIQi1llgTQrl07jh8/bo5DC4IgCDeJMwBBEIRaSiQAQRCEWkokAEEQhFqqWjwFpNOVzqFTU0YEC4IgVIZbfeatPvRu1SIBpKWlAdTIwWCCIAgVLS0tDV9fX5P2alERrKioiHPnzuHq6opCoXj4BtXMrZHOy5Ytw8PDw9zhCI9IfH/VV03/7nQ6HWlpaQQHB2NlZWWyvFqcAVhZWREaGmruMCqch4dHjSp5WduI76/6qsnf3b1++d8ibgILgiDUUiIBCIIg1FIiAQiCINRSIgFUAfb29vz73/+uNbOg1jTi+6u+avt3Vy2eAhIEQRDKnzgDEARBqKVEAjCDoqIi0tPTzR2GIAi1nEgAZvDCCy9w6tQpc4ch/AOtWrUiOjr6sbdPSEggMDCQnJyccoyqdvn22295++23H2vbl19+mWXLlj10vT/++INhw4Y91jGqA3EPwAy6devGBx98QI8ePcwdimAmCQkJdO/enWPHjtXaG5CC+YkzgH9Ar9fz6aefEh4eTlhYGKNHjyYuLg6AlStX0qtXL9q0acPo0aOJj48H4I033iApKYm3336b7777DoCff/6ZHj16EBoayogRI4iKinro/jUaDdOmTePJJ5+kZcuW9OzZk02bNpnhU6h63nnnHaZPn254rdPpCA8P58iRI/f9XhISEmjVqhUffvghoaGhLF++nNOnT/PUU08RGhpK7969+f777w37DAwM5MKFCwDExMTw4osv0rp1a7p27cqvv/5qWO9+3+3dDh48yFNPPUXr1q2JiIjgzz//NCzr1q0bkyZNon379owfP75cP6vq4H7f54gRIxgzZgwA33zzDa+++ioRERF06NCBzMxMjh8/zoABAwgNDeWNN97gjTfe4JtvvgFgxIgR/PTTT4a/f/XVVwwePJjWrVvz/PPPc+XKFQDWrFnDwIEDDcf+/fff6dWrF61ateK5557j4sWLACQnJ/PGG2/QpUsXmjdvzjPPPHPf77pKkYTH9ueff0q9evWSsrKyJI1GI02YMEH64IMPpK1bt0odOnSQzp07JxUXF0vffvut1KtXL0mr1UqSJEldu3aVtm3bJkmSJK1YsULq0KGDFBkZKWk0Gun777+XwsPDpezs7PvuX5IkacGCBdLQoUOlrKwsSafTSUuXLpVat25tOEZttm/fPqlDhw5SSUmJJEmStGfPHqlr167Sn3/+ed/vJT4+XgoICJC++OILqbi4WMrPz5f69+8vLVu2TJIkSYqKipJatWolxcXFSZIkSQEBAdL58+el4uJiqWvXrtKsWbOk4uJi6cKFC1JISIh04sSJB363t46XnZ0tXbx4UQoODpY2bdokabVa6eDBg1LLli2l48ePS5JU+u9lxIgRUkFBgZSTk2OeD9WM7vd9fv3119Lrr78uSZIkzZkzRwoODpYuXLgg5eTkSDdu3JBCQ0OllStXSlqtVlq3bp0UEBAgzZkzR5IkSXrhhRekxYsXG/7eqVMnKSYmRsrNzZVeeuklady4cZIkSdLvv/8uDRgwwBBHq1atpGPHjkk6nU6aO3eu9OSTT0qSJEkvvvii9Mknn0gajUYqLCyU3n77bemVV16pxE/p8YgzgH/Azs6O1NRU1q9fT0pKCtOnT2f69OmsXLmSkSNH0rRpU1QqFa+++ip5eXkcOXLEZB/r1q1j5MiRNGnSBAsLC0aPHo2dnR27d+++7/4Bhg0bxvz587G3tyc1NRVra2vy8vIoLCys7I+hygkPD0culxs+7w0bNhAREcGqVase+r1ERESgUqmwsbFBrVaze/du9u/fT/369Tl+/Dj16tUzOtbJkyfJyclh3LhxqFQqgoKCWLZsGQ0aNHjgd3unTZs20a5dO/r27YtSqSQsLIyIiAjWrl1rWKdXr15YW1tjZ2dXcR9cFXW/71MmkxmtFxAQQFBQkOEz9vDw4JlnnkGpVDJw4EBatWp132MMGDAAPz8/1Go1vXr1Mpxp32nDhg0MHDiQ0NBQ5HI5r7zyCv/73//Q6/VMnz6dd955B4CkpCQcHBxITU0tx0+hYogE8A+Eh4czadIkNm/eTK9evejTpw87d+4kKSmJ+fPnExoaSmhoKG3atCE3N5ekpCSTfWRkZODl5WXU5uXlRUpKyn33D5CXl8eECRNo3749Y8aM4dChQwBI4pYOcrmcAQMGsGHDBgoLC9m+fTuDBg0q0/fi5uZm+Pvs2bNxdnZmwoQJtGnThvfff5+8vDyjY2VkZODq6opSeXtexcDAQBwdHR/43d4pMzMTT09PozZvb2+Sk5PvGVdtc7/v8253fkbXr1/H3d3daHndunXvewxnZ2fD35VK5T3nz09PTzfah0qlokWLFsjlcq5du8bw4cPp1KkTkyZNIjY2tlr8XxQJ4B+Ij4+nSZMmLF++nCNHjjBkyBDeeustXF1dmTBhAsePHzf8WbNmDf379zfZh6enJ4mJiUZtCQkJODs733f/Wq2WyZMn4+3tzYEDB1izZg2jR4+urLddLQwePJjt27fz119/ERAQgJ+fH25ubg/9Xm79qiwpKSEmJoapU6eyf/9+li9fztmzZ1m6dKnRcdzd3UlPTzfqMNasWcPhw4cf+N3eqW7duibrxcfH4+LiYhJXbXWv7/Nud35GHh4eJon2nxaUcnd35/r164bXWq2WmTNnkpuby5gxYxg9ejSHDh3il19+oWPHjv/oWJVFJIB/4PDhw/z73/8mKSkJtVqNg4MDdnZ2DB48mMWLF3PlyhUkSTKcOt76x2NhYUFubi4AgwYNYunSpVy4cAGtVssPP/xAZmYmXbp0ue/+lUolubm5WFpaIpfLSU1N5YsvvgBK/1EK4O/vj6+vL7NnzzbcxBs0aNADv5c7KRQKPvjgA3766Sd0Oh0eHh7I5XIcHByM1mvevDl16tRh/vz5aLVaoqOjmTlzJhYWFg/8bu/Ut29fjh8/zubNm9HpdBw6dMhwmUModa/v80G6d+9OWloaq1evpqSkhD///JOTJ0/+oxgiIiL4448/OHPmDDqdjh9//JFdu3Yhk8koLi42zLcfGRnJ0qVLq8X/xWpRD6Cqeuqpp7h69SrPPvss+fn5+Pn5MWfOHEJCQsjJyWHMmDGkpqbi4+PDvHnzqF+/PgBDhgxhypQpXL16lbfffpsbN24wduxY0tPTCQoK4ocffsDZ2fm++5fJZEycOJEPP/yQ5cuXU6dOHZ599lkiIyO5ePEiYWFh5v1gqojBgwczY8YM+vbtC5QmgPt9LwkJCUbbymQyvv76a6ZPn86CBQtQqVT079+foUOHGq2nUqlYsGAB06ZNIzw8HDs7O/773/8SEhJCSEjIfb/bO4/n6+vL/Pnz+eKLL5g4cSLu7u5MmTKFJ554ouI/pGrk7u/zQdRqNXPmzGHKlCnMmDGDDh060KxZMywsLB77+GFhYbz//vuMHz+etLQ0mjRpwrx581Cr1UydOpUpU6Ywfvx4vLy8GDp0KAsWLCA/Px9bW9vHPmZFE+MABEGocTIzM0lKSiI4ONjQ9swzz/D000+bJPHaTFwCEgShxtFoNIwYMYLIyEgAdu/eTVRUFO3btzdzZFWLOAMQBKFG2rBhA3PnziU1NRUvLy/GjRtHz549zR1WlSISgCAIQi0lLgEJgiDUUiIBCIIg1FIiAQiCINRSIgEIQgWaMGECY8eONXcYgnBP4iawIFSg3NxcJEkSc/4LVZJIAIIgCLWUuAQk1BorVqygZ8+eBAcH07t3b9atWweUFlxZvHgxQ4cOpXnz5gwdOtQwgAhK51eaNWsWHTp0ICQkhNGjRxMTE2NYXlRUxKeffmpY/vrrrxvmF7r7EtCePXsYOHAgzZs3p1+/fvz++++GZXl5ebzzzju0a9eOli1bMnr0aK5du1axH4pQq4kEINQKkZGRfPLJJ0yYMIGtW7cyYsQIJkyYYOhgv/76awYMGMDatWvx8/PjpZdeIisrC4A5c+awZ88evvrqK1auXImfnx8jRowwTOg3efJkduzYweeff87KlSvRaDS89dZbJjFcunSJsWPHMmzYMDZu3Mgbb7zBzJkzDZXcZs+eTUJCAkuXLmXNmjXI5XI++OCDyvh4hFpKTAYn1ApJSUnI5XK8vLzw8vJi+PDh1K9fHycnJ6B0Rs7hw4cDMHXqVLp27crmzZsZMmQIP/30Ez/99BMhISEAfPjhh+zbt4/169czcOBANm7cyNdff014eDgAH3/8MStWrECj0RjF8P333xMREcFzzz0HgI+PD3Fxcfzwww/069ePxMREbG1t8fb2xtbWlmnTpplMEy0I5UkkAKFW6NixI61bt2bgwIE0atSILl26MGTIEMPN2dDQUMO6KpWKwMBALl26RFxcHBqNhtGjRxvNN19cXMzVq1e5evUqJSUlNGvWzLCsXr16vPvuuyYxXLp0iYsXLxrVbi4pKTEUk3nttdd47bXXCAsLo02bNvTo0aNMUx8LwuMSCUCoFaysrFi8eDEnT55k165d7N69m6VLl7Jw4UKgdP7/O+n1ehQKhaHQy48//mhSyEWtVpOWlgaUrWCLTqdjxIgRDBs27J7LW7ZsyY4dO9i1axd79+7lq6++4tdff2X16tVYWlo+8nsWhIcR9wCEWuHIkSMsWLCAkJAQ3n33XTZu3EiTJk3YunUrAOfPnzesW1xcTHR0NIGBgfj4+KBUKsnMzMTX1xdfX198fHz45ptvOHPmDN7e3igUCqPtExMTadu2rUmhGX9/f2JjYw378fX15ejRo/z6668ALFy4kDNnzhAREcHnn3/OihUruHjxItHR0ZXwCQm1kUgAQq1gbW3NvHnzWLlyJYmJiezbt4+YmBjDpZsVK1awYcMGrly5wkcffYRSqaRPnz7Y2try3HPPMX36dPbs2UNsbCxTp05lx44d+Pv7o1arefrpp5kxYwbHjh3j8uXLTJ48mcDAQJOatC+99BK7d+/m22+/JTY2lq1bt/Lpp58azixSUlKYNm0aJ0+eJD4+nrVr16JWqw2FhAShvIlxAEKtsW7dOhYuXGioyzt06FBef/11unXrRrdu3Th58iRXrlyhZcuWTJo0CX9/f6B0bvkvv/ySDRs2kJeXR1BQEP/9738N9w0KCgr47LPP2Lp1Kzqdjg4dOvDRRx/h4uLChAkTKCgoYM6cOQBs376dOXPmEBMTg6urK88++yz/+te/kMlkFBQU8Omnn7Jz505yc3Np3Lgx7733nuHmsyCUN5EAhFqvW7duvPTSS7zwwgvmDkUQKpW4BCQIglBLiQQgCIJQS4lLQIIgCLWUOAMQBEGopUQCEARBqKVEAhAEQailRAIQBEGopUQCEARBqKVEAhAEQail/h8aDcnn9sCT/QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ax2 = sns.swarmplot(data = iris, \n", - " x = 'species', \n", - " y = 'petal_length',\n", - " hue = 'species')\n", - "\n", - "# ax2.set(xlabel='Species', ylabel='Petal length (cm)')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The split-apply-combine workflow" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "All your scientific experiments follow a very simple analysis workflow: *split-apply-combine*\n", - "\n", - "You do an experiment on 2 or more groups, apply some summary function to each group, and then aggregate the results.\n", - "\n", - "
\n", - "\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "1 4.9 3.0 1.4 0.2 setosa\n", - "2 4.7 3.2 1.3 0.2 setosa\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris.head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_width
species
setosa5.0063.4281.4620.246
versicolor5.9362.7704.2601.326
virginica6.5882.9745.5522.026
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width\n", - "species \n", - "setosa 5.006 3.428 1.462 0.246\n", - "versicolor 5.936 2.770 4.260 1.326\n", - "virginica 6.588 2.974 5.552 2.026" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris.groupby('species').mean()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_width
species
setosa0.0498500.0536080.0245600.014904
versicolor0.0729980.0443780.0664550.027966
virginica0.0899270.0456080.0780500.038841
\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width\n", - "species \n", - "setosa 0.049850 0.053608 0.024560 0.014904\n", - "versicolor 0.072998 0.044378 0.066455 0.027966\n", - "virginica 0.089927 0.045608 0.078050 0.038841" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris.groupby('species').sem()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The plotting package `seaborn` does this automatically for you." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I commented out the below cell because it was giving an error." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# # `catplot` is short for \"categorical plot\", \n", - "# # where either the x-axis or y-axis consists of categories.\n", - "\n", - "# ax3 = sns.catplot(data=iris, \n", - "# kind='bar', # there are several types of plots.\n", - "# errorbar='sd', # plot the error bars as ± standard deviations.\n", - "# col='species' # plot each species as its own column.\n", - "# )\n", - "# ax3.set_axis_labels(\"\", \"Length (cm)\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# %debug" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You should quickly notice that the plot isn't as informative as we want it to be.\n", - "\n", - "The current plot only allows us to investigate the relationships the four metrics within species.\n", - "\n", - "Ideally, we want to directly compare metrics between species. \n", - "\n", - "To do so, we need to _reshape_ the data." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The Long-form vs the Wide-form of your data\n", - "\n", - "Our iris dataframe is in the wide-form (below right) and we want to turn it into the long-form. In the original iris dataframe, the data is organised by unit (flower, in rows) and the columns contain a mixtrue of variables (sepal length, sepal width etc). In a long-form dataframe, each columne is a variable, and each row is an observation. (Please read Hadley Wickham's https://vita.had.co.nz/papers/tidy-data.pdf to learn more about tidiness of datasets.) \n", - "
\n", - "\n", - "
Michael Waskom, Seaborn Tutorial 2022
\n", - "\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "iris_tidy = pd.melt(iris.reset_index(), \n", - " id_vars=['index','species'], \n", - " var_name='metric', \n", - " value_name='cm')\n", - "iris_tidy = iris_tidy.rename(columns = {'index': 'ID'})" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
..................
1456.73.05.22.3virginica
1466.32.55.01.9virginica
1476.53.05.22.0virginica
1486.23.45.42.3virginica
1495.93.05.11.8virginica
\n", - "

150 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " sepal_length sepal_width petal_length petal_width species\n", - "0 5.1 3.5 1.4 0.2 setosa\n", - "1 4.9 3.0 1.4 0.2 setosa\n", - "2 4.7 3.2 1.3 0.2 setosa\n", - "3 4.6 3.1 1.5 0.2 setosa\n", - "4 5.0 3.6 1.4 0.2 setosa\n", - ".. ... ... ... ... ...\n", - "145 6.7 3.0 5.2 2.3 virginica\n", - "146 6.3 2.5 5.0 1.9 virginica\n", - "147 6.5 3.0 5.2 2.0 virginica\n", - "148 6.2 3.4 5.4 2.3 virginica\n", - "149 5.9 3.0 5.1 1.8 virginica\n", - "\n", - "[150 rows x 5 columns]" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IDspeciesmetriccm
00setosasepal_length5.1
11setosasepal_length4.9
22setosasepal_length4.7
33setosasepal_length4.6
44setosasepal_length5.0
...............
595145virginicapetal_width2.3
596146virginicapetal_width1.9
597147virginicapetal_width2.0
598148virginicapetal_width2.3
599149virginicapetal_width1.8
\n", - "

600 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " ID species metric cm\n", - "0 0 setosa sepal_length 5.1\n", - "1 1 setosa sepal_length 4.9\n", - "2 2 setosa sepal_length 4.7\n", - "3 3 setosa sepal_length 4.6\n", - "4 4 setosa sepal_length 5.0\n", - ".. ... ... ... ...\n", - "595 145 virginica petal_width 2.3\n", - "596 146 virginica petal_width 1.9\n", - "597 147 virginica petal_width 2.0\n", - "598 148 virginica petal_width 2.3\n", - "599 149 virginica petal_width 1.8\n", - "\n", - "[600 rows x 4 columns]" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "iris_tidy" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAFXCAYAAAAmp6ONAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5pElEQVR4nO3dfXzO9f////tmx+Zkm5zMyZyfZCRyvhky52fvjZGzlpGTypRqTnL2VmRyUshZSAwVIScNJcSbMEriQ9GMYmYW0sywE/v94dfx7cjExl7HXtvterm4vHa8zp6P43g6jt33fL2O18shPT09XQAAADAdR3sXAAAAgKwhyAEAAJgUQQ4AAMCkCHIAAAAmRZADAAAwKVMEudTUVMXExCg1NdXepQAAAOQYpghycXFxatWqleLi4uxdCgAAQI5hiiAHAACAuxHkAAAATIogBwAAYFIEOQAAAJMiyAEAAJgUQQ4AAMCkCHIAAAAmRZADAAAwKYIcAACASRHkAAAATIogBwAAYFIEOQAAAJMiyMFGZGSkQkNDFRkZae9SAADAfTjZuwDkLOHh4YqKilJSUpJ8fHzsXQ4AAPgXjMjBRlJSks0UAADkXAQ5AAAAkyLIAQAAmJRh58h98cUXevPNN23m3bx5U40bN9aSJUuMKgMAACDXMCzIBQQEKCAgwPr4p59+Uv/+/TVy5EijSgAAAMhV7HJoNSUlRcOHD9crr7yi6tWr26MEAAAA07PL5Uc++eQT5c+fX88+++xdyxISEpSQkGAzLy4uzqjSAAAATMPwIJecnKyPPvpIEyZMkIODw13Lly1bprlz5xpdFgAAgOkYHuT27NkjR0dH+fn5Zbi8b9++CgwMtJkXFxenoKAgA6oDAAAwD8OD3I4dO9ShQwc5OmZ8ep67u7vc3d0NrgoAAMB8DP+yw5EjR1SvXj2jmwUAAMh1DA9y58+fV4kSJYxuFgAAINcx/NDqjz/+aHSTAAAAuRK36AIAADApghwAAIBJEeQAAABMiiAHAABgUgQ5AAAAkyLIAQAAmBRBDgAAwKQIcgAAACZFkAMAADApghwAAIBJEeRyoeTUlDzdPgAAeYXh91pF9nN2sqjf0leztO3FhN+t06zuI/z597O0HQAAyBxG5AAAAEyKIAcAAGBSBLkcJjIyUqGhoYqMjLR3KQAAIIfjHLkcJjw8XFFRUUpKSpKPj4+9ywEAADkYI3I5TFJSks0UAADgXghyAAAAJkWQAwAAMCmCHAAAgEkR5AAAAEyKIAcAAGBSBDkAAACTIsgBAACYFEEOAADApAhyAAAAJkWQAwAAMCmCHACYWGRkpEJDQxUZGWnvUgDYgaFBLj4+XiEhIapfv758fX01a9YsI5sHgFwnPDxcR44cUXh4uL1LAWAHhga5kJAQeXh4aN++ffrss8+0YcMGRUREGFkCAOQqSUlJNlMAeYuTUQ0dOXJE586d08qVK2WxWFSuXDmtWLFCLi4uRpUAAACQqxgW5I4dO6Zq1app7ty5WrdunVxcXPTss8+qf//+NuslJCQoISHBZl5cXJxRZQIAAJiGYUHuzz//1KFDh9SoUSPt2LFDp0+f1sCBA+Xh4SF/f3/resuWLdPcuXONKgsAAMC0DAtyzs7OcnV11SuvvCJJql69up555hlt27bNJsj17dtXgYGBNtvGxcUpKCjIqFIBAABMwbAgV7lyZd24cUPJyclydnaWJKWlpd21nru7u9zd3Y0qC//gYHG0mQIAgJzLsN/WTZo0UdGiRTV16lQlJyfr5MmTWrt2rTp16mRUCYa5nZpi7xKyrHDtknIpWUiFa5e0dykAAOA+DBuRc3Fx0ccff6y3335bzZo1k7OzswYOHKh27doZVYJhHJ0sOjRtYJa2vfXHRes0q/uoP3JxlraTpAJl3VSgrFuWtwcAAMYxLMhJUrly5bRo0SIjmwQAAMi1OBEKAADApAhyAAAAJkWQAwAAMCmCHAAAgEkR5AAAAEyKIAcAAGBSBDkAAACTIsgBAACYFEEOAADApAhyAAAAJkWQAwAAMCmCHADYWXJqSp5sG8DDc7J3AQCQ1zk7WdRv6atZ2vZiwu/WaVb2Ef78+1lqF0DOwIgcAACASRHkAAAATIogBwAAYFIEuRzGxcnRZgoAAHAvpIUcpm3VIqpcJL/aVi1i71IAAEAOx7dWMxAZGanVq1erR48e8vHxMbTtGh4FVcOjoKFtAgAAcyLIZSA8PFxRUVFKSkoyPMgBAAA8KA6tZiApKclmCgAAkBMR5AAAAEyKIAcAAGBSBDkAAACTIsgBAACYFEEOAADApAhyAAAAJkWQAwAAMClDg9zatWtVs2ZN1a1b1/pv/fr1RpYAAACQaxh6Z4effvpJzz//vIYPH25kswAAALmSoSNyx48fV40aNYxsEgAAINcybEQuLS1NJ0+e1MaNG/XOO++oQIEC6t69uwYNGiQHBwfregkJCUpISLDZNi4uzqgyAQAATMOwIHflyhU9+eST6tKli+bOnavo6GiFhISoUKFCCgoKsq63bNkyzZ0796HbS05Jk7Ml30PvBwByMgeLo80UQN5iWJDz8PDQxx9/bH1co0YNPffcc/r6669tglzfvn0VGBhos21cXJzNOg/C2ZJPz478JEu1Xrp07U67l65laR+fTstcrQCQVYVrl9S1ny/JrUZxe5cCwA4MC3JRUVH68ssvNXToUOu8lJQUubi42Kzn7u4ud3d3o8oCAFMrUNZNBcq62bsMAHZi2Fi8u7u7li5dqtWrV+v27ds6duyYVqxYoa5duxpVAgAAQK5iWJArWbKk5s+fr1WrVql+/foaOnSoQkJC1L59e6NKAAAAyFUMvY5c48aNtW7dOiObBAAAyLX4mhMAAIBJEeQAAABMiiAHAABgUgQ5AAAAkyLIAcBDiIyMVGhoqCIjI+1dCoA8yNBvrQJAbhMeHq6oqCglJSXJx8fH3uUAyGMYkQOAh5CUlGQzBQAjEeQy4JDPYjMFAADIiQhyGXD1rCeLaym5etazdykAAAD3xDlyGXApXE4uhcvZuwwAAIB/xYgcAACASRHkAAAATIogBwAAYFIEOQAAAJMiyAEAAJgUQQ4AAMCkCHIAAAAmRZADAAAwKYIcAACASRHkAAAATIogBwAAYFIEOQAAAJMiyAHI826npti7BADIEid7FwAA9uboZNGhaQOztO2tPy5ap1ndR/2Ri7O0HQAwIgcAAGBSBDkAAJBnjBo1SkOHDrV3GY8Mh1YBAECeMXbsWKWnp9u7jEeGIAcAAPIMNzc3e5fwSBl+aDUhIUF+fn5at26d0U0DAIAc5LPPPlObNm305JNPqn379tqwYYMkqWXLllq6dKl69uyp2rVrq2fPnjp+/Lh1u5SUFL377rtq0qSJ6tevrwEDBuj06dPW5Tdv3tTkyZOtywcPHqyLF+98Memfh1b/97//qXPnzqpdu7Y6deqkzz//3LosMTFRw4YNk7e3t+rUqaMBAwbo119/zd4XJZMMD3Jvvvmm9cUEAAB50/Hjx/X2229r1KhR2rp1q/r06aNRo0ZZg9L777+vgIAArV+/XpUqVVL//v119epVSdLs2bP1v//9TzNnztTq1atVqVIl9enTR9euXZN0J2vs2LFD06dP1+rVq5WcnKzXXnvtrhqioqI0dOhQ9erVS5s2bdKQIUM0depUbd68WZI0a9YsxcTEaPny5Vq3bp0cHR01ZswYI16eB2boodX169crMTFR1apVM7JZAACQw8TGxsrR0VFlypRRmTJlFBQUpIoVK6po0aKSpI4dOyooKEiSNHHiRLVo0UJbtmxR165dFR4ervDwcNWvX1+SNG7cOO3Zs0cbN25U586dtWnTJr3//vvy9fWVJL311lv67LPPlJycbFPD4sWL5e/vr969e0uSypcvr7Nnz+qjjz5Sp06ddP78eRUqVEhly5ZVoUKFNGnSJJ0/f96ol+iBGBbkzp07p7lz52rVqlUaOPDe11pKSEhQQkKCzby4uLjsLg8AABioWbNmqlevnjp37qzHH39cfn5+6tq1q9zd3SVJDRo0sK7r7OwsLy8vRUVF6ezZs0pOTtaAAQPk4OBgXefWrVs6c+aMzpw5o9TUVNWqVcu6rFy5cho+fPhdNURFRemXX36xjsBJUmpqqpyc7sSjF198US+++KIaN26shg0bqnXr1urcufMjfy0ehiFBLi0tTSNGjNAbb7whDw+Pf1132bJlmjt3rhFlAQAAO8mfP7+WLl2qH374QTt37tSuXbu0fPlyLVy4UJKUL18+m/Vv376tfPnyKS0tTZK0ZMkSFStWzGYdV1dX/f7775JkE/LuJS0tTX369FGvXr0yXF6nTh3t2LFDO3fu1O7duzVz5kx9+umnWrt2rVxcXDL9nLNDpoLcuXPnFB0dfdfQpCS1bdv2ntvNnz9flSpV+td1/tK3b18FBgbazIuLi7MOrwIAAPM7cOCADh06pJCQENWvX1/Dhw9Xr169tHXrVknSTz/9ZB39unXrlk6ePKlOnTqpfPnycnJy0pUrV1SvXj1JUnp6ukaMGKFOnTqpYcOGypcvn3766SeVKFFCknT+/HkFBgYqIiLCpoYqVarot99+U4UKFazz1qxZo1OnTmn06NFauHChatWqJX9/f/n7++vMmTNq3769Tp48qdq1axvxMt3XAwe5xYsX67333pODg4N1yPEvDg4O/xrSNm/erPj4eG3btk2SdP36dU2YMEFHjx7VW2+9ZbOuu7u7dVgVAADkTgUKFNC8efNUvHhxNWnSRKdPn9bp06fVvXt37d69W5999pmefPJJPfHEE1q4cKGcnJzUoUMHFSpUSL1791ZYWJgsFosqVqyo8PBw7dixQ0OHDpWrq6ueeeYZvfPOOypUqJCKFCmiKVOmyMvLSyVLlrSpoX///urRo4cWLFigDh066MSJE5o8ebIGDx4s6c5A0saNGzVp0iR5eHho/fr1cnV1VcWKFe3wimXsgYPcRx99pNdff10DBw6Uo2Pmvuz61Vdf2Tzu3Lmz+vbtq65du2ZqPwAAIHeoXbu2wsLCtHDhQr399tsqVqyYnn/+eXXr1k3z5s3TM888o6VLlyo6Olp16tRReHi4XF1dJUkjR46Uk5OTxowZo8TERFWvXl0ffvihypcvL+nOJUamTJmil19+WWlpaWrSpImmTJlyVw1PPvmkZs+erdmzZ2vu3Lny8PDQCy+8oEGDBkmSRowYocmTJ+vll1/WtWvXVKNGDS1atChHDTg9cJBLT09XmzZtMh3iAAAAMtKlSxd16dIlw2UVK1bUuHHjMlzm7OysUaNGadSoURkuL1iwoCZOnKiJEyfeteyfga5169Zq3br1PfczadKkf3kG9vfAqSwoKEiLFi3K8Py4zNq4cSOjcQAAAA/pgUfk2rdvr+eee06bNm2Sh4fHXd8G2bFjxyMvDgAAAPf2wEFuxIgRKlOmjDp27KgCBQpkZ01AtoiMjNTq1avVo0cP+fj42LscAMA9fPPNN/YuwTQeOMidPn1aGzduVKVKlbKzHiDbhIeHKyoqSklJSQQ5PDIuTo42UwAw0gN/8tSqVUtnzpzJzlqAbJWUlGQzBR6FtlWLqHKR/GpbtYi9SwGQBz3wiJy/v7/GjBljczG+v+OCvQDyohoeBVXDo6C9ywCQRz1wkFu0aJEKFiyonTt3Wuc5ODgoPT1dDg4OBDkAAACDPXCQ+/rrrzV37lyVLFlSvXv3liR1795dzZs3t14BGQAAAMZ54HPkpk2bpoiICOtVk6U7h1M3bNig2bNnZ0txAAAAj8rNmzd16dIle5fxSD1wkNu8ebPeffddNWnSxDqvS5cumjJlitatW5ctxQEAAPtJTknLVW0999xz+vHHH7O9HSM98KHVmzdvqmDBu0/oLVy4sBITEx9pUQAAwP6cLfn07MhPDGnr02nZf679lStXsr0Noz3wiJy3t7emT5+uq1evWuclJCRo5syZatSoUXbUBgAAcJfbt29r8uTJ8vX1VePGjTVgwACdPXtWkrR69Wq1a9dODRs21IABA3Tu3DlJ0pAhQxQbG6vQ0FB9+OGHkqQVK1aodevWatCggfr06aMTJ07cd//JycmaNGmS2rZtqzp16qhNmzbavHmzHV6FOx44yI0bN07nzp3T008/rfbt26tDhw5q1qyZzp07d8+b2gIAADxq27Zt0+7du/Xll19q9+7dKlGihBYuXKivv/5as2fP1owZM7R37141atRIgwYNUmpqqubNmydPT0/NmDFDgwYN0urVq7Vw4ULNnj1b+/fvl5+fnwYMGKCEhIR77l+SlixZomPHjmnNmjX64YcfFBwcrPHjxys1NdUur8UDH1r19PRURESE9u3bp+joaFksFlWsWFFNmzaVoyNXNAcAAMZwc3NTfHy8Nm7cqBYtWigsLEyOjo4aOHCggoODVbNmTUnSCy+8oBUrVujAgQM25/hL0oYNGxQcHKwnnnhCkjRgwACtWbNGu3btUvHixTPcvyT16tVLPXr0kLu7uy5evKgCBQooMTFRN27ckJubm7EvhDIR5CTJ2dlZfn5+8vPzy6ZyAAAA/p2vr6/Gjx+vVatWacqUKSpXrpzeeOMNxcbGav78+Vq0aJF13ZSUFMXGxt61j8uXL6tMmTI288qUKaO4uDgFBARkuP+WLVsqMTFREydO1JEjR1SmTBnrrUvT09Oz90nfQ6aCHAAAgL2dO3dOTzzxhFatWqVr167p008/1Wuvvaa6desqODhYvXr1sq4bHR0tT0/Pu/bh6emp8+fP28yLiYlRx44d77n/Q4cO6c0331SFChU0f/58OTk56aefftKmTZuy/TnfC8dEAQCAqURGRurll19WbGysXF1dVbhwYbm5uSkwMFBLly5VdHS00tPTFRERoc6dO+vixYuSJIvFomvXrkm6cwm15cuX6+eff1ZKSoo++ugjXblyRX5+fvfcv5OTk65duyYXFxc5OjoqPj5e7733nqQ7I3/2wIgcTCU5JU3Olnx5tn0AgNStWzedOXNGPXr00PXr11WpUiXNnj1b9evXV0JCgkJCQhQfH6/y5ctr3rx5qlixoiSpa9eumjBhgs6cOaPQ0FD98ccfGjp0qC5duqTq1avro48+UrFixe65fwcHB40dO1bjxo3TqlWrVKRIEfXo0UPHjx/XL7/8osaNGxv+Wjik2+ugbibExMSoVatW2rFjh8qWLfvA2xl17Zt/+nRakA5NG2iXtiWp/sjF6rf0Vbu1H/78+9m6/6z266Vja5V2K0H5XNxV/MlnsrQPI65zBPvIq+/Z7H6/wtyM/OOVP5SzhkOrAAAgQ0YGK0Jc1hDkAAAATIogB+QBkZGRCg0NVWRkpL1LAQA8QnzZAcgDwsPDFRUVpaSkJPn4+Ni7HADAI8KIHJAHJCUl2UwBALkDQQ4AAMCkCHIAAAAmRZADAAAwKYIcAACASRHkAABAhm6nGnf/UCPbup+6devq5MmTWd4+JiZGXl5eSkhIeIRVZczQy4/s3LlTM2bMUExMjIoVK6aBAweqV69eRpYA2E1kZKRWr16tHj16cAkQAKbg6GQx7PZ19UcuNqSdB3H48GF7l/DADBuRi4+P19ChQzV8+HAdPnxY77//viZPnqzjx48bVQJgV+Hh4Tpy5IjCw8PtXQoAmNawYcMUFhZmfZyWliZfX18dOHBAq1evVrt27dSwYUMNGDBA586dk3RnhKxu3boaN26cGjRooFWrVunIkSPq1q2bGjRooPbt22vx4v8XJL28vPTzzz9Lkk6fPq3nn39e9erVU4sWLfTpp59a11uxYoVat26tBg0aqE+fPjpx4kSGNe/bt0/dunVTvXr15O/vr6+++sq6rGXLlho/frx8fHw0cuTITL8eho3IlShRQvv375erq6tu376tq1evKl++fCpUqJBRJSCPc8hnsZkajWu5AcDDCwwM1KhRozRq1Cjly5dPe/fuVf78+XX16lXNnj1bCxcu1OOPP66lS5dq0KBB2rRpk6Q7n71FixbVvn37lJqaqp49e6p379569tlndfLkSfXu3Vvt2rVTuXLlrG0lJydr4MCB6tSpkxYuXKjTp0/rueeeU/Xq1XXq1CktXLhQixYt0uOPP67ly5drwIAB+vLLL23qjYqK0osvvqipU6eqbdu2+u677xQSEiIPDw/Vr19fkvTrr79q586dSk1NzfTrYeg5cq6urrpx44Zq1aql/v37KygoSBUrVjSyBORhrp71ZHEtJVfPevYuBQCQRb6+vnJ0dNSBAwckSREREfL399eaNWsUHBysmjVrytnZWS+88IISExOt60mSv7+/nJ2dVbBgQbm6umrXrl369ttvVbFiRX3//fc2IU6SfvjhByUkJOjVV1+Vs7Ozqlevrk8++USVK1fWhg0bFBwcrCeeeEIWi0UDBgyQm5ubdu3aZbOPzZs3y9vbWx07dpSTk5MaN24sf39/rV+/3rpOu3btVKBAAbm5uWX69TD8yw4uLi46fPiw1q5dq88//1xr1qyxWZ6QkKCYmBibf3FxcUaXiVzIpXA5FfXqKJfC5e6/MgAgR3J0dFRAQIAiIiJ048YNbd++XV26dFFsbKzmz5+vBg0aqEGDBmrYsKGuXbum2NhY67YlSpSw/jxr1iwVK1ZMo0aNUsOGDTV69GglJibatHX58mV5eHjIyen/HcD08vLSY489psuXL6tMmTI265cpU+auzHLlyhV5enrazCtbtqwuXLiQYV2ZZfi9Vh0dHeXs7KxatWqpR48e2rFjh7p3725dvmzZMs2dO9fosoAcLzk1Rc5O9jksnBPaB4C/BAYGqlevXvLx8VG1atVUqVIllShRQsHBwTZfooyOjpanp6cuX74sSXJwcJAkpaam6vTp05o4caIsFot++uknDR8+XMuXL1dISIh1+5IlS+rSpUtKS0tTvnz5JEnr1q2Tp6enPD09df78eZu6YmJi1LFjR5t5pUuX1vfff28z79y5cypevLj18V91ZYVhQe7gwYOaMmWK1q1bZ52XnJwsd3d3m/X69u2rwMBAm3lxcXEKCgoypE4gp3J2sqjf0leztO3FhN+t06zuI/z597O0HQA8alWqVFGFChU0a9YsDRo0SJLUpUsXffDBB2rYsKEqV66sTZs2afTo0dq0aZPNiJok5cuXT2PGjNGzzz6r/v37q1SpUnJ0dFThwoVt1qtdu7aKFCmi+fPn66WXXtLp06c1depUzZ8/X126dNH06dPVrFkzVa1aVcuXL9eVK1fk5+enGzduWPfRsWNHLViwQFu2bFG7du108OBBRUREPLJBK8OCXI0aNXTx4kUtXbpUwcHBOnLkiD7//PO7noi7u/td4Q4AAODvAgMD9c4771hHwLp06aKEhASFhIQoPj5e5cuX17x581SxYkXFxMTYbOvg4KD3339fYWFh+uCDD+Ts7Kz//Oc/6tmzp816zs7O+uCDDzRp0iT5+vrKzc1NI0aMUP369VW/fn398ccfGjp0qC5duqTq1avro48+UrFixWzaq1ChgubPn6/33ntPY8eOVcmSJTVhwgQ1bdr0kbwOhgU5Nzc3LVq0SJMmTdLcuXNVunRpTZo0SY0aNTKqBAAAkAm3U1MMu77b7dQUOWbi9I2goKC7jtYFBwcrODj4rnXLli171wV+a9eurc8++yzDff993SpVqmjp0qUZrtevXz/169fvvu01adJETZo0yXAf33zzTYbzH5Sh58jVrFlTK1euNLJJAACQRZkJVmZqKzfhFl0AAAAmRZADAAAwKYIcAACASRHkgEy4nZpi7xIAALAy/ILAgJk5Oll0aNrALG1764+L1mlW9mHUN8cAAObBiBwAAIBJEeQAAABMiiAHAAAylGzgecFGtpWbcI4ckAc4WBxtpgDwIB7mHs+Z9bD3c16wYIF++eUXzZgxI9PbDhw4UC1atLjvfd2/+OILffrpp1q1alVWy3zkCHJAHlC4dkld+/mS3GoUt3cpAJAtXnrppSxvu3jxg32ZLCAgQAEBAVluJzsQ5IA8oEBZNxUo62bvMgDgoQ0bNkxFixbV2LFjJUlpaWlq1qyZqlSpIjc3N82fP19z5szR//3f/+nChQu6cuWKIiIidPr0aU2cOFGxsbHy9vaWJFWvXl2vvPKK+vTpo1atWqlfv37q06eP6tWrp927d+u3335T9erV9fbbb6tKlSpat26dli1bpo0bN0qSPv/8cy1atEjx8fGqXr26JkyYoGrVqunChQuaNGmSjh8/ritXrsjLy0tvv/22qlev/shfD46zAAAA0wgMDNSXX36ptLQ0SdLevXuVP39+NWzY0Ga9/fv3a/r06frqq6/k6OiowYMHq0+fPoqMjFTbtm21ffv2e7axYcMGzZgxQ7t371aBAgU0Z86cu9b59ttvFRYWprCwMB06dEhNmzbVK6+8IkkaO3asSpcurW3btungwYMqX758lg75PghG5AAAgGn4+vrK0dFRBw4ckK+vryIiIuTv7y8HBweb9apVq2YdAduwYYNKlSql7t27S5I6d+6slStX3rONgIAAVapUSZLUrl27DM+Ji4iIUOfOndWgQQNJ0qBBg9S0aVPdvn1bYWFheuyxxyRJsbGxKly4sKKjox/6uWeEETkAAGAajo6OCggIUEREhG7cuKHt27erS5cud61XokQJ688XL15UyZIlbZaXLl36nm0UK1bM+rOTk5N19O/vLl26ZLMPZ2dnPfXUU3J0dNSvv/6qoKAgPf300xo/frx+++03paenZ+ZpPjCCHAAAMJXAwEBt375dX3/9tapVq2YdPfu7v4/QlSpVSnFxcTbL//k4s0qWLKmLFy9aH6ekpGjq1Km6du2aQkJCNGDAAO3fv18ff/yxmjVr9lBt/RuCHGAQFydHmykAIGuqVKmiChUqaNasWercufN912/VqpV+//13rV27Vqmpqfrqq6/0ww8/PFQN/v7++uKLL3T06FGlpaVpyZIl2rlzpxwcHHTr1i3lz59fknT8+HEtX75cKSnZc508fqMABmlbtYgqF8mvtlWL2LsUADC9wMBA/f777+rYseN913V1ddXs2bO1ZMkSeXt7a8uWLapVq5YsFkuW22/cuLFGjx6tkSNHqlGjRvr22281b948ubq6auLEiZowYYLq16+v0aNHq2fPnoqNjdX169ez3N698GUHwCA1PAqqhkdBe5cBAA8sOTXloS/Um5m2nJ0ePFgFBQXZXMD3r2+M/vNnSbpy5YoKFSqkLVu2WOd1795dRYrc+cN6xYoV1vl//1mSunbtqq5du971c0aP//LMM8/omWeesZn34osvPvBzywxG5AAAQIYyE6xyclvJycnq06ePjh8/LknatWuXTpw4IR8fn2xr0yiMyAEAgFytVKlSmjhxokJDQxUfH68yZcpoxowZqlChgr1Le2gEOQAAcpjIyEitXr1aPXr0yBWjRjmBv7+//P397V3GI0eQAwAghwkPD1dUVJSSkpIIcvhXnCMHAEAOk5SUZDMF7oUgBwAAYFIEOQAAAJMiyAEAAJgUQQ4AAMCkCHIAAAAmZWiQ27t3r7p27ap69eqpTZs2WrVqlZHNAwAA5CqGXUfuwoULeuWVVzR16lS1atVKx44d08CBA1WmTBk1a9bMqDIAAAByDcNG5M6fP6///Oc/atOmjRwdHVW7dm01atRIP/zwg1ElAAAA5CqGjcg1aNBADRo0sD6+evWqvv/+e3Xu3NmoEgAAAHIVu9yi69q1axo8eLCeeuoptWrVymZZQkKCEhISbObFxcUZWR4AAA8tOTVFzk6WPNs+jGF4kDtz5oxCQkJUtWpVvfvuu3J0tD26u2zZMs2dO9fosgAAeKScnSzqt/TVLG17MeF36zSr+wh//v0sbQdzMTTIfffddwoJCVGvXr0UGhoqBweHu9bp27evAgMDbebFxcUpKCjIqDIBAABMwbAgd/bsWb344ot6/fXX1adPn3uu5+7uLnd3d6PKAgAAMC3DvrX6ySef6Pr165oxY4bq1q1r/Td9+nSjSgAAAMhVDBuRGz16tEaPHm1UcwAAALket+gCAAAwKYIcAACASRHkAAAATIogBwAAYFIEOQAAchgHi6PNFLgX/ocAAJDDFK5dUi4lC6lw7ZL2LgU5nF3utQoAAO6tQFk3FSjrZu8yYAKMyAEAAJgUQQ6AqUVGRio0NFSRkZH2LgUADMehVQCmFh4erqioKCUlJcnHx8fe5QCAoRiRA2BqSUlJNlMAyEsIcgAAACZFkAMA4B849xJmwTlyAAD8A+dewiwYkQMA4B849xJmQZADkCMkp6TZuwQAMB0OrQLIEZwt+fTsyE8yvd2lS9ckSXGXrmVpe0n6dFpQlrYDAHtjRA4AAMCkCHIAAAAmRZADAAAwKYIcACDXup2aYu8SgGzFlx0AALmWo5NFh6YNzPR2t/64aJ1mZXtJqj9ycZa2AzKDETkApuaQz2IzBYC8hCAHwNRcPevJ4lpKrp717F0KABiOQ6sATM2lcDm5FC5n7zIAwC4YkQMAADApghwAAIBJEeQAAABMiiAHAMA/uDg52kyBnMou/0OPHj2qxo0b26NpAADuq23VIqpcJL/aVi1i71KAf2Xot1bT09O1du1aTZ061chmAQDIlBoeBVXDo6C9ywDuy9ARudmzZ2vlypUaPHiwkc0CAADkSoaOyPXq1UuvvvqqDhw4cM91EhISlJCQYDMvLi4uu0sDAAAwHUODXMmSJe+7zrJlyzR37lwDqgEAADC3HHdnh759+yowMNBmXlxcnIKCguxUEQAAQM6U44Kcu7u73N3d7V0GAABAjscFcgAAAEyKIAcAAGBSdgly3t7e+v777+3RNAAAQK7BiBwAAIBJEeQAAABMiiAHAABgUgQ5AAAAkyLIAQAAmBRBDgAAwKQIcgAAACZFkAMAADApghwAAIBJEeQAAABMiiAHAABgUgQ5AAAAkyLIAQAAmBRBDgAAwKQIcgAAACZFkAMAADApghwAAIBJEeQAAABMiiAHAMiRIiMjFRoaqsjISHuXAuRYTvYuAACAjISHhysqKkpJSUny8fGxdzlAjsSIHAAgR0pKSrKZArgbQQ4AAMCkCHIAAAAmRZADAGSb5JQ0e5cA5Gp82QEAkG2cLfn07MhPsrTtpUvXJElxl65leR+fTgvK0naAWTAiBwAAYFIEOQAAAJMiyAEAciSHfBabKYC7GRrkTpw4oZ49e6pOnTry9/fX0aNHjWweAGAirp71ZHEtJVfPevYuBcixDAtyycnJCgkJUYcOHfTdd9/ppZde0oABA5SYmGhUCQAAE3EpXE5FvTrKpXA5e5cC5FiGBbmDBw8qJSVF/fr1k8ViUadOnVS1alVt2bLFqBIAAAByFcMuP3Lq1ClVqVLFZl7lypX1yy+/2MxLSEhQQkKCzbzz589LkuLi4jLV5q2kq5kv9BGIiYnR79du2qXtv9q/edV+t7SJiYnJ1v3bq18l+/Ztbu9XifesvdrObrxn7SOzfVuqVCk5OXFVMrNxSE9PTzeiofnz5+vo0aNasGCBdd6kSZN048YNhYWFWefNmTNHc+fONaIkAADw/9uxY4fKli1r7zKQSYZF74IFC+rWrVs2827cuKGCBQvazOvbt68CAwNt5iUnJ+vcuXOqWLGi8uXLl+212lNcXJyCgoL0ySefqFSpUvYuB48QfZs70a+5U17s17zyPHMbw4JclSpVFB4ebjPv9OnT6tKli808d3d3ubu737V95cqVs7G6nKdUqVL8ZZRL0be5E/2aO9GvyOkM+7KDt7e30tPTFR4erpSUFG3evFknT55UmzZtjCoBAAAgVzEsyDk7O+vDDz/U1q1b1ahRIy1YsEDz5s1T0aJFjSoBAAAgVzH06ynVqlXTypUrjWwSAAAg1+IWXTmMu7u7Xn755QzPE4S50be5E/2aO9GvMAvDLj8CAACAR4sROQAAAJMiyOVxaWlpunDhgr3LwCNy8+ZNXbp0yd5l5HgXL15USkqKvcvIEiPuxJAbmKGP+fzFo0CQM9i6devUuXPnB1rXy8tLP//8c7bWExoaqq1bt0qSDhw4oAYNGmRre3lBZvr4QSxYsEChoaEZLouJiZGXl5f1tnbPPfecfvzxx2ypI7e4dOmS2rdvrxs3btx33cy8J1q2bKnt27c/bHn/atq0aVq2bJmku/se/0929fGD+OKLL9SrV697Lv/75zqfv3gUuKlaHnflyhV7l4D7eOmllx54Xfrz/m7evKmkJPvd//JhXLlyRW5ubvYuI8ezZx8HBAQoICDggdbl/YpHIc+PyN2+fVuTJ0+Wr6+vGjdurAEDBujs2bOSpNWrV6tdu3Zq2LChBgwYoHPnzkm685dwrVq19OGHH8rb21u+vr5atGiRdZ8XLlzQkCFD5Ofnp9q1a6t79+46ceLEQ9UZFxenIUOGyNvbW61bt7a5S8aoUaM0ceJE9enTR3Xr1lVgYKAOHTpkXb5y5Uo1b95cTZo00fTp09WyZUsdOHBAYWFh+v777/Xuu+9q4sSJ1tdj1qxZevrpp+Xt7a158+Y9VN05QU7t4yFDhtjcV7hDhw4aO3as9XH//v21Zs0azZkzRyEhIdbnMmPGDHl7e6tJkyZat26dzf5iY2MVGhqqDz/8UJJ069Ytvfnmm/L19VXTpk21Zs2aTL56Ode/9dGtW7f0zjvvWP/fjx8/3vqLvVu3bpKk5s2b6/Dhw0pISNDIkSPVsmVLPfXUU/L399f+/fsfqrY///xTo0ePVpMmTdS8eXPNmDFDqampku7cT3rYsGEaPHiw6tatq44dO9qM5H399ddq166dvL29NWbMGPXq1Uvr1q3T0qVLFRERoZUrV9qE+48//litWrVSvXr1NGHCBN2+ffuhas9JclIfT548WaNHj7Y+HjhwoPr162d9/N///lczZ868ayQ8PDxczZo1s14/9S955fMX2S/PB7lt27Zp9+7d+vLLL7V7926VKFFCCxcu1Ndff63Zs2drxowZ2rt3rxo1aqRBgwZZP4yTk5P1448/aseOHVq6dKnCw8O1efNmSdLYsWNVunRpbdu2TQcPHlT58uU1Y8aMLNeYlpaml156SaVLl9bu3bu1ePFirVy5Uhs2bLCus379eo0YMUKRkZGqUaOGpkyZIknav3+/3nvvPc2ZM0fffPONrl+/rvPnz1vrbNCggYYPH67x48dLkq5fv65bt27pm2++0Zw5czRnzhydOnUqy7XnBDm1j/38/LRv3z5Jd87niY2N1YEDByRJSUlJOnTokPz8/Gy2WblypTZt2qQ1a9Zo69atOn78uHXZvHnz5OnpqRkzZmjQoEGSpDNnzqhKlSrau3evhg8frrfeekvXrl3L0uuYE92rj6ZPn65jx47p888/11dffaXLly9r0qRJkqTPP/9ckvS///1PdevW1fTp03Xjxg1t3rxZhw4dUtOmTa3rZtUbb7yh69eva+vWrVqzZo0OHjyohQsXWpd/+eWX6tmzpw4ePKj27dvrrbfeUnp6us6cOaPhw4drzJgx+vbbb1W+fHkdPnxYkvT888/L399fvXv3tgkE0dHR2rx5s9asWaP169drz549D1V7TpNT+rhFixbW92tycrKOHj2qI0eOKDk5WZK0e/dutWrVymabXbt2ad68efrggw+0Z88em/Mb88rnL7Jfng9ybm5uio+P18aNGxUXF6ewsDCFhYVp9erVCg4OVs2aNeXs7KwXXnhBiYmJ1l+0kjRmzBi5urrKy8tL3bt316ZNmyTd+Utr2LBhkqTY2FgVLlxY8fHxWa7x2LFjOnv2rEaNGiUXFxdVrFhRzz//vFatWmVdp0WLFqpdu7ZcXFzUqVMn64jTF198oc6dO1uXvfHGG3JyuvcRdScnJ73++utycnJSo0aNVLx4cdOfXJ1T+9jPz09Hjx5VYmKi9u3bp7Zt2+rKlSuKjY3V/v375eXlJQ8PD5tttmzZoueee07ly5eXq6urXnvttX9to3Tp0goODpaDg4M6duyo1NRUxcXFZarOnC6jPlqzZo1Gjhyp4sWLy83NTcOGDdP69eutv3T/7tVXX1VYWJicnZ114cIFubu7P9T79dKlS9q5c6fGjx8vV1dXlShRQkOGDLF5v9aqVUt+fn6yWCwKCAjQ77//ruvXr2vz5s3y9fVV8+bNZbFY9OKLL6pkyZL/2t5rr72m/Pnzq0qVKqpevbrp368ZyQl93KBBAyUmJio6Olo//vijqlWrpjJlyujIkSM6ceKE0tLSVKtWLZtttmzZooCAAD355JNycXHRyJEj/7WN3Pj5i+yX58+R8/X11fjx47Vq1SpNmTJF5cqV0xtvvKHY2FjNnz/f5nBaSkqKYmNjVaFCBTk5OalMmTLWZaVKlbL+tfbrr79q+vTpunDhgqpUqSIXFxc9zOX6zp8/rxs3bsjHx8c67/bt23rsscesj4sVK2b92cnJSWlpaZKk+Ph4eXt7W5cVKFDAZrt/KlCggJydna2PnZ2drSNUZpVT+9jDw0NeXl46ePCg9u3bJ19fX129elUHDhzQ4cOH7/rrXroTEkqVKmV9fL+beRcuXNj681/9avb+/LuM+igiIkI3b95U//795eDgYLPu+fPnZbFYbPYRHx+vyZMnKyoqShUrVlTx4sUf6v0aGxsrSWrfvr11Xnp6ulJSUnTr1i1Jd79fpTvv6fj4eJvg5uDgYNPfGfl7H1sslhz/Tc3Myil9bLFY1KRJE+3bt0+XL1+Wj4+PLl26pAMHDshisahly5Y2tUh33q9Vq1a1PnZ3d//XCwznxs9fZL88H+TOnTunJ554QqtWrdK1a9f06aef6rXXXlPdunUVHBxs8+2j6OhoeXp66vLly0pNTdXly5etH8ixsbEqXbq0UlJSFBISokmTJqlTp06S7pwjsX79+izXWKJECRUrVkzffvutdd6VK1d08+bN+25bqlQpmxGYmzdv6urVq1muxYxych+3aNFCe/fu1YEDBxQaGqo//vhDkZGROnDggPU8t78rUaKE9dC4dOeQbF6WUR/VqFFD8fHxWrNmjSpXrizpzqGwc+fOqXz58ndd7uH1119Xt27dtHz5cjk6Omrbtm02o7KZVaJECTk6OmrPnj0qUKCAJCkxMVGXL1+Wi4vLv25bqlQpHTlyxPo4PT2dPs5BfdyiRQtt3bpVf/75p4YNG6bLly9rxYoVSk9Pt57O8HclSpSwBnvpzqHT3HRqA3KGPH9oNTIyUi+//LJiY2Pl6uqqwoULy83NTYGBgVq6dKmio6OVnp6uiIgIde7c2eZD9d1339WtW7f0888/a82aNerSpYuSk5N169Yt5c+fX5J0/PhxLV++/KH+Sq5du7ZcXV01f/58JScn68qVKwoJCdHs2bPvu21gYKAiIiL0f//3f0pOTtbMmTNt/sJzdnZWYmJilmszg5zcx35+ftq0aZPy58+v0qVLq3Hjxtq6daucnJz0+OOP37V+165d9fHHHys6OlrXr1/XrFmzbJZbLJY894vin33UrVs3BQQE6N1339Uff/yh5ORkTZ061foFgb9GPP56nRITE5U/f345Ojrqt99+0/z58x/q/VqqVCk1atRIU6ZM0fXr15WYmKjRo0dr3Lhx993W399fkZGR2rNnj1JTU7Vs2TKbP8Tywvs1Izmlj5s3b67vvvtO0dHReuqpp+Tt7a2jR4/q5MmTaty48V3r//X5e/jwYSUnJ2vGjBk2I4F5tT/xaOX5Eblu3brpzJkz6tGjh65fv65KlSpp9uzZql+/vhISEhQSEqL4+HiVL19e8+bNU8WKFa3nLDz22GNq2bKlLBaLXn31VbVs2VKSNHHiRE2YMEEjR45UmTJl1LNnT33wwQe6fv16lmp0dnbWokWLNHnyZDVr1kwODg5q3bq1xowZc99tGzRooKFDh2rw4MG6ffu2unfvLicnJ+uhB39/f02cONH6GuRGObmP/zo/76/D5tWrV1f+/Pmt7fxTYGCg4uPj1adPH6WlpalPnz7atm2bdXnXrl01YcIEnTlzRhUrVszCq2U+GfVRo0aNNGPGDHXu3FlJSUl66qmn9OGHHypfvnzy8PBQixYt1LFjR73//vsKCwvT5MmTNXPmTJUoUUK9evXS9OnTrd9gzor33ntP77zzjtq0aaPU1FT5+PjcFbozUq5cOb3zzjt68803lZiYqHbt2snT09P6fu3QoYNee+019e7dW9OnT89yfWaTU/q4aNGievzxx1WoUCFZLBY99thjqlq1qkqXLp3haKu3t7dGjx6t0NBQJSQkqHv37jantuSFz19kP+61mgUxMTFq1aqVvvvuuxx/Q+XTp0/LYrGoXLlykqQbN26oTp06+uqrr1SpUiU7V5dzmamP86rc2EexsbFKSkqyOa/K19dX06ZNU9OmTe1YmX3kxj4GHrU8f2g1t/v555/10ksvWc/5WrBggcqVK5dnRmsAM4mPj1dwcLDOnTun9PR0rVq1SsnJyapTp469SwOQQ+X5Q6v2snz5cs2cOfOey5csWaK6des+dDsdO3bUzz//bD38ULNmTX3wwQd3fbsKj55RfYzst337do0YMeKey8PCwtSxY8eHbqdOnTp64YUX1KdPH/3555+qXLmyFixYIFdX14feN/6dUX0MPGocWgUAADApDq0CAACYFEEOAADApAhyAAAAJkWQA5BtYmJitH379n9d7uXlpV9++cXAqgAg9yDIAcg2o0eP1qFDh+65vHTp0vr222+tt1kCAGQOlx8BYDd/XYUfAJA1jMgBsPLy8tLmzZsVEBCgWrVqqXfv3oqJidGECRNUr149Pf3009qwYYN1/cTERP33v/9Vo0aN5O3traFDh1rvVTtq1CgdPHhQS5Yssd5yzMvLS7NmzZKvr68CAgJ09uxZm0OrV69e1ahRo9SoUSM1atRII0aMyHP3jgWAzCDIAbDx3nvvacyYMVq9erUuXLigrl27ytXVVWvXrlXbtm315ptvWu8pO378eJ05c0aLFy/WihUr5ODgoIEDByo1NVVjx45V3bp11bt3b61du9a6/4iICC1btkxTp06Vo6PtR9DLL7+sX375RQsXLtSyZct06tQpTZgwwdDnDwBmwqFVADaeffZZ+fj4SJL8/Py0a9cuhYaGysHBQf369dOKFSsUExOjggULavPmzdq9e7dKliwpSZo+fbq8vb21Z88etWjRQhaLRQUKFFDRokWt++/Zs6cef/xxSXe+7PCXqKgofffdd9q4caOqV68uSZo4caL27Nlj1FMHANMhyAGwUaFCBevPBQoUUJkyZay3dHNxcZEkJScnKzY2VpLUvn17m+1v3LihM2fOqEWLFhnuv1y5chnOP3XqlCwWi7y8vKzzatWqpVq1amX9yQBALkeQA2DDycn2Y+Gfhz//kpaWJovFovXr1991797ChQvfc//58+fPcL7FYuEewACQSZwjByBLKleurJSUFN24cUMVKlRQhQoV5OHhoWnTpunXX3/N9P4qVaqk5ORknTp1yjrv4MGDat68uZKTkx9h5QCQexDkAGRJ5cqV1bJlS40cOVLff/+9oqOj9cYbb+jIkSPW68IVKlRIv/32m/WbrP+mSpUqatq0qcaNG6djx47p+PHjmjJliho3bixnZ+fsfjoAYEoEOQBZNnXqVD355JMaMmSInnnmGV27dk1LliyRu7u7JKl379764YcfFBAQoNu3b993f9OnT5enp6eCg4PVv39/1axZU//973+z+2kAgGk5pKenp9u7CAAAAGQeI3IAAAAmRZADAAAwKYIcAACASRHkAAAATIogBwAAYFIEOQAAAJMiyAEAAJgUQQ4AAMCkCHIAAAAm9f8BtxyEhIl1ZSUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ax4 = sns.catplot(data=iris_tidy, \n", - " x='metric', \n", - " y='cm', \n", - " hue='species',\n", - " kind='bar', \n", - " ci='sd',\n", - " aspect=1.5\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\xusy\\.conda\\envs\\nbdevdabestdev\\lib\\site-packages\\seaborn\\categorical.py:3750: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", - " warnings.warn(msg, UserWarning)\n", - "C:\\Users\\xusy\\.conda\\envs\\nbdevdabestdev\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 9.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", - " warnings.warn(msg, UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAEzCAYAAADD+FxKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADFF0lEQVR4nOydd3gUZdeH791seu8kIQUChFBC772LCIgCFhQbNvxEsb/23lBs2FCpFhQFFRAQEQXpIL13EpIQCAnpZcv3x2Fnd7JBUSEFnvu69iLzTHtmd9g5e8rvGGw2mw2FQqFQKBQKxVkxVvcEFAqFQqFQKGo6ymBSKBQKhUKh+BuUwaRQKBQKhULxNyiDSaFQKBQKheJvUAaTQqFQKBQKxd9QKwwms9lMWloaZrO5uqeiUCgUCoXiEqRWGEyZmZn06dOHzMzM6p6KQqFQKBSKS5BaYTApFAqFQqFQVCfKYFIoFAqFQqH4G5TBpFAoFAqFQvE3VKnBtHnzZoYPH06bNm3o168fs2fPrsrTKxQKhUKhUPwrTFV1IqvVytixY3n00UcZOnQoW7duZdSoUTRv3pzGjRtX1TQUCoVCoVAo/jFV5mE6ffo02dnZ2Gw2bDYbBoMBk8mEu7t7VU1BoVAoFAqF4l9RZR6m4OBgbrjhBh577DEef/xxLBYLTzzxBImJibrt8vLyyMvL040pOQGFQqFQKBTVSZWG5Dw8PHjzzTfp378/mzZt4t5776V+/fp07dpV22769OlMmjSpqqalUCgUCjtWKxQUQEBAdc9EoahxGGw2m60qTrRo0SKmTZvGrFmztLHXX3+d1NRU3nvvPW3sbB6mUaNGsXTpUurWrVsV01UoFIpLi6VL4dZb4ehR6NIFvv4aYmKqe1YKRY2hyjxMmZmZlJWV6U9uMmEy6acQEBBAgPp1o1AoFFVHeTnccAPY0x9WroSHHoKvvqreeSkUNYgqS/ru0qUL+/bt4+uvv8Zms7F9+3a++eYbBg0aVFVTUCgUCkVlZGQ4jCU7mzZVz1wUihpKlRlMDRs2ZNKkSXz99de0bduWBx98kAcffJC+fftW1RQUCoVCURmxsZCUpB9T380KhY4qC8kB9OjRgx49elTlKRUKhULxdxgMMHcujBsHO3bAoEHw6qvVPSuFokZRpQaTQqFQKKqJzEypgouOdozl5UFWFjRoAMnJsGSJfp+yMjh0CBITwTnfdP9+iIwEf/+qmbtCUQNQveQUCoXiYsZqhTFjxFCqWxdGjQKzGT78EOrUgYYNoU0b1xymZctk+8aNISEB1q+HtDRo0UL2iYqCKVOq5ZIUiuqgymQF/gtpaWn06dNHyQooFArFP2X+fBg8WD/28cdw773iQbIzdiy8/75juWFD8STZad8emjaFqVMdY97ekJ4OQUEXZOoKRU1CheQUCoXiYmbPHtexDRv0xpJ9u9xcOHgQmjSBAwdc11eQgaG4GFJTlcGkuCRQITmFQqG4mLn8cr2hYzTCbbdJZZwzUVEStmvTBho1gm7d9OuHDJGXM4mJ4nVSKC4BlIdJoVAoLmaSk+HHH2HCBLBYYPx46NABFi+Gp56Cw4fhqqvgtdfEYwTiNWrcGO64A9atgx494MUXJQRnscB330mi+EsviQGmUFwCqBwmhUKhuNQ5dkwSvJ1p0kQkBhQKBaBCcgqFQqGIiYGOHfVjw4dXz1wUihqKCskpFAqFAr7/Hp591iFc+dBD1T0jhaJGoQwmhUKhuFTZvVtymHr0ECHKDz+s7hkpFDUWFZJTKBSKS5FHH5WE8IEDoX79yuUHFAqFhjKYFAqF4lIjNRXeeMOxnJkJL79cffNRKGoBymBSKBSKS40TJ6RlijPHj0v+0jffSH85hUKhQxlMCoVCcanRqhWkpOjHAgOhWTO45hqoVw9+/7165qZQ1FCUwaRQKBSXGgYDLFkieUzXXANffCHilnaKiqRiTqFQaKgqOYVCobjYKS2FBQtEpfuKK0SxOyICLrtMquRSUqCkRL9PTg5s2yZK3127QlJStUxdoagpKINJoVAoLmaKiqBTJ9i6VZaTkmDtWrj/fpg2Tcb8/aF7d1i+3LFfo0aOsJ3RCDNmwKhRVTlzhaJGoUJyCoVCcTEze7bDWAKRD3jrLYexBJCfD+HhUjl3yy2yz9KljvVWKzzzTJVNWaGoiSgPk0KhUFzMFBS4juXmuo6VlEDLluDuLvpMRUV/fxyF4hJCeZgUCoXiYmbECPEe2QkKggcflLwkOwYDmEzQty/cd58YTv37648zdmxVzFahqLFUmYfpxx9/5JkKLt2SkhI6derElClTqmoaCoVCcWkREQEbNsCnn0rS9223QWwsLFwoY4cPS/L34MGOfcxm0WqaMUOSvnv0UM14FZc8BpvNZquOE+/cuZNbb72VadOm0bhx47/cNi0tjT59+rB06VLq1q1bRTNUKC4Sfv5ZHpg9e0LnztU9G0VNJDtbDCtnMcs2beS+USgUQDWF5MrLy3nooYe49957/9ZYUigU/4Gnn4YBA+CJJ6BLF/joo+qekaImEhoKN9ygH7v//mqZikJRU6mWpO8vvvgCLy8vrr/+epd1eXl55OXl6cYyMzOramoKxcWD2QwTJ+rHXn8d7rqreuajqNl89pnkLe3YAZdfrs9xUigUVW8wlZWV8dlnn/Hcc89hMBhc1k+fPp1JkyZV9bQUiosDsxlmzYJdu8SzVD0Rd0VN4/hxmD5dQm6jR0N0NFhK4NDnUHgEYq+CkFauOkvffy85TN27S54TSJju++8hMVG29/Co6qtRKKqFKs9hWrp0Kc8//zzLli3DaHSNCJ7NwzRq1CiVw6RQ/B2jRsGXX8rfBgNceSXMnetY/+GHysN0qZGdLQKU6emyHB4OW7bArpsgc4mMGdyg1yKo09ex3+OPwyuvOJYnTIDGjWHoUEeu05Ah8MMPVXMdCkU1U+UepqVLlzJw4MBKjSWAgIAAAgICqnhWCsVFwPHj8NVXjmWbDTIyYNEiWL8eevWSPCbFpcXs2Q5jCaT67dM3IXGJY8xmgT3vOQwmqxXefVd/nLfegqZN9YnhP/4IBw9C/foXbv4KRQ2hyg2mLVu2cN9991X1aRWKix83N2lhYbE4xjw8xJDKypJ/FZce7u6uYx6elWzoBh9/DDt3SvjNVOHx4O7ueiy7flNF0tJEsqCsTGQMEhP/9fQVippClVfJHTt2jIiIiKo+rUJx8RMWpg+3mUwQGAg33QTvvQdXX60PsSguDUaO1DfOTUiAMQ9A3EjHmJs3fJUn98+770rSd79++uM8+SQ88gh4Ohlbo0dDXJx+u+xsaNsWnntO7rfWrUXrSaGo5VSbDtM/QekwKRTniM0Gv/wiSd99+oiWTmmpY33dupCaWn3zU1QPBQXw3XfifRw+HAICwGaF9J+g4DB4d4aEtvoigVat4P33pVFv9+5i+ICE4BYsEK/RZZeJV9OZyZPhzjv1Yy+8IAaXQlGLUb3kFIraSmqqPNDy8+HWW8U4MhjEM9Cvnzwcvbz0BpOvr6g3//abeAHuuEM8Ub//LsniUVHwf/8n3ipFzcZmg0MzIOt3CG0HibeD8SyfZUaGJHpbrdCpkxhMp/Ng6mY4cgQG1ZVwW1mZ4/g+PrLP1q3STqVVK7m/PHdD+y3gVwCWrmAMgG3b4JNPJAQcE+M6V1/fqnpXFIoLhvIwKRS1kfx8qViyJ/N6eIgnoGVL/XZvvw3jx8vfRqNUzc2Z41g/Zoz0GrvsMod3oUkTeUi6uV3gi1D8J7Y+DdtfcCwn3g65V8PAgY7PsmlTSfpv3tzRcNfPTz7fa66RYgA7V13luDc8PMToXrDAsf7xx+H2prDKSXogvBvEfSLGVHGxjIWGimzBtm1n5pUo0gQhIef18hWKqkZ5mBSK2shPP+krn8rKRGenosF0//3SEmXDBukH1qOHfv306fIgdf7dtHMnrFoF3bpdmLkrzg/7P9EvH5oOc0/pP8sdO+CNNxzGEkh4buJEvbEEYvCsXi379OoFycn69Z98Ar2a6sdOrIBf3nUYSyA5TC++CJGRcl8OHizeKoWilqMMJoWiNhIU5DpmMsFDD0n45YYbxNNQUuLoJVdWJvtlZDj2CQiA4GDXY1U2pqhZeARBiVMXBPcACKzkc6tTp/Ixg0FvXAX6ge9iSNoJNjcpGDhxwrE+OBg8KhzfYITQSop4wsNh2LB/dDkKRU1HheQUitqI1SphtCVntHTq15cx52qkefPg66/h888dY8OGwfz5UF4uD8yPPhJvQteuIj0AcOONkuekqNmkzoU/RoLNDBig/cdg6ylaW3ZDZ/RokQro0UPCYiAiln/8AY89Bh98IGPBwTAhGbxXOY5/cCQ8PVuMKpNJNL5614OlvaH8jLhw4weh3pk+hbt2yViXLrBsWeVyBgpFLUYZTApFbcVmk+Tt/HxJ7h4wQL/+qqtEhdlZlykyUrxNf/whSeING8p4fr54oqKjJSlYUTsoTIUTKyG0Lfg3kDH7ZxkTAx07ypjFItWTFovkJtmNmfXrJem7awr8mqQ/dlBzSJor23TpArGxMl6WA5m/gF8ihJypnCsrE+Pd0xN693atnFMoLgJUSE6hqK0YDOIdAseve2fq1JFEW+ewSkSEVFD99pvkKj36qFQw+fuLTpOiduEbC77X6scWLRKvYlSU3AMJCfDnn45ecoGBDsX3du3kVV4Abj5gKXIcxz0UZs4Uz9Thw/DAA5IM/sX3IlGQmAj/i5ZzeHjAoEFVdNEKRfWgPEwKxcXC3XdLiA3EG7B8ubxuu02a8tq9UM69v0aOlLCd4uLg22+l6tFOfLx4flq0cCRme3jA5s2uSd2734I/HwRskg+1rAN86NQ+5Z57pOpu7FjHWIsWciyF4hJAGUwKxcXEtm2S1N2jh0OR+dgx2LRJwjNNmug9TkajPEhVx/mLg6uu0jdbBjFw7LlKdp5/Hp56ynX/goNweheEdAL/CH04NzhYDKY//tDvs327jCsUFzkq0KxQXEw0bw79+zuMpdOn4c034fXXpeVFRVHBOnVEq6lHD2mLkZnpckhFNbB7N4waJWrt06bJWNlp2PgALOkOW58BS6nrfpX9oExKch2zWMS72L+/eKVAeg0+PAGufx3e/URCehWPXfH47u4S5j0XjhwRgdWePWHSJMnBKyoSfadu3eDhhyX/SqGoqdhqAampqbZGjRrZUlNTq3sqCkXtYsgQm00eTfIaMsRm8/eXv728bLaRI/Xr27Wr7hkriotttqgo/efy1Vc222+DbbYvcLzWjXXdNzXVZmvQQPYxGGy2hx+22crKbLbLL3ccq2tXxz1gfy1ZYrN17KgfGzlS7hGw2fz8ZJvdu222mBgZMxpttldfPbdrslhstkaN9MefNMlmu+UW13MqFDUUFZJTKC5WSkvB21uvtRMWJr3ANm4Ub1Tv3qL67Mzhw5L7oqgeli6Fvn31Y8OGwvAfAafP0jMcrs5y3d9sFtX3qCiRm7CzZYt4lvbuheuu0+9zww16+QmQ8O2KFXJ/tG4tml0gFXFr10oyub1y7u/YvFnUwJ3p0UOS0Z29Sm5uDskLhaKGoUJyCkVt5Y8/RIupSxfHw+7oUXn4tWkDL7/sGoJLSIBnnpGKp//9z3W9v7+IDiqqj/h4V4OhfgPwqfBZ+cbDxvGwsDWsuxNKs2X8ww/l833gAYcxvGiRtMh54IHKmy8nJUn1nDN160q47IEH4OmnRSHcapUQ7/jxIpK6f79s++230qC3b18x+ECMoSFDJHduyRJXXaZ69eTlTEKCMpYUNZfqdnGdCyokp1BUICPDZvP21oczFi+22VJSXEMc9vBLWJjNNmiQfn3XrjZbbKwjRDdlSnVfmcJms9meftpmc3OTz6VFC5vt+HGbLfUHm+1rfwnHfRtusy0bpA/R/TpQPj/nzzciwmbbtMlmM5kcY0aj3BcGgyx36WKznT5ts02f7rin6ta12bp31x9r9Gib7bXX9GMNGthsK1Y4jgU2m4eHzbZ1q80WHKzf9sYbbTZ3d/m7YUOb7dAhm+2332y2kBAZCwy02RYtqt73XaH4C5QOk0JRG/n5Z33/LhDNnIrhtV27pEpuzx5o1szVo7RypYRE9uyRX/uqJUrN4LnnJAn/xAkJnRoMwBAYdgzy9kBQM5gbrd8nYxH8WKFhclaWSE2YzY4xq1XCbUeOQF6eo8Jt9Gjp+3bwoKz39dUf64cfHB4lO/v3w9Sp+rBvWZl4uXJy9NuWl8u9mJYmcgRGo3iU0tKkf11ysus5FYoahArJKRS1kcoqn1q0cA2rxMfDnXfC9dfDuHHQoIHr+qeflpyWW25xfSAqqo+oKGlj4hyicvcXVW83L/CvcA/41YOGFbSVjEZo39712OXlUoV33XXw/vsydvCgVLFdf72E4pzznwAaNZKXM97errlJUPk5GzWScG+rVnolcG9vaNtWGUuKmk91u7jOBRWSUygq4cEHHWGbyy+32YqKpJrKHoJLSnKtfBo4UMIt9hDdiBH69cnJNpvVWt1XpjgXTq632ebWPROiC7PZMn6x2U6edHzmnp4224QJUqF2660SNjMYbLYrr5R1zp/73Lk2W7Nm+rHhw2228HD5OybGZlu71mY7etRma95cxnx9bbZPP7XZSktttquvdoT77r5b7qEXX5TwHNhs3brZbDk51f2OKRT/CVUlp1DUZk6ckNBcXJxjrLBQQh+xseDjo98+JET0dvbvlxBc27YiPOjMwYOuybiKmonVDPn7xbvk5ukYP3AAQkMhKMgxlpkpVXK//y7eJWeuu06a6zrTuLFUtx06JJ5Jk1MGx759ouHl7+8YS0uTxO7ISMfYqVOiBabuJ8VFgArJKRS1iYULpQKuXj2pggsP1xtLO3bA0KHSY278eOn35UxSkuSq9O4tLTQqPshCQqQBb0WmTJEck+Rk6UmmqBkYTRCQBC+8IvlA7dtLk93ERL2xdGgmbOgNm/pAwB7X47RtK5ITziQnwtprYFdvWHMDlJwQqYr77pP764orpBLOTt26Yiztfgt+bAA/tYDC35WxpLhoqFIPU1ZWFs8++yxr167F09OTkSNHcv/99//tfsrDpFAgLU/q1ZOHlp3PP3d4C6xWyRM5cMCxfsQIWLVKPE4NG8r+P//sWN+2rXgdNm2SB+ann4rB5cyqVY5mrXbWrZOmrYrq55NP4I47HMs+PiIvERoqy6f+hEVt0Wk4bb0N3vlC7qVhw+CLL8TQuvVW8Vq2aAEPeYFxrWOfusNgSVN48UXHWHS06HbZJQPSfoDlVzrWG9xg8F7wq5APpVDUQqrUwzR27FjCw8NZtWoVX3/9Nd9//z3z5s2ryikoFLWXFSv0xhLIQ87O4cN6YwmkSu7wYdHe2bMH1q/Xr9+wQQyitDQxqioaS+DQ1fm7MUX14HwPgLQbWbXKsZy5FJ2xBHB9jFTQHT8O330njZmvuELug7Q0+HOD3lgCyPzF9Vzp6bBzp34bZ2wWOL7sX12WQlHTqDKDacuWLaSmpvLkk0/i6elJbGwsM2fOpEOHDlU1BYWidtOypauon6+veAOCg+G111xFJxs0kH5hTZqIMVSxSWpSEtx2m6zv3l1CLDYbPPushFcaNKi8v1dllVGK6qF1a/2y0Qiev8OcKPihPpSedN3HXAS/tYHlTWHLU/KZb94s6ttNmsCoG8G/iX6fkFau5woIEA9XaKjcW6mVKNUEq3tFcXFQZSG5L774gkWLFtG6dWvmzJmDp6cn119/Pbfeeuvf7qtCcgrFGd57D558UhK7r75acpqcDZqbbhLvT1qaNDTNy5OWGHb69pWQy5YtEqJLSREPg534eHjpJVELt2M0iuTA55+LwXbfffDqqxf+WhXnRnGxfO7ffSeyEo9cC3EfOm1ggMTb4fAMMYwSRsHBaYDVsUnH6dDvOUn4t/PAMOi5A/L3QlAKdPkazOFw7bXiaapTBwYNgs8+c+zj6wULhkP6LJE+aPYkNHn0Ar8BCkXVUGXCladPn2bjxo20b9+epUuXcvDgQcaMGUN4eDiDBw/WtsvLyyMvL0+3b6bqoK5QCPfeK7pK5eWSd/TNN/r16ekiSJifD56eonHjzMaNUrmUmysP1+bN9euPHIGfftKPWa1ifL33nhhMXl7n/bIU/wFvb7kPCgrkM9/6COjyum0Q0hraviMGU+ocODhFf4xDC/XGEsCCnfDGbig/DR5BjvElS8QQ9/WFkSP1+xSWQNH1MOIjMJj0lXsKRS2nykJyHh4e+Pn5ce+99+Lh4UHjxo0ZPnw4S5Ys0W03ffp0+vTpo3uNqlgCq1Bcynh4yMOqWTNX2YDoaAnRhYaKJ6BJhbBKixZSIRcaKj2+KgoRRkVJBVRF2reXB7Mylmoufn6SfB1aSZrDT3sgIgbCouDrdUCF0G5sT6lyc6ZlEvzcGb4LhV96QeERKM+HP66BBaGwsCk0CdXv4+4u4VqTrzKWFBcdVWYw1a9fn+LiYsrKyrQxi8Xist1NN93E0qVLda8vvviiqqapUNQegoKkuik2Vrq8jxwJixeLrpLFIq0skpLESALo2lX+XbZMvEbr1omezsCB4jlq1AhmzZLw2733inEUGiptLpKTzzoNRQ0j/hpo/CC4eYNHMASNg/vfcmgi/e9d8Pk/8AwDoyc0HAsNxshnb1eQHzAArjwC2WvAZoWs32DtHbD1GTj6DdjM0qKlybdw4w2i0RQVJZITdepU6+UrFBeKKsthKi0tpX///vTt25dHH32UQ4cOcfPNN/Pss88yYMCAv9xX5TCdI8XF8pBT3b4vDkpKxJtkPIffNWazhNMqtj5p2lQMqLw8SdANDpZwnDPFxfLAM5lcx93dXccVNQ9zseQMOf/fLy0Wnaa334ZHHtFv//TT8PRTYC0Ddycvpc0moT1fb5jlrt/H5A+BTcWIcmbgZvBsKN89zveq1SzGlpvH+bhChaLaqTIPk6enJ59//jmpqal069aNMWPGMGbMmL81lhTnQEaGhFF8fOSB+fvv1T0jxX+hsBCGD5ewW0wMfP313+9jMknCdsUfFI0bi9EUGAgdOrhWObVpIw86Z6PIYpHGr4GBUnX37rv//ZoUF4bSbFh2GXzjAz8kQPpi8R6OGweBwaKtdeSI634J2TA3Ar4LgrW3i3Hz++/y/REQAH37Q0CFeyW8K0R01Y95hMG9L8s+derAjBkyvv0l+DYYvg2EPx/SN+dVKGopqjXKxcCoUfDll47l6Gj5klSegdrJ00/DCy84lj09peqtohJzZaxbJ8bOrl3SeX7bNti927G+WzcxrH/7TUQrP/vMtZHvZ5/BmDH6sW3bJGdKUbNYdxfs/9ix7BECpW/ADRWqjx96SKocLRa450ZoOFG/vs370OtF+fFl5/bBMCIXstdBRA/o+Bm4B8H6uyH1O/BvALs7woOfOPYxmWDLbNg8TH/8bt9B7FXn44oVimpDPVFrA+XlElIJrZBgmZUlD9ENG/Tj6enyxRcbW3VzVJw/Kn6epaUSVmvZ0rXyrahI7o/AQFlu316MptxcSQKuWCW3fbvkstjvHecQyqlT4tWqeH6Q6jplMNU8TlX4rMpOwfZKhCIbNICj+wAbpP0IqyusT1uhN5YAlu+Fj3eKjpNXhGO880zIflu8Sp9dq9/HbIY9C13Pn70BogaCtVRfcadQ1CJUL7mazuzZ4jEKCxNRuRMn5KGXnCzCgg0buooRNmzoGppR1B4qVqkFBEhJf2iohMgmTJBxey+5kBDRTSovhwULxFAOD4eePV1DcO3ayf0SGSn9xlavFgmCQYPk+JGREtJxxs1NRC0VNY/ICveKdwx0rODdMRohfK1Uu30bAhmLpeTfmfpXuOa/dWoK8xrCnEiY3wRyd8j3T48e8n0UHa3vVwfivWx1PS5VeKXZMCdCzv/HSLCU/NsrViiqDRWSq8nk58uXUkGBY+yuuyQ8snKlY6xxY/Es/PSTPAwnTVLegNqM2SxJul9+KYZv585iMDnz7beS5+TMe++JQnd2tmNsyBDxUG3YIIZYerq+bUZSklTXOYcATSZ48EGpwAsIgOefF5FMRc3DXAQb74e07yGgEbR5B0LawBtvyP3g4wP3XglBFYRGkx+B9AVQlgsN7oTmT8kPsf/7P2ngPGgQDFoD5U6CTuFd4bum8LFTCNDXV/rYzZolxvZrr4my/MHpsOMlsJZD/PWw82X9+VtPhMbjL8x7olBcIFRIriZz8KDeWAJRaN6+XT+2e7eMublV3dwU5w+LRXLO4uIc1WoTJ8L994v3qLIG1RV7egGsWaM3lkDuoT//lF5yCQmueVB79ogApjNmsyiC33efJIQHBzvW5eZKGDA6+p9fp+K/U17u+CyNRjD5QIfJ0PRx8IoE05kQ7EMPwT03gNFDRCorfMS4eUG/P8Tg8jnzWTZrBksXQXEGeNeFrytUt+Vsga0VpGAKC0Vl/MUHwD1AXgD1b4KYKySZ/MRy1+vI2eI6plDUcFRIribTpIlUSTkzYID8gnOmTx9lLNVWNm6E+vUlPBYXJw12s7NFMyk+Xn61V3QCe3pKV3n3CmXfw4e7ClEmJ0uILjFRQi4Vezf26CE6TM4EBsJbb4lRFBkJTzwh4888I8sxMZJQXlT0369fce4sW6b/LLdsgcJUWNgKfqwHc6Pg8JdgKZOw19xoCaflbMUlRFZ0VNZ9HwO/DRZZgtTvZZ8f68OilhDWSb9PVCXfPXVj4Ph98H0szKkDu96U+3XDvXL8uVFw5EyblIrHUihqGSokV9PZsgUefhj275ewyMsvS6ju/vth+XIJxb3zjojGKWofHTpIkradpCTpGv/mm44xk0mMllmzJGfk+eflwfXTT/Dcc1IQcPfdUkq+ezc88IBUyV1xBcyfD4cPO47VsaOcw14lZ793XnhBqqiioyXv6e239fP8/HN9fzkQL9h4FVapEmw2MZQOHXKMdesGrybA4ZmOMZM/tHgZNt6r37/Zs3Dse7BZIHY4bHtGv77lBNj1quQa2YkeCCY/R5Vc67fA4Cf34nffidF2Rz0om+zYx2CEDlNhzU364yc/JuKX5TmQOAaSH/r374VCUU2okFxNp0UL+Pln/VhICHz6qTwcGzZ0rYT6Kw4fFld+XNx5nabiX7Jrl355717YuVM/ZjZLO5NRo8Df36GkfPnlUjlXVORI2G3cWAyrI0fEczVpkv5Y+/aJ3s7u3bKPvbXKM89ILlNYmPxdEeecOTsV56m4cJSU6I0lkPc/r1g/Zs6H7PWu+/tEQfcfREjy5CrX9Tl/6o0lgIJDcNmfkL8PAho7BChffx2euFlCeWtvh1Snfc52fKMRBlQszVMoahcqJFcbWbVKXPMtWkh4pEI/vkopLxcPVb16Euq58UbXaihF1XPFFfrlgQMl3OVMeDg8+aSE22JiJCEbxKMUGytGc9++kk8yc6Z4jFJS5NW5s/5YHTrI52+/dxYtksqntm0dIeDCQv0+Xl7S8Ldi37qK81RcOLy9JfTuzODBkifkjH9DqHejfszoAccWwg/xEro7/KW0TXEm/joIaqEfC2wuIbuFLeCHWDixWvrJLWgCPzWT8J3JV7+PRzA0uKNCFZ4BoivMU6GohaiQXG2kTRtJ5LWTmCghu7/i88/FSHLmhx+kikpRfeTlwWOPSXi1QwepMgoNFekAe5VcgwYSOnNmyhTJY3LmtdfgpZfkmHYuv1wMLnuV3Jo1ep2l+HjJfXIOARqN8MorImkREABPPSUSBcuXSzgwN1cMqNtvP9/vhuKvyMqS6kn7Z/nKK+DjBduflyo5/0bQ4hUIaAiHZsLeSeDmA5E9Yduz+mM1fRJOrobyXKmSa3C7GEObHoXTOyBmEBz5BgqdvFohbaQ1yqEZjjE3L2j2FBz9VpLOU16A0LZw7CfY+apUySXdBwkV9JoUilqICslVN9u2Sb8wZ7XlI0fkV3/r1g5hwZwcCd+0bOlqHB06JGGZLVvE22CvhLLZYPNmSeKtzKD6OyNLceEJCIAPPnAdf+QRR/+vO+5wXV+ZuKS9Z5wzaWkiD7Bzp9w7FUOxR49KmM4Zq1U8ThX7j3XvXnl1nqJqiIiAadNcx1Oel5cz9W50eJp2vem6j9EE7T+G8jwIaSVjvvHQ9j3I3w9BKbBrgn6f/P3SrNcZSwnEDJYqPWdiLpeXQnERoUJy1UVxsYRRUlIk72TECCkvf+QRCZu1ayfrjh+XX/oxMdCli4Rg7F3n7fToIV6mzp1lu88+Ey+AvXdYYqIYZs6VdO7uruEgRc1kWAUhQn9/0cvxrRAOuekmaNVKP5ac7Lh37JpOzgwa5KrnFBnpup2i9hIzGIxOFZUGN6mcm9cAFrWGRe2h7DQc+Ay+rwtLOsu68ApipbFXubY38W8kXieF4hJAeZiqi88/h6VLHcvffguTJztUnEEE5CZMkG2LzyR3njol3qeHH3ZUye3cCZmZsr6sTKqk0tJgvVPy55w5EnZZtEgMp4ceci1BV9RMBg4UL9HkyVIl98QTYggtXSpVk/YquT59YN48CaHZq+Q++MBR/p+TA8eOwaOPOqrkXnhBdJaKihxVcs88I3lLiouDgEbQcyHsekOq5OoMgM1OVWqn1sOet8UTZS2TsZJMCGwGje51VMk1f8YhD5D6Hfg1gJTnpDJOobgEUAZTdXH0qOtYRUFKkHBbVpZ+LC1N8l769pUwS8VWGnl5cOCA67FiYlwr7hS1g+uvl5czHTpIHpozMTGS3wSi8P300/r1qanwagXVZ5CcpDvvPH/zVdQs6vQRUUmbBQoOu67P3y8Vds6UpEOXLyBnM4S0FZFMgOQH5aVQXGKonwbVxdVX60Nk3t6irFxRT+mGG1xDZx06SHhlwAAJ0VXsJdetG9x8s34sOFi2V1w6eHrC0KH6sWuuqZ65KKoPazn82g8Wt4efO8Ged8A9yGkDAyTeKq1PnAlsJoKUywbIv+mLqnLWCkWNQ3mYqouWLWHxYtHJcXeXUvFGjUQj5+WXJXdp9GjJX+nTB158USrjevfWh+jKykQjZ+JERy+5J5+UxO8ffnCEcR591LVRpuLiZ/p0ua/slVUPP1zdM1JUNalzINMpWT97DTR/VvSVynJFBiCyF3SbCztelCq56EGw83VHiM5SBJsegujLquMKFIoagZIVqImsXy8GU58+DlHKQ4ek51eXLpK/kpPj2N5kktyUlStFS8e54k6hOHxYjO3OnR2il4pLh91vw58VFNlTXoDI3lB+GiL7OEQp8/bA6Z0Q3gXmxoDN7NjHIwSGVxC3VCguIVRIrqZx002SyD14sEgEHDki3cEbNJAwXny8hNyc6dtXVJ2vukoq7l5/vXrmrqh5TJkiVZL2e2f+/OqekaKqib1KLzBp9ITMZbCkC/x2uQhRFh8Xj9L8xrDiKvgxUQwpZyoKYioUlxjKw1ST2LJFQnXO/N//SYWUs0epZUsRobRXyS1eLH/b8faWRHE/v6qYtaKmYrWKRMDJk46xZs1EYkJxaXFqE+x9F6wWaaq7Yax+fZPHJLfJ4tRqJaIHRPV3VMk1ulf0mxSKSxR19/9btm0TUciePSXxGiAjQ0q9k5NFjbsiBQWSZxQSIuE2g0G0l5YskXYUlfWEO3HCVYwwOxuuvFLylNq3l95hzhQXy/HO1WD6/XeZ+2WXnXueU2XXWlQk1+fvD/36OUQ3FVXLqY1weheEdBc9LmdOnpTw7h9/iKxAcnK1TFFxnig4BCf+kCq2wDOfZVmuJGj7REPEGS2loGZQ9yrACuYi1+OUHNcbSwBlObKPT6yE6OzGUskJyPgZ/BMhrKPrscxFkL5QvFp1+oHRTXrMHf8VSk9B9OXgrn7MKWofymD6N0yY4FBBdncXjSM/P9HLKSmR8SeekERtO0ePQqdOkJ4uywMHSlJ2nz6wYoWMJSSIaKW9yabBALfdJjlKX3zhOFb79pLIa7HINsOH670GgwaJZ+FcuO46h8EVGioP0saN/3qf33+X+dsTzx9/HO69Fzp2lBAiiCH5yy/6SkDFhWfLE7DjZfnbzRuu7gtfO1U3de4soV6LRZYnTYJ77qn6eSr+O0dnw8rrRCoAoO37kpf0S1dHI93466DDp7CkmzTYBWmk6xUFJRmybDBBg7vEaEr/yXF8/yQJ12ETsctOn4Nfffi1D5gLZJtG46CtU9uekixY3NHRUiWiO/T6BZYPgYwz96F3NPRfA76xF+RtUSguFFUakvv222955pln8PDw0MaefvpphlVUMq5AjQrJlZaKZ6egwDHWurW0H1m2zDHm4SGJ23aPzSOP6EUpQarhHq/QUuDRR8UIOn5cJAV695Zzvv++o0rupZfg4EHHPmFh0mts4UKpkrv3XlcV6MrYtk3UxJ25/XaprPsr+vbVi266u4tY5muv6bdbuFC8VoqqoSwH5kRKGbmdkF6we4ijSm7CBNizx2l9iHgxlTew9jG/sSRp2/EIgbrD4OBn+u1SXoStT+rHmr8gfeTKc6H+bRDeCcyFsOe9M1Vyl8PGcVDqFM71awBBTSHNSfvLYIShqeLNAtj+Imx9Sn+uFi/Dlgrfc8mPQKsK3xcKRQ2nSj1MO3fu5JZbbuGhhx76+41rKuXlDs+Knbw8MXKcKSsTT9GGDRKyO33a9VjZlVScWCzS6iQzU/JNQPR0unSRkF2nTpBfQWCuoEBaqZw+LQaT3VjKyYHvvxej7YorxLApKxM16Pz8yr1QeXnw66/SX+yyyyRRGER1fPlyCeNUDBGWl+tzrJyPpTh/FBXJ5wmir1TRKDYX640lAArgxi4wyBPCO8LTldw7+/aJsZ+cLPeeonZQXuH/l7lQqt4qUlrJ94zBIGG2slwIPONRNvlCeGfwCJJGu+YC/T7mPNdz2qzStDf9J/CuI8c7l/NXPI5CUQuoUoNpx44djB49uipPef7x84NRo2CGU8fuu+4SD5Nz9/YePaSarbBQlvv1E4Ol/MwDrX598SZ99ZUjTOftLd3k33hDlh9+GFatkoek3RNlNEr+0pw5jnP16ydyAuYzJcCPPAJjx0rozq4S3rWrhMh69YLVq2UsMlIekrt2OY5dWChhQhBDbfFiUYcePVqa+YKEAJ3brgweLMnp06eLNwxEWPNy1XzzvJGXJ5+n3TvUqBGsWyf3nR2faIgZAsd+dIz5xotgIQAGuOYqeOs7x/p+/aB5c8d9OX68aHopaj4N7oJtzziWE2+Viri0OWLIgDTRTX4YDs9wGC7uAZA21+F12vI/GLAW9r7vaLhrdIeoy+DYPP35ApvCcSdPemh7qbQrz5Xl8G4SCrbnQ3nHSEJ52lwoOOg4duKt5/WtUCiqgioLyVksFtq0aUP79u3ZuXMn3t7ejBgxgttvvx2Dk3cmLy+PvAqeiczMTEaNGlUzQnIgD5fPPpOk7379pGQbYMECKdtOTpa8pG+/1e/37bfipQkJkd5fERGin/TRR2KotG0rxpgzt98uRpVzCDA5WcQpf/9dVL8//dRhBIEYZvfcA2+/rT/WCy9InzFnHnxQ5pOeDv37i1Cm1epYf9llEv7bu9cxFhAAM2dKyC05Webo7S1VftOmSdL3XXdJXzLF+eGTT+COO/RjH34o77Mz5mI48IkkfUcPhNU36n/N+zeCwufEo9SunXyOzhWWJpOEg0NCLty1KM4fh7+CrN8gpB3Uv0USrE+sgsNfgk8MNLwLPIIlOXz/x5Lv5N8Y1o3RHyfpftj3vt5DGdYZEm+D7LVSJRd/nXimMn8RMUy/RAnfHZyqP1bnLyF7vXisGt4l8yg+Dvs/kqTv+jdBSOsL/c4oFOedKvMwnTp1imbNmnHllVcyadIkDhw4wNixY/H19WWUk5Ewffp0Jk2aVFXT+ne4u7s+qECSrQcNkr+d85ns+PuLJk5IiBgdIOGyxEQxmCrLOyoqkjCaMyUlsk9amvxr9+rYsVgcDVedqRjKAzGOEhPBx0eSvp2NJZDwY8UQZFmZJH0PGaIfb9EC3nrL9RyK/07FzwAkBDt9unyuI0aIx9DNSx5k1jLwiXMoNduxFEPf+pCSCqGJ8ElJhfUWh7dJUfNJuE5ezhTFwMoG0map0ZlqNM9QuS9sVjBV0ljZXARWs37MUiL7lGbLv/Yftj5xsuyXCDlbXI/lE+M6J+9Iad6rUNRiqlWH6bPPPmP58uVMnz5dG6sVHqZzYckSMSrs1Uht28L+/Y4y7w4dJFeoY0dHhVtYmCgx25vwuruLF+mLLyTp287w4Xrv1dVXw3dOYZZRoyTc16GD40HbqBGsXSvzsDfm9fWVpG+7d8rHR7wOv/8uywYDzJ4tuVjOLTXuv18ZRlVNVpaEzuwh1rAwMZB27JDl0FDJl8t6VTwJIJVN0YP0IbrY4ZDqdO8cuRoed7p3rrnGVaZCUXvYuBG6d3f8YOrfH+bPhoWtoeDM/3vvuqLsbQ+RuflISG7HK3DkS8exYq+GVKd7o92H4qH87TKHJ6pOP/Fw2ZeDW8Nl6yUZXKG4yKgyD9O+fftYuHAh48aN08bKy8vx9PTUbRcQEECA3ftSm+nXT/KRZs+GuDjYuVMeaHbWrpWqMmc5gJMnRUZgzBhJ+r7uOjFoOnSQcvCNGyW/qKJ365df5GWvkrvhBjG2/vxT+s4FBcGtt8q/a9aI+nN+vghgDh/uOE5RkeQeTZ4sIbihQyX3CURqYNkyMbiuvfYCvWmKsxIRIZ/n1KniBYyO1ufMZWfDB29Dq08cYzaLeAc6fwWn1ku/sA3j9MdNXAxLf4GFiyS8eqNSc67VvPOO3rv888+wYAIUHXCMFadJ5ZybpyRp17sRApKg0zSo01fCbFGXwR9X64+94xXJYXIO22UugZ4LIet38KoDibcoY0lx0VJlBlNAQABTp06lTp06DB8+nJ07dzJz5kyeqphTczHRtq28QEr9K1JZ6MNmE8+Pry94nXGdGwyy7Ocn/9q9VnYsFskhsu9n1z7y8nKMubvLmLu7LFutkq9SGc4PYjtXXCEvRfUREyO5awBz57qut1gcifkaVsklMfmdaY9RIeRqs0IzbwjzhUBfcFMPu1pNxZA6gPksIVaTrxg/RvuPVqP+XrFVvFcsDs0nZwKSVFNexSVBlYbkVq9ezYQJEzh06BDBwcHcdtttuvyls1GjdJj+LTt2SPjNnrzdsqUk27Zr56h8Cg6WMv7Nm2XZy0uSx2fNgjffdByrYkjuqqvkAWr/KG+7DR56SKqq7HlLzZpJ6K19e0dVXECAo5M9SFWcPZFcUbMpLYVWrRyfZWCgfI4nXoBD9gpOA9QdCmnfO/arGGape+UZXZ0z9069m8TToKidrFkjorH2vMbu3WHJ9/BTSyg6KmNedcA9CPJ3y7LJHwaskwq5g1POHMggmk5pTtW4rd8S4+j3wQ7DKfYq6OZ0PykUFzGql1xVcuiQGD8hIZJn5OcnOU1ffCFJ34mJ+hAZSDn/N984FMRBGvF+/LHDuHnmGX24z81NKqo+/FB/rMcfF7FMZ+6/X3Jj0tMlcTgp6XxeseJCkpcnIdf8fAnfxsVJr7DU7yBvF9TpL6rMzi0vfOOh4zQpDQ9tJ6rgJ50qLA1GGJYBXhFVfjmK88SePZIKEBMj4XNvbyg5CYc/F0PHMxzW3KTfp+HdZ6ronLxKIe2g+bOOKrk6vWU8Z4sY2X6JED9SZAIUFzVpaWns3r2bvn37nnV9nz59mDdvHo0aNari2VUdqjVKVVKvHvzvf/qx8nJ54BUWuobaQMJmFVWY3dxkH/urYvsRg6HyliSVheC8vCS/SVE7KMuBA59JeXa9G0RvyxmbBcz5UJ4vlU+GiveG25l1BfIvFUNwBnkgZv4iPcQSb5HwTGGqo3w88VbwqcU/XC52kpIcoVs7XmHQ+H75+9hPLrtgMCH3gpPBZHCDmMvl5UxwC3kpLhn+97//0axZs7MaTFFRUfzxxx8EBwdX8cyqFmUwVScFBRIiO3xYln19xWO0dq0s+/nBfffJL8UXXpAxg0HCa1de6TjO0KFiVNnzF+6+W/b78ks4dUrG2raFxx4Tle9Nm2QsNNRV20dRc7GUwc+dIe9MKGXPW9B/NQS3dGyz+gbpMQaw+03XEFxwK+nrZSdmiDwY7SGWqIHw20DH8tGvoes3sKi1o03Gvvfh8m3KC1VbieovzXpPnfFKe4RA0n2ADfaekXQxuEGTR6ttiorahZubG+Hh4dU9jQuOyvCsTubNcxhLIF6m7t0lbPf221JZl5ICzz8vvdtef10Utv/4Q3+cJUvECJowAX76SSplEhMlb+q99xzihN7esu/06dJ0dccO8XopageZSxzGEohOzv5PHcvFmXC0glhqURr0WQYtX5c8ley1FY75M1y2AVq9AT0W6I0ngBN/wK439D3FSrLgyNfn77oUVYvRBH2XQ6eZ0OY9GLQD/BOhzbvQ8ydoNQEGbobYK6t7pop/SVJSEgsWLGDIkCE0b96c6667jrS0NJ577jlat25N9+7d+d7eZgkoKCjgqaeeon379nTo0IFx48Zx/PhxAB577DHWrVvHlClT6N27t3b8t99+m86dOzNkyBCOHj1KUlISe88IHOfm5vLYY4/Rvn172rdvz8MPP0x+ZTqAtQzlYapOvL1dx4xG6e2VmSkq4LGx0vJk3z7RcYqLc93P01Pyo/btk6a/vXpJqC0jQ8aCgkTk0NtbtJZqe3uaSxW3Su4XgxF2vCoJvVGXnTF4nAQI3bwgfx8U7JcwWsVjGD2lF1j+PgnLuOllPgBJCj6XuShqDyZvCek6YzCIOnz0wOqZk+K88uabb/Lyyy8TGBjI3XffzVVXXcU111zDt99+y5dffskzzzxDv3798PX15emnnyYrK4tPP/0ULy8v3n//fcaMGcPcuXN54oknOHz4MI0bN9bJAs2bN4/p06djNpsxVkgb+b//+z+Kior4+OOP8fLy4vHHH+e5557jDXvbr1qKMpiqk8svlyo5e1+2mBjpEbdvnyx/9JF4lmbOlFYsIBpJw4fDkSOOqri+ffUhuuXLJcG7UyeHSvj06VJRVZmRpqgdRPaU5NusM8KinuFw/Dc4fUbLa99HZ3rJnekmb/SQEvF1Z8Ku+ydD3ashfz9aVVyd/rD8Ssc5wrvLPvbGq/HXQuPxcOQryD/THicgGeKvuXDXqVAo/jPXX389HTt2BKBnz5789ttvPPDAAxgMBm6++WZmzpxJWloaPj4+LFiwgOXLlxN5piH7hAkT6NChAytWrKBXr164u7vj7e1NiFPLpGuuuYaGDRsCkvRtZ9++faxfv54ffviBxo2lsfPzzz/PihUrqurSLxjKYKpOPDwkRDZvnoTjgoP17UYsFqmGmz1bv9/69bB1q0gOtG8vMgLOzJkjXiXnlipHjsCiRdIrTlE7MRih9y+QvkCSvn3jpQpOwyavvr9LL7mInrAwRX+M7NUwaLsYXSHtYP3d+vUnlsPATdILzCcOovrJeQduOiNPYIS6Q8Dkc0EvVaFQ/Dfi4+O1v729vYmJidH6ttoFo8vKykg/0/z9ssv0WlrFxcUcOnSIXr16VXr82NjYSsf379+Pu7s7SU4V182bN6d58+b//mJqCMpgqm48PBzNezdudF0fGCjJ4KdPO8YCAmDlSjGYysqkR13FYwYFuR7rYlBQv1g58o20MAloDEnjpKP8ybVw4FOpUksaB371Jf+k7lDZJ2+v63FMPpC1QmQF3ANkX2fD2T0QTqyErD8kB8rkp9/f6CHHPfGHVMmFtJEKq4IDMgYQ1ByCmkou0+63ofgYxF8P0QMuyFujqCLMhbDnHTi9E6Ivh4Trq3tGiv+AqUJVdMWwmR2LxYK7uztz587VDCo7gYGBZz2+l11YuQLu7u4ux7lYUAZTTaJNG70oZXg4PPigtCW5/34ZM5kkodveHuWrryS05+Xl0Gr63/+kvco330Bqqoz16wdnEvYUNYx9H+k9PceXQes34ZdujjYUh7+EwXvBI8ixXUAj6VBvL/f3CIaCI3DkTC+4w19A3AhH1ZzBTQwye4juyJeS9+Tm7dBqihkCK53CbcfmQbfv4edO8kAFOPS5VMn9frk8XEHEMrv/IN4nRe3kj5GQfkZy4PAXUHICGt9XvXNSXHDq169PeXk5xcXFJCcnA1BUVMTDDz/M7bffTsuWLf/R8erVq0dZWRn79+/XQnbr1q3j4YcfZsmSJXh4eJzvS6gyVJVcTeObb+C336RSbv9+Eam87z5pyDtjhoxVjAX/8ov0fps5U/qNPfOM5EPt2iXhvCVLJBx3kVr9tZ4DU/TLx3+Fve/re3aVnoBj81337TgF+v0Bnb+Uyqfs1fr1+Qdg0E7oNAMG74eTq/TrM3+BQbuh0+dw2Ua9yCVA7laRJ7AbSyA6T7vecBhLduyGm6L2UXzcYSzZOTil8m0VFxX169end+/ePPLII2zYsIEDBw7w6KOPsmXLFurXrw+Ar68vR44c0Srn/orExES6du3Kk08+yfbt29mxYwevvvoqnTp1qtXGEigPU40j9/RpVhUWUmAw0CIjg6SAAMlv+vZbMYZOnZJO9dnZjp1CQkRO4KefRIqgXj0Jya1aJQZTUJBU113ECqy1Gs8w/bLRA7yiXLcrPQWrzlQ4Jt0rSt1F6eJBKjwK1jKperOWOvbxCBGpgVMbRBrAMwxKnL70PIIhYxFk/ASnkyWMp8NQuUilTyX5CxWvQ1F7MPnqPY2gPs9LiNdee41XXnmFe+65h7KyMlq0aMGUKVMIOJPGcd111/Hoo48yZMgQVq9e/TdHk6TxF154gdGjR+Pu7k7//v157LHHLvRlXHBUa5QahNlsZtKkSZx2yle67rrraPT44/Cdk/jgsGGwYIHkpri5SS8558TwPn3Ey9Szp0PMMjxcvFMqj6nmcXIdLOsH5Xmy3Px5aDQWlnR16C5FdJftrGfCrm5ecNlmWDEU8vY4jhV3jYhNgsgBhHUQL5KduldC+kIxqgxGiB0OR79xrA9pB0VHJD8JoNG90PJVWNoLstfJWFgn6PMrbBwP+z+SMa860G8F+Dc4n++MoirZ+TpsfgywSW5br0UQ3qW6Z6VQ1BiUh6kGceTIEZ2xBLBt0yYaVexMv26dCF6uWSN5T5dXaF2wdKmE5Jw7l584AYsXS784Rc0irD0MPSKVa/5JECiluFy+VfKZTL7S7y1ruWMfSwnsfVdvLIGEy67YLYZWaAf4vsIPjJOr5FwnV0FIa72kAMCp9RKiy98LvnGOFhj9V4uEgcEoxpvBCO0/hAZ3SNJ3ZG9VOVfbafKIGNSnd8pn7Bnyt7soFJcSymCqQfhXrHYD/AIDJeR20klpOSpK9JjszXcjI0W1W9vJT0JwFYmOvgCzVpwXPIIc1W92jO7SxgKg4LDrPn71AQOaphJIiG3vJJEViD7oGoLzihI9pqzfpD2GZ4V2Bm4+4BMNgRWaMBuMjuarzoS0AlqdyxUqagMBjeSlUChcUEnfNYiIiAjatm2rLQcHB9O5SxeYOBHcz3QE9/ODOnXg2Wdh2TJ49VVRB7c3PXRzk7H775eec3ZGjYIuyr1ea4kbIV4cOxE9odH/iVfAjk8s5G4Xg+n4Utj0gGxnPJNoafIV7aZtT0ti+a7XRRXcM1TWG9ygxcvgXomyt0KhUFziqBymGsjJkycpKCggLi7OoZ2RmQnbtolQZUIC5OY6dnBzkyTw9etFgsD+HlkssHq1aDldBKJhCkRQ0maTMJ6d/P1QlCrJ2fMqeAeCWkCvxVLtFtoO5jXU94UzGOGqk5DzJ/g3At/KxegUCoXiUkeF5GogYWFhhIU5KlSKior4dcMGMjMzSTAY6BMXh8HZYKpbV4yivn31B3Jzg65dq2bSigtPxs9Szg/Q+AGIvkxymLY+I73k6l4lXiRnCQDvKNj+vFTJRfQUL5SzweQdLeHAOs6K4cDhWZLQbfKHZk9AWMcLfXUKhUJRo1EGUy1gzpw5HDhwAIBjx47hd+21dDx6VLxMvr7w3nvVO0HFhef0TvhtkKOx7vFfof86qZIrOtPH6eRqSBglMgPWMjGGzIWw7wNZn70Ooq+AwsNQliPGVZv3XPW5Mn+BVdc5lrOWwZCD4BVxwS9ToVAoair/yGBKTU3lwIEDlDm3WjhD//79z9ukFA7Kyso0Y8nOSg8POqalST+5Jk3Eu6S4uDk2z2EsAdgscOBjh7FkpzQbrkyTViYBTeHbCvdG9hpZn7MFApuARyX3TmqFqkxzoXi3Kna3VygUikuIczaYPv30U958800MBoNLjxqDwaAMpguEu7s7/v7+5Ofna2NBQUHMX7aMI0eOUDcri379+uHjo0q6L2r8KtE3Cm4FBpPekPIKh/VjpZdc9BXSQLfoiGO9bz3Y9LCjSq7VBKmU2/2mtDzxjoLAZNdzKX0lhUJxiXPOBtNnn33G+PHjGTNmzFmb+J0LeXl5DBkyhHHjxnHVVVf96+NcKhgMBq644grmzJlDaWkp/v7+eHp6svFMo157gvioUaOqeaaKC0rdKyH+OjjylSzHXQOJY8BcBFv+JyG4oBbSsDf/TFPe0zsgbiRknIbyXBGX9Ap3hOhO74TiDNlm08MylrtFQneRvUQDymCEhv+ncpgUCkWtwWKxkJWVRVRUJR0T/gPnbPnYbDb69ev3n4wlgGeeeeac+tEoHDRq1IgHHniAu+66i/vuu49Ue0PdM+zfvx+rs0il4uLD6AZdvhTRyaGHoessMJog+QEYli794rrPdRhLdvJ2wbBjIoJ55VE4uUa/PnMJHPtRP1Z2Cpo+AYP3Sfiu7TsX9NIUCkXtZs6cOQwdOvTvNwSSkpLYtWvXBZ3PAw88wOLFiwFYu3atTq7nv3DO1s+oUaOYPHlypflL58rcuXMpKCigkepp9o/x8PAgMjISNzc3wsP1YoMhISEsXLiQt99+my+//JJs5z5ziouHQ1/A74PldWimjJ1cByuuht+vgH0finClM77xsHo0/HYFrL0d/Bvq1/slQmBT/ZjBDbJWyDF/HwrHzjRlTV8MizvA/Mawa+KFuUaF4mLEaoUvvoC2bUVouG1bWVY/dC8Ip06duiDHPeeQ3GWXXcYNN9zA/PnzCQ8Px1Chsmbp0qV/uX9qaiqTJk1i1qxZjBkz5t/NVgHAoEGD+Prrrzl9+jR+fn5ERkayYcMGAE6fPk1ubi5jx46t5lkqzivZG2D1jWiq3qtHS37SH1dLojfArglQb7QkiJflQGAz6Qln7wF3aDpEDZA8psJDEqLr8Km0Pzm5WlqzuPlA/LWw/TnHuVdcCX1XwvIhEvoD2PSgaDbFqVY7CsVfYrVKv89ffpFG6gBZWXDnndJU/bvvRHz4vJ7Syquvvsr8+fOx2Ww0adKEZ555hri4OL755hs+++wzTp06RUpKCs8++yyxsbGkpaUxcOBAxo0bx6effoqbmxs333wzd9xxBwAZGRm8+OKL7Nixg1OnTpGUlMQLL7xA48aN//U8MzMzeeGFF9iwYQP+/v7ccMMN3HzzzQA89thj+Pj4sG/fPrZv305CQgJPPvkkbdq0AeCrr77io48+wmw2c+WVV7Jw4UJeeeUVfvnlFzZs2MCmTZs4evQoAwYMwGq18vbbb2upLaNHj+aee+75x/M9Z4Pp4YcfJiYmhssvvxxvb+9/dBKLxcLDDz/Mo48+6uIdqUheXh55eXm6sczMzH90voudqKgoxo0bx+nTpwkICODDDz/UrT9x4gSnT58mUFXPXTxkLkHXAgUkSbu0gjexOFNCdMWZ4F0Hvq7wfzV7PVx9AgqPiNCl8YyCfN/fpOLOPRA2PaLfx1oOB6c4jCU7GYuVwaRQ/B1ffaU3luwUFsKSJTBrFlx//Xk95ZIlS1i+fDkLFy7Ex8eHp59+mo8//pgePXrw7rvv8vHHH9OwYUOmTp3K7bffzvz58wGpyt68eTNLly7l2LFj3HLLLcTExDBo0CCeeOIJ6tevz9tvv43FYuGJJ55g4sSJTJ48+V/N0WKxcNddd9G2bVuWL19ORkYGd955J0FBQVx55ZWARKWmT59OUlISzz33HK+++iqzZ89m9erVvPnmm0yZMoWkpCReeeUVjh07BsATTzzB7t276dOnDzfffDNr166lsLCQ0tJSfv31V/78809Gjx7NgAEDaNDgnxWznLPBdPDgQX744Qfq1av3j04A8MEHH1CvXr1zqqSbPn06kyZN+sfnuJQoKChgwYIFHDlyhJiYGEJCQnRhOF9fX1asWMGuXbsICgpiwIABxFXWW05Rewhq4ToW0QMOzwRrqWPMuw782h/ydkLMYAnB5e9zrA9oDH+MkEa6oe2g3YciZrn5MTj8uWg3RXR3PVedviJk+XdzUigUet56y9VYslNYKK2vzrPB5O/vT1ZWFj/88AO9evXipZdewmg0MmbMGEaPHk3TphKGv+OOO5g5cyZr164lPj4egMcffxw/Pz+SkpIYMWIE8+fPZ9CgQbz00ksEBQUBkJ6eTmBgoIvkzT9h+/btHD16lG+//RaTyURCQgK33HILs2bN0gymXr16kZKSAkhk5YEHHgDgxx9/ZOjQodq6Rx99lNmzZ5/1XCaTifHjx2MymWjfvj1hYWGkpaVdOIOpefPmHDp06F8ZTAsWLCArK4slS5YAUFhYyHPPPcfWrVt59tlnddvedNNNDBs2TDeWmZmpqsCcmDdvHnv3SnLv/v37iY6OJjo6mvT0dPz9/alXr55WRVdUVMSsWbMYP3487vZ+dIraR/RASBoP+94HbNBwLNQbBVjhz/GSqF2nn1S2FZ0pCjg4DWKHi4eo8LDkKpl8IXWOrM9YDKtGSZXc7jdlrOQ45O2VsdRvwegFzZ6EuKuh5esSqrMUS5Vegzuq/n1QKGobFYp0XEhL++v1/4LOnTvz9NNPM2vWLF599VViY2N59NFHSU9P54MPPtB5hcrLy0lPTyc+Ph6TyURMTIy2rk6dOqxatQqAw4cPM2HCBDIyMkhMTMTT05P/0lnt2LFjFBcX07GjowLXarVqRhlAaGio9rfJZMJisQCQlZVFhw4dtHXe3t66/Sri7e2Nh4eHtuzh4YHZbD7r9mfjnA2mwYMH8/jjjzNo0CDi4uJctJj+yqBZtGiRbnno0KHcdNNNlcoKBAQEEBAQcK7TuiQ5fPiwbjk9PZ2nnnqKkpISvLy8mDlzpm59cXExx48fvyT68F20GAzQZiKkPC/L7n7yb/3RknNkLhDpgB8T9fvl7YIhByR05xUO34bo159cDR6h+jFLoUgWtJ8sjXtNZ8J6TR6Whr/WssoFLxUKhSuxsZKzdDYuwPdyamoqTZo0YdasWeTn5/Pll19y//3306pVK0aPHs21116rbXvgwAGio6PJzs7GbDaTnZ2tGSrp6elERUVRXl7O2LFjefHFFxk0aBAA06ZNY+7cuZWe/1yIiIggNDSUP/74Qxs7deoUJSUlf7tvnTp1dKk6JSUl5Dq3C7tAnLPBNHnyZHx8fFi2bJk2ZjAYsNlsGAwG5QE6T+zevZuff/6ZwsJCUlJSuOyyyzh16hQ//vgjGRkZ1KtXj4iICNKcfpVEREQwe/Zs9u3bR0REhEuemLu7O5s3b2bmzJn4+PjQt29fzSWrqGXYDSVn3DzALQRMfuAVKV4iO/4N4ZfukrsU2QsCm8OJ5Y71gc0gtD2kz3eMGT0gKKVyo8jkDfyzHEZFzWPr1q38+uuvlJSU0KZNG/r27UtGRgbz588nKyuLhg0bMmTIkH+cr6qohPHjJcG7srCcry+cCTOdT9asWcMnn3zCtGnTiIqKIjAwEH9/f4YNG8aHH35Iu3btqF+/PvPnz+d///sf8+fP15wgb7zxBs8++ywHDx5k9uzZvPzyy5SVlVFaWoqXlxcAO3bsYMaMGdryvyElJQU/Pz8++OADxowZQ0FBAWPHjiUhIYFXX331L/cdNmwYd999N8OGDSMpKYm33npL5zHy8PCgoKDgX8/tbJyzwfTzzz8zadIkIiMjue466TM1YsQIevTowd133/2PTvrDDz/8s1leIhQWFvLtt99qbscNGzYQEhLC5s2byTrzC2X//v3Ur19fC8FFREQQHBzM7t27AalkKCoqIikpiT179uDv70/Dhg21EF1ZWRlz5swhNjZWefIuNtw8oPOXsHaMVMHV6Qv5B+D0NlmfsRgie4uBlL1OQnSdZkBAkohcpn4LnmHQeiJ4R1bvtSguGDk5OXz//fdaOGXVqlWEhYXx+++/c/r0aUB+uHl5eZ2zto7iL7juOpg92zXx29cX+vUDJ2/P+eLqq6/m0KFDjBw5ksLCQurVq8e7775LmzZtyMvLY+zYsWRlZREXF8f7779PQkKC9iM8KCiI3r174+7uzn333Ufv3r0BeP7553nuued45JFHiImJ4ZprruHDDz+k8Gz5WX+Dh4cHkydP5uWXX6Zbt24YDAb69u3L448//rf7tm3blnHjxnH33XdjtVoZMWIEJpNJSzsZPHgwzz//vPYenC8MtnMMQr788sssXbqU559/ni5dugDw/fffM2nSJAYNGsT48ePP26QqkpaWRp8+fVi6dOlFGVay2WzYbDYOHDjAl19+qVtnN3yc8fX15aGHHtJCcJMmTXLRXrr//vvx9vbG3d2duXPnsm3bNt36kSNHkpxcSQsMRe3HZpNEcJsNvqnQMscjGIafgrI88KhgMFtKpWrOcH5LnBU1i61bt7qEUpo1a8b27dt1Y6Ghofzf//1fVU7t4sVqlWq4iRMlZ6luXfEsXXvteZcU+LfYn7Pr16+v8T+mDx48iLu7O7GxsYCknbRs2ZJFixb9qzzrc+WcPUwLFixg0qRJtGrVShu78sorqVu3LuPHj7+gBtPFzNq1a/ntt98wm82kpKTg5uameZgA4uLiyMnJ0TxMICG4zz77jLS0NOrUqUNYWJjOYAoICGDRokXs2bOHgIAAEhP1eS1Go1GX2Ke4yDAYwO2Mqzy4JeRsdqwLbgU/d4GTq6TKrdMMCJZKE9w8q3qmimqgbt26WjqFnXr16pGamqp5mADtYaQ4DxiNUgl3nqvhLlV27drFBx98wIwZMwgMDOSjjz4iNjaWhISEC3reczZtS0pKKm3wGhgYeEFihZcCx48fZ9GiRZSUlGA2m/nzzz9p06YNgYGBmEwmWrduTYcOHbjqqquIjo7GYDBQv359zGaz5j7NzMwkNzeXRo0aYTAYiIyMJD4+nt27d2Oz2Th9+jTbtm2jdevWmEwmAgICGDZsWI3/BaE4T3T+QkJwBiNE9pFGvSel6oXcLbD6huqdn6LKCQkJYciQIfj7++Pu7k7Hjh1p1aoVw4cPJzIyEoPBQFJSEv369avuqSpqGTNmzKBVq1ZnfW3atOm8nOfyyy+nV69eDB06lPbt2/Pnn3/y4Ycfughqn2/OOSQ3duxYysrKeOONN7Tyvby8PB577DEsFgsff/zxBZvkxRqS+/PPP5k3b55urH379vTv3x+z2Yynp+MXv81mo6SkBG9vb1555RWXFjVPPfUUZWVleHp6MmPGDJdKuttuu+2ieu8U/wCbTSroPIKlSq4sR7/+mmKHR0pxSWOz2XTJvQqFwsE5h+SefPJJbrnlFrp37655O9LT04mLi+ODDz64kHO8aImLi3NxjVssFt544w1KSkpITk5m2LBhZGZmMnfuXHJycqhTpw7R0dE6gyg6OpqpU6eSlpZGQECAi1vSy8uLyEiVxHtJcnKdaC0V7JcQXHBrOO7Uxii0vTKWFIBDnDgvL4/Y2FiGDx+uPNEKhRPn7GECqbBatWoVBw4cwN3dnYSEBLp27YrxAietXaweJpAEzN9++43y8nJSUlJYvXq1zoDq1asXW7Zs0TUTjI+Px9PTU1P6dnNzY98+h5qzr68vSUlJ7Ny5k6CgIC677DJNxVVxiTE/GfJ2O5bDuoBnKGT9BiFtRWvJP/GsuysuDSwWC2+99Zau4qlZs2ZcffXV1TgrhaJmcc4eJpAywJ49e9KzZ88LNJ3ag8VioaCggICAAF3cNC8vD19fX9zc3M7pOCkpKSQlJWGxWDh27JimqmonPT3dpfPyyZMnefDBB8nLy8Pf39/Fw1dYWEj37t0ZPHjwv7y6s5OXl4ePj49OuLSoqAij0ajc+DUFSxmUnhDDyNlYAhGyvPqk9I3zjgLjP/oKUFykFBQUuJSHZ2RkVNNsFIqaifq2/BccPHiQuXPnUlBQQFhYGNdccw0mk4mvv/6azMxMfHx8GDx48Dl1cV66dCmrV6/GYrHQuHFj3N3dKS8v19Y3aNCAgoICrbEgSPPd9957j5ycHAICAjSVVjthYWHn3ZWen5/PrFmzSE9Px8vLi0GDBpGcnMwPP/zAtm3bcHNzo2PHjvTt2/e8nlfxD0n9HtaNEWXv4JbiRTq1wbE+tB3MayQhOu8Y6PIVRHSrrtkqaggBAQGEhobqvkfq169fjTNSKGoeNUMAohZhs9n44YcftMrAkydPsmjRIn755RdNqr2oqIgff/zxb3vVpKWl8ccff2gyArt376ZNmzbExMQQFBRE9+7dadOmDcOHD6dRo0b4+/uTkpJCUVEROTmSuJuXl8eJEydo3bo1/v7+JCYmcs0115z3aoFff/2V9PR0QCom582bx6ZNmzR9J4vFwsqVKzl69Oh5Pa/iH2ApgbW3ibEEIifgHQUxQ6SpbsIoKDstxhJA8THZXnHJYzAYuPbaa0lMTMTf35/WrVurHz8KRQWUh+kfUlJSQl5enm7sxIkTuoo2ECGtgoICLBYLvr6+unBVXl4eBoNBp61kx2q1MmrUKIqLiwkJkb5fQUFBjBgxgpycHEJDQ3nttdd0+2RnZ3P33XdrHifnJoO5ubm4u7vj6+urjRUWFlJeXq5rVlhWVkZeXh6hoaGasWW1WsnOziYoKMhlrmVlZbr2LHbs6rGKaqA4XZrwOlNwCPOATdq9Y5wTpl+fv08EK5UG0yVPWFgYI0eOrPR74NSpUwQGBqoG3ooaR0lJiRbtudAog+kf4u3tTd26dXXGQoMGDfDy8uLEiRPaWGhoqBaiM5lM9O3bl3bt2vH9999rXpnk5GSMRiNWq1Xbr7S0lDfffBOLxUJsbCzXXXcdaWlpzJ07l+LiYgICAqhbty4HDx7U9rFXKp46dQpPT08GDx5Mw4YN+frrrzl48CBGo5FOnTrRt29ffv75Z9asWYPNZqNBgwaMHDmS3bt3M3/+fMrKyggNDeW6667DbDbz1Vdfcfr0aby8vEhMTNQ8TCBGXPPmzdmyZYs2ZjQalRu/OvGtBwHJkqd0hhyfznwycSLFxcX4+/tzV0ovfLLmOPaJ7K2MJQUg/cHmzZtHaWkpISEhXH/99VgsFr766ityc3O1VinnkmqguLSYM2cO06dPP29tzz766CP27t3LxIkTXdZVVCS/4YYbuOuuu+jbt+95n0dFlMH0LxgxYgQ///wzmZmZ1K9fn759+2I0GrHZbOzdu5fw8HDc3d01w8hsNvPzzz9jMpl0LUp27dpF9+7dOXToEOXl5TRp0oRff/1VW5+amsqqVavYunUrxcXFgHinAgMDadWqFUePHiUmJobCwkItMby0tJQFCxbQuXNnzaiyWq2sXLmS8PBwVq9erR1///79rFu3jhUrVmi6TtnZ2SxdupSSkhJN9bekpITDhw/TpUsX9uzZQ0hICP369SMsLIwhQ4awbt063N3d6datm+YVU1QDBgP0+BE2PQx5u7BFX8EXK6IoLpbwcX5+Pt8d7cWNzcLg+G+S39T6zeqds6JGYDabmT9/PqWlpYB0jV+yZAlms1nrAl9SUsL8+fNp1KjRBa+Mvtiw2Wxs27aNNWvWkJeXR0BAAB07dqR58+YXXGyxNnLXXXed87YVi6IuJMpg+hcEBAQwfPhwl/H+/fvTv39/AD7//HPdOqvVqvPQ2PHw8OCqq67SQmIVOXnypMt4Tk4ON954I1lZWYSHh/PJJ5/o1hcXF3P8+HEqUlkI7fjx49qXpJ3s7GxKSkp0Y4WFhXTt2tUlr8Gu4KqoJgqPQHkBBDWVZf8G0F36hFnMZrLnvaTbPONkEeWtJpGVlUVYWJgjlGyzifK3ZwT4RFflFSiqkYKCAvLz8/Hx8XH5P5+dne2Sh1lYWEhRURH5+fkEBAToQv3OZGVl4eHhoQv7X6rYbDbN228v6CksLGT+/Pns2rWLkSNHnnejyWq18uqrrzJ//nxsNhtNmjThmWeeIS4ujm+++YbPPvuMU6dOkZKSwrPPPktsbCxpaWkMHDiQcePG8emnn+Lm5sbNN9/MHXfcAUjV5IsvvsiOHTs4deoUSUlJvPDCC//I43jPPfeQnJys9SgcOHAgrVu35qWX5Hvq1ltvZeDAgWRmZmrtT6xWK2+//TZff/01JpOJa665Rne89PR0HnjgAe69915CQ0MpLS3lmWeeYcmSJRiNRu677z5GjBhxXt5X9TPhApGUlKRbtidSOv/HMBgMpKam8s477/Dhhx+yfPlyl9L85ORkl2aC0dHRvPXWW3z66ae8+eabRERE6NZHRUXRvHlz3Zi7uzvt2rVzyUFISUlxEbVMSkpymX98fLySDahprLsTfqgHPzWDJd2hPF+32mQy0aBBA91Y3bp1tXtn4sSJ0ti5+DgsbAELW8EPcbD1maq8CkU1sXLlSt566y0mT57MzJkzXb5HKvseiIqKYsqUKUyePJmJEyeydu1a3fqysjKmTZvGhx9+yDvvvMOPP/54wa+jprNt2zadsWSnvLycAwcOuDQ9Ph8sWbKE5cuXs3DhQpYvX05ERAQff/wxP//8M++++y4TJ05k5cqVtG/fnttvv10zjMvKyti8eTNLly5l6tSpTJs2jQULFgDwxBNPEBUVxZIlS1i3bh1xcXGVhsz+ip49e2rSOcePHyc9PV27h4qKiti4caOLbNFXX33F/PnzmT17NosXL2bHjh3auvfff5/o6GgmTpzI7bffDsChQ4dITExk5cqVPPTQQzz77LPk5+u/G/8tysN0gWjbti1ms5kdO3YQGBhIz549CQ8P59prr2X16tVaX7ilSx2qy6mpqXTu3Jns7GwKCwtJSUkhJSWFxMREli5dSmZmJgkJCRw8eFAL0ZWVlXHs2DG6d+/Ovn37iIiIoHfv3gQEBHDllVeyceNGvLy86NatGxEREdxwww2sWLGC0tJS2rZtS4MGDQgPD+fXX3/lxIkTNGrUiG7dumGz2fDw8ODgwYNERkbSp0+f6norFZWR9Qfsn+xYPrFClpMf1G02bNgwli5dSkZGBgkJCRw6dEh37/z000806n4UQ+6ZULHNAttfgPo3gZ/KR7tYKSgo4Ndff9XyJ7Ozs2nWrBlRUVFkZWXRsGFDunfvjs1mw93dnQMHDhAZGUlpaSm7dkmOnNVqZcmSJaSkpODt7Q1Iu6cjR45o59m0aRMpKSkXvClqTWbNmjUuxpKd8vJyVq9e7fID97/i7+9PVlYWP/zwA7169eKll17CaDQyZswYRo8eTdOm4pG+4447mDlzJmvXrtXEjR9//HH8/PxISkpixIgRzJ8/n0GDBvHSSy9pHsP09HQCAwM5cODAP5pXz549ee655ygoKGDVqlX079+fpUuXkp6ezq5du0hKSiI8PFy3z08//cQNN9ygFRPdf//9/Pbbb2c9R1RUFKNHjwak59yjjz5KZmYm/v7+/2iulaEMpguEwWCgU6dOdOrUSTfeqFEjGjVqBFBpI0KLxUL//v0pKCjQVM19fX3p06cPJ06cICoqij///FO3T15eHp07d6ZevXqEhoZqN0ZKSgqhoaF4eXlpFQRxcXH079+f0tJSYmJiAGmgPGzYMJe5qLLimoddTDCq5LDryoJDnDp1Srt3jEYjPj4+9OnTh6ysLKKionRJ+iB5TbaCw+gDAjYoOKwMplqMzWYjPT0dd3d3necoOzuboqIiDAaDrtgE5Bf+lVdeSXZ2ttZBAKBbt24kJiYSFhbGN998o9vHYrFw+vRpTpw4gZ+fn5bv5ExlY5cSlaVa/JP1/4bOnTvz9NNPM2vWLF599VViY2N59NFHSU9P54MPPmDyZMePrfLyctLT04mPj8dkMmnPBYA6depoHqHDhw8zYcIEMjIySExMxNPTk3/QKASA8PBwkpKSWLduHatWraJz587k5uaydu1aNm3aVOkP85MnT1KnTh1t+e+6fQQGBmp/2yvG/07i51xRBlM10rBhQxehyvz8fN577z1AKu1uuukmDh8+zA8//IDFYsHT05O4uDhdK5SEhATeffddTXF74MCBNG3alBkzZmjaUC1atODKK69kzpw5WuK53RJXobaaj71ayf6LLrl+GCM8/TGY7a5mA+uPx/PTT3LvhISEcNNNN5GamsrcuXOxWCx4eHiQkJDA3r17teM2atQIY3wDOPa942Te0RDepYquTHG+KS0t5fPPP9dyFps0acLw4cNZsGABGzduBERCICgoSGfM+Pr68vbbb2O1WvHx8WHUqFFYrVa++OILSkpKMBqNNGnShNTUVG2fkJAQZs+erSXeJicn6+bi4eHhEha+1AgICHBRUa+4/nyTmppKkyZNmDVrFvn5+Xz55Zfcf//9tGrVitGjR3Pttddq2x44cEATPzabzWRnZxMaGgqIJykqKory8nLGjh3Liy++yKBBgwCYNm0ac+fO/cdz69WrFytXrmTt2rU88MAD5OTksGbNGtauXeuSjwsQERGhE26uLD+3qlA5TNWIn58fN910E8nJyTRo0ICBAweyc+dObX12djarVq1i8eLFmrhlaWkphYWFdOvWjfj4eM2DVVRUBDjc5GvWrNGMJYAtW7awbt06XZVeRkYGGzY4qUAraiw7d+7Uub93HTzJ/vhPIG4ERA0gr+V0ftpYpK0/deoUq1atYtGiRdq9Yy8s6N69O/Hx8XTs2FE8iwnXQ8epENkHEm6EPsuU1EAtZtOmTboCj507d7J+/XrNWAL51d6wYUNatmxJQkICl112GXv27NG8TkVFRfz666/88ssvWjK41Wpl3759DBgwgISEBFq1akV8fLyuSmnXrl0MHDiQBg0akJyczE033YSfn18VXXnNpGPHjmfVr3J3d3eJQpwP1qxZw//93/+Rnp6On58fgYGB+Pv7M2zYMKZOncqBAwew2WzMmzePoUOH6oyQN954Qwu9zp49myuvvJKysjJKS0u1H9c7duxgxowZZw01/hU9e/Zk/vz5eHl5ERUVRadOnVi8eDEmk4mGDRu6bH/VVVfx+eefc+DAAQoLC3n77bd1693d3c9bjtLfoTxMF4ji4mJSU1OJiIjQ4r4Wi4XDhw/j7e1NdLRUIsXExDBy5EiASuPBp0+fdvl1kp+fT4cOHYiJiSE6OpqZM2fq1peVlVXqBndue2AnLy+P48ePk5+fT0JCgq5HnKLmUJnb/nh5DD713nKqcjyoW3+2e6d9+/bExMRQp04drUrOHHcDh61d8ff3JzJAXwSgOL9YLBaOHDmCl5eX9j1wPqns4XHy5EmXsbKyMrp06UJubi5hYWEsWrRItz4vL88llFFaWkpycjKhoaEEBwdXmksSGhpK+/bt//X8S0pKOHr0KOHh4QQHB//r49QUmjdvzs6dO10Sv93d3UlMTKRZs2bn/ZxXX301hw4dYuTIkRQWFlKvXj3effdd2rRpQ15eHmPHjtVEht9//30SEhI0IzsoKIjevXvj7u7OfffdR+/evQF4/vnnee6553jkkUeIiYnhmmuu4cMPP/xL71llNG3aFA8PDzp27AhA48aN8fLy0s5TkWHDhpGVlcWNN96IxWLhxhtvZMmSJdr6q666iueee45Dhw5d8Fw5g+2fBiGrAbtQ1dKlS/82flkTOHLkCF9++SVlZWUYDAYGDBhA06ZNmTp1qvZrrLJO4Gazmffee0/3cLz22mvZvHkzu3c7mqg2btyYffv2YbFYMBqNNG7cWOeZSkhIoEePHkyfPl0b8/b25o477uDjjz/WfjEaDAYaNWoklVKIa/jmm2++KL6kLjZOnTrFhx9+qD3A3NzciIuL49ChQ4A8pMrLy3X3zsiRI9m+fbvu3khKSuLAgQOYzWaMRiNDhgwhPj6eqVOnavu2adOGK664ogqv7tKhsLCQqVOnaj9emjRpct5Knu2kp6fz6aefavklnp6e3HnnnXz22We6h1tycrKWwO3r60tQUJAu9NG7d2/MZjPLly/XxmJjY7U8KJCHn3PVUkBAAPfee++//uF19OhRvvjiC00XbsCAAdqDtTZjs9nYvn07q1ev1nSYOnXqRLNmzWqMDlNFQUiFK1VqMC1btoyJEyeSlpZGaGgoY8aM0cVSz0ZtM5imTp2q66nm4eFBmzZtdKKRIJoTsbGxurGcnBxWrlxJQUEBLVq0IDk5mbKyMv744w8yMjKoV68ef/75p85b5OvrS/fu3dm/fz/h4eF07doVb29v9u3bx6ZNm/D09KRz586Eh4eTlZXF6tWrKS0tJTExkfnz5+vO37ZtWy1GrahZpKWlsW7dOmw2G3Xr1nXxCHTq1ImysjIKCgpISUmhSZMmlJWVsXLlStLT00lISGDLli06RXpfX1+Sk5NdQrNjx451qVZR/HeWLVumM0AAbrnllvPeTujQoUNs2LBBC/lERkaSnZ3NypUrKS4uplGjRi4l/02aNCEoKIgTJ07QsGFD2rZtC8DatWs5ePAgERERnDx5UvuBBaLuf8UVV7Bnzx78/Pzo0qXLf/rBNX36dA4fPqwte3h48NBDD6mWLFWAMpj+niqLv2RlZTFu3DgmTZpEjx492LFjB9dddx3NmzfXShwvFiq6KO0PsYrk5+ezd+9e3NzcqFevHkajkeDgYFJSUigoKCAxMRGQL42UlBQiIiKIi4vjjz/+0B2nuLiYxo0b4+PjQ3h4uFbim5CQgMVi0VXJhYeHk5KSQmlpqa7nnB37L0fFf+P48eOcOHGCevXqaeJ++fn5HDlyhMjIyEqNkbKyMvbv34+fn1+lD9Do6Git/NguDeCM1WqlRYsW5Ofn6+6dXm3qQr3jEB7nYrQXFxdX6lKv7D6w2WwcOXKEkpISEhMTtYdYVlYWWVlZumt1Ji8vj6NHj1KnTp0q6fdUk6nsvbZ/D9hbC9lVtI8ePap9D9hDp9nZ2WRkZBAbG6tVAxUVFXHo0CFCQkKIiooCxBNUVlamq5ILDQ2lRYsWFBUVVfo5lZaWkpKSot23ds9H06ZN8fPzIzIyUtPksWO1WomMjMTT0xM/Pz/NWLJarRw6dAiLxUJiYqJWcZeenk5OTg7169fXvqdyc3NJTU0lJibG5XuyrKxMuw5FzWfGjBm89dZbZ10/ZcqUWi10XGUGU0REBKtXr8bPzw+r1Upubi5ubm5nVYqtzbRs2VKnr9SoUSPatGnD9u3bNTe5n58fy5Yt03IL6taty0033cT333+vubh9fX257bbb2LdvHwsXLgTkF13Dhg11v/Lq16/Pe++9p4VrevXqRatWrfjss8+09iYNGjTguuuu44svvtBapgQGBhIcHExOTo52rBYtWlyot+WSYfny5SxbtgwQ8chRo0ZhNpuZNWuWloDdr18/OnfurO1z6tQppkyZoj1QK4Zsy8vLmTp1qiYrEBERgY+Pj2bYGI1GsrOzmTJlCiD3zi233ELoqdmwfixgA4OJlvXfYeU2x0O7WbNmNG3aVAvNgFQ+VfR82mw2vvzyS/bv3w/IvXPbbbexadMml2t1ziPYs2cP33zzjZZMPHDgwP+U31LbadGiBX/++af2PeDr68tvv/2mfQ/ExMRw88038+OPP2oFGr6+vtx6660cPHhQM1iMRiMjRozAz8+PmTNnaiGsLl260LlzZ6ZMmaJ5oePj4xk9ejSzZ8/WQvt+fn6EhYXpcps8PT356KOPAMdnaa/OtN+3TZo00V1PZGQkX375pe6+HTp0KNOnT9dyYsLDw7n11ltZtmwZ69at08510003kZ2dzZw5c7DZbBgMBpKTk3Vzatiw4UX5jKiJ1K1bV/dc+TeMHj1a00C6GKnSDF8/Pz+Ki4s1Ucfbb7/dJUkrLy/PJcHVudqrNtClSxd8fX05cOAAERERdOzYEQ8PD2688UY2b96Mt7c3Xl5e/P7779o+aWlprFmzRpcPUFhYyOrVq9m6das2ZrVaycnJYeDAgRw5coSYmBj27NmjS860C1PajSWQvnGrV6/WNe09ffo0HTt2xGAwUFBQQPPmzSutUlCcO6WlpbqQi9ls5vfff6e8vFx76AD8/vvvtG/fXsv1WL16tc77sH37drp06aLpj2zfvl0zlkC8Or179yY/P5+ysjISEhJ0DScLCwtZvWoVV5Q+AZyJutvM9PF4n8DLp3H48GGio6Pp0KEDJpOJ66+/nm3btuHn50enTp1ceoUdPnxYM5ZA7p3Vq1ezfv163bX+9ttv3HzzzdrYsmXLdHo/y5Yto23btpdsL7LY2FhGjx7N5s2b8fT0xNvbW/c9cOzYMdasWaOrZi0sLGTVqlW6XDSr1cqvv/5KUFCQZiyB3Edubm66kP2RI0dYvXq1Lg+yoKCAxo0b07hxY3Jzc11CdGe7b/fv389VV13F3r17CQ4OpqCgQKcnt337diIjI3VVeidOnGDt2rWasQTy/8SeZmA3Hu0ezKFDh2rpBReigkyh+LdUeUmUp6cnmzZtYs+ePdxxxx3Ex8frkh6nT5/OpEmTqnpa5xWDwVBpj7V69eppbU4qqy45W2ikYulmaWkp9evXx83Njbp16+oMKpAvu8pCKpUd32azMWDAgL+9JsW5UfEBA1L1U1lbBHsoIjg42KWfH8iPhxMnTuDu7l5pCM5oNJKYmEhpaSk+Pj4u60tKisGir5gylOdSr1493NzciI6O1gw2exNnf39/rQzcbDazd+9ebDabi8ghSDivYhVVSUkJx48fJy0tjfj4eJf+ZGVlZVqxwqVKQkKC9kOxYj4TVP7/tLi42OUeKSkpcXl/rVZrpftXlhJgsVioX78+ubm5REZGunyWlX2+5eXlREVFYTabCQ4OdhHRPdu5KptTZfMvLS2lRYsWtGzZ0mV7haK6qXKDyWg04uHhQfPmzRk5ciRLly7VGUw33XSTi+p0ZmYmo0aNquqpXlBSUlJYtWqV9iD19vamc+fO7Nu3T/t1aDAYaNOmDe7u7mzevFnbNzo6mvfff19bbtKkiU5Ho3HjxrRr146tW7dqD7qAgAC6dOnC9u3btbJjNzc39cV0nrG3FHB2bbdu3Zry8nJdKWxCQgKTJ0/WPv+GDRtiMBi0X9shISHMnz9f+6yioqLw9PTUHpqenp7s3LlTa+js5+dHaGio7t5p1boNnLwJDnyqnfe4/xA+/uAD7TwDBgwgMTGRKVOmaA+v5ORkhg0bxqeffkpWVhYAwcHB+Pv7a/MxGo20a9eO4uJi3bWGhoZqYR37sZw9nSkpKSofxYnmzZuzcuVKzUvk7e1Np06dOHDggJacb/8esP/YtNO6dWuCgoJ0QpL16tWjQ4cObNmyRTN2fH196dy5M3v27NHC7waDgfz8fGbMmAFIrlt8fLyurUmbNm3+8X0bFhZGly5d2Lp1q2bku7u707FjRzIzM3Vzbd26NRkZGaxcuVIba9WqVY2pGlMoKlJlVXLr1q3j1VdfZc6cOdrYa6+9RnZ2Nq+//vpf7lvbquTOlaysLDZu3Iibmxvt2rUjODiYwsJC1q9fr1U6xcXFYbFY2Lhxo1Ylt2zZMp3Okre3N1dccYXWS65t27a4u7uTnp7Opk2b8PLyol27dgQEBJCXl8e6desoKyujZcuWF0QH5lKnvLycDRs2kJWVRaNGjTT14+3bt3PgwAHq1KnD/v37dSEuEBmAAwcO4OfnR3l5udaSwM7ll1/OqVOnsNlshIeHu1Q4durUCQ8PDy28Gh8fD1YzHPgEstdDZC8mLcglO9shNOjl5UXjxo11BjmIuFxFL2jPnj0xm82UlJTQqlUroqOjddfasGFD5s+fr/OG2TVdDh48SFRUFG3atNESgBXCiRMn2LhxI0ajkbZt2xISEkJRURHr1q3TfZYWi4U///yT9PR06tWrR/PmzTEYDOzdu5fdu3cTGhpKu3bt8PDwIDMzk02bNmEymWjXrh1BQUEUFBSwbt06ioqKqF+/PrNnz9bNIzk5mdjY2LPet5GRkRw4cOAv79t27drh6+tLTk4O69evx2Kx0KZNGyIiIigpKWH9+vXk5OTQpEkTGjRogM1mY/PmzRw9epS6devSqlWrS9r7qKjZVJmHKTk5mePHjzN16lRGjx7Nli1b+O6772p9+O2/EBERwcCBA3Vjvr6+Lt2a3dzcdImyP//8s259eXk5ycnJLgmZ0dHRLgZRQECA6hF3gTmbem+zZs00kbrKkit9fX2JiIjAz89PlwNix2QyaRVPlT1UbDYbkZGR+Pj4OEq7jSaOeg4inVbEe8VTVvaVbp/y8nJdDoydykKEBoOByMhISkpKtAotd3d3IiMjMRgMhIWFVRp6bN68+XlvLnoxER4ezmWXXaYb8/Ly0hL77Z+lm5sbkZGRWCwWwsPDNU9MWFgYkZGRhISEaN67wMBAIiIicHd315Km/fz8NHHAytpLmM1mIiIiMBgMuirOiIgICgoKiIyM1LXVcV5fsSWKr6+vNld7ibqnpyeRkZF4eHhorTfOlr6gUNREqlSHaceOHbz44ovs3buXqKgoxo0bR//+/f92v4vVw/Rv+f3333W//jt27KjykGoZO3fu1P3Cr1u3LllZWZrxUrduXY4fP64ZIAEBARiNRs2zGBQUhM1m08JdJpOJqKgoLeTh4eHBLbfcwr59+/j111+18ziLFQK0b9+e5ORkZsyYoYVVoqKiuP766/noo4+03BMvLy8CAwO1B62Pjw9jxoxh7dq1rF27FnAVQgXxSvXo0eP8vXGXCPZWECCf5a233sqePXu0ikSAoUOHEhAQwBdffKGF3lu1akWvXr2YPHmylksUGRnJmDFjXMQknfXiKn52BoOBa665BrPZzHfffafdG40bN9YljycmJnLDDTfojltWVsYnn3yiVbsFBARwxx13sHjxYi2Z3c3NjdGjR593/SnFf+f48eM647s2kZaWdkFtBKX0XUvZuXOnViVnd80rahdHjhxh165dhISEkJ6ezpYtW3Trhw8fTkZGBh4eHri5ufHLL7/o1vfp0wer1UpZWRlRUVF8++23uvUtWrRg165dOg9SSEgIffv21arkUlJSMBgMpKens23bNvz9/WndujVeXl6cPn2aTZs2YbVaCQkJ0VXhgRhbGzZs0CWEx8TE0L59e44dO0Z8fLyL11Px96Snp7s0IW3ZsiU7d+50+SyDgoJ0la8godmKelvDhw930bsrKytj06ZN5ObmkpiYyFdffaX7LOvWrYvZbNZVKbu5uXHttdeyf/9+QkJCaNWqlcuDdcuWLXz//fe6sa5du7roxyUlJZ2TcLGi6jh58iT9+vXj999//1vxyrVr13LPPfecUz/S3r178/jjj1/Q6Mbrr79OeXk5TzzxxAUT4VSNw2opTZo0UQ+jWk58fLzkGYHLAwbQdMrc3d0rDZuBhD5MJlOlrSgsFotLdZvFYsHX11d72Q1tLy8vbcx+LA8PD3x8fLDZbJWGAM1mMxV/b1mtVlJSUkhJSfn7N0BRKRWrLEHe68o+y8qqFyvbv6SkRFOJb9asGb6+vri5ueHj40NZWRmenp6VfpYVj2Wz2bR7xcfHR8tHKygoYPv27bi5uVU6p4rVdmeb50WLzQqHv4Ldb0FRKvjEQuPxkHAdGGpOzlZJSUmtFS8+deoU/v7+F/QcymBSKGoA7dq1Y/v27dpDJDIykh9++EGrXAsNDcXPz08Ls/j6+rJlyxYt7OHp6UmdOnU0b4A97y0gIECXPB4dHc3UqVO15e7du9OoUSOmTZumPdQ2b97MNddcw+TJk7UQoK+vr64Kz94802q16hLGL4a+X9VN3bp1qVu3rpbH5ubmRocOHfD399d5jjp27EhQUJCulUhycjIdO3Zk69at2r0TFBTEihUrtPDtypUrufPOO/nxxx+1nCS7yrhzA/AOHTpgNpuZN2+eNpaYmMjUqVM1o2jXrl0MGDCAyZMna+HboKAgrcAEHJV/2dnZ7Nu3D5CQX4cOHc7r+1ZjsVlhxVWQ8QtYzsgrlGbBujsh9Vvo9t15N5rS0tIYOHAg48aN49NPP8XNzY2bb76ZO+64g9LSUiZOnMiiRYswm8306dOHxx57DB8fH00st0ePHkyZMoXExERefPFFNmzYQHZ2NnFxcTz++OP/SR/r9OnTvPrqqyxfvhyTycTQoUMZN24cJpOJ9957j8OHD1NUVMSaNWuIiorigQce0DxTP//8M2+++Sa5ubn06dOHgwcPMnLkSE6fPs28efMwGAykpqby5JNPAhLa/u6778jJyWHo0KE89dRT/6moQBlMCkUNICYmhjvvvJMdO3bg5+dHTk6OztDJzs5m8ODBFBcXY7PZ8PX11QkNlpaWkpCQQJs2bSgoKKBp06aEh4drD197L7mKlXWrV68mJydH5wE4fPgwK1eu1FViFhYW0q5dO7y8vCgpKaF58+aEhIQwePBg6tevr1XJqZyU/47BYODGG29k69atus8yJiaG2NhY7bO0t78ZM2YMe/bsITQ0lGbNmuHm5sZdd93F1q1bNW+hc6FIfn4+q1at0iVwW61WTCYTV111lctnGRISolXJ2UO0dnbu3ElgYKBOZyk3N5eBAwdiNpuxWCy0aNGCgIAARo4cybZt28jJySE5OVlr43LRc/grvbFkx1IIGUvgyCxIuP68n7asrIzNmzezdOlSjh07xi233EJMTAybNm1i165dfPfdd3h6evLYY4/x4osv8vLLL/Pdd9/Rp08fLST31FNPUVxczIIFC3B3d+fNN9/kxRdfdGmR80949NFH8fDwYPHixRQVFTFu3Dg+/vhj7rnnHgAWLlzIBx98wLvvvsuHH37Is88+S58+fTh8+DAPPfQQ7733Hp07d+azzz7ju+++Y+TIkdxyyy3s2bMHf39/LSQHcODAARYsWMCxY8e4+uqr/3NOpTKYFIoaQnh4uFYh6ZyobedsApJ27Ho4VqtVt53NZtNe/wUPDw8Xr4DRaFQVcBcADw8PrfmtHXvrkIoVaTExMcTExOjGAgMD6datGwAbN250Of7Zch6tVqvLveJ8/5xrrqSXl5dLWNZkMl2a1XC733I1luxYCmH3xAtiMAE8/vjjmjbciBEjmD9/PqtWrWLGjBlaX8cHH3yQQYMG8eyzz7rsf9999+Hh4YGHhwfp6ekEBARo2mz/hpMnT7Js2TJWrlyJn58ffn5+3HPPPTz++OOawdS8eXPte3DIkCG8//77FBYWsmDBAjp37qwZPHfeeSdffvnlX57v/vvvx8vLi8TERBo3blxp9fE/QRlMCkUNpHXr1mzYsEHTNAoNDWXZsmXaL3kfHx9dLzBvb28OHjyoVbGtXLmSm2++mV27dmlhnJUrV5KcnKzzHHXq1ImkpCR27dqleZnq1auniZzat/X391d5SbWUpk2b8scff+g+y06dOnHy5EmtKs7NzY3y8nItl27lypUMGzaM8vJynVeyQYMGGI1GzSBv2rQpnTp1YuvWrdq9GRoaSuPGjavuAms6Ral/s/6/PcTPhslk0hnSderUYd68eZSUlHDrrbfqjF+TycSxY8dcEvizsrJ4+eWX2bdvHwkJCYSFhf2nH152oV1nGQ2bzUZ5ebkmZWKXnLDPC8SQz8rKIjIyUltnMBi01lFnwy5/AiKBUlH25J+iDCaFogYSFBTE2LFj2b59Ox4eHhQXF+uq5IqKiujUqZOWtBscHMysWbO09VarlXXr1ulKwEG+sG699VatSs4e1hk7diw7d+7E39+fJk2aYDKZuPPOO9m+fTtWq5VmzZpV2n5FUfPx8vLizjvvZNu2bVrSt4+PDyNGjGD37t3k5uYSHx+vNW62s2bNGpdk7YMHD3Lrrbdy6NAhQkJCaNy4MUajkbvvvpvt27djMplo1qwZHh4eVXmJNRufWMlZOuv6C1P5bTabyc7O1gyQ9PR0kpOTycrKYvbs2dSvXx+Q0F1qaipxcXG6fpUA48eP5+qrr2bGjBkYjUaWLFmiyYj8GyIiIjAajaxYsQJvb29ACgays7Px9PT8y33r1KmjqyS22WyV6oldSGpOer5CodDh5+dHx44dad269Vm/TPLz88nLy6u0CsnNzc0lwdHNzY38/HztZfcUFBUVaWP2Y5WWlpKXl0d+fr5Lzy9F9bF7925++ukn/vzzT+3zS09PZ/Hixfzxxx8OpfXSMjh8DA6m4WWVwoL27dtrhq8b0DQglC6RsYS5e7qE20wmk4squ9FopLi4WLvv7EUKJSUl2pgmelpuhqMZsD8V8s8SkroUaDwe3HwrX+fmC40fuGCnfuONNygtLWXXrl3Mnj2bq6++miFDhvDGG2+Qk5NDWVkZr732GnfddReAZujaWyAVFBTg5eWF0WjkyJEjfPDBB//JS1OnTh3at2/Pq6++SmFhIQUFBfzvf//TkrT/isGDB7NmzRpWrFiB2Wxm+vTpOskLe5eDC4nyMCkUtYDmzZuzevVqTp2StiZBQUGsX79eq0QymUzExcVpQoQeHh506tSJsLAwli5dqh0nMjJSJ5hp/9U5c+ZMzdW+fft2Ro0axeTJk7US4/Xr13P33XfrXNyKqmf16tW6BO60tDRatWrFtGnTNONp69at3HXbGIx/7oKyMw+39Cxo0wS8vRwH27oP8uQB4wW0b96CNVukV53RaKRr166YzWa+/fZb7d5o0KABX3zxhXaIffv2MWjQICZPnqxJX/z555+MvftuvHcchKISx/lbJEGg34V4W2o2CddB6mzXxG83X4jqB/EXTovK3prI3d2d++67j969e9O+fXsmTpzI0KFDKSoqokWLFnzyySe4ubkRHh5Or169uPzyy3nnnXd46aWXePnll3nrrbeIiIjg2muvZcKECbqegP+UN998k1deeYV+/fphNpvp2LEjb7/99t/uFxsbyyuvvMIzzzxDQUEBAwYMIDo6WgsjDhw4kPvvv5/rrruOCRMm/Ov5/RVKuFKhqCWUlZWxa9cu7eFVUUiyQ4cOJCQkUFBQQFJSkqZJkpqaqlVWffHFF9qvRxCPU1JSEjt37tQdq2PHjqxZs0Y31qdPH7p27XohLk1xjrz77rtaA10Qw6Zp06aagradGwcNoX5hBZ2j+ChIOJPTUlAEG/WfOSGBHPIzkZWVRYMGDbRQzokTJzh48CCRkZEsX76cQ4cO6XZr164d69ev141df/lgGhZVKFCIDIXG9f7hFV8k2KxSDbd7ouQs+dQVz1L8tRdEh+lCCTdWJ+np6RQVFdGgQQNtrHPnzrz++utV9r2kPEwKRS0hLy9PS5p07vVlx2g0kpGRQX5+PmFhYfj7+2OxWMjIyCAjIwNPT0+X3BJ3d/dK8028vLxcxlReSvVT8TMwmUyVfi4enp5QWEGA0AYcTAOzGYIqeYgaDdQzeVMvMAKsjvBcuM1IeGAEmLxYUyEp2GAwVHqvuLm7AxX6EV7KTZcNRqmEu0DVcJcCWVlZjB07lq+//pq6devy9ddfa03kqwplMCkUtYC8vDw+/fRTLT/E3d2dmJgYjh07Bki/rj179mghu02bNnHDDTewY8cONm2SMMuWLVto3Lgxp06d0rxUPXv2pH79+uzevVvLU2rSpAmdO3dm165dWlJlaGioqpKrAfTs2ZPZs2dr4bfu3btr/QHt4dNGjRpRt2lj2Lwb8s8YTV6ecPwklJ4J0WWchJAAOCUhXdyMknN08EzF1vFsaGAGq9VpDLrWrcfBQ4e0PJY2bdrQsWNHtm/frnm+oqOjiWuWDLsPQbaIZeJugroRF/bNUVQLv/zyCw8//PBZ17/00ktcfvnl//k8LVu25I477uDGG2/k9OnT1K9fn48++gg/v6oL86qQnEJRC6iYuwLSnykyMpKysjK8vLx0uSUghs/u3bt1mkx+fn7ccsstHDlyhOjoaK1Mt7i4mL179+Lv70+9evUwGAxYLBb27duH1WqlUaNGlbZfUVQ9OTk5HD58mDp16mjijyUlJezduxdfX1/q168vCdxWqxhEVisYgJ36nnPUCZMwWUkp+PvChh369b7esm+x3lNU0KIB+w8fJiQkRBO3LC8vZ+/evZhMJho0aCDJ4jYb5OSJIRYaCOr+UdRy1B1cC7Faraxfv15rvtuhQwf1MLvIsZfgVmTfvn2UlZVRr55rboi3tzeenp6OqqkzY/v37+fw4cMUFhYSGhqKyWQiNTWV/fv34+fnR1hYGAEBAbi5uSk9nerEbIbU45I4HRooBo7NRnBxOcEeAVBmA4sF3NzwKiolxd0PbCapjvPyFEPnVC5YbZUnWxsMkJ0r22MAo0G2tWMyicHkHFpzM+IXEOASBnEvLqWpm48cs6RMjK3SMjh1WgwmdxOEBMp8045DQTEE+0NUuOyjUNQC1FO2FrJkyRItIXfXrl2cPHmSoUOHVvOsFBeSpk2bsn79ei2HKTIyktWrV2vG0LZt22jYsKHWq8vX15fOnTsTFRWlCQ8ajUZCQ0NZuHAhIPfOiRMnaNKkiU7Dac+ePfzf//3ff+q5pDgPbD8Ap88k6J/MAbPFUapvHysohqgw2LbPsd/JXGiZBJt2i4ECkHUKgvwh98zxPNwhN8/hPTqRA2HBckwAoxESosVg2rHfYUjFR8s6ZwqLYfMe8SgBZOVA2yYyVlrmOH/zhhIKtJ/jZI6ECOvpVcoVipqKMphqIc7iXSBlxIMHD1YPuIsYd3d3brvtNg4dOoTNZqOwsFBTZQYRcQsODua2224jPz+fxMREPDw8CAkJoV69emRkZBAbG8vkyZN1x92+fbuLrkpOTg5Hjx4lISGhCq5MUSklpQ5jyc7xbDGYnDmZgwulZeKZsjhVydlsEOAnRpDd47N5j34/iwXaNoWiYgj0F6MKoEOKGFp+3uBTiacz65TDWLIfJ/W4w1iy42wsOV+TMpgUtQRlMNVCfH19dWEWX19fZSxdAhiNRk2Zu2JpN4hEwKZNmygoKMBqtdK0aVOtAWd6ejo5OTn4+vrqGqV6e3tXmjRZlYmUikowubmGyDxMEr5yNkRMbuDp7rq/11kqGjOzHTlFlZ0z86R4jMrKIToCq83G2o0bOHjwIBEREXTr1k2q4k7myLHc3aCy6snKzu/pLucwOxlyHpXMXaGooSiDqRbSr18/Zs+ejdlsxmg00q9fv+qekqKKSUhIoHHjxlrrk/DwcLZv365pLO3duxeDwcCOHTs0jaUDBw6QlJTEqVOntHunf//+xMXFsWfPHk0Es23btlpjTkU1YTKJZpK9Qs3kJstmC2zffya3CKhfV3KDsnMldwgk16lupCRc55ypgvP1FvFIu7GSnQvhwRKKAzFciksdyzl5YLby24FdrFixAoD9+/eTlZXFqIFXwI4DTnN1E+9TwZkfccEBcv6iEjHAQAyo2Doyj71HZMxoVN4lRa1CVcnVUoqKijh27Bh16tTRBAoVlx7p6emUlpZitVr5/PPPdesaN27Mnj17dM0yfX19GTt2rMu9YzabOXLkCP7+/kREqPLvGkNxqRgegX5imIB4iPIKwNfH4cmxWuF0gYTa/Jx6/uUViJeq3Aw7D+iPHRkKcXXE0PL2hHXb9et9vHh39a86oUyAJ4aPwnQyV79tk0Q5t9EgoT87BUVy7kA/R+5TSZloRAX4yT6KGsXx48cJCQlxacRbk7BYLGRlZWlVolWFiuPUUnx8fGjYsKEyli5xoqOjqVevHkFBQS7rAgMD8fXV97AKCAio9N4xmUwkJiYqY6kmUVoGqRnySs+SPCGrFY4dh6OZkJrpyGk6kSPJ4EczJKRmJ8BPkr29KulF6GaU4xzNkERxtwqPA08PF5VoLy8vjN6VHMvLU87jbCwVFjvmlCX6YJSbIS1TznvsuMNTpqgRnDx5kssuu0yX8nE21q5dS9u2bc/buX/88UeuvfbsbWKSkpLYtWsXAA888ACLFy++IPP4K6rUvF+5ciVvvvkmhw8fJjQ0lNtuu+0v3yCFQnFuhIaG0rlzZ1atWqUtd+nShbi4OObOnYvZbMbT05P+/ftX80wV58z2/eKhAfEe2c54io5lyVheARSXSGn+bqecttx86NBcr6zt7wPR4ZB+QpZ9vc9ICpQ7jh8RIoaXzSaen3p16RvSly+//JLi4mLc3NwYMGAAxtg6ou9kN8yiw+X4zlgssGWPw6DLzZf5ZJxwhAnzCiRE2CDuvL1lNRabTYzGtDPJ8J4eEraMCKlRsgolJSWaAGpVM2TIEIYMGXJO29oFequaKjOYMjIyuPfee3nttdfo06cP27dvZ8yYMcTExNCtW7eqmoZCcdHSr18/2rZtS0FBATExMRiNRpo0aUJCQgInTpwgKipKtTepLRSXOowlOydyXKvkcvJcW46Um8VACQ3SjzeMl4d0uVnapGzerV9fVg4dUyQEGOALRiN1/X0YP3486enphIWFOTyWbZpAfqEYVt6urVHIzXeda9Yph7HkfE0Xu8Fks0nOV06ew6NWbpZcrhM50DTxvBtNaWlpDBw4kHHjxvHpp5/i5ubGzTffzB133EFpaSkTJ05k0aJFmM1m+vTpw2OPPYaPjw9XX301AD169GDKlCkkJiby4osvsmHDBrKzs4mLi+Pxxx+nU6dO5zyXl19+mfz8fF555RUAxowZg9lsZtq0aQA89dRThISEEB8fz/Tp07UemdOmTeOzzz6jtLSUW2+9VTveSy+9xIYNG9i0aRNHjx5lwIABWK1W3n77bebMmUNpaSmjR4/mnnvuOU/vpoMqC8kdO3aMK664gn79+mE0GklJSaF9+/b8+eefVTUFheKiJzg4mNjYWK1qsqioiF9++YWFCxfy66+/ah3lFTUcD5NriMzbU1667dxdx0CkATbtEi+Ps0dnf6q8The4PqQ93OFAKhw4CkfS5eFuteKeepz4kwX4pmY5KvQyTp451lE5Lsh5tuyR8xZVEtLx9nStiqts7hcbdkOxYvjRapXxrAvjLbFXyC5dupSpU6cybdo0FixYwIQJE9i+fTvfffcdixYtIjs7mxdffBGA7777DoDff/+dVq1aMWHCBIqLi1mwYAEbN26ka9eu2rbnSq9evTTPd1lZGVu3bmXLli3ad9Hy5cvp06ePbp/ffvuN999/nw8//JAVK1aQlpamrXviiSdo27YtDz30EE8//TQAhYWFlJaW8uuvv/Lee+/x3nvvsX///n/3xv0FVeZhatu2rS7OmJuby4YNG5TgokJxAZkzZw4HDkiy7/HjxyktLVX/52oDbm7iedl3RJK2PT2kosxilVBdWbkYVA3izghS5jn6xkWEwMFjjmOdLoA2ybB1n0ObKb8QIkNEZNJmAx8v8WgVST9BCorFC2W1OkKABcUSAqwbKfPSjl8IrZJEPNNeYJBXKPOwGwN+PlIlF+Ar4UOLVYynxNgL9hbWGNL+IlfLapX1kaEX5NSPP/44fn5+JCUlMWLECObPn8+qVauYMWOGVgn74IMPMmjQIJ599lmX/e+77z48PDzw8PAgPT2dgIAAsrKy/tEc7F7vAwcOkJ2dTaNGjcjNzWXLli1ag/DmzZvrDJyffvqJIUOG0KxZMwAeeeQRZs+efdZzmEwmxo8fj8lkon379oSFhZGWlkaDBg3+0Vz/jmopUcjPz+fuu++mRYsWLpZlXl6eVt5sJzMzsyqnp1BcFJjNZs1YsrNnz56zbK2ocdQJk7BaSZmU7ds9Qh2aS/6Qt5ejcq51ExkzuckD2BmbDY6d0AtZAmCQEFxZuey3dpt+dXau64M+r9AhPWDHYpHjVyy49nCX45stkjMFoibeMUAML19vV9Xwi5GKAp7/dP2/xGQyERPjkG2oU6cO8+bNo6SkhFtvvVX6DTpte+zYMZfKuKysLF5++WX27dtHQkICYWFh/NPCend3d7p06cKqVavIzs6mY8eOnDx5krVr1+Lu7k7v3r11cwFJPnc2dgICAlwKEJzx9vbWpRt4eHhgNpvPuv2/pcoNpkOHDjF27FgaNGjAG2+84SK4OH36dCZNmlTV06q55G6HTY9AwQGIvQpSngdzAfz5IGQth9AO0HoieEdW90wVNQw3NzeCgoLIzc3VxpS+Ug0g7bgkP5tMorwdHCA9146ki+clOhyiz1QruptcS++NRmmWWxG7UVJZTlGAr5zTGTejeHtKSsWQqSgq6e0lBlOJ0wPdw13OU9Foquz43l7iGasYdTO56edvtYpH7FSueLrqx8q/6VmSpO5mlJYsIZWIbdYGPD1c87kqrr8AmM1msrOzCQ0V71V6ejrJyclkZWUxe/Zs6tevD0iYLDU1lbi4ODIyMnTHGD9+PFdffTUzZszAaDSyZMkS1q5d+4/n0qtXLxYvXszp06d58MEHyc7OZubMmdhsNm6//XaX7SMiIrQ2UCAhN7vGXHVSpeb9+vXrGTlyJH379uXdd9/F09M1fn3TTTexdOlS3atiF/ZLBqsZfrscMhZC/l7Y+SrsfA3W3QUHp4oRdeRLWD26umeqqIEYDAYGDx6Mj49UMAUEBDBw4MBqntUlzolTkidUVCK5P9v3iddm+375t7AY9h0V786/pU4ohAU5lmMixFsVH+3wUgX5i9GTc6afXGqmGCT2BHJvTxHFTIx1SBKY3CRxPCZS9gc5Xny0HD/GSZIiNEjmcS4cTheJgeJSyD4t78XJHHkfCosd709JLc2/qxt5dk+a0SjrLxBvvPEGpaWl7Nq1i9mzZ3P11VczZMgQ3njjDXJycigrK+O1117jrrvuAtC8NHbjpKCgQKQkjEaOHDnCBx984NJK6Vzo0aMH69ev58CBA7Ro0YIOHTqwdetW9uzZU2kC+bBhw5g3bx6bNm2irKyMiRMn6jxbHh4eFBQU/Ju35D9RZR6mo0ePcueddzJ+/HhuvPHGs273d663S4rTO6AoVT+WvhByK7jOM38GqwWMFaplFJc89evXZ/z48Zw+fZrg4GDVQqe6OVWhSsxqg8xKwlmnTrtWuZ0rRiM0bSChHoPBkWidEC1GjcUiYbhNlVTJdUoRqQFvT4dx1b6ZGDOeHo5E9BZJ4plyc3N4wBrEQVyUXMs/8ZqcOq1fLi5x9WDZbJKnVacWekjtcg0VE7+NRvEuRoRcsFMHBQXRu3dv3N3due++++jduzft27dn4sSJDB06lKKiIlq0aMEnn3yCm5sb4eHh9OrVi8svv5x33nmHl156iZdffpm33nqLiIgIrr32WiZMmEBqaurfn9yJkJAQGjZsiK+vL+7u7gQFBdGgQQOioqIqdZx06NCB//3vfzzwwAPk5eUxYsQIndbc4MGDef755zl06BAjR478r2/TOVNlSt+vvPIK06ZN037t2rn++ut5+OGH/3LfS1bpuzwP5kaD2dH7iwZ3iMF0crVjLCAZrthZ9fNT1HxKSuWXen4hBAVAwzilrlydpB0XD5MzyfVh10H9WEyEeKDKyiEiVBK+S8tcP0ujEQ6mivCkt6cYLX4+cp5jWWfCWVEQHiKGyaFjEh4KD4H04/pedREhcr6iEvE2NYgVQ2V/qjzsfb3l+N6ecCRD2p64m2RuIYHiPTuSIWHFmHCoW0cSyfcfFYMrNEg8VlarXEdunoTmDIhnyY7JTYy7/f/f3nmHR1Wmf/87NZMyaZPeQyChhBISQEBdQBRFaTZwMbasBfBVV1dFV2VRwWXVVVBAfzZEUWClKMKCiwI2QIqKBEiA0JKQ3tvU8/5x5+ScMzMhoDBp9+e6cpF55pznPKdcOV/u6nSdBvdx74rsDHi4DpP4ztyzZw8bIC4iHvvL+dRTT+Gpp57y1OG6Bjp/YOi7wN5ZgKUCCBkB9H8eaCoGvr8ZqD0K+MQBw95r75UyHZXDeeTSAOiFBoHaWDDtQ1QoZa2VVZLYiY+kl2ZDE1X0dgjkTjtbKomZM0X0gi0pd72XBi+pGKXFSq6rnrFKUXYoDxikA7KPSXPmF5G1pqyS4pYC/EigiW6vorLm5r8OoLhcmv/QcXrRn2qOLzFbaN4BKXQckeP5tLZjZ2SlCEpJDDXJetZVVFNAu58PiSudFkiOJwFWXU/nqVYBsZGdVywBJIrCTZcsG47xDPxfzY5OwjQgdgpgqQS8I2jMOxy4IQdoPAsYwtkVx7jH4ZBesCLOhQMZz6JWU6FCq42EgBgzlBAFxIaToKmtJ4uRnIpq9/fSueWJ2eLqzgJI9DicnAkOBzB8IAkmh8M1S66y1jVLrr7RNb7KIQDFZa7HLK10zQCrrHGNRaprBC5Po3XotFK8T98egDVOeZ2YDsfWrVvP6SWaN28exo8f78EVXTpYMHU0Cr4Efn6crEiJdwBprwD1J4Gf7gMq9gHhY4Ch75Bo8olqfR5BAA48Axz7P0AXAAycB8RPBU5+Ahx4ltx9vWYA/ed2qNL8zAVQXE4Bs3Y7tcdIiFLeS7Waso3E2jqAsjEr0364c4tqNIAG5PpSqZRxTUZfssw430tvL2VFcK2GArKdiyEGBVCxSTlaDbD/MAmY0EBakzyby+hD7jW56PHSU784Z0Hnbv5AIwk9eeadnw8dRy7cfQzN5+5GFLH7+HcRExPjsRIiY8eOxc8//+yRY7U3HAHakWgqBb6/Bag5QhalnIXA0SXAD9OohICtHijYAOx9sO25TnwEZM8HzGWUTffjdKBoO7AzE6jLo/GDLwCnPr3kp8VcAhqapJRwq40anJa6qRjcO1GqpuznQ1lOTMfGS09uKW2zWAgJIutTitO9TI4HEqKljDW9ju53RAi5/lQqimFKjAZCgyjmSazbFBpEgru+kQR3UTkFIIvB2gF+lCXXM1ZyhRm8gD6JFF8lBiprNTRvaBAdR6Om40aG0jp6J0pB54FG2qZXnCTcvb3ovBimE8Dy/WIhCK6WGndj56J8D2BvUo4VfQNU/qIcK/227WOK27SM24HTKwHBycRe8i2Q8Gf36znfc7rQ82T+ODVuUmqr6ihAWH4/jL7AkFTJ3SGH71vHJSKE4l0cDsny4t98L+0OSfgAlLFms0tiBSBh3COWAqpFF1dUc3kBQSCh5Oy6s1ipKKbzszK4j+v8fXqQYFOppPnjIim+SYCUTWcKBC4LcFqzjnrROc/JMB0ctjD9Ucp2Axv7A59qgG3jyUrUWAxsu5bGNg0gIXQ+BA8G1E69lkJHAgF9lWMB/YH/XQl8qga2DAOqD5PQ2nknsMoL+DwBUDunaqqAmMn0rxzTMNd1VGUDm4fQ+reOAupPA5Zq4LubgJU6YEMKULyN/vD+8hTwHyOwJhTI4YKjHsNdAKwKwK4DwHf7gZwT9LKtb+4p9uMvwC85ZJGy2ShQ99t9wE+/cVxTR0XlJnZHpVKKJRGtxlV4aNSu9X/UaprTx9u1V52XDtibTc/Kb0cBeb0dt/NrWpnfaexC1swwHRiPlRX4I3TYsgIOO7AhCaiX9VVKuJ2sOXJXl28iMPEYoDoPfXpyJfDzY4C5lOYashSoOQzsvAuo+hUI+xPNX/q9tE9wBhA9EfjtOWlMbQASbwdOfkzZdgPmAT3/Ahx9m2KYbLVA0n1A+muu6/pvmtKqFXktYOwF5L4hjXmZgPSFwI+3K/e9dj8QnNb2eTJ/nMJS4GQBuVTCTJTZJCcxmmJZ6mWNUIP9AUNzFWURnZZaWHCNpu5FeRWl/DdZyKVW3VzGQCTcRC41hmEAdHWXnKWm2TysAbSXICW16axSLAFA2S4SNHLqTwBNJSRcNAalQLGb6bNoWUqYBsTdQhYjXfOagwYB438hK48+AFhtVM5fsRfwciro5mgiV1v6QkCtB9TNt7rX/UBSFuCwAFpZALAgAPYGQKVxdQGW7aKYJznmcqBwi+s1Kd91YYLJWgfo/JRjtuZ1QKDr1RkRs4vkIkQQ6Md5TO52EbHbaTv5/8AdDvosjkWF0o8gkJXIWTBV1ynFEkCZVhanNg1WG9XJEVtrnM95tLbm8z0P5zkZz2MKpPR9u53cY85ZcmJWnrv7yjDdkK4pmBwO4KuhlFUmEjEWGPEpYLiIlWK9owC/HhRELRJ2OVme6k9IY35JwK57gLObAe9IYMgSsgjtfxQ4upTETJ8ngf7PAnnLKEvOUgHE3gJc9gEVqtx1B1CTA5iGAsHpQMkOaX7TZUDYlTS/iNYXOP4+8M01gNYPGPACkPIgcOR14Ld/kDhKvIvWUrID2J1F4i9sFBA4kKxZLed0BeDXk4SZiCEMiJ4AnPxIdkFUQOjl53ftqg8BP/yZjhPYHxjxCeAbB/yYCRR8QXOp1EDSX4CMxZ2ndIIg0P/azzbXsYmPoi7thaXAiXyK5QgLpviP2nrgyElyk/n7URo1QLWTqusAgx5ISaDvjp4CiivI3ZEQrWxDoVKRi06tVqaBBxrJYiDPogow0rzyMZ1WCiaWc7IAOFMMQKD4lx4xlB117DTNGxxAQcBmK625vpFEV58eFDx85ARZMfQ6Ch4ODQby8qkNBlQU75IY7XpcxjOUVsruZXPAtzwjzscA7DlICQZ+PnRffTrpf2AY5iLQNV1yPz8JHP6X63jSvcCw/7u4i6v4GdjzADXJjboOGPp/AARg973A2S0kBvx6KF10WiOJgF1OPeCuWAt8fysgyCwAA+eTiKrNlcbCRgEar+bmu0OBYe9SAct9DwMnVwA+MUDEGCB3sXL+Kz8Hvp2kHMtYAhycS2UMRKInkWCr2EvHGvYuWcf2zADy15F7LuNNiq/67QUgdxGg8Qb6zyHr1fnw1QhltfLgIUD4aPf3bdj7QNLd5zdve1NUBuScVI71SwKyjyvHkmKA/BLlCyokiESWPCVcrwPiIlyrHg/pR3EocsqrqGCgxQqEB1NV5SYLkHsSqG0gAZUcT7EjuadI/Ph4AT3jKStKTmUNcCBXOdY7Acg9rRRlMeEk7mplNYKMvjRfvuyZUquBlHjgsOw/EgAwIJmysxjPYrMBOw8o72VYMLUlqW8CTAEkgOVlDAKMwKAUz6+VYToIXdPCVPqD+/GKfWT9MZdKRSBFmkoAfZAy6NpSRZ/l7jxbA+Aw07YAuZ+u/oFcVN6yJopXrqXgby8T8PUo5bFstUDxN67rK9ysFEsABZXXOr24ag4BU4pI5BjCJBff0KVkSdIZqTq4y/z/dR0r/U4plgCg7igw/je6JvLrNOIj1+vU/1kg5f8BKq3StWZrBOyNgJesT5LDTq4973Cl9Q8AKveRKHNHxb72EUwOB7kq9Lq2txWRW25EnHtlAVTF2LmoX129axCsxUqCxJnaBqC5UWZLQK0pkMSH3SFlOfkYKIvKalOeR58eNLfWKXDXZqM1uDsPd4UMaxtct62tdw38dThc+6iJ27oTTL/n2jPnT0OT6720WIG0PvSs6LSUFCCnzqlwJsN0M7pmEEHMFPfjxmTgiwRgXSRlttXkAg35lGm2NhxYHwvkbwDsFgpmXmOi7K/fXqD9D/2LPn9mIkuQvYnieD6PA9ZFAP9NB+pOAnUnKHB6XQTweTzgk6BchyEMiLvZaXEqCtLWOBUWjLyGgrrlBA0GNvah8/iiJ4kqSzXwzThgbSidi/OtVeuAxEwSNoprNYksYHL8+wJf9KD5v+xL7rPGIuCrkTT3uijg9BrAYQN23Q2sCaHj/vos7X9kIbA2jMa/nUIis3gbXYt1EcCmgeRGlBM+hqxi7mht/FJSVkUZZzt/peJ+zuKmNcSaOHLCTK5CyBTg6t4I9KcfOd5e5PqSo1KRCPvxF/oR22AUlgI//tqc5ZRLgqO6jmJTdv5K7pX6xubGq4dpbNcBcs0IArnQfmieU25ZaDmPIKk2kEiQ0fWcg/xdx7Qa901Gnc8XoHYd4rX/+QKuPXP++Pq43ku9XvnMG53+Frm7VwzTjeiaLjmABM2ZtVR3SOMFJGSSi6zhtLRN5DgKlj65QhrTB1P1633/TznfyNXAD05dkdNeAQ6/rLTQxN5IQd/5n0tjhkhqb3JmLYmTwf8GQoYBOW8AOa+TmOn3DAmmoq3kUhQrfQ98kSp975kJVOwnYVGXB1TIShUE9KWYqEP/lMbUOqD3Y3Ru+kCyPMVMojUcmNNc6fsBoN9TFCO19yGyXEXdQK6+umPSXGF/Aow9geOynnU6fyDtZeCn+52u0yoqtAnZYzVgHnDsLaBB5lYKH0NzlP4AhAynWCpDGPDzE8CJZRQMrwsAev8V6PsEPIrdAez6VVmhOCyYrDLnw5kiWePTKNq3vIoan9psQEQo9RBrNFNsUn2j1OwUKoorqaiWmp36elPvrrNlJDyC/Ztji2T0TiTBIycukopZNpqlsQAjiTB5gLhGA/SIpoaocmIjSLwIoMKJUWEkwI439wcLDaK4JquN9q2po3grscFvXj6JMS89uSADjJSdd6aYSiDERbp2n7fbyVVkl117zta6NMjvZUgguYLlz7wo1Gvr6d71imOLH9Ot6bqCyRlLNfBZoHLMO5IEU5VTdkj8dODUCuVYzwfopS8nbipwepVyzNiLBJM8EBwgF5q9gUSB3MXXWERWH3kwuqUasFZTELSI3UKCwy8R+E8gufXkRF4HnHVyuV21jdaj9ZFciABgriB3mY8s4NbWSFl/hihgtVNsjD6oOejbqZ5U4p3AiQ+VYz3vB469rRyLuQnIX6Mc84kFJju9oDsKDU1kjZHj600F/MwWqngstxg1mgG9VplJZLaQq0teANBmIzEmVlMGyC3iPKcgUCC4Xq90bYlz5hdTZW85ESGuWXKmAGUXeIAEl7cXudLkhJukJqsiveLpRQooX5R2O4kkeR8zcc3O16bJTNdAfm3E1HX5nDY7XR+HA9iTrVyHnw8VOmQuHU0WYPcB5ZiPgQplMgwDoKvGMLlDH0BuoPJd0ljkta6CydgLiLtVKZjUOgpmPrFMWYk79kagOhuolr1cI8eRYDq6VBoL6AfsuJ5icbR+lOqfmEmFJk+tpBikng8AGW8Ah1+hekr2Jgq4vnIdFb78cTrFXvkmAiGXAUX/k+aPGEsB53LBpA8GshcARZtp/X2eBAa+QIUmj7wKOKyU5TZyFVD4JbD7PsBaRdYq0zCgfLfyOhmdBJNvPBA/TSmYVNrm6/QRiUORmIlAwyllll3kuFZuVAfA24t+5JYZHwO5K6w2yjLr15PEx8FjZCHSyFpEHM4jl55KRdlsSbFkITp1loRFkD8FglfVklXIZqfjpfYEoKKikg1NNH9KAm1/KI+sTiqVe9dWRAhZc+xOFgLRLScfMzgJJoOeMtjkgkkFWt/R5rIZYcFk5SkqowB0h4NcNqm9SBRlHychpNcBfZPofA4eI+uEWk3XIDKEAuLF40SGkCgrKCHrm8NBAePO2VrB7Aq65Bj0rn0HORifYRR0H8EEAJevAvb/lTLbIsYCg1+hGkUOK6Wy+/cBBr8K+KdQFtjRJZTR1n8OYMoA/rSB3FmWSqDnfUD8rZTiv/9REk2R1wGDFqDFHSVmyakNkiXKVkcB2Q6LlDkn2IGjiynj7Zcnpf1LtgOHXwVOLCexBFC5Au8osu6IWXLpr5PlylIhZckFDAByF9I+DiuQ/SLg31vptivYQMc9OI/EEkDxSlHXUy2o8r1A+ChyIWp8yCp1pjlLLu0VILAfZQXmNGfJpT4DmIYAozZR419zGdDjbqDHHUD4n4B9f6UaT5HXkDuvo6JSkXg5nk8vEFMAiRGxMWmThdxmXnqpzpHdTuLCapMakwoCWYN8fahJrkhlDWXIFRRLLpBGMx1PpZJeWjY7ZbPFhEuB44JAgiMhitakUlEWXYAf0L8XlS6wWMliFBlKgeDHz5BwCfQn15hYfqCsioRNUixZ0HrFk8tMraJmqnIrVkkFuWWOnZaawtY2kBCUFzy0WOk6BBilzDmHg/YDlKLsbBm58MQYLID2iQgBLBagwUwWrvhzNJlmLh6pPeleiFlyiR2oSDDDdAC6j0uuPfnflZSNJqfHPUDe+8oxd26/mMlA/nrlmCEcmHSKKoAbk6UClIJAgscQBvz6d+D4O07zzwCOLVWOJUxXxnABQEAqcL2Tm7I7Y7cD3zt149ZpSTA5Z4iFBbt2io8MBc6WKsdCg1x7eRn0ZG1sbGp72z49yBqjgtI1ZrGSaJMXobTbSZD5GKSMOLGfmJde6TZsbKJtSiooBklOhImatMoJNJJgkv8ZUalIwFU5uY3duQ0jQ1y73JsCyHLFMAzTgeiaWXIdjegblJ9944Eed0HR102lJauVPNYIoIy/sFHKMdNQyuj7bxqwLho4+xWVMPhvGrApFVgf7drEV+MD9JpBliA5CdPJCqZY74QLPMEujkbjmvVlCqQXuxxvA1l25KhUVI3bOc0+NMi1H5y7Of18KMtOjlpNwuOn3ygD7nAeCZZTheQ23JsN7DtE4qm8ioKo9x2i72rqSBTtOdg89itl19kdVHfpp4PSds5EhFK/McWaA2jdbY3pdSS4nIkMdW0K7LwvwzBMB6B7ueTai96PkQvu9GeUJTdwPhDQGxi5sjlLTg/0nU01nUZ/Bfw2h4LBE+8gd1bkOHLVVewDIq4CirdLLjprFRWUjJ4gVed2WCkGa9ACOqY+EEh9FgjqD4z6L3DwBQoa7/kAxT759wF+mU0Wq+gbgNQ57XOdOjJ9epDFpa65AGRitGStKasi601iNImm3olSllxcJIme/skkaGw2srSEBpM7Ki+fLD1B/lLVa7FsgK83jRm8qODk2VJKBTf6uneXyd1+dQ2UrSePa7LaKP5IHp/lEMgNY7crm/CWVZHbr7KGxFhMeLPbL5nijcxmOofocCCiubt9TR3g70uuHK2GXHGlFYCXF52HrzfFN+U3Z8nFRNC5DGie02IlC11k6CW6iQzDML8fdsl1FswVJGiCBpFVySrLflKpKX6qcKNyn7E7qGUK03GxWptbT/hKViiHg2J5vA3u07hPFlAAuRx3bj93WXI6bXPQt1MRwtay5KLciBezhX6MvtxtnmGYbgNbmDoDp1YDu+6ioGt9ELUkKdwkfR89iTLR5ILJO9q1OCTTsSgqo6BuQSAhk9qLBMhvuWQNUqko887Z4mIKUgom0e1XXqXsNh8aTPkD8krjIYGugsnHQFYvuWBSq13dgwAd92QB/W7QAwNS3PehYxiG6WK0i2A6cOAA7r//fuzcubPtjbs7Djuw7yESSwBl6DWVAn2fBIp3UAHM/nOpbIK9CTj5CWXJpT4HaPTnnptpPxwOcoWJBl6rjTLcVCopG08QKHMuzKSMgRLT+QuKafuYcHL7DWh2+4lZcuEmEj0nC6nzfKCRMs7UKtqvrJKsWAlRJKL6JUmuxNgIZb0ogKxKolgCKFvw9FkqfcAwDNPF8ahgEgQBn332GRYsWODJw3ZuHE3Uv01OYwHQ53EKBg9KI7EEUOXuXg94fInM78DuUFZVBkiQOLu47HZy29WYScCI7VSC/SlOSAWKhQIoRig+igST2ExXq6U4qroGcqGJwisqlLb3NkhZdqZAsnSp1cqA9LoGEnHOgesA1WBiGIbpBnhUMC1atAg7duzAjBkzsHTp0rZ3YKgqePQEqhMlYhpGWXL2RgoYH74ciJ/afmtkLhydliw+8tT70GASTKdkwdtGH+DnI5KrLS6S6i4dyCWrEUDz9O9F1qjCZnFt0FPT3eo6KhYpCCSE+iVRXNSBXMmSlRBNBTZ/zZHKJJgCqDhn7kmplIBBT+JKLpLcFdFkGIbpgnhUME2bNg0PP/wwdu/e3eo2NTU1qKlRdjUvKiq61Evr2Iz4CMieT1ly4VdRIUvRReewUOFMFkydj75J5NISs+Riwmlcq6G4Ix9vKuAor8p9+ixZempkMUhVtSSUCmWWyCaLlCUnuv0cDsrK8/aSxBLQLNAEZU2p8mpy+cnrLjVZpHiqJjOJJedecAzDMF0Ujwqm8PDwNrf58MMP8eabb3pgNZ0InT8wSFah+7BTlWxzKcU6qTVgOhE6LVXZdiYmXBJPB3Jdv2+yuI41unGNiUUsncecXWuCcP5zOhzcCJdhmG5Jh8uSu/POOzFlyhTFWFFREaZPn95OK+qAJGYCOQulz/F/ZrHUVQk3Kesj+XqT+6yoTLIcadTN7VNqlO6y8BCpard8Pm8vpYXK6EtzFpdLc2o1VCeprEqZeedcmJNhGKab0OEEk7+/P/z9uenjOUl7BfBNAEp2UDxT77+294qYS0W4ieKaSisphig2gmKQBqVQhW6xwa+3gcbOFDUXgDRRCYFgf3Lt1TZnyUWH0T4ajZQlFxtB1q6ByTSnRk0FKb29gEG9gfwislRFhHBDVoZhui0dTjAx54FaC/R+hH6Yrk9YsGtwtb+flB0n4qUHesYpx9RqID7SdU6x7ICcACP9yPH2ogKWDMMw3RzuJccwDMMwDNMG7SKYhg0bhr1797bHoRmGYRiGYS4YtjAxDMMwDMO0AQsmhmEYhmGYNmDBxDAMwzAM0wacJddZqKimSsyBRtfsKIZhGIZhLiksmDoDJwqoJYZISgK3pGAYhmEYD8IuuY6OwwHkFyvH5OKJYRiGYZhLDluYOgWC61BFNXWiN/pSRWeGYRiGYS4ZLJg6Omo1EBWmtDL5egO/HZU+x0UCidGeXxvDMAzDdBNYMHUGkmIp2Lu2AQgyAofylN8XFAMJUdQjjGEYhmGYiw4Lpj+C3Q6cLQPMFiA0GPD3pW7vpZVATR315QoNom2ra6nzu8GLArY1aqDRTF3n1Soa89K3fixTIP0AboTRBQgli5WOabMDESZqzOpwUKf6+ibAFCA1WC2vAiprAD8fqQkswzAMw3RDWDD9EQ7kAjX19Ht+MTAgmWKLRPdZQQkQH0WCI/uYtF9ZJWW67TtEogugLvEZ/ahrfFvERQJHT8k+R5yfmLE7gJ+PAE1maX2D+wCnCknkAWSt6p0I2GzAsTPSvjV1QHJC28dgGIZhmC4IC6bfS229JJZECkuAihrXMT8f5VhVLYkqUSwBZPkpqwQiQ9s+dlQozVldS0Hfgca29wFIzIliCSDLUkGxJJZECkpIMMkpKifXoEZzfsdiGIZhmC5E1xVMDY3kLlOpSIR4e13c+dVuKjKo1fTjcLiOOaNxM2Z3AHn5tH9kKAV32+zA2VJy34UEAsEB5PZrbAIamgCtBgjwo/OsqgVKKwC9jgLFdVrarrCU5vc2uFmzhvYVZJl4apXrmlUqz7nkzBYSmnYHuSqdBSfDMAzDeJiuKZgazcD+w/TCBUg4DelHQuJi4etN8UmidUajBmIjqAr3sdPSdglRgI+BYoFEIRURAsREACUVQJOFxnwM5Bqz2aU1p/cFck9S+QCAhFOfHkB9o1SLqaiMKoCbApWZc2WVQL+edB3EOdVqEh91DfRZrwNiwykESnQjqlTk8rM7gEPHpfniItwLv4uNzU5rtljpc2EpuQ1ZNDEMwzDtSNcUTCXlklgCyL1UVklWl4tJnx5ARA1ZREyBJED8fMjiU1NP//p607ZDU8klZvAiF5pKRTFLZVVk0bHYlEJLdJeJYknkbCkJJsVYmSQwROoaSQTZZG4/h4NEXnwkjYcEAlotudpCAinoO9if1ggAQ1LJauXn7bl2LBVVynMRBApIZ8HEMAzDtCNdUzBp3Z2WilqMNJlJNIQE0cu4sJREib8vxQap1ZQdVlJBWWsx4SSE6hok15YYQ2S1kaAwW2gbUyCJkqpaEkyCQJYjlYpinqpqAYOF9tVpyaVWXUvfu3MZugsA12rox2pzHTuf/QXQOux2ctEF+JF4qqql9WjUJJgEga5LVS0JTl8f+q6yhgSMTkvXxktP+xWU0LlHhVJclc1Ggq3RTNc6tPl6ny2jOf19SMCq1SQkS5pdiaLAdD5nhmEYhmlHuqZgKqtyHcs7Ddib43RKKigTrLaBrDgAxf40NFKMULbMFVVeBaT2pOwy0aVWUk7usoPHSCyIc/ZLopf/2TJpziYzCaQjJ6Q5K6vp+L8cARzNa9I4ucu8DUB0OImZghJpm7hIEiGHZbWYEqPJAlRWLQVrh5tI0JRVSXP6GID8IsnqVFwBpPUmIVlZI52HzUbbnCxsPg/QHJGhlBnYcp0rgYEpwM8yt19xueRKFIPiSyooK7ChCThTJF2b+kYSUwdlGYRqN3FSFVWUbcgwDMMw7UTXFExVNa5jdqf2ImLsj2KsnKxFchqayFIiD+S2N/d3E8WSfE7nLLmiMld3Um1D85yyNdkdVBfJO5qOFRxA1peecUCYCWhqAoICyLJj9CWLmNgaxac5mHtYKh3fS0c1oAASRKIYstmVwk0QKLi60nnN5a5ZcqWVcKn31GRxdfsJAo05ZxCeLaMAdDnFFYDVrhxzON0nAKhpcB1jGIZhGA/SNQWTCm7brynQaelH/rLXaQG9m+KR7gpKuhvT6WgOeQyOeJzz2d8hkDXGIdA+AUaaq7SCrEoOgQLGHQ4SMFW1ZMGKiZDcZaUVdA5eXoBBT7FMJRU0v7+v6zH1OrLqyIWKTktuwiaZeNRoAP15noeXzjXzTq8FbFpXV6K7OZ3hepkMwzBMO9M1BVOfHq7tQ8KCgJLmjDatllw8jU20nSDQC75HDFlsKqol0RMVRq6xsiqKQwJom+hwwGwlCw3QnHEWQQHdOSeVcxq8gMpayWoTGyHNKVq5/H2BkwWScCmrpOywnBMkegByDzoEcmWJx62oJktXSKDynCurgdRewK85knWstILWV1VLn70N5LbTaMgtB9DvCVFk8Tp4TNq3RzTFaJVVSVa4sGDav6JamtPXm8YESJl8Wg1db7OF3J2ikOoRQ6KwXHa9TQH0WU6veNd7zDAMwzAeRCUIQlu2mIvGkSNHMGfOHOTk5CA2Nhbz5s3DgAED2twvPz8fV111Fb7++mvExMSc38HMZmD/ERItaSlkcalvJItMoFEqwGi2kBAy+krWEntzELSXXnKnCQIFaAP0khdrEtU10Bzu5vT3k0oZiHMavKTAZkGgMZUKqG9QVtYGgMgQKR5KJMCPzkNuGVOpKLvNWWhEhUqB6iKJ0bRWm53+FUsFNDTXdQr0k4LmrVZy+/n6SEHpDgeJP32za1CkupbEXKDs2tQ3kmUs0CgFblusVDXcz5csYACJs6oa5fXed4gEZlpv91Y/hmEYhvEgHrMwWSwWzJw5E3fccQc+/vhjfPXVV8jKysK2bdvg53cJUta9vIDhA5Vjvt6uWVheele3kkYj9W0TUamAQH/X4/j5uMYoXcicYt82m1MsD0DiysW1pSe3lnx7vda9a8xdoUq9zn2JAB+DFAslotNRULYctZqsQM6IMVNy3F1vvZs5NWrXa5Pe13U+hmEYhmknPFCJkPjpp59gtVpx1113QafT4frrr0fPnj2xadMmTy2hY2MKUAoRf18gOoxqJonodUBCJNVNEi1DKhV9jo2QLDYAucWiQpVtUwKN5EZjGIZhGOaC8JiF6dixY0hKSlKM9ejRA7m5uYqxmpoa1NQos7aKioou+fraHZWKYo7qGsjtZfSlsfgoKhHQaCZ3nFoN+HgDwwdQtp2vt+T2G5JK2WleOsm6NDBFGXvFMAzDMMwF4zHB1NDQAINB6fLx9vZGY6OyavWHH36IN99801PL6ni4q2ht8JKqb4totZI7T0Stdt+Il4USwzAMw/whPCaYfHx8YDabFWONjY3w8VEKhDvvvBNTpkxRjBUVFWH69OmXfI0MwzAMwzDu8JhgSkpKwrJlyxRjeXl5mDx5smLM398f/v5ugqsZhmEYhmHaCY8FfQ8bNgyCIGDZsmWwWq3YuHEjcnJycPXVV3tqCQzDMAzDML8LjwkmvV6Pd955B1u2bMHQoUPx1ltvYfHixQgO5qwthmEYhmE6Nh6t9J2cnIxPP/3Uk4dkGIZhGIb5w3jMwsQwDMMwDNNZ6RS95Ox2qmrdLeoxMQzDMB2SiIgIaLWd4rXJXAI6xZ0vLaV+aFxagGEYhmkvLqifKdPl8Gjz3d9LU1MTDh48iNDQUGjEBrdMS32qFStWICIior2Xw3RQ+Dlhzhd+Vs4NW5i6N53izhsMBmRkZLT3MjosERER/L8epk34OWHOF35WGMYVDvpmGIZhGIZpAxZMDMMwDMMwbcCCiWEYhmEYpg1YMHVi/P398eCDD3LvPeac8HPCnC/8rDBM63SKLDmGYRiGYZj2hC1MDMMwDMMwbcCCqZPQ1NSEsrKy9l4GwzAMw3RLWDB1Em6//Xb88ssv7b0MphORlpaGnJyc371/fn4+UlJSUFNTcxFXxVwq3nrrLTz66KO/a9+//OUvWLFiRZvbffHFF5g2bdrvOgbDdHY4hqmTMGbMGDz99NMYO3Zsey+F6Sbk5+fjqquuwp49ezgImGGYbg9bmDyMw+HA/PnzMWLECAwfPhxZWVk4ffo0AGD16tUYN24chgwZgqysLJw5cwYAMGvWLBQWFuLRRx/FO++8AwD46KOPMHbsWGRkZCAzMxNHjhxpc36LxYIXX3wR11xzDQYNGoSrr74aGzdubIerwDz22GOYN29ey2e73Y4RI0Zg9+7drT4H+fn5SEtLwzPPPIOMjAysXLkSv/76K2666SZkZGTg2muvxbvvvtsyZ0pKCg4fPgwAyMvLw913343Bgwdj9OjR+OSTT1q2a+1ZcubHH3/ETTfdhMGDB2PChAnYvHlzy3djxozBc889h8suuwxPPPHERb1WjJLWnp3MzEzMnDkTAPDGG2/gvvvuw4QJEzBy5EhUVFRg7969mDhxIjIyMjBr1izMmjULb7zxBgAgMzMTy5Yta/n9tddew5QpUzB48GD8+c9/xvHjxwEAa9euxaRJk1qOvWbNGowbNw5paWm47bbbkJubCwA4e/YsZs2ahVGjRmHAgAG45ZZbWn2uGKbTIDAeZfPmzcK4ceOEqqoqwWKxCLNnzxaefvppYcuWLcLIkSOFgwcPCmazWXjrrbeEcePGCVarVRAEQRg9erTwv//9TxAEQVi1apUwcuRIITs7W7BYLMK7774rjBgxQqiurm51fkEQhKVLlwpTp04VqqqqBLvdLixfvlwYPHhwyzEYz/Hdd98JI0eOFGw2myAIgrBjxw5h9OjRwubNm1t9Ds6cOSMkJycLr776qmA2m4X6+nrhhhtuEFasWCEIgiAcOXJESEtLE06fPi0IgiAkJycLhw4dEsxmszB69GjhlVdeEcxms3D48GEhPT1d2Ldv3zmfJfF41dXVQm5urpCamips3LhRsFqtwo8//igMGjRI2Lt3ryAI9HxmZmYKDQ0NQk1NTftc1G5Ca8/OwoULhRkzZgiCIAiLFi0SUlNThcOHDws1NTVCZWWlkJGRIaxevVqwWq3C+vXrheTkZGHRokWCIAjC7bffLnzwwQctv1955ZVCXl6eUFtbK9xzzz3Cww8/LAiCIKxZs0aYOHFiyzrS0tKEPXv2CHa7XXjzzTeFa665RhAEQbj77ruFF154QbBYLEJjY6Pw6KOPCvfee68HrxLDXHzYwuRhjEYjSkpK8Pnnn6OoqAjz5s3DvHnzsHr1atxxxx3o168f9Ho97rvvPtTV1WH37t0uc6xfvx533HEH+vbtC51Oh6ysLBiNRmzfvr3V+QFg2rRpWLJkCfz9/VFSUgJvb2/U1dWhsbHR05eh2zNixAio1eqW+7thwwZMmDAB//nPf9p8DiZMmAC9Xg8fHx/4+flh+/bt+P7775GQkIC9e/ciNjZWcaz9+/ejpqYGDz/8MPR6PXr37o0VK1agR48e53yW5GzcuBHDhg3D+PHjodVqMXz4cEyYMAHr1q1r2WbcuHHw9vaG0Wi8dBeOafXZUalUiu2Sk5PRu3fvlvsZERGBW265BVqtFpMmTUJaWlqrx5g4cSISExPh5+eHcePGtVip5WzYsAGTJk1CRkYG1Go17r33XvzrX/+Cw+HAvHnz8NhjjwEACgsLERAQgJKSkot4FRjG87Bg8jAjRozAc889h02bNmHcuHG47rrr8M0336CwsBBLlixBRkYGMjIyMGTIENTW1qKwsNBljvLyckRHRyvGoqOjUVRU1Or8AFBXV4fZs2fjsssuw8yZM7Fz504AgMBhbB5HrVZj4sSJ2LBhAxobG7F161ZMnjz5vJ6DsLCwlt9ff/11mEwmzJ49G0OGDMFTTz2Furo6xbHKy8sRGhqq6LKekpKCwMDAcz5LcioqKhAVFaUYi4mJwdmzZ92ui7l0tPbsOCO/H8XFxQgPD1d8HxkZ2eoxTCZTy+9arRZ2u91lm7KyMsUcer0eAwcOhFqtxsmTJzF9+nRceeWVeO6553Dq1Cn+O8N0elgweZgzZ86gb9++WLlyJXbv3o0bb7wRjzzyCEJDQzF79mzs3bu35Wft2rW44YYbXOaIiopCQUGBYiw/Px8mk6nV+a1WK+bMmYOYmBj88MMPWLt2LbKysjx12owbpkyZgq1bt+Krr75CcnIyEhMTERYW1uZzIFoSbDYb8vLy8Pzzz+P777/HypUr8dtvv2H58uWK44SHh6OsrEzx0lu7di127dp1zmdJTmRkpMt2Z86cQUhIiMu6mEuPu2fHGfn9iIiIcBHBzp8vlPDwcBQXF7d8tlqtWLBgAWprazFz5kxkZWVh586d+Pjjj3HFFVf8oWMxTEeABZOH2bVrFx588EEUFhbCz88PAQEBMBqNmDJlCj744AMcP34cgiC0mLvFP0g6nQ61tbUAgMmTJ2P58uU4fPgwrFYr3nvvPVRUVGDUqFGtzq/ValFbWwsvLy+o1WqUlJTg1VdfBUB/6BjPk5SUhPj4eLz++ustgbSTJ08+53MgR6PR4Omnn8ayZctgt9sREREBtVqNgIAAxXYDBgxAUFAQlixZAqvVipycHCxYsAA6ne6cz5Kc8ePHY+/evdi0aRPsdjt27tzZ4gpiPI+7Z+dcXHXVVSgtLcVnn30Gm82GzZs3Y//+/X9oDRMmTMAXX3yBAwcOwG634/3338e2bdugUqlgNpthMBgAANnZ2Vi+fDn/nWE6Pdq2N2EuJjfddBNOnDiBW2+9FfX19UhMTMSiRYuQnp6OmpoazJw5EyUlJYiLi8PixYuRkJAAALjxxhsxd+5cnDhxAo8++igqKyvx0EMPoaysDL1798Z7770Hk8nU6vwqlQp///vf8cwzz2DlypUICgrCrbfeiuzsbOTm5mL48OHte2G6KVOmTMFLL72E8ePHAyDB1NpzkJ+fr9hXpVJh4cKFmDdvHpYuXQq9Xo8bbrgBU6dOVWyn1+uxdOlSvPjiixgxYgSMRiMef/xxpKenIz09vdVnSX68+Ph4LFmyBK+++ir+/ve/Izw8HHPnzsXll19+6S8S4xbnZ+dc+Pn5YdGiRZg7dy5eeukljBw5Ev3794dOp/vdxx8+fDieeuopPPHEEygtLUXfvn2xePFi+Pn54fnnn8fcuXPxxBNPIDo6GlOnTsXSpUtRX18PX1/f331MhmlPuA4TwzBMF6eiogKFhYVITU1tGbvllltw8803uwhshmHcwy45hmGYLo7FYkFmZiays7MBANu3b8eRI0dw2WWXtfPKGKbzwBYmhmGYbsCGDRvw5ptvoqSkBNHR0Xj44Ydx9dVXt/eyGKbTwIKJYRiGYRimDdglxzAMwzAM0wYsmBiGYRiGYdqABRPDMAzDMEwbsGBimG7O7Nmz8dBDD7X3MhiGYTo0HPTNMN2c2tpaCIIAf3//9l4KwzBMh4UFE8MwDMMwTBuwS45hOhCrVq3C1VdfjdTUVFx77bVYv349AGDMmDH44IMPMHXqVAwYMABTp05tKUIIUD/AV155BSNHjkR6ejqysrKQl5fX8n1TUxPmz5/f8v2MGTNa+tM5u+R27NiBSZMmYcCAAbj++uuxZs2alu/q6urw2GOPYdiwYRg0aBCysrJw8uTJS3tRGIZhOgAsmBimg5CdnY0XXngBs2fPxpYtW5CZmYnZs2e3CJKFCxdi4sSJWLduHRITE3HPPfegqqoKALBo0SLs2LEDr732GlavXo3ExERkZma2NGyeM2cOvv76a7z88stYvXo1LBYLHnnkEZc1HD16FA899BCmTZuGL7/8ErNmzcKCBQuwceNGAMDrr7+O/Px8LF++HGvXroVarcbTTz/ticvDMAzTrnDzXYbpIBQWFkKtViM6OhrR0dGYPn06EhISEBwcDAAYP348pk+fDgB4/vnnMXr0aGzatAk33ngjli1bhmXLliE9PR0A8Mwzz+C7777D559/jkmTJuHLL7/EwoULMWLECADAP/7xD6xatQoWi0WxhnfffRcTJkzAbbfdBgCIi4vD6dOn8d577+H6669HQUEBfH19ERMTA19fX7z44osoKCjw1CViGIZpN1gwMUwH4YorrsDgwYMxadIk9OrVC6NGjcKNN97YEoydkZHRsq1er0dKSgqOHj2K06dPw2KxICsrCyqVqmUbs9mMEydO4MSJE7DZbOjfv3/Ld7Gxsfjb3/7msoajR48iNze3xaIEADabDVot/am4//77cf/992P48OEYMmQIxo4di0mTJl30a8EwDNPRYMHEMB0Eg8GADz74APv378e2bduwfft2LF++HG+//TYAQKPRKLZ3OBzQaDSw2+0AgPfffx8mk0mxjZ+fH0pLSwFAIaZaw263IzMzE9OmTXP7/aBBg/D1119j27Zt+Pbbb/Haa6/hk08+wWeffQYvL68LPmeGYZjOAscwMUwHYffu3Vi6dCnS09Pxt7/9DV9++SX69u2LLVu2AAAOHTrUsq3ZbEZOTg5SUlIQFxcHrVaLiooKxMfHIz4+HnFxcXjjjTdw4MABxMTEQKPRKPYvKCjA0KFDWwK/RZKSknDq1KmWeeLj4/HTTz/hk08+AQC8/fbbOHDgACZMmICXX34Zq1atQm5uLnJycjxwhRiGYdoPFkwM00Hw9vbG4sWLsXr1ahQUFOC7775DXl5eiytt1apV2LBhA44fP45nn30WWq0W1113HXx9fXHbbbdh3rx52LFjB06dOoXnn38eX3/9NZKSkuDn54ebb74ZL730Evbs2YNjx45hzpw5SElJQXh4uGIN99xzD7Zv34633noLp06dwpYtWzB//vwWy1VRURFefPFF7N+/H2fOnMG6devg5+eHhIQET18uhmEYj8J1mBimA7F+/Xq8/fbbyM/Ph8lkwtSpUzFjxgyMGTMGY8aMwf79+3H8+HEMGjQIzz33HJKSkgAAFosF//73v7FhwwbU1dWhd+/eePzxx1vinhoaGvDPf/4TW7Zsgd1ux8iRI/Hss88iJCQEs2fPRkNDAxYtWgQA2Lp1KxYtWoS8vDyEhobi1ltvxQMPPACVSoWGhgbMnz8f33zzDWpra9GnTx88+eSTLcHmDMMwXRUWTAzTCRgzZgzuuece3H777e29FIZhmG4Ju+QYhmEYhmHagAUTwzAMwzBMG7BLjmEYhmEYpg3YwsQwDMMwDNMGLJgYhmEYhmHagAUTwzAMwzBMG7BgYhiGYRiGaQMWTAzDMAzDMG3AgolhGIZhGKYN/j/VJbdw3tibwgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# f, ax = plt.subplots(1, figsize=(3,3))\n", - "\n", - "ax5 = sns.catplot(data=iris_tidy, \n", - " kind='swarm', \n", - " x='species', y='cm', hue='metric',\n", - " size=4.5,\n", - " aspect=1.5,\n", - " #ci='sd',\n", - " palette=['red','grey','orange','pink'],\n", - " \n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Scatterplot and linear regression line\n", - "\n", - "Next to the categorical plot, the scatter plot is a very useful visualization tool for biological experiments. Often we want to know how one variable is correlated with another, we can then use a scatterplot to easily take a quick look." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Draw a scatteplot of petal width versus length with a simple linear regression line\n", - "ax6 = sns.regplot(data=iris, \n", - " ci=95,\n", - " x=\"sepal_width\", \n", - " y=\"petal_length\")\n", - "\n", - "\n", - "# ax6.set(xlabel='Sepal width (cm)', ylabel='Sepal length (cm)')\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "for s in iris.species.unique():\n", - " ax7 = sns.regplot(data=iris.loc[iris.species == s], \n", - " ci=95,\n", - " x=\"sepal_width\", \n", - " y=\"petal_length\", label = s)\n", - " ax7.legend()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Seaborn allows you to do that more systematically with pairplot\n", - "\n", - "This is like doing a scatter plot for each pair of the variables in one go. On the diagonal, distributions of values within each species group are plotted for each variable. \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = sns.pairplot(iris, hue=\"species\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dimension Reduction with Principle Component Analysis\n", - "We have 4 dimensions we measured the irises on, what if we want a more concise way of describing the data? We can try to find 2 dimensions along which the data has the most variance. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn import decomposition\n", - "from sklearn import datasets\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "iris_pca = datasets.load_iris()\n", - "X = iris_pca.data\n", - "y = iris_pca.target\n", - "\n", - "pca = decomposition.PCA(n_components=2)\n", - "pca.fit(X)\n", - "X = pca.transform(X)\n", - "\n", - "\n", - "f, ax8 = plt.subplots(1, figsize = (5, 5))\n", - "sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=[iris_pca.target_names[i] for i in y], alpha = 0.7)\n", - "ax8.set_xlabel('PC1')\n", - "ax8.set_ylabel('PC2')\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Towards Publication-Ready Plots\n", - "Try to achieve as much of the final figure requirements as possible via code" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "all_metrics = iris_tidy.metric.unique()\n", - "\n", - "all_metrics\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "y_titles = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']\n", - "letters = ['A', 'B', 'C', 'D']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "f, ax = plt.subplots(2, 2, figsize=(10, 10))\n", - "\n", - "all_axes = ax.flatten()\n", - "\n", - "for i, metric in enumerate(all_metrics):\n", - " \n", - " current_axes = all_axes[i]\n", - " \n", - " sns.swarmplot(data=iris, size = 3.5, \n", - " x='species', y=metric, hue = 'species',\n", - " ax=current_axes)\n", - "\n", - " current_axes.set(ylabel=y_titles[i])\n", - "\n", - " \n", - " current_axes.set_ylim(0, 10)\n", - " current_axes.get_ylim \n", - " current_axes.get_legend().remove()\n", - " current_axes.text(-1, 10.5, letters[i], fontsize = 25, fontweight = 'semibold')\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "f.savefig(\"myplot.svg\")\n", - "f.savefig(\"myplot.png\", dpi = 300)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb b/nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb new file mode 100644 index 0000000..20659c2 --- /dev/null +++ b/nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb @@ -0,0 +1,1659 @@ +{ + "cells": [ + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "---\n", + "output-file: data_analysis_with_jupyter_and_python.html\n", + "title: 03. Data Analysis with Jupyter and Python\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", + "Xu](https://xusangyu.com/), and [Adam\n", + "Claridge-Chang](http://www.claridgechang.net/)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can already interact with the data files in your file directory with using the [pandas.read_csv function](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "exploration_times = pd.read_csv(\"exploration_times.csv\") # have pandas read the csv file \"exploration_times.csv\" and store the data into the variable 'exploration_times'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
WTCCR5 KO
03.4785494.983642
12.2341003.502187
21.7244682.469726
31.7230562.210396
40.9658812.508039
50.7262491.465072
60.4905571.202951
70.2179631.474133
80.4799530.976419
9-0.0533500.752514
100.5050030.742008
110.2561781.004063
\n", + "
" + ], + "text/plain": [ + " WT CCR5 KO\n", + "0 3.478549 4.983642\n", + "1 2.234100 3.502187\n", + "2 1.724468 2.469726\n", + "3 1.723056 2.210396\n", + "4 0.965881 2.508039\n", + "5 0.726249 1.465072\n", + "6 0.490557 1.202951\n", + "7 0.217963 1.474133\n", + "8 0.479953 0.976419\n", + "9 -0.053350 0.752514\n", + "10 0.505003 0.742008\n", + "11 0.256178 1.004063" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exploration_times # display the data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading data\n", + "\n", + "Let's load in an example dataset. We shall load the [iris flower dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set).\n", + "\n", + ">The Iris flower data set or Fisher's Iris data set is a multivariate data set introduced by the British statistician and biologist [Ronald Fisher](https://en.wikipedia.org/wiki/Ronald_Fisher) in 1936. It is sometimes called Anderson's Iris data set because [Edgar Anderson](https://en.wikipedia.org/wiki/Edgar_Anderson) collected the data to quantify the morphologic variation of Iris flowers of three related species. Two of the three species were collected in the Gaspé Peninsula \"all from the same pasture, and picked on the same day and measured at the same time by the same person with the same apparatus\".\n", + "\n", + "\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + ">The data set consists of 50 samples from each of three species of Iris (*iris setosa*, *iris virginica* and *iris versicolor*). Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.\n", + "\n", + "
\n", + "\"versicolor\"\n", + "
An iris versicolor. (Photo by Danielle Langlois. Marking by Vijay Kotu and Bala Deshpande. Licensed under Creative Commons)
\n", + "
\n", + "
\n", + "\"setosa\"\n", + "
An iris setosa. (Photo by Денис Анисимов. Public Domain)
\n", + "
\n", + "
\n", + "\"virginica\"\n", + "
An iris virginica. (Photo by Eric Hunt. Licensed under Creative Commons)
\n", + "
\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Read iris data from the sheet with pandas\n", + "iris = pd.read_csv(\"https://www.bitly.com/dukenusda\")\n", + "\n", + "## Or, since we have a copy of the file in the downloaded directory:\n", + "# iris = pd.read_csv('iris.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You have created a new object known as a pandas `DataFrame`, with the contents of the CSV. Think of it as a spreadsheet, but with a lot more useful features for data analysis.\n", + "It has several methods we can use to handle, analyse, and plot the data.\n", + "\n", + "We can peak at the data using the `.head()` method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris.head() # Gives us the first 5 rows of the dataframe.\n", + "# iris.head(10) # Gives us the first 5 rows of the dataframe.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get a summary of the data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
count150.000000150.000000150.000000150.000000
mean5.8433333.0573333.7580001.199333
std0.8280660.4358661.7652980.762238
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "count 150.000000 150.000000 150.000000 150.000000\n", + "mean 5.843333 3.057333 3.758000 1.199333\n", + "std 0.828066 0.435866 1.765298 0.762238\n", + "min 4.300000 2.000000 1.000000 0.100000\n", + "25% 5.100000 2.800000 1.600000 0.300000\n", + "50% 5.800000 3.000000 4.350000 1.300000\n", + "75% 6.400000 3.300000 5.100000 1.800000\n", + "max 7.900000 4.400000 6.900000 2.500000" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see what is in the `species` column." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['setosa', 'versicolor', 'virginica'], dtype=object)" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris.species.unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot the old-fashioned bar chart" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlLUlEQVR4nO3deVxU9f4/8NcgDIKImpmgKLJcQFNjBEXkuqHkCgqVy0VUJHOhq4mlaC7XBZdcUARxFyj3NUmvlKZcK0HReyVxZ3GBEIxsUJYBOr8//DVfhwHOkDAD8no+HjyY+cyHM2/OMV59zpnz+UgEQRBARERUBT1dF0BERHUfw4KIiEQxLIiISBTDgoiIRDEsiIhIlL6uC6hpRUVFuH79Olq1aoVGjRrpuhwionqhrKwMubm56Ny5Mxo3bqz2+msXFtevX4evr6+uyyAiqpf27NkDZ2dntfbXLixatWoF4MUvbGZmpuNqiIjqh+zsbPj6+ir/hpb32oXFn6eezMzMYGFhoeNqiIjql8pO3/MCNxERiWJYEBGRKIYFERGJYlgQEZEohgUREYliWBARkSiGBRGRBhISEhAUFISEhARdl6ITr919FkREtSEqKgp3795FQUEBevbsqetytI4jCyIiDRQUFKh8b2gYFkREJIphQUREohgWREQkimFBRESitBoWP/74I3x8fNCtWzd4eHhg//79FfbLysqCv78/ZDIZBg4ciPj4eG2WSURE5WgtLH755Rf885//xLRp05CUlIR169Zh/fr1uHDhglrfoKAg2NvbIzExEcuWLcOsWbPw8OFDbZVKRETlaC0sMjMzMXz4cHh4eEBPTw9du3ZFjx49cPXqVZV+6enpuH79OmbMmAGpVApXV1e4u7vj8OHD2iqViLREUVqi6xJeezW1j7V2U56zs7PKUn1Pnz5FUlISRowYodIvNTUV5ubmMDY2VrZZW1sjOTlZbZtyuRxyuVylLTs7u4YrJ6LaItU3wMTdM3VdhkYey3OV3+tLzQAQ5b+xRrajkzu48/PzMW3aNLzzzjsYMGCAymvPnz9XWyzcyMgIRUVFatuJjo5GeHh4rdZKREQ6CIv09HRMnz4dtra2WLt2LfT0VM+EGRsbo7i4WKWtsLBQZaTxpwkTJsDb21ul7c91ZImIqOZoNSwuX76M6dOnY8yYMQgKCoJEIlHrY2Njg6ysLBQVFSlHGGlpabC1tVXra2pqClNT01qvm4ioodPaBe4HDx5gypQpmDFjBmbPnl1hUAAvrk84ODggNDQUCoUCCQkJOHv2LIYPH66tUomIqBythcWePXvw/PlzrF+/HjKZTPm1Zs0anDhxAjKZTNl306ZNSE1NhaurKxYsWICQkBDY2dlpq1QiIipHa6eh5s2bh3nz5lX6upeXl/Kxubk5duzYoY2yiIg0IjHQU/ne0DTM35qIqJqadW0Nw9ZN0Kxra12XohNc/IiISANGFk1hZNFU12XoDEcWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkSidhkZycDFdX10pfv3jxIjp27AiZTKb8ioiI0GKFRET0Mn1tvpkgCDh8+DBWr15dZb8bN25g8ODBCA0N1VJlRERUFa2OLMLCwrBv3z5Mmzatyn4pKSno2LGjlqoiIiIxWh1ZjBkzBjNnzkRiYmKV/VJSUpCXl4d9+/ZBEAQMGTIEs2bNglQqVeknl8shl8tV2rKzs2u8biKihk6rYdG6dWvRPqWlpTAzM4OHhwd8fHyQk5ODmTNnQiKRYM6cOSp9o6OjER4eXlvlEhHR/6fVsNCEvr4+oqOjlc8tLS0xdepUrF27Vi0sJkyYAG9vb5W27Oxs+Pr6aqVWIqKGos6FxePHjxEVFaVy2qmkpASGhoZqfU1NTWFqaqrtEomIGpw6d59F8+bNERsbi8jISJSWliIjIwORkZHw8fHRdWlERA1WnQiLEydOQCaTAQAMDQ2xfft2JCUlwcXFBePGjcPgwYPh7++v4yqJiBquap+GysvLQ3FxMQRBUGlv06aNxttwcXFBUlKS8rmXlxe8vLyUzzt27Igvv/yyuqUREVEt0TgsLl++jE8//RQ5OTkq7YIgQCKR4ObNmzVeHBER1Q0ah8XSpUvRqVMnrF+/nheViYgaGI3D4v79+4iIiED79u1rsx4iIqqDNL7AbW9vj/v379dmLUREVEdVObKIj49XPu7bty/mzZuHyZMno127dmjUqJFK3759+9ZOhUREpHNVhsWUKVPU2lauXKnWxgvcRJpJSEjAwYMHMWrUKPTs2VPX5RBprMqwuHXrlrbqIGoQoqKicPfuXRQUFDAsqF7R+JrF+PHj1WZ4BV7cd8G7q4k0U1BQoPKdqL6ocmSRmJiIe/fuAXhxn8X+/fvRpEkTlT5paWl48OBB7VVIREQ6V2VYNG/eHLt27YIgCBAEAXv37oWe3v8NRiQSCYyNjTF37txaL5SIiHSnyrCwt7fH2bNnAQB+fn4IDw9Hs2bNtFIYERHVHRrflMe5moiIGq4qw8LBwQESiUSjDfGjs6QLf5SWQE/fQNdlvNa4jwkQCYstW7YoH9+7dw/bt29HQEAAunbtCgMDA6SkpGDbtm0ICAio9UKJKqKnb4ArX3yo6zI0VvzbY+X3+lK305wdui6B6oAqw6Jfv37Kxxs3bkRISAgGDhyobHNycoKlpSVWrVrF9SaIiF5jGt9nkZ6eDmtra7V2c3NzZGdn12hRRERUt2gcFo6Ojli/fj3y8/OVbXl5efjiiy/g4uJSK8UREVHdUK31LCZPnoy///3vaNOmDQRBQGZmJmxsbLBt27barJHotWGor6fynai+0Dgs2rdvj5MnT+LHH39U3tVtb28PV1dXtRloiahi79q2QHz67+hrxfuVqH6pMiwKCwthZGSkfAwAPXr0QI8ePZR9FAoFACj7EVHlOrYyRsdWxroug6jaqgyLbt264YcffkDLli0hk8kqvOeCa3ATEb3+qgyL6Oho5fQeMTExWimIiIjqnirD4uXTTYmJiejXrx+6dOlS60UREVHdovEF7mvXrmHnzp0wNjZGnz590KdPH/Tu3RtNmzatzfqIiKgO0Pjzezt27MClS5ewZs0atGjRAlu2bIGrqyvGjRuH7du312aNRESkYxqPLABAKpXCzc0NXbp0Qffu3XHy5EmcOnUKV65cweTJk2urRiIi0jGNw+LUqVNISkpCUlIS7t27h/bt26N79+744osvVK5tEBHR60fjsAgKCoKenh769euH5cuXo2vXrrVZFxER1SEah8WhQ4eQmJiIxMRETJw4ES1atECPHj3QvXt3dO/eHe3atavNOomISIc0DosuXbqgS5cu+PDDD1FWVobr16/j2LFjWLx4MUpLS3lTHhHRa6xaF7hzc3ORkJCg/MrNzUWPHj3Qu3fv2qqPiIjqAI3DYsiQIcjIyEDbtm3Rp08fLFy4ED179kTjxo1rsz4iIqoDNA6LMWPGoE+fPrCysqqy34YNG+Dv76+cJoSIiOo/jW/KmzBhgmhQAC/mkJLL5a9UFBER1S01vgKLIAg1vUkiItIxLtdFRESiGBZERCSKYUFERKIYFkREJIphQUREomo8LKysrGBgYFBln+TkZLi6ulb6elZWFvz9/SGTyTBw4EDEx8fXdJlERFQNVd6UV50/0n379gUAHD16tNI+giDg8OHDWL16dZXbCgoKgqOjI7Zu3YorV64gMDAQX3/9NScrJCLSkSrDYsqUKRptRCKRaDSRYFhYGOLj4zFt2jRERkZW2Cc9PR3Xr1/Hrl27IJVK4erqCnd3dxw+fBizZs3SqB4iIqpZVYbFrVu3avTNxowZg5kzZyIxMbHSPqmpqTA3N4exsbGyzdraGsnJyWp95XK52t3i2dnZNVcwEREBqOass6Wlpfj1119RVlYG4MVpJYVCgZSUFAwfPlz051u3bi3a5/nz52qTExoZGaGoqEitb3R0NMLDwzWsnoiI/iqNw+L777/H/Pnz8fvvv6u9ZmpqqlFYaMLY2BjFxcUqbYWFhSojjT9NmDAB3t7eKm3Z2dnw9fWtkVqIiOgFjcMiNDQUbm5u8Pf3x8SJExEZGYnc3FysXLkSwcHBNVaQjY0NsrKyUFRUpBxhpKWlwdbWVq2vqakpTE1Na+y9iYioYhp/dDYjIwOBgYHo3LkzOnXqhIKCAgwdOhSLFi3Czp07a6wga2trODg4IDQ0FAqFAgkJCTh79myNjVyIiKj6NA6Lxo0bQ0/vRfcOHTrg9u3bAIC3334b6enpr1TEiRMnIJPJlM83bdqE1NRUuLq6YsGCBQgJCYGdnd0rvQcREf11GoeFs7MzNm/eDLlcji5duuC7775DSUkJLl26BBMTk2q9qYuLC5KSkpTPvby88N///lf53NzcHDt27MCVK1dw5swZDB06tFrbJyKimqVxWMydOxc///wzjhw5guHDh6OwsBBOTk6YN28exo0bV5s1EhGRjml8gbtDhw7497//rbzwfOjQIVy6dAnNmzfHO++8U5s1EhGRjmk8shgwYACePn2q/ISSkZER+vbtCzMzsyrneSIiovqvypHF2bNnceXKFQBAZmYmwsLC1G6Ye/DgQe1VR0REdUKVYeHg4IDo6Gjluto3btxQmVFWIpHA2NgYq1atqt0qiYhIp6oMi7Zt2yImJgYAMG/ePHz++efV/uQTERHVfxpfs1i5ciWMjY0RHx+PqKgoyOVyJCcn49mzZ7VZHxER1QEafxoqJycHAQEByMzMRFFREQYMGIBt27bh2rVr2L17d4XTcRAR0etB45FFSEgIbG1tkZCQAENDQwDAmjVr4OjoiBUrVtRagUREpHsah0VCQgICAwMhlUqVbUZGRvjkk09w7dq1WimOiIjqhmqtwV1+6nAA+O2330TX3CYiovpN47B49913sWrVKuTk5EAikQB4sZLe0qVLMWDAgForkIiIdE/jsAgODkarVq3Qp08f5fTk3t7esLCwwLx582qzRiIi0jGNPw3VpEkTrF+/HrNmzUJqaipKS0thY2MDKyur2qyPiIjqgGqtwV1WVoaMjAykpaVBT08PTZs2RYcOHZSnpYiI6PWkcVg8evQIH374ITIzM9GmTRsIgoCsrCzY2dlh27ZtePPNN2uzTiIi0iGNr1ksXrwYFhYWOH/+POLi4vDtt9/i3LlzaN68OZYuXVqbNRIRkY5pPLK4evUqDh06hJYtWyrbWrVqhblz52Ls2LG1UhwREdUNGo8sLCwscO/ePbX27OxsvPXWWzVaFBER1S0ajyzGjx+PJUuWICMjA05OTmjUqBFu3LiByMhIjBo1CvHx8cq+ffv2rZViiYhINzQOi4ULFwIANmzYoPZaZGSk8rFEIsHNmzdfvTIiIqozNA6LW7du1WYdRERUh1VrbigiImqYGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREorQaFrdu3cLo0aPh6OgIT09PJCcnV9jv4sWL6NixI2QymfIrIiJCm6USEdFLNF5W9VUpFApMnz4d48ePx1dffYVvv/0WAQEBOHfuHExMTFT63rhxA4MHD0ZoaKi2yiMioipobWRx6dIllJSUYOLEiTAwMMCwYcNga2uLU6dOqfVNSUlBx44dtVUaERGJ0NrI4t69e7CxsVFps7a2xp07d9T6pqSkIC8vD/v27YMgCBgyZAhmzZoFqVSq0k8ul0Mul6u0ZWdn13zxREQNnNbCoqCgAI0bN1ZpMzIyQmFhoUpbaWkpzMzM4OHhAR8fH+Tk5GDmzJmQSCSYM2eOSt/o6GiEh4fXeu1ERA2d1sLC2NgYxcXFKm2FhYUwNjZWLUhfH9HR0crnlpaWmDp1KtauXasWFhMmTIC3t7dKW3Z2Nnx9fWu4eiKihk1r1yxsbGyQnp6u0paWlgZbW1uVtsePH2P16tVQKBTKtpKSEhgaGqpt09TUFBYWFipfZmZmtfMLEBE1YFoLCxcXFwiCgKioKJSUlODkyZO4ffs2PDw8VPo1b94csbGxiIyMRGlpKTIyMhAZGQkfHx9tlUpEROVoLSykUim2b9+OuLg49OjRA1u2bEFERATeeOMNnDhxAjKZDABgaGiI7du3IykpCS4uLhg3bhwGDx4Mf39/bZVKRETlaO2aBQDY2dlh3759au1eXl7w8vJSPu/YsSO+/PJLbZZGRERV4HQfREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYUFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCSKYVHPJCQkICgoCAkJCbouhYgaEK0ufkSvLioqCnfv3kVBQQF69uyp63KIqIHgyKKeKSgoUPlORKQNDAsiIhLFsACgKCnTdQmvPe5jovqN1ywASA0a4R9z9ui6DI08eZIPAMh+kl9vagaAvV/46roEInoFHFkQEZEohkU9I2lkoPKdiEgbGBb1jEmbbjAwMYNJm266LoWIGhBes6hnDJu1g2Gzdroug4gaGI4siIhIFMOCiIhEMSyIiEgUw4KIiEQxLIiISBTDgoiIRDEsiIhIFMOCiIhEMSyIiEgUw4KIiEQxLIiISBTDgoiIRDEsiIhIFMOCiIhEaTUsbt26hdGjR8PR0RGenp5ITk6usF9WVhb8/f0hk8kwcOBAxMfHa7NMIiIqR2thoVAoMH36dAwZMgSXL1/G1KlTERAQgGfPnqn1DQoKgr29PRITE7Fs2TLMmjULDx8+1FapRERUjtbC4tKlSygpKcHEiRNhYGCAYcOGwdbWFqdOnVLpl56ejuvXr2PGjBmQSqVwdXWFu7s7Dh8+rK1SiYioHK2tlHfv3j3Y2NiotFlbW+POnTsqbampqTA3N4exsbFKv4pOWcnlcsjlcpW2zMxMAEB2dna16isueFqt/lQ9jx49qrVt5+YX1dq2qXaPHQAUPS2o1e03dJoevz//ZpaVlVX4utbCoqCgAI0bN1ZpMzIyQmFhoUrb8+fPK+xXVKT+ByE6Ohrh4eEVvp+vr+8rVkw1acB3Ybougf6qgwN0XQG9ggFbqnf8cnNzYWlpqdautbAwNjZGcXGxSlthYaHKCKI6/QBgwoQJ8Pb2VmlTKBR4+PAhOnTogEaNGtVQ9XVHdnY2fH19sWfPHpiZmem6HKomHr/663U/dmVlZcjNzUXnzp0rfF1rYWFjY4OoqCiVtrS0NIwcOVKtX1ZWFoqKipQjjLS0NNja2qpt09TUFKampmrt1tbWNVZ3XWVmZgYLCwtdl0F/EY9f/fU6H7uKRhR/0toFbhcXFwiCgKioKJSUlODkyZO4ffs2PDw8VPpZW1vDwcEBoaGhUCgUSEhIwNmzZzF8+HBtlUpEROVoLSykUim2b9+OuLg49OjRA1u2bEFERATeeOMNnDhxAjKZTNl306ZNSE1NhaurKxYsWICQkBDY2dlpq1QiIipHa6ehAMDOzg779u1Ta/fy8oKXl5fyubm5OXbs2KHN0oiIqAqc7qOeMTU1xccff1zhtRqq+3j86q+GfuwkgiAIui6CiIjqNo4siIhIFMOijisqKsKTJ090XQYRNXAMizpu3Lhx+N///qfrMugVyWQy3L59+y///KNHj2Bvb682vQ1pZsuWLQgKCvpLP/vhhx9iz549ov1OnDiBMWPG/KX3qA94zaKOc3d3x/z58zFw4EBdl0I69OjRIwwYMACXL19usBdYSbc4stCSP/74AytWrECvXr3g6uqKgIAAPHjwAABw8OBBDBo0CN27d0dAQIByOvbAwEBkZWUhKCgI27dvBwB8+eWXGDhwIJydneHn54dbt26Jbl+hUGD58uV499134ejoCA8PD5w8eVIHe6Fumj17NkJCQpTPy8rK0KtXLyQmJlZ6bB49egSZTIYFCxbA2dkZ+/fvx7Vr1/Dee+/B2dkZgwcPVvn4t729PW7evAngxYwE/v7+6NatG/r374+9e/cq+1V2fMv76aef8N5776Fbt27w9PTE6dOnla+5u7tj0aJF6NmzJ+bMmVOj+6quq+xY+vn5Yfr06QBe3Mf10UcfwdPTE25ubsjLy0NSUhK8vLzg7OyMwMBABAYGYtOmTQAAPz8/5ewTfn5+CA0Nhbe3N7p164Z//OMfSE1NBQAcPXoUI0aMUL73kSNHMGjQIMhkMowdO1Y5aeovv/yCwMBA9OvXD127dsUHH3xQ6XGuUwTSitOnTwuDBg0Snj59KigUCiE4OFiYP3++EBcXJ7i5uQnXr18XiouLhS1btgiDBg0SSkpKBEEQhP79+wvfffedIAiCcODAAcHNzU1ISUkRFAqFsGPHDqFXr17C77//Xun2BUEQIiMjhdGjRwtPnz4VysrKhJiYGKFbt27K92joLly4ILi5uQmlpaWCIAhCfHy80L9/f+H06dOVHpuHDx8KdnZ2wrp164Ti4mLh+fPnwvDhw4U9e/YIgiAIt27dEmQymfDgwQNBEATBzs5OuHHjhlBcXCz0799fWLt2rVBcXCzcvHlTcHJyEq5cuVLl8f3z/X7//Xfhzp07QufOnYWTJ08KJSUlwk8//SQ4OjoKSUlJgiC8+Dfj5+cnFBQUCHK5XDc7VUcqO5YbN24Upk2bJgiCIISFhQmdO3cWbt68KcjlcuG3334TnJ2dhYMHDwolJSXC8ePHBTs7OyEsLEwQBEEYN26csHv3buXjPn36CGlpaUJ+fr4wadIkYebMmYIgCMKRI0cELy8vZR0ymUy4fPmyUFZWJoSHhwvvvvuuIAiC4O/vLyxbtkxQKBRCYWGhEBQUJEyePFmLe+mv4chCS5o2bYqcnBx8/fXXyM7ORkhICEJCQnDw4EGMHz8eb7/9NqRSKT766CM8e/YMiYmJats4fvw4xo8fj06dOsHAwAABAQFo2rQpzp8/X+n2AWDMmDHYvHkzTE1NkZOTAyMjIzx79kxtxt+GqlevXtDT01Pu89jYWHh6euLQoUOix8bT0xNSqRTGxsYwMTHB+fPn8cMPP6BDhw5ISkpCu3btVN7r6tWrkMvlmDlzJqRSKRwcHLBnzx5YW1tXeXxfdvLkSbi4uGDo0KHQ19eHq6srPD09cezYMWWfQYMGwcjICE2bNq29HVcHVXYsJRKJSj87Ozs4ODgo96+ZmRk++OAD6OvrY8SIESozSpTn5eUFKysrmJiYYNCgQcoR/MtiY2MxYsQIODs7Q09PD5MnT8YXX3yBP/74AyEhIZg9ezaAF6uCNmvWDDk5OTW4F2oHw0JLevXqhUWLFuHUqVMYNGgQhgwZgu+//x5ZWVnYvHkznJ2d4ezsjO7duyM/Px9ZWVlq2/j111/Rtm1blba2bdsiOzu70u0DwLNnzxAcHIyePXti+vTpuHjxIgBA4OUqAICenh68vLwQGxuLwsJCnDlzBiNHjtTo2Lz11lvKxxs2bEDLli0RHByM7t27Y968eWorQf76669o1aoV9PX/b/IEe3t7NG/evMrj+7K8vDy0adNGpc3CwgK//PJLhXU1JJUdy/Je3j+PHz9G69atVV43Nzev9D1atmypfKyvr1/h+g9PnjxR2YZUKsU777wDPT09ZGRkwNfXF3369MGiRYtw//79evHfIsNCSx4+fIhOnTph//79SExMhI+PDz755BO0atUKwcHBSEpKUn4dPXq0wokT27Rpo1zc6U+PHj1Cy5YtK91+SUkJFi9eDAsLC/z44484evQoAgICtPVr1xve3t44c+YMvv32W9jZ2cHKygpvvfWW6LH58/9YS0tLkZaWhqVLl+KHH37A/v378fPPPyMmJkblfVq3bo0nT56o/IE5evQoEhISqjy+LzM3N1fr9/DhQ7z55ptqdTVEFR3L8l7eP2ZmZmqBXN3F08pr3bo1Hj9+rHxeUlKC1atXIz8/H9OnT0dAQAAuXryIr776Cr17936l99IWhoWWJCQk4OOPP0ZWVhZMTEzQrFkzNG3aFN7e3ti9ezdSU1MhCIJy+PrnPzQDAwPk5+cDAEaOHImYmBjcvHkTJSUl2LlzJ/Ly8tCvX79Kt6+vr4/8/HwYGhpCT08POTk5WLduHYAX/4DpBRsbG1haWmLDhg3Ki5QjR46s8ti8rFGjRpg/fz6ioqJQVlYGMzMz6OnpoVmzZir9unbtihYtWmDz5s0oKSnB7du3sXr1ahgYGFR5fF82dOhQJCUl4dSpUygrK8PFixeVp1uo4mNZlQEDBiA3NxeHDx9GaWkpTp8+jatXr75SDZ6enjhx4gSSk5NRVlaGXbt24dy5c5BIJCguLlYuv5CSkoKYmJh68d+iVicSbMjee+89pKenY9SoUXj+/DmsrKwQFhYGJycnyOVyTJ8+HTk5OWjfvj0iIiLQoUMHAICPjw+WLFmC9PR0BAUF4bfffsOMGTPw5MkTODg4YOfOnWjZsmWl25dIJPj888+xYMEC7N+/Hy1atMCoUaOQkpKCO3fuwNXVVbc7pg7x9vbGypUrMXToUAAvwqKyY1N+qUqJRIKNGzciJCQEkZGRkEqlGD58OEaPHq3STyqVIjIyEsuXL0evXr3QtGlTfPbZZ3BycoKTk1Olx/fl97O0tMTmzZuxbt06fP7552jdujWWLFmCv//977W/k+qJ8seyKiYmJggLC8OSJUuwcuVKuLm5oUuXLjAwMPjL7+/q6op58+Zhzpw5yM3NRadOnRAREQETExMsXboUS5YswZw5c9C2bVuMHj0akZGReP78OZo0afKX37O28T4LImrQ8vLykJWVpbJC3AcffID3339fLewbMp6GIqIGTaFQwM/PDykpKQCA8+fP49atW+jZs6eOK6tbOLIgogYvNjYW4eHhyMnJQdu2bTFz5ky1VTwbOoYFERGJ4mkoIiISxbAgIiJRDAsiIhLFsCCqI4KDgzFjxgxdl0FUIV7gJqoj8vPzIQgC16ugOolhQUREongaiqgCBw4cgIeHBzp37ozBgwfj+PHjAF4sLLR7926MHj0aXbt2xejRo5U3cwEv5ttau3Yt3Nzc4OTkhICAAKSlpSlfLyoqwooVK5SvT5s2TTnXVPnTUPHx8RgxYgS6du2KYcOG4ciRI8rXnj17htmzZ8PFxQWOjo4ICAhARkZG7e4UatAYFkTlpKSkYNmyZQgODkZcXBz8/PwQHBys/GO8ceNGeHl54dixY7CyssKkSZPw9OlTAEBYWBji4+MRGhqKgwcPwsrKCn5+fsrJIBcvXoyzZ89izZo1OHjwIBQKBT755BO1Gu7evYsZM2ZgzJgx+OabbxAYGIjVq1crVzjcsGEDHj16hJiYGBw9ehR6enqYP3++NnYPNVCcSJConKysLOjp6aFt27Zo27YtfH190aFDB7zxxhsAXsz66uvrCwBYunQp+vfvj1OnTsHHxwdRUVGIioqCk5MTAGDBggW4cOECvv76a4wYMQLffPMNNm7ciF69egEA/vWvf+HAgQNQKBQqNezYsQOenp4YO3YsAKB9+/Z48OABdu7ciWHDhiEzMxNNmjSBhYUFmjRpguXLl6tNW05UkxgWROX07t0b3bp1w4gRI/C3v/0N/fr1g4+Pj/LCs7Ozs7KvVCqFvb097t69iwcPHkChUCAgIEBlvYTi4mKkp6cjPT0dpaWl6NKli/K1du3a4dNPP1Wr4e7du7hz547KWumlpaXKRZOmTJmCKVOmwNXVFd27d8fAgQM1mo6b6K9iWBCV07hxY+zevRtXr17FuXPncP78ecTExGDr1q0AXqxd8bI//vgDjRo1Ui5otGvXLrUFi0xMTJCbmwtAs4WJysrK4OfnhzFjxlT4uqOjI86ePYtz587hP//5D0JDQ7F3714cPnwYhoaG1f6dicTwmgVROYmJiYiMjISTkxM+/fRTfPPNN+jUqRPi4uIAADdu3FD2LS4uxu3bt2Fvb4/27dtDX18feXl5sLS0hKWlJdq3b49NmzYhOTkZFhYWaNSokcrPZ2ZmokePHmoLKtnY2OD+/fvK7VhaWuLSpUvYu3cvAGDr1q1ITk6Gp6cn1qxZgwMHDuDOnTu4ffu2FvYQNUQMC6JyjIyMEBERgYMHDyIzMxMXLlxAWlqa8vTRgQMHEBsbi9TUVCxcuBD6+voYMmQImjRpgrFjxyIkJATx8fG4f/8+li5dirNnz8LGxgYmJiZ4//33sXLlSly+fBn37t3D4sWLYW9vr7YG9KRJk3D+/Hls2bIF9+/fR1xcHFasWKEcsWRnZ2P58uW4evUqHj58iGPHjsHExES5aBZRTeN9FkQVOH78OLZu3apcA3v06NGYNm0a3N3d4e7ujqtXryI1NRWOjo5YtGgRbGxsALxYG2H9+vWIjY3Fs2fP4ODggM8++0x5naOgoACrVq1CXFwcysrK4ObmhoULF+LNN99EcHAwCgoKEBYWBgA4c+YMwsLCkJaWhlatWmHUqFGYOnUqJBIJCgoKsGLFCnz//ffIz89Hx44dMXfuXOWFdaKaxrAgqgZ3d3dMmjQJ48aN03UpRFrF01BERCSKYUFERKJ4GoqIiERxZEFERKIYFkREJIphQUREohgWREQkimFBRESiGBZERCTq/wERRjhijQAFOwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax1 = sns.barplot(data = iris, \n", + " x = 'species', \n", + " y = 'petal_width')\n", + "\n", + "# Axes should always be labelled.\n", + "# ax1.set(xlabel='Species', ylabel='Mean Sepal length (cm)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot a swarmplot, which shows all the data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\xusy\\.conda\\envs\\nbdevdabestdev\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 14.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEPCAYAAABLIROyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABjSUlEQVR4nO3dd3iTVfvA8W9G05UOumlLSym0BcpsGS2yQWZZDlAEforjFV/BV30RRUEQRF5RERmCA0FRlgxZIntvZBVaRqG7dNE9kibP749CIIRRsG06zue6uC5ynnUngXPnGefcMkmSJARBEIRaR27uAARBEATzEAlAEAShlhIJQBAEoZYSCUAQBKGWEglAEAShllKaO4CyKCoq4ty5c7i6uqJQKMwdjiAIQrWg0+lIS0sjODgYKysrk+XVIgGcO3eO4cOHmzsMQRCEamnZsmWEhoaatFeLBODq6gqUvgkPDw8zRyMIglA9pKSkMHz4cEMferdKSwB//PEHkydPNmorKioiLCyMH3/88YHb3rrs4+Hhgbe3d4XFKAiCUBPd79J5pSWAAQMGMGDAAMPr8+fP89JLLzF+/PjKCkEQBEG4g1meAtJqtbz77ru8+eabBAUFmSMEQRCEWs8s9wCWLVuGlZUVzz//vMmynJwccnJyjNpSUlIqKzRBEIRao9ITgEaj4YcffmDKlCnIZDKT5UuWLGHu3LmPtE+9Xk9CQgL5+fnlFaZQDiwsLHBzc8Pe3t7coQiCcA+VngD27duHXC6nS5cu91w+atQoBg8ebNR26072/aSnpyOTyQgMDEQuF2PbqgJJkigsLCQxMRFAJAGhyknJS2PN+S3cKMymo29bOtVvZ+6QKl2lJ4AdO3bQp0+f+3bU9vb2j9xZZGVlUb9+fdH5VyEymQwbGxu8vLxISkoSCUCoUkp0JUzZ+RUZhTcAOJ1yHqVcQbiP6bPyNVml95inT5+mdevW5bpPnU6HhYVFue5TKB/W1tZotVpzhyEIRqIzYgyd/y0H4o6bKRrzqfQEkJiYiJubW7nv9173EwTzE9+LUBU529RBhvG/TVcbJzNFYz6VngBOnTpFy5YtK/uwgiAIBh5qVwY36WX4geJl78HAxr3MHFXlqxZTQQilJkyYQEFBAXPmzDF3KIJQ7Q1rNpAe/h3JLsrFr0495LLadw9RJIBqZOLEiYgSzoLw+CRJQqsvQaUovWfoYuOEyx2XfvR6PXpJj1JRO7rG2vEuawg7OztzhyAI1dap5PN8d3wZaQWZtPBowtj2L2JnqTYs33JxFyvPbaBYp6WLXxgvtx5W458srNnvrgKtWLGCnj17EhwcTO/evVm3bh0A3bp1Y/HixQwdOpTmzZszdOhQIiMjDdtptVpmzZpFhw4dCAkJYfTo0cTExBiWFxUV8emnnxqWv/7661y/fh0ovQQ0duxYw7p79uxh4MCBNG/enH79+vH7778bluXl5fHOO+/Qrl07WrZsyejRo7l27VrFfiiCUEVpdFrmHP6RtIJMoPSxz9/OrDcsj89OYvHfK8nXFlKiL2H7lX3sunrQXOFWGpEAHkNkZCSffPIJEyZMYOvWrYwYMYIJEyYYOtivv/6aAQMGsHbtWvz8/HjppZfIysoCYM6cOezZs4evvvqKlStX4ufnx4gRI8jNzQVg8uTJ7Nixg88//5yVK1ei0Wh46623TGK4dOkSY8eOZdiwYWzcuJE33niDmTNnsmnTJgBmz55NQkICS5cuZc2aNcjlcj744IPK+HgEocpJzU8nT2M8U8CVG7GGv8dkxplsc+WGaVtNIy4BPYakpCTkcjleXl54eXkxfPhw6tevj5NT6bXEvn37GkYuT506la5du7J582aGDBnCTz/9xE8//URISAgAH374Ifv27WP9+vUMHDiQjRs38vXXXxMeHg7Axx9/zIoVK9BoNEYxfP/990RERPDcc88B4OPjQ1xcHD/88AP9+vUjMTERW1tbvL29sbW1Zdq0aYZRuYJQ29RVu+Fk7UhmYZahzd+pPotPruRGYTbNPIKQy+ToJb1hebBboBkirVwiATyGjh070rp1awYOHEijRo3o0qULQ4YMMYx2vbPyjkqlIjAwkEuXLhEXF4dGo2H06NFGz8cXFxdz9epVrl69SklJCc2aNTMsq1evHu+++65JDJcuXeLixYuGX/wAJSUlKJWlX+lrr73Ga6+9RlhYGG3atKFHjx4MHDiw3D8LQagOFHIF45/4F4tPriQpL5VQz+acST5PakEGAIcTTjIgsCcnk89RqC2iZ8OOhPuEmDnqiicSwGOwsrJi8eLFnDx5kl27drF7926WLl3KwoULAdPiC3q9HoVCgU6nA+DHH3/E2dnZaB21Wk1aWhpQtsFTOp2OESNGMGzYsHsub9myJTt27GDXrl3s3buXr776il9//ZXVq1djaWn5yO9ZEKq7Bk6+fNLjvwCcT71oco0/JT+NL/tMMkdoZiPuATyGI0eOsGDBAkJCQnj33XfZuHEjTZo0YevWrUBpsZtbiouLiY6OJjAwEB8fH5RKJZmZmfj6+uLr64uPjw/ffPMNZ86cwdvbG4VCYbR9YmIibdu2NdwIvsXf35/Y2FjDfnx9fTl69Ci//vorAAsXLuTMmTNERETw+eefs2LFCi5evEh0dHQlfEKCULU5WjuYtNWxMm2r6UQCeAzW1tbMmzePlStXkpiYyL59+4iJiTFculmxYgUbNmzgypUrfPTRRyiVSvr06YOtrS3PPfcc06dPZ8+ePcTGxjJ16lR27NiBv78/arWap59+mhkzZnDs2DEuX77M5MmTCQwMxN3d3SiGl156id27d/Ptt98SGxvL1q1b+fTTTw1nFikpKUybNo2TJ08SHx/P2rVrUavV1K9fv7I/LkGocjzt3OnTqKvhtautMwODnjRjRGYiVQPx8fFSQECAFB8ff8/l58+fr+SIJGnt2rVS7969peDgYKlz587S/PnzJUmSpK5du0qffPKJNHjwYKl58+bSyJEjpcuXLxu2Ky4ulmbMmCGFh4dLzZs3l5599lnp2LFjhuX5+fnSRx99JLVt21YKCQmRxo4dK6WlpUmSJEnvvfee9OabbxrW3bZtmxQRESE1bdpU6tKlizR//nxJr9cb9jNx4kQpLCxMCg4Olp555hnp+PHjlfHRmDDH9yMIZZGQnSydTYmStCVac4dSIR7Wd8okqeoPLU1ISKB79+7s2LHjnkXhL1y4QOPGjc0Qmalu3brx0ksv8cILL5g7lCqjKn0/glCbPKzvFDeBBUGoFc6nXuL7E7+RnJdKG88W/KvNC9iorM0dllmJewCCINR4JboSvjr4HQk5yej0Og4nnGT52T/MHZbZiTOAcrZz505zhyAIwl1S8tPILs41aovOuGKmaKoOkQAEQajxPGxdcbCyJ7sox9Dm51iP5WfXk3mzJnAz9yAzRmge4hKQIAg1nlKh5J3wV/Bx8MJCriSsXggX0i+z5vyf7L56iGm75/B38jlzh1npRAIQBKFWCHJtyKzeH7LsmW/o06gLybmphmUSErtiDpkxOvMQCUAQhFpHrbI1bbM0bavpRAIQBKHW8XaoS1e/cMNrRyt7BgT2MGNE5iFuAlcDRUVF5OXl4eLiYu5QBKHGeL3tCHr6d+RGUTbN3IOwUta+SRLFGUA18MILL3Dq1ClzhyEINU5D5/q08WpRKzt/EGcA6PUSe/9OYP3eK6RnFeHiaMXATv50auWNXP7waZkrQ2ZmprlDEIRqZe+1I6yO3IRGp6VPo64MbPzwid4Oxp1gxbk/KNIW07NhR55u2o/YrAS+P7GchJxkWtUN5uWQYdhY1JzRw7X6DECvl5ix5CjzVp/mckI2WXnFXE7IZt7q08xYchS9vnynSdLr9Xz66aeEh4cTFhbG6NGjiYsrLTu3cuVKevXqRZs2bRg9ejTx8fEAvPHGGyQlJfH222/z3XffAfDzzz/To0cPQkNDGTFiBFFRUQ/dv0ajYdq0aTz55JO0bNmSnj17GhWTEYSaIj47iXlHlpCSl0ZmYRbLzqzleOKZB25zPS+NOYd/JDk3lRtF2aw8t5H9sUeZdWAR0elXyNcUsD/2KL+cXltJ76JyVGoCSE1NZcyYMYSEhBAeHs7s2bMr8/Am9v6dwKmLaRRpdEbtRRodpy6msfdU+ZZQ3LZtG3v37mXLli3s3bsXNzc3Fi5cyF9//cWcOXP48ssvOXDgAG3btuWVV16hpKSEefPm4enpyZdffskrr7zCypUrWbhwIXPmzOHQoUN06dKF0aNHk5OTc9/9Q2kRmnPnzrFq1SpOnjzJyJEjmTRpEiUlJeX6HgXB3C6kXULC+Mfb+dSLD9wmKu2KUTlIgJNJ57iel/ZI+6luKjUBjBkzBldXVw4ePMiKFStYt24dGzZsqMwQjKzfe8Wk87+lSKNj/Z7L5Xo8Ozs7UlNTWb9+PSkpKUyfPp3p06ezcuVKRo4cSdOmTVGpVLz66qvk5eVx5MgRk32sW7eOkSNH0qRJEywsLBg9ejR2dnbs3r37vvsHGDZsGPPnz8fe3p7U1FSsra3Jy8ujsLCwXN+jIJibv1N9kzZnmzosO72W5WfXk55fekk1X1PAugtbWXxyJQqZaVfYxK0Rde4qHOPv5FshMZtLpd0DOH36NPHx8fz2229YWFhQr149fv75Z7OWJ0zPKvpHyx9VeHg4kyZNYvny5Xz22WfUq1eP9957j6SkJObPn8+iRYsM62q1WpKSkkz2kZGRgZeXl1Gbl5cXKSkpDBgw4J7779atG3l5eUydOpXTp0/j5eWFn58fANVgNnBBeCT+Tr680GIIa85vQasv4QmfNqw4t4GikmIAtl/Zz6xeH/Lp3rlcy0oAYKtMTp9GXdgbexRNiYauDcLp5tcBTzsPvj32Myl5aTRzD2JEy6fM+dbKXaUlgHPnzhEQEMDcuXNZs2YNlpaWPP/887z00ktG6+Xk5JCTk2PUlpKSUiExuThakZVX/MDl5Sk+Pp4mTZqwfPlycnNz+fXXX3nrrbdo1aoVI0eONKrve+XKFTw9PU324enpSWKi8aWphIQE+vbte9/9nzhxgsmTJ+Pr68v8+fNRKpWcP3+ejRs3luv7E4SqYkBQT/oHdEdCYn3UX4bOHyCnOI8N0dsNnT+AXtKTVZTLD4M+Ry9JKOWldb2buDViTr+paHVaLBQWlf4+KlqlXQLKzs7mxIkTKJVKduzYwdy5c/nxxx9NLgEtWbKE7t27G/0ZPnx4hcQ0sJM/VirFPZdZqRQM7NywXI93+PBh/v3vf5OUlIRarcbBwQE7OzsGDx7M4sWLuXLlCpIksWHDBgYOHGioA2xhYUFubulMhoMGDWLp0qVcuHABrVbLDz/8QGZmJl26dLnv/pVKJbm5uVhaWiKXy0lNTeWLL74ASs80BKEmSs5LJT476Z6PeNqqbEzarJWWXM9LJy4rweTMuCZ2/lCJZwAqlQq1Ws2bb74JQFBQEE8//TTbtm0jIiLCsN6oUaMYPHiw0bYpKSkVkgQ6tfLmwJkkkxvBVioFLQNc6dTS6wFbP7qnnnqKq1ev8uyzz5Kfn4+fnx9z5swhJCSEnJwcxowZQ2pqKj4+PsybN89Qv3fIkCFMmTKFq1ev8vbbb3Pjxg3Gjh1Leno6QUFB/PDDDzg7O993/zKZjIkTJ/Lhhx+yfPly6tSpw7PPPktkZCQXL14kLCysXN+nIJiTXtIz59CPHIw/AUCAsx911W4k55XO/ePnWI/+Ad2JzUrk0M11bFU25BbnM27zZAAaOtXnw85ja3zBmEorCblz507GjRvHiRMnUKlUAHzxxRfExsYyZ86cB25bkSUh9XqJvacSWb/n8u1xAJ0b0qmlV5UZB1DdiZKQQmU6lRzJp3vnGrWNbPk0LjZ1UMgVtKobjFKuQJIkIlOjySzMxlZlzcx9C4y2Gd58cJnGD1RlVaYkZIcOHXBycmLmzJm89957XL16ldWrV/Pxxx9XVgj3JJfL6NLamy6tTT8cQRCqn/SCGyZtWUU59A/sbtQmk8kIvlkDYH/s0Xvsp+YPwKy0BGBpackvv/zCJ598QseOHVGpVLz88sv06tWrskIQBKGGOnc9it/O/kFOcR7tvVthpbQ03PiVy+Qo5Qre3jIVhUzO4Ca9CfcJJSrtCsvOrOVGYRZtvVphY2FNgbb0sWgZMsJ9Qsz5lipFpU4FUa9ePaNHHQVBEP6p3OI8Zu5bQLFOA8D6qL94umk/knOvo9FpCXJpyM+nfzes//XhH3GxceKzffMMHf7Gi9sZ1LgXGQU3KNQW0cO/I41dG5nl/VSmWj8XkCAI1VtU+hVD539Lcu51xoWNBjAp/i5JEnuuHTZ0/rfEZyfxXscxFRtsFSMSgCAI1Zqvgxcymczo0U0PtRt/RG1Do9NSx8rBZJtgt0B2xhxAd8f0D5527myM3k6htoiO9dvhoXZFp9dxIO74zcngmta4swKRAARBqNbc1C682OpZfju7niJtMSGezdhz9RDphaU3g22UVnTybceB+OPIkdEvsDthPiEUlhTx86nfydcW0qpuU44mnuJ6XjoAG6K3M6PnBNae/5O9saVTsqy7sJV/t/s/OtVvZ7b3Wt5EAhAEodrr3agL3Rt0QKsr4XjSGY4n3Z79s6CkCDe1C4sHzUImk2OpLH0MvVuDDnTybUexTsO51Gi+OHD7/mRRSTFbLu5iX5zx00FbLu6qUQmgVk8HLQhC9ZSSm0rGXY975msLuVGUbZjG4U5KuYLs4lxyi/OM2gu0hdwozEYpN/0tbKGwQI7xWCClXEFucR7x2UlGl5w0Oi3XbiSg0VWvkfXiDEAQhGpDU6Lh8wMLOZ1yHhkyujfowKtthrP87HrWXfgLvaTH38mXeg6exGeXTqboZO1IVNplw83gTr7tGNNuJOsubGVV5CZ0eh31Hb3xc6zH1azSOhwOlnb0C+gGwKaLOwBQyOR42Xvw2h/vU6IvoZ6DJxM7vUlKXhpfHFxEbnEeapUtb4e/bBhfUNWJBFDDtGrViuXLlxMYGPhY298aOXjs2DHs7e3LOTpB+Gd2XT3E6ZTzAEhIbI/ZTyNnP9ac/9OwzpXMWAY37sXgxr3R6LSU6Er4/uRvhuV7Y4/Q2K0RK85uMNQNuJaVQJ9G3RjYuBeF2kLaerfEzlLNqFZPE+IZTHx2Mg3q1OPjXV8ZbhzHZyfx+/nNRKVfMZxZ5Gny+eHECr7qO7myPpJ/pNYnAEnSkxe5n+wjGyjJzUBp54xDuwjUTZ9Ado85wqu6v//+29whCEKFubtAC0DMjTiTtrSCGzzXfBAAK8+Z1hy5mhlnUjQmrSCDF32eMVk32D2IYPcgLmdcM3pqCCAlL80kppR80xirqurXw5UjSdJzffXnpG/+Fk1KDPr8bDQpMaRv/pbrqz9HuuvL/qfeeecdQ4EWAJ1OR3h4OEeOHLlvSciEhARatWrFhx9+SGhoKMuXL+f06dM89dRThIaG0rt3b77//nvDPgMDA7lw4QIAMTExvPjii7Ru3ZquXbvy66+/Gta7X1nJux08eJCnnnqK1q1bExERwZ9/3v6l1a1bNyZNmkT79u0ZP358uX5WgnAvbb1bIrvjurxKYUHvhl1Qq2yN1nOzdWbyzi/5YNtM5DI5MtntbZRyJU826oyjlfEZrre9B1N2fcWEv2awM+YAAKn5GXx18Hve2TKVg/EncLFxMtqmnXcr2nq1NG6763VVVqvPAPIi91N49TSS1rgmgKQtpvDqafIjD6AO7lhuxxs8eDATJkxgwoQJKBQKDhw4gJWVFVlZWcyZM4eFCxfSqFEjFi9ezCuvvGKYr7+goAAnJycOHjxISUkJQ4cO5bnnnuP5558nOjqa5557jl69elGvXj3DsTQaDS+//DL9+vVj4cKFxMTE8MILLxAUFMTly5dZuHAhixYtolGjRixdupTRo0ezZcsWo3gvXbrEa6+9xsyZM3nyySc5duyYoapbSEjpMPlr166xa9cuUVpSqBRBrg15p8OrbL28G5VCxcCgXng5eDCpy1v8fn4zOcV5hHgG89vZP9DpS2f4vZx5jeebD+Lc9WgUcgURgT3wcfBkUte3WH1uEzeKsmldtxkrIzeivXkT99tjv+Bo5cBvZ9YRm11afyM+J5luDTqg0WlJy88gvF4IPf070sm3LY7WDkSnXyHAuQHPBvc32+fzqGp1Asg+ssGk879F0haTdWRDuSaA8PBw5HI5R44cITw8nA0bNhAREcGqVasMJSEBXn31VX7++WeOHDmCr29pCbqIiAhUKpVhWu3du3fj4+NDmzZtOH78OHK58cncyZMnycnJYdy4cSiVSoKCgli2bBnu7u7MmjXLUFYSYPTo0axatYrdu3fTunVrwz42bdpEu3bt6Nu3LwBhYWFERESwdu1aQwLo1asX1tY1e8pcoWpp692Stt4tjdrq1/HmnQ6vAvDX5b2Gzv+W3OI8Puwy1qjN274ub4W/DMDea0cMnf8tB+OOGTr/W6LTr/BVH+Pr+1YWVoysppXCavUloJLcjAcu1+Wml+vx5HI5AwYMYMOGDRQWFrJ9+3YGDRpkKAkZGhpKaGgobdq0ITc316gkpJubm+Hvs2fPxtnZmQkTJtCmTRvef/998vKMH2/LyMjA1dUVpfJ2jg8MDMTR0fGBZSXvlJmZaVKVzNvbm+Tk5HvGJQhVgbe9h0mbs3UdNl/cydZLe8jXFACg1WnZe+0I6y5sxUqhMtmmvmM97O66tOR1j31XZ7X6DEBp54wmP/u+yxV2LuV+zMGDBzNs2DDat29PQEAAfn5+uLm53bckZEZGaZK6dQ2zpKSEmJgYpk6dioWFBefPn+fdd99l6dKljBlzex4Td3d30tPT0el0KBSlz0WvWbMGT0/PB5aVvFPdunU5fvy4UVt8fDwuLrc/lzuvrQpCVdDELYD+Ad3ZcmkXekkixKsZ6y5sJau4tNTshuht/K/XRGbtX8i51Gig9Jn/LvXD2B93jBJ9CW28WvBko864qV349tgv5GnyqWdflxdaDDHnWyt3tfoMwKFdBDKLexell1lY4tgu4p7L/gl/f398fX2ZPXs2AwcOBErLPD6oJOSdFAoFH3zwAT/99BM6nQ4PDw/kcjkODsbznTRv3pw6deowf/58tFot0dHRzJw5EwsLiweWlbxT3759OX78OJs3b0an03Ho0CHDZStBqMpGtnqa7wb+j4UDPyPIpaGh84fSG7t/RG0zdP5Qejagk3R8N3AmCwd8xn+f+BcqhQVtvVvy7YAZzO0/jS/6TMJD7WqOt1NhavUZgLrpE+RfOGRyI1hmYYm1Xwtsm3aokOMOHjyYGTNmGH5xDxo06L4lIRMSEoy2lclkfP3110yfPp0FCxagUqno378/Q4cONVpPpVKxYMECpk2bRnh4OHZ2dvz3v/8lJCSEkJCQ+5aVvPN4t4rIf/HFF0ycOBF3d3emTJnCE088USGfiyCY292PhkLpk0Zuts5miKbiVVpJyH+iIktCSpKe/MgDZB3ZgC43HYWdC47tIrBt2qFajgOoikRJSKGyLfl7NX/eugTk2YzLmdfIKio9C3C3dWFmrw+MLgGpFBaE+4SyL/YoOr2OUK8WvBU2GlU1LwZfZUpCVlUymRx1cMdyfdpHEATzOZ960TB9A8DxpDOMavkMcpkMhVxOB5822FhY836nNzgc/zeZhVnUtXNj1oGFt7dJPM2OK/vpE9DVHG+h0tT6BCAIQs2SkJNi0pZZeIMRdz2qaaGwoGP9tkDpY6B3S7zHfmoakQAEQahRWng0RiFXGI0FUKtsmbZ7Dgq5nIjAngS7B5KQncyqyE3cKMyidd1mWCgsjMYCtPZsZo7wK5VIAIIg1Cjualfee2IM6y78iUanJcQzmOXn/jBM33z2ejSfPfk+03Z/bbgvEJV+hUGNe3E54xqF2iJ6NuxIa89gc76NSiESgCAINU7Luk1oWbd0pPvKcxuM5u4v0Zfw16U9hs7/loScFCZ1fasywzQ7kQAE4R/QpCdQePU0KlcfrOvX/EsG5lBUUsyR+L+RkGjr3RIbC2v0kp5TyZGk5mcQ4tkM17se09SUaDiaeAqNTovjPWoC+zn5IIsxriPsZuPMgbhjFGqLaXdzOmiAs9ejSMhOpoVHYzxvjgROyEnmTMoFfB29aeoWAEBOUS5HE09hY2FDW68WKBVVv3ut+hEKQhWVH3WE62tmwc1ZYx3CBuHcbYSZo6pZCrVFvL/tM5JySwdFro7cxGc93+fHkyvYH3cMgJ9Pr2FSl3EEuvgDpdW5Jm7/n2EenzpWDrTyaMrfKZHIkNGxflu6+oWRXZRjKAjj51iP82kX2XxpJwArzv7BjJ4T2HRxp1FBmHef+Bc6vY4vD36H/ub3PjDoSXr4P8EH22aSq8kHINC5AVO6vWMyR1dVU6kJYPXq1UyePBmV6va8G5MmTWLw4MGVGYYglIusg78bOn+A7KMbqdPhaeSWYnK88nIo/qSh84fSUbybLu40dP5QOop3Q9R2Ap8oTQDHE08bTeJ2oyibXq6dGR0yDLlMjott6ZTOQ5r0oUeDJ8jR5HE9L52Z++YbtskuzmXTxZ38eWmXoU0n6Vl3/k+0+hJD5w+w+eJONDqNofMHiM6I4VxqNM09qvb4l0pNAOfPn+fFF1/k3XffrczDCkK50hXmIldZI+numgJbry/3GhK1XYnedJpxjU5j0qbVl6DVadHqSii5aybQ0v3osLdUw11zV9lYWKOQK+75yKdWp0V/18jgEr3OZP86SY/27n8L94m9qqnU85PIyEgxIvQevv32W95+++3H2vbll19m2bJlD13vjz/+MJpsTnh0uoIckpZ9TOyX/0fsnFew9DYuu2nXvCsKK9v7bC08jrB6raljffsavr2lmv6BPWjh0cTQJpfJcbVx4uX143lx7Tscjj+J6x2FW2wtrLmel8aL695l9Np3WXZ6LQA7Yw7wys1tdsQcMJrnx0ppSd+ArnT0aWsUT9+AbvS9WSv4li5+YfRu1AXLO2YU9bavS/M7YqyqyjwVRF5eHt999x1RUVEUFRVx92ZLly594PY6nY6QkBDatm3L+fPnsba25plnnuGVV14xmlEyJyeHnBzju/MpKSkMHz68QqaC0Et6DsQeZ9PFHWQU3MDZpg79ArrTwTcUuZgKolzUlKkg0v/8jpwTtyuiySwscRv8NsUJUahcfbFtEo5MrjBjhDVTVmE2u68dRi/p6VI/DCcbRzQ6LfuuHSE1P4OGzvWZtX+h0Tw+Q5r0wcbCGo1Oi73Klu9PLjfa51thL/PN4R+NSjz2D+yBk7UjhdpCOtZvh4faFZ1ex4G44yTkJNOqblMauzYCIDL1IqdTzuPj4El4vVDkcjnJuansiz2KWmVDl/ph2KjMfymw3KaCmDhxIocPH6Znz57Y2dk9ciCZmZkEBwczaNAg5s6dy5UrVxgzZgy2trYMHz7csN6SJUuYO3fuI+//ceglPV8cWMSZlAsU3zytzC7OZdHxZRxOOMk7HV4t1yTwzjvv4OTkxMSJE4HSpNixY0f8/f2xs7Nj/vz5fPPNN5w9e5bk5GQyMzPZsGGDYfrnpKQk2rVrB0BQUBBvvvkmI0aMoHv37vzf//0fI0aMoHXr1uzdu5fY2FiCgoL45JNP8Pf3Z82aNSxZsoT169cD8Pvvv7No0SJSU1MJCgpiypQpBAQEkJyczLRp04iMjCQzM5PAwEA++eQTgoKCyu1zqK40qbFGryVtMUp1HWy7vmCmiGoHR2sHBjXuZdSmUljQ3b90UsJjiadNJnG7npfGuLDRACw/+4fJPiNTo03q+ybnXjcp7KKQK+hUv53J9k3dAgxP/9xS186tWlUDg0dIAHv37uW7774jNDT0sQ7k6urKL7/8YnjduHFjXnjhBf766y+jBDBq1CiTm8K3zgDK24HY40ad/y3FOg1nUi5wMO44T/i2vc/Wj+5+JSHbtGljVJP30KFDrFq1Ci8vL3Q6Ha+//jrjx49n8ODBbNq0ifHjx9+3Q163bh0//fQTrq6ujBs3jm+++YbZs2cbrbN//36mT5/OokWLaN26NQsWLODNN99k69atTJw4kQYNGjB79mx0Oh0TJ07kyy+/ZNGiReX2OVRX1n4tKIq/YHitUNeh4OoZMnctQ+Xmg2OHp1BY25F/8Ri5f29Dbq3GMWwQKlcfM0Zd8wW5+GOpUBn9P65r58bsQz+g1WkJcmlotL5MJqNz/fYciDtOgbbQ0F7PwZM5hxdTqC2kp39HWns2I6c4jzXnt5CQnUxrz2B6N+pSo64MlDkBqNVq6tSp89gHunTpElu2bGHs2Ntl2bRaLZaWxvPx29vbY29vf/fmFWLTxR0mnf8txToNG6N3lGsCuF9JyLuLqgQEBBg6+HXr1uHh4cEzzzwDwMCBA/ntt9/ue4wBAwbg5+cHlJZrXL58uck6t+oN3Ermr7zyCk888QR6vZ7p06fj6OgIQFJSEg4ODly5cuUfv/eawDF8MHpNAfkXDqOs447S0Y0bu0p/1BRePU3x9WvUCR/C9VWfGbYpuHwCnzHzkYt7AxXGzlLNex3HsPzsH+QU59LOuxV/RG033Cw+kXSWIU36cCzhFHK5gsGNexHg0oAJHd/gt7PryCzIoq13S7Ze2kNhSREAJ5PO8XG3//DbmfVEpZf++z9z/QKF2iKeatr3vrFUN2VOAC+++CKzZs3is88+Myk+Uhb29vYsXrwYDw8Pnn76ac6fP8/PP//MRx999Mj7Ki8ZBTf+0fJHdWdJyFatWrF9+3bWrFljKP5+y51lFq9fv467u7vR8rp16973GM7OtwfEKJVKdDrTJyLS09MNl5KgtHZAixYtgNIi759//jnJycn4+/tjaWlpcr+ntpIplDh3H4Vz91EAxC9402h50bWz5KqdjNr0hXkUXD2NunF4pcVZGwW7BzLN/b8AbL+y3+hJIb2kp0Sv44s+k4y2CXL1Z0q3dwDYH3vU0PlDaV2AnTEHDZ3/LQfjjteeBNC+fXvDr1NJksjKyiIsLAw7OzuTAQ6HDh164IHc3d2ZP38+n3/+OTNmzKBOnTqMGTOG3r17/8O38PicbeqQXZz7wOXl7V4lIe925xmBh4eHSa3elJQUGjRo8NgxuLu7G1Ub02q1fPnll4wZM4YxY8Ywbdo0+vXrB8BPP/3E2rVrH/tYNU1JXhaFMadQOrqhtHdGm3m7brPcyhZlHXeTbeQqa3LP7kZp54yVb7Aoo1nBXO7x/7aOlT2H408il8lpXTcYpUKJJEmcS43mRmE2agsbk2081K5YK62MEsOtMQQ1xQMTwHvvvVeuBwsLC2PNmjXlus9/ol9AdxYdX3bPy0CWChX9A7uX+zHvLAn5yiuvPHT97t278+mnn7J69WoGDRrE9u3bOXnyJOHhj/+LMiIigrFjxzJw4ECaNm3Kjz/+yK5du3jjjTcoLi7GysoKKH1sd+nSpYbXtV1R0mWSl01G0pR2CDaB7ZDb2KMvyEGmsMC5x/9hE9CWgksn0KSU/nK0DWpP6tov0ReXFiJXB3fCbeA4s72H2qC5R2PCfUI5GFdazzrAuQF/Xt7D9bw0APwc6/FJ93eZd3Qph+JPAGCrsqGtV0uOJp4CoKFTffo06oqDlT0/nlxBib4EByt7nms20CzvqaI8MAHceTN23bp19O3b12gUL0BBQQErV66smOgqWAffUA4nnDS5EWypUBn+EVWEu0tCPoharWbOnDlMmTKFGTNm0KFDB5o1a4aFxeNXKgoLC+P9999n/PjxpKWl0aRJE+bNm4darWbq1KlMmTKF8ePH4+XlxdChQ1mwYAH5+fnY2tbu69hZB9cYOn+Aguij1PvXHHSFOVg4eaKwKb135fXSTDQpMcitbLmxb6Wh8wfIO7cXxw5PoXIxfSRPKB9ymZy3wkbzbNN+aHRazqdd4qe/VxmWX82KZ+PFHYbOHyBfU4BaZcPXfadQqC2igVPpjfse/k/Qxqs5KXlpNKjjg0U1rxB2tweOA9BoNOh0OiRJIiQkhO3bt+PkZHwKdO7cOUaPHs2ZM2cqLMiKLAmpl/QcjDvOxujb4wD6B3Yn3KdqjAPIzMwkKSmJ4ODbU9M+88wzPP300yZ1gKuq6jQOQCrRIlPe+z958m9TKYw5bdTm/drXWDi6m2wj6UpALuf677MoiDYuNuL14kxUbr733kYmE2MJytma81tMHgWNCOzBhujtRm3h9UJ4K/zlygytwv2jcQDr16/no48+Mlyz7NGjxz3X69y5czmEah5ymZwnfNuW69M+5Umj0TBixAh++eUXmjZtyu7du4mKiqJ9+/bmDq1G0Wankrrua4oTorBw8cZtwFgs6/obrWPfqheFMWfg5jPnll6BpP+5iKLYSCycPHGNeANLz0akb1lE7pndyC2tUTftCDK5Yc4glbsfGbuXUXT1DEpHd1z7vY6Vb1My/lpM7t/bkFmoqNPxWRzaVq/nyauyjr5tWR/1F4Xa0rM3e0s1EUE9OXc9mqtZ8UBpP9Dj5riC2uShI4GPHTuGXq9n1KhRfPPNN0ZPAMlkMmxsbAgICPhHlyQepiLPAKqDDRs2MHfuXFJTU/Hy8mLcuHH07NnT3GGVWXX4flJWfErB5duXBCycvaj3rzkm6xXGRpIfdRiloxtFCVEURB02LFPau+AQPpiMP7+7YwsZboPfoighGqW9C5rr18g7t9ewVGHrQJ2uw0nfOJ87eb38BZbu9cvt/dV2Kbmp7Ig5gEKuoEeDJ3CxdSJfU8D2K/u5UZhFB982NHI2fSCjuvvHI4HbtGkDwI4dO/D09BRPMJhBREQEERER5g6jRitOvmz0WpuRiL640GRmT2vfplj7NgUg7vgWo2UlOekUxV3AmASShMuTpaNSE777j9FSXX42RbGRpvEkXRYJoBx52LkxvIXxAFNblQ0DGz9ppoiqhjKPA7jf9AwymQwLCwvc3d3p1asX/v7+91xPEKoyK5+m5F84aHitcvcj58SfFCVdwtqnCfahfZDJFeSdP0D+hUMo67hj6dWIkqzbj9NaOHth7d+K/PP7b+9YrkBfXMT1NbNQ2rugqtsQTWqcYbHSwRWbRqHknd1zexuZHCufqj+RmFD9lTkB2NrasmzZMpo3b07Lli0BOHv2LCdPnqRHjx6kpKSwaNEi5syZQ6dOnSoq3vuSJEmcnVRB1WUQmUvvV0CSKLx2BpVHA+SW1mTeHOVbEH0EbVYqlu71Sds4z7CNhasPtk2eoDDmFCo3H1x6v4KFSz1KbqSQe2o7citbbPxbk77lW8M2SicP1M06U3D5BBbOXrj0ehlLjwZou6SQc2ILcgsr6nR6FpWzZ6V/BkLtU+YEkJCQwKuvvsp//mN8Cjtv3jzOnz/PwoULWbFiBbNnz670BKBQKNBqtSaPqArmV1hYWKH3h8qLwsYe96dK61RIeh1XZz5ntDzv7B6TyeC0aXG4DRyH+2Dj/xNOnYfh1Ll06u2UlTOMlpVkpmAfMRa3AWON2ut0GEKdDkPK5b0IQlmV+TnHw4cP37NyV79+/di/v/SUt2PHjsTExJRfdGXk6OjI9evX0etFMY6qQpIkCgoKSExMNJrawhxxFMaeo+DySaMCLprUOPKjDqMrzDO0leTdIO/CIUqy01DYGE93olA7olA7Gu9cJgeZjLyoQ2gybleg0pdoyL90nKL4KBS2d22DDIWt6VQqkk5LweUTFMZFGp01FSVEk3/xGHpt8SO/d+HhLmdc41jiaYpKaufnW+YzAA8PD/bv30/9+vWN2vft24eLiwtQOnlYZU3kdicXFxcSEhKIjo6u9GML93fr3pA5/k1A6S/55F+nUhR7rjQeF288R04n+8gGsg6sBkBmaUPd5yejL8jm+urPkXRaQIZdi27kntsDuhJkShXO3UairONO0bVz6PKzABnqpk+QtHgCUknpIEKn7qNQB3ckackHlGSlAmBVvxkKO2d0uRkAOLTrj0UdD6M4dQW5JC39AG1G6bQS1n4t8Bg2kdS1X5EfVTrFitLeBc9Rn6K0Ny5+Ljy+BUd/ZtfV0vs+jlb2TO32Dh525vuxYg5lTgBjx45l/PjxHD16lODgYCRJIjIykp07dzJjxgwuX77Mu+++a5hDpjLJ5XJ8fMSUu4KxgksnDJ0/gDY9gZzjm8k6dHtuI6m4gKx9KynJzbzZ+QNI5Ecfod6Y+WjT4rCs2xCFTWkNjHpvzKcoPgoLR1fSNs43dP4AN/auQFeQbej8oXSCOI/nSychU9o533MEcO6pbYbOH0pnFs0+utnQ+UPpE0bZxzeLovPlJCE72dD5A2QV5fBH9HZeDX3ejFFVvjIngL59++Lh4cGyZcvYsGEDSqWSRo0asXz5coKDgzlz5gwvv/wyzz9fuz5AoerSF+WZtJXkZcHdNV0L89AXGk8KqC8uQGGtxsK/lVG73MISmwYtbm5nvI2kLUaXb1zNDkAqLsI2yLSoyO3jm05IWJKXYdKmL7j/xIXCo8m7o4C7oa3YtK2me6Si8K1bt6Z169b3XNa8eXOaN29eLkEJQnmwadTGMFkbgExhgUNoH7QZiUZnBnYtu6PLzeDG3hV3bBtCym+fUJR4EWufJrj2fwO5tR3pWxYaBoJZ+TRBm55we5vAtti37kneuT2GJKOwcyL/4hFS189Gae+Mc8+XsGnYmqwjf5B1cC1IEurgTqBQws17FApbBxzbD6Qg6ggl2TfPJmRy7Fp0reiPrNYIcG6Al72HoRi8DBldG4SZOarKV+aawEVFRSxfvpxz585RUlJi8njf119/XSEBwsNHswnC/WhvpJBzfAv6Eg32rXpi6dEAfXEh2cc3o81MwrZRW2yD2iFJEnlnd1N47SyWHg3IPbcXTfLtueCtG7RE5V6f7EPrDG1yKzVOPUZRFBuJys0H+5DeyC0sKUqIJvf0TuTWatDryT5yex4amYUV7kPeJmXFp0ZxuvR+heLrschVltiH9sXC0Y2S3Eyyj21CX5iHXfMuWNWr2qOpq5vsohy2XNrNjcJsnvBtQzP3mlf2tNxqAn/00Uds27aNjh07olaryzVIQagoFnU8cO75olGb3NKaOh2Ma7/KZDLsmnfFrnlXJL2OjG2LjZYXJUQh3fUkjr4oD0s3X+xbdDNqt/IOxMo7EIDk3z4xWiZpi8i/eNQkTl1BDq59XzNqU9o5iWv+FcjByp5hzQaYOwyzKnMC2LdvH7NmzbrvhHCCUFPI5Aos6zY0mh7CyjsQlVt9o5rAcis1mtQ4so9vRuXqi31ob+RKFUWJF8k9vQu5lQ0qVx8KY07d3reFFbYBbcn923gmSsubCUMQKlOZE4BSqbxn9SpBqIlcB44lbeM8ihMvYeXbFNe+ryO3VqPLzSQv6hAWju5Y+TYlbePtKVKKEqJwDBtM0tIPDfcA5Gon1M06k3/hEAo7J1yefAmbhiE4dR9V+jSSpMex/UBs/FqY660KtViZE8D//d//MWvWLKZPn25SE0AQahqVsxdeoz41aXcb9BZuvAVA/ELjyl4F0UdLi7/f8ZSRPi8T24B2JiN/HdsPwLF97b78IJhfmRPAli1biI6OpkOHDtja2poM739YTWBBqA4kSU9xQjQypSWWdU3rLuu1xRQlRGHh6I7cyvhemMxCZagKZtSusqLw6hkU9s6onL0M7UWJFwGw9Gwk5rESzKLMCeCFF16oyDgEwez0xQUk/TIZTUrpdCY2jdrg/sx4ZDcrw2nSE0j+ZbJhJLBtcCc0KTGGwWB1Oj6LOrgz+ecPGh7ftPINJnXjPPS3RgK3H4BT5+dJXj7N8CiqVb3GeDw/CblSzGUlVK4yJ4B7zQMkCDVJzqkdhs4foODSMQqv/I1NwxAAbuxfdbPzB5DIj9yH1+hZaDMTUbn6GEb5ev/rawpjTiO3siXv7B6jMQfZhzegsHM2aiuKv0B+5H7s7nqaSBAq2iMVvd28eTNPPfUUoaGhxMfH89lnn/HDDz9UVGyCUKlud+63leTdbtPl3bVc0gMS6sbhRlM8yJUqbAPaYO3TBF3ejbv2KFFyI+WBxxGEylLmBLBmzRqmTJnCk08+iVZbOmeKv78/8+bNY9GiRRUWoCBUFnWTJ+COguxyK1s0qdeInT2ahO/+g8qtvtH6Fq4+ZB1cy7UvR5H08yQ0afFIkkTm3hXEfv0K8QvHYXHHNX8AC2dP7Nv0Q2ZhaWiTKVWoG9e+UaiC+ZX5EtDixYv5+OOP6dOnD99+W1rg4plnnsHe3p6ZM2fy6quvVliQglAZLD388HxhCjkn/0KmVKFQ1yFr/yqg9OxAm5mCS5/XKLx6GqWjGyU5N8g/vw+AorhIrv/+OY4dniJr38rSbfIyyc5MvrnNGZT2zji0H4jSzgnPkdPIPrYZJAmH0D5YONU12/sWaq8yJ4C4uDiCg4NN2hs3bkx6enqZD5iTk8OAAQMYO3YsQ4aIAhhC1WJVr7FhyoXra74wWiaVaFCo6+D+1H8BiJs3xmi5NiORgssnjXeo1yG3tDYUm7nF0qMBbhH/LufoBeHRlDkB+Pn5cejQIerVq2fUvmXLFho0MH1c7n4mT57M9evXH76iIFSwwqtnyL94DAtnT+xadkeuVKHJSCydx0dpiYXTXWUZZXIknZb0v37EwtENlXt9o5rASnsXrOoFGdcERgbISd+2GKWdM/ateiK3tEabnUru3ztA0mPXqgcWju6V8p4F4U5lTgD/+c9/GDduHOfOnUOn0/Hbb78RFxfH7t27yzwR3Nq1a8nLyyMgIOCxAxaE8pB3bh+p62cbXhde+RunHv9H4g/jkbRFAMjVdbBt0oH8C4eQW6tRN+lA6povgdKJEC29ArDyaUpRXCQWTnVx7f9vLL0aobl+jdwzu5FbWqFu2qn0OFJptbr8Cwdxe3o8iT++Z5ilNOfkX3i/8qUo9iJUujIngM6dO7Nq1Sp++OEHGjVqxMGDB/H392fFihU0bdr0odvHx8czd+5cli9fzssvv3zf9XJycsjJMZ5TPSXF9KkJQfgnsk/8afS64PIJlI5uhs4fQJ93A5uGrXGLeBMUClKWT+NW5w9QnHgR79e+RungivyOm7qu/V7HpffLIJOXXkaSbpcqLU66RM6RDYbOH0onlcs7vx/H9gMr4J0Kwv09Uj2ARo0a8dlnnz3yQXQ6Hf/973957733cHV1feC6S5YsYe7cuQ9cRxD+KbnK0rhBJkemsjFZT6a0RJMWh9zGDpmF1d1LQSZDc/0aFk6ehqphkiShSY1HbmWDXHX3NqVPF5m0mexbECreAxPA//73vzLvaPz48fddNn/+fPz8/HjyyScfup9Ro0aZDDpLSUlh+PDhZY5FEB7GscNTFMVdMIzidWjTF8e2/ciP3GcYxavyaMCNfSvQpsUDMmybdkBmYWU4S7AJaEvyzx+hy89GprDApe9r2AS0JeXXKRTfrCVgExSG3NIGfXEBAOqmHXFo24/8CwfQpMYBpbWK1cEdK/kTEISHJICzZ8+WaScPm8dk06ZNpKamsm3bNgDy8/OZMmUKZ86c4eOPPzZa197e3mxFxIXaw9qnKfVen0vh1dNYOHti5V1aDMT71a8ouHwCmVJFUfwFsg+vv7mFRH7kfuq+MJWSrOso67iTtX81uvzs0qU6LRnbFlOSlWbo/AEKog7hPuwj9PlZKO2dsfINRiaT4fXi/yi4fAJJkrBpFCKmgRDM4oEJ4Oeff37kHc6ePZsXX3wRBwcHQ9uffxpfbx04cCCjRo0Sj4EKZqW0dzaZfkGuskLdpAMA+ecPmGwjaYsM26RnLzBapi/KR3sj2XQbTQF2zbsYtcmUFtgGtf8n4QvCP/ZIU0GUxdKlS01u4gpCdWR7MxHcorB1oODqGeLmjSF52cdY+TQxWm7lG4z6ro5ebqXGWsz1L1RRj3QTuCzKUmJ4/fr1D11HEMzNNqANboPfJvfMLhS2Dsgtbck5uhGAkqzryG0dcer6AoXXzqBy9cHxiadRWNvh/vR75J7ajtzKFsewwSjucdNXEKqCck8AglCTqJt0MFwSSlr6odEyfX4W1n7NcQw3fmjBNrAttoFtKy1GQXhc5X4JSBBqKpWbr9FrmYUlJflZZO5aRl7kPqQ7KoEJQnUgzgAEoYzqdBqKJj2eothI5NZ22AaFcX3F7bKRdtfO4drvdTNGKAiPRiQAQSgjhY09ni9MRVeQi9zSmsQfjce+5J7eiVP3keKav1BtiEtAgvCIFDZ2yBRKZIq7fj/J5aDToUmNRX9zgJkgVGXlngD8/PxMCsYLQk3kGD4EZLf/C9kGtSd+0TgSvnubuDmvUnitbAMpBcFcHngJaM+ePWXeUefOnYHSymGCUBvYBrXH+5UvKbx6GpWbLxnbFhsmedMX5pL+53fU+9ccM0cpCPf3wATw2muvlWknMpmMCxculEtAglCdqFzroXItrZGhzTQeBay9R+1fQahKHpgAoqKiKisOQajSSrLTyNj5M9r0eKz9W+PUaRgSEjf2/EZhzClUrr5YN2hJwcWjhm1sA8RYAKFqe6SngEpKSsjIyECnK33eWZIkNBoNkZGR9O/fv0ICFISqIGXVTDTXrwKUzuIpSUh6nWFksCY1DpV7AxzaRVAUH4WlVwBOnYeZM2RBeKgyJ4CdO3fywQcfkJ2dbbLM3t5eJAChxirJyTB0/rcUXDpuMvBLcz0Gj2ETce7hWInRCcLjK/NTQF999RUdOnRg1apV2NrasnTpUr744gtcXFyYNGlSRcYoCGalsLFHbm1n1Gbh7IXK2ct4PVsHFNbqygxNEP6RMp8BXLt2ja+//poGDRrQpEkTCgoK6Nu3LxYWFixYsIB+/fpVZJyCYDYypQWufV8nbdN89EV5WDh74dx9JJKkR5uZjDYzCbm1Gpe+r5uODRCEKqzM/1qtrKyQy0tPGOrXr090dDSdO3emadOmXL169SFbC0L1ZhvUDmv/lujybqB0dDcUQfL+1xxKsq6jsHMSRV2EaqfMl4BCQ0OZP38+OTk5NGvWjG3btqHVajl69ChqtTjtFWo+mUyOTK4wrYAnlz+0Kp4gVEVlPgN47733eP311/n9998ZNmwYS5YsISQkBK1Wy1tvvVWBIQqC+eVHHy29BFSYi4WrDx7PvAeSnpRVM9GmJyC3scet/7+xaRRi7lAFoczKnADq16/Pli1bKCoqwsrKilWrVnH06FEcHR1p0UJUPBJqLqlEa+j8AbRpcWTsWAp6Hdr0BAD0BTmkbZqPz5sLxX0Aodoo8yWg7t27k5WVhZWVFQDW1tZ07twZDw8PwsLCKixAQTA3XUGOofO/RZsej+Zm529YLz8L3V3rCUJV9sCfKjt27ODEiRMAJCYmMmfOHEMCuCUuLq7iohOEKkBp74zKzRdNaqyhzaZhKJK+hJxjmw1tKg9/lOo65ghREB7LAxNAUFAQS5YsMdT5PX/+vNFMnzKZDBsbGz777LOKjVIQzMz9mQlk7liKJj0eG//WOHV5HknSI5PJKYg5hcrVB+fuI80dpiA8kgcmAC8vL5YuXQrA+++/z8SJE8UTP0KtZOHohvtT7xq1yQDnni/ibJ6QBOEfK/M9gBkzZmBjY8OePXv46aefyMnJ4cyZM+Tl5VVkfIIgCEIFKfPjCqmpqYwePZrExESKioro3r07ixYt4vTp0yxevJiGDRtWZJyCIAhCOSvzGcD06dNp2LAhhw8fxtLSEoDPP/+cli1b8umnnz5k61K7du0iIiKCVq1a0aNHD5YvX/54UQuCIAj/WJnPAA4fPsyyZctQqW4Pd7e2tuatt97i2Weffej2qampjB07lrlz59K5c2ciIyN57rnnaNasGU2bNn286AWhCtAV5iK3skUmEyW2herlkUasFBcXm7TduHGjTDWA3dzcOHToEGq1Gr1eT1ZWFgqFAltb20cJQRCqDG12Kqm/f0Fx8mUU9i64Rfwb6/rNzB2WIJRZmRPAk08+yWeffcYXX3xhmPckKiqKqVOn0r179zLtQ61WU1hYSGhoKCUlJbzyyivUr1/faJ2cnBxycnKM2lJSRGk9oerJ2PYTxcmXAdDlpJO6fg4+b36LTK4wc2SCUDZlTgATJkzgo48+olOnTgD07duXkpISunbtyvvvv1/mA1paWvL3338THR3Nq6++iq+vL88884xh+ZIlS5g7d+4jvAVBMA/N9WtGr3V5megKcsRgMKHaKHMCsLW15csvv+Q///kPV65coaSkBH9/f/z8/B7pgHK5HJVKRbNmzXj22WfZsWOHUQIYNWoUgwcPNtomJSWF4cOHP9JxBKGiWfu1IPfvvwyvVW4+ovMXqpVHugeg0+m4du0aMTExyOVy7OzsqF+/fpmmwj169CifffYZa9asMbRpNBrs7e2N1rO3tzdpE4SqyLnHSJD0FFz5G5WbDy5PvmTukAThkZQ5ASQkJPDyyy+TmJiIp6cnkiSRlJREQEAAixYtwsXF5YHbN27cmOvXr7N48WJGjhzJ6dOn+f3338XlHqHakqusce33urnDEITHVubn1iZPnoy3tze7d+9m69at/PXXX+zatQtHR0emTp360O3t7OxYtGgRf/31F23btmXSpElMmzaNtm3b/qM3IAiCIDyeMp8BnDx5klWrVuHsfHvmE1dXV9577z2ee+65Mu2jadOm/Pbbb48epSAIglDuynwG4O3tzeXLl03aU1JScHNzK9egBEEQhIpX5jOAkSNHMmXKFK5du0ZISAgKhYLz58+zYMECnn32Wfbs2WNYt3PnzhUSrCAIglB+ypwAPvroIwBmz55tsmzBggWGv8tkMi5cuPDPIxMEQRAqVJkTQFRUVEXGIQiCIFQyMXuVIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi0lEoAgCEItJRKAIAhCLSUSgCAIQi1VqQngwIEDDBkyhNatW9OzZ0+WL19emYcXBEEQ7qCsrAMlJyfz5ptvMnPmTLp37865c+d4+eWX8fLyomPHjpUVhiAIgnBTpZ0BJCYm0r9/f3r27IlcLqd58+a0bduWkydPVlYIgiAIwh0q7QwgNDSU0NBQw+usrCyOHz/OwIEDjdbLyckhJyfHqC0lJaVSYhQEQahNKi0B3Ck3N5fXX3+dFi1a0L17d6NlS5YsYe7cueYIq8Lp9RJXErNwsrfC2cHa0J6QmoskQT13OzNGJwhCbVPpCeDq1auMGTOGhg0bMmvWLORy46tQo0aNYvDgwUZtKSkpDB8+vDLDLHcZ2YV8+O1BElLzkMtlDOsZyLPdG/HZ0mMcPld6hhPa2J0P/q8tFkrxcJYgCBWvUhPAsWPHGDNmDMOGDePtt99GJpOZrGNvb4+9vX1lhlUpVm6/SEJqHlB6JrD8ryjsbS0MnT/A8QvX2X86ka4h9cwVpiAItUilJYC4uDhee+01/vOf/zBixIjKOmyVkXqj0Oi1XoK4lFzT9TILKiskQRBquUq71rBs2TLy8/P58ssvadWqleHP559/XlkhmFXHlp5Gr93qWNO/g5/R5R6lQkb7ZnUrOzRBEGqpSjsDeP/993n//fcr63BVTrdQH/R62PN3Ai4O1gztGYCHsy2fvBbO+r1X0OslBnbyx9ej5l3+EgShajLLU0C1VY+2PvRo62PU1rSBM00bOJspIkEQajORACpQSkY+e04mYGttQdeQethaW5BfqGXn8XgKirV0buWNh7PtQ/dTUKRl14kEcgs0dGrphaerGkmSOHgmmZikbFo2cqVZQ5dKeEeCINQkIgFUkLiUHN6ds5fCYh0AWw5dY9bYjvz3m73EXy99Guj3nZf58q1OeLvd//l/nV7i/fkHiEnMBmDVjkvMGtuRv47EsnH/VaD0CaM3nm5B77D6FfumBEGoUcQD5xVk6+FYQ+cPpU/8rNpxydD5AxQWl7D1cOwD93P2cpqh8wfQaHVs3BfDn4eMt1u/90o5RS4IQm1RqxNA6o0CMrKNH8/MLdCQmJZn1KbR6ohNyaFEpy/zvhUK04/2XgO8lAo5GdmFpN31mGheoZb467ko5KbbKOQy5DLTtnsp0emJTcmhWKszak9KyyMnX/OwtyEIQg1WKy8Blej0zFp2ggOnk5DJoFtoPcY+24p1ey7z85YoSnR6GtVzZPLL7bmWnMPMpcfJLdBQx86SD15sS5Cv00OP0SesPtuPxpFbUNrJBvrU4amujTh6/jqX47MAsLdVkZCay4uf/IUkQceWXrzzfGu2HLrG4g2RaEr0+HrYEeDjyMW40m1srS0Y0NkfO7UlK7dfBEAmg2e6B5jEcDk+i2mLj5CRXYTa2oJ3XwghwKcOU78/TFTsDZSK0hHJQ3sGls8HKwhCtVIrE8D+U4kcOJ0EgCTBjmPxNG3gzJJN59FLpetcis9i9c5LHIlMMXTiN3KLWbjmDF/9p8tDj1HXxZb547tx8GwStlYWhDWri8pCwcw3nuDg2WQKirSolAq+XvG3YZt9pxJp1tCZH/44R4muNJDYlFyebOfLoE4NyckvJqy5J072Vozo05gWjVyIScyhRSMX/DwdTGJYtO4sGdlFQOkZxbzVp+nS2puo2BsAlOgklm2NomMrLzxd1I/7cQqCUE3VygSQlJ5v0nY5PsvQ+d+SmJbH9Yz8u9pMt70fRztL+ob7GbWpLBR0ae0NwJpdl0y2iUnMNnT+t6Rk5NPx2ZYm6zZv6Erzhq73PX5SuvGlrLQbhYbpKG6RJEhOzxcJQBBqoRqVAI5GpvC/X46j0eioY2/FnHc64aC2NlmvbRMPVmyLNnT4SoWM3mH1OXg2mazcYsN64c3qIpfJOBJ5e76eVgGufLHsBLEpOYQ2due5J4MAiWV/RnEyOhXfuvaM6tsEF0dr/joSy1+HY7G1tmBozwCa+DkTGZPB8m3RFBaV0KaJOwq5DN3NQORyGU+28+VkVKrR1BENvOz5+LtD5ORr6NnWhz7hftzIKeKnTeeJScymZYArL/RpjEIuY/m2aI5FXsfLTU3zhq7sO5Vo2E/rQDfCm3ty6Gyyoc3ORkVTv7KPQ8gr1PDmrF1kZBWhslAwblgrOrb0KvP2giBUHTUqAUxbfATpZqeemVPEv2ft4eePe5us17CeIxNfbMf6vVeQy2UM6dIQP08Hpv0rnF+3RpGZXUSX1t70aOtL+2ae/LLlAtFxNwhu4MzpS2lcTSqtV3A1KQe9XkKnl1i354qhLSktj6E9Avlm5SnDMc9fzWDWuE5M/u4QxZrSG7LRcTcY3juIyCsZ6CWJQZ39aVSvDlNfC2fZn1GkZhbQpqk7v++8ZHii6FJ8Fna2Kjbuv0pkTAYA15Jz0Gh12NmqWLGt9L5ATFI23u5qnurakNOX02no7ciIPo2xt1VRVFzCzuPxONpZ8tyTgVhZlv2fwb8/32W4rFSs1fG/n4+LBCAI1VSNSQB/R6caOv9b7vw1f7e2TT1o29TDqM3Xw573R7U1alNbW/CvIc2B0imdb3X0txw+l4L+rgNfjMti79+JRm1FGh1bDlw1dP63ZGQX8cm/wo3avFzVjB9RWjzn0Nlko8dJAfafTjJ0/rccjUzBzlZl1JZwPY9JL9Xn//o3NWrvHVb/sccM3Or877Tn7wQ6t/J+rP0JgmA+NeYxUH8vR5M25c1HMRPT8liz6zIHziQZLrfk5GvYdOAqfx66Rn6hFgBtiZ69fyewdvdlUu649n/2cjqrdlwkKS0fOxsLo2N4u6nxcjW+fu6gVlG/rumcPkH1TZ8ecq1jzZZD19h88KrhZrNOp+fA6STW7LqM6h6PjvrWtcPJ3uquOOxMBpTZWCnJyC5k9c5LnLqYamhPzSxg3Z4r7D4Rj7akNLkUFGnZejiWTftjyM4rTZw6vcShs0ms2XWJ+OulM5eqLEzjEVNZCEL1VGPOAOzVKtTWSvIKSwxtjeo5cPZyOpMWHTI8w9+huSevP9WccV/uNvyaXbPrMrPf7sxnS47x98U0AH75M4rP3ujAqYtpLN18wbDPJ9v6cOBsMvmFWrxcbXkpoil6SSIpLY+k9HzU1ha88XRLWgW4cjYmnZNRqSgVMoZ0bUSXkHrEpuSybs9lSnQSLQNc2XromuF6/6odl/j67S7MXXXKcJ1eqZDTs60Pu04kUKLT06KRCwM7+tPIuw5f/nqS3AINHs42vDwwGEuVgmvJOcRfz8XGSskTLbx4f/4BQ+zDegYS3rwu47/ZR9HNM5GtR2KZ9FI73p691zD+YcX2i8x+uwuLN0ay+0QCAEs3X2DSy+3p3MqbbUfjDPus62yDi4PpfRZBEKq+GpMA8go0Rp0/lF4vX7fnitEArgNnkvB0tTW6lJGckc+a3ZcNnT+UDv76Y28MR88b1yM+GZ3Kksm9yMgupK6zraGozbcTupOckY+zgzWWFgoAprwSRtqNQqwsFdjZlF6eGdWvCYO7NKRYo+N41HXmrz5t2Hd6ViHrdl82uklbotOTW6Dh5497UVBcglsdG6C0ethPk54kPasQD2db5DcHgs37b1eSM/Jxsrdi7KzdRrGv23OZ9KxCQ+cPcO5KBmt2XzEa/HYjt5j1e64YOn8oPRtYu/sy1zOM6xXcyC2mRKc3nG0JglB91JgEIN2rTcLk+jyATmfapr/7GVBAkiST+wp6CeQyGRYKhVFFM9nNNvldVc4slHKTUbpKhQy9Uo50j9juFa8klY4svnsksVwuQ6mUc+chZTIZKqUChVyGdNenopcwabv/Me/zedxjn4IgVE81JgHY2aho6O3A5YTb8+Z0auVFt9B6/B2darj2366pB4O6+LPrRDw3bt4kdqtjzZCujYiOvcGZy+lAacfdv2MDvFzV/PpXtGGfoY3dePGTrWTnaahf156JL7ZFL0l8uvgosSm5OKhVvDWsNc0aujDrl+McPpeCSinn2R4BDO0ZyG9bo1i18xIlOj0hQe64OFiRfvNsxMnekkGdGxKbksvxC9eB0mThqLbkhcl/otHqCG3sznsjQomKzeTLX09yI7cYbzc1H/xfWyxVCqYvPkpMYjZ2NhaEN/MkJeP2nEEDOjagQwtP9p1KQnNzaojG9Z14qmtD9v2dSPLN+x4OahUDOvmTllXI/psD5uRyGYM6NyT1RgELfj9jtE/x618QqieZdK+felVMQkIC3bt3Z8eOHXh73/9pE72+dGTrhasZdGjhSb8ODQCITc7h8Llk3J1teaKFJ0qFnKzcYnafTEAhl9ElxBs7GxUarY59pxLJyC6iQwtPw83dE1HXuRh7g8D6Tnyx7ITRHDphzeqi10tGYwUc7SwZ3LkhizdGGsU3fkQI//v5hFHbyL6NsVQpkCTo3MobRztLtCV6DpxO5PqNAvzq2vPJj0eNthnRJ4gtB68ZEgeUjk+ws1UZPX1ka23BeyNDibp2g4beDrRpUvrUU1J6HgdOJ+GotqRTa28sLRTkFWjYczIBTYmezq29cbK3Kr0ZfSaJpPR82jX1MIw2jozJ4MzldKN9CoJQ9Tys76wxZwBQ+it1RJ/GJu2+de3xveupHEc7SwZ19jdqU1ko6N7GuGALQEiQOyFB7qRnFZpMoBaXkmty+Sgrt5grCVkm+zl3JcOkLfVGIW883cKozUIpp8vNwvB33g+4JSYxx6jzB4i7nov9XY+B5hdqcXeyoVWAm1G7p4vaZO4gtY2Kfk80MGpTKOR0usfjnaKIjSDUDOLc/RG4OFqbPN4Z2tidkMbGHWwDLwc6tDCuAayyUNCrva/JdXwXByum/nCYKd8f5u/o0kc1UzLy+eq3k0yYt5+k1FysLRVG27RvVpcg3zomcYQ2djdq83JVU7cMBWcEQaidatQZQGWY+GJbFm+MJC4ll9DG7ozo0xiJ0rOPk1GlU0G81L8pbk42/GtIc7YevoattQXPPxlEA6/SGUZ/+6t0Koh2wR4s3xZtmPvn7+hUvnyrMzOWHCXl5tM2kTEZDO7sz5XEbMNUEF1aexPcwJkfN0QSk5hNqwBXRvVrgkIhN1yO8nZT82L/pkY3qgVBEO5Uo+4BVDdrdl1i8cbzRm29w3xNir20aOTCtH91qMzQBEGoAWrVPYDqQFui5+j5FAqLtDioLU2W16/rYDRBHFCmusGCIAiPSiSASqTTS3wwf79hPn4HtYo2Tdw5dr70kc/2wR70au+LtkTHkk3nKdFJeLupGdpDFGwRBKH8mSUBnDlzhtdee41Dhw6Z4/Bm83d0qqHzBwxjCV4d1Ay9JBnm5B/UuSFdQ+qRmVOEr4e9YZSvIAhCearUBCBJEqtXr2bmzJmVedgq49bEa3fSaPU42VuZjM91UFve8xKRIAhCeanUx0DnzJnDb7/9xuuvv16Zh60yQoLc8XS5fT3fUqWgoEjLcx9u5rkPN/PDH+fuOQWDIAhCRajUM4Bhw4Yxbtw4jhw5ct91cnJyyMnJMWpLSUm5z9rVi8pCwedjO7H9aBwFRVrcnGyMisas23OF4AbOtAuua74gBUGoNSo1Abi7uz90nSVLljB37txKiMY87G1VDOnaEIDVO+9dE1gkAEEQKkOVewpo1KhRDB482KgtJSWF4cOHmymiitOikQsyGUYzjrYIuH+Rd0EQhPJU5RKAvb099vam1bRqokb16vDWsFas3nkZSZIY3KUhTR6hQLsgCMI/UeUSQG3TLdSHbqGmE9AJgiBUNDEZnCAIQi1llgTQrl07jh8/bo5DC4IgCDeJMwBBEIRaSiQAQRCEWkokAEEQhFqqWjwFpNOVzqFTU0YEC4IgVIZbfeatPvRu1SIBpKWlAdTIwWCCIAgVLS0tDV9fX5P2alERrKioiHPnzuHq6opCoXj4BtXMrZHOy5Ytw8PDw9zhCI9IfH/VV03/7nQ6HWlpaQQHB2NlZWWyvFqcAVhZWREaGmruMCqch4dHjSp5WduI76/6qsnf3b1++d8ibgILgiDUUiIBCIIg1FIiAQiCINRSIgFUAfb29vz73/+uNbOg1jTi+6u+avt3Vy2eAhIEQRDKnzgDEARBqKVEAjCDoqIi0tPTzR2GIAi1nEgAZvDCCy9w6tQpc4ch/AOtWrUiOjr6sbdPSEggMDCQnJyccoyqdvn22295++23H2vbl19+mWXLlj10vT/++INhw4Y91jGqA3EPwAy6devGBx98QI8ePcwdimAmCQkJdO/enWPHjtXaG5CC+YkzgH9Ar9fz6aefEh4eTlhYGKNHjyYuLg6AlStX0qtXL9q0acPo0aOJj48H4I033iApKYm3336b7777DoCff/6ZHj16EBoayogRI4iKinro/jUaDdOmTePJJ5+kZcuW9OzZk02bNpnhU6h63nnnHaZPn254rdPpCA8P58iRI/f9XhISEmjVqhUffvghoaGhLF++nNOnT/PUU08RGhpK7969+f777w37DAwM5MKFCwDExMTw4osv0rp1a7p27cqvv/5qWO9+3+3dDh48yFNPPUXr1q2JiIjgzz//NCzr1q0bkyZNon379owfP75cP6vq4H7f54gRIxgzZgwA33zzDa+++ioRERF06NCBzMxMjh8/zoABAwgNDeWNN97gjTfe4JtvvgFgxIgR/PTTT4a/f/XVVwwePJjWrVvz/PPPc+XKFQDWrFnDwIEDDcf+/fff6dWrF61ateK5557j4sWLACQnJ/PGG2/QpUsXmjdvzjPPPHPf77pKkYTH9ueff0q9evWSsrKyJI1GI02YMEH64IMPpK1bt0odOnSQzp07JxUXF0vffvut1KtXL0mr1UqSJEldu3aVtm3bJkmSJK1YsULq0KGDFBkZKWk0Gun777+XwsPDpezs7PvuX5IkacGCBdLQoUOlrKwsSafTSUuXLpVat25tOEZttm/fPqlDhw5SSUmJJEmStGfPHqlr167Sn3/+ed/vJT4+XgoICJC++OILqbi4WMrPz5f69+8vLVu2TJIkSYqKipJatWolxcXFSZIkSQEBAdL58+el4uJiqWvXrtKsWbOk4uJi6cKFC1JISIh04sSJB363t46XnZ0tXbx4UQoODpY2bdokabVa6eDBg1LLli2l48ePS5JU+u9lxIgRUkFBgZSTk2OeD9WM7vd9fv3119Lrr78uSZIkzZkzRwoODpYuXLgg5eTkSDdu3JBCQ0OllStXSlqtVlq3bp0UEBAgzZkzR5IkSXrhhRekxYsXG/7eqVMnKSYmRsrNzZVeeuklady4cZIkSdLvv/8uDRgwwBBHq1atpGPHjkk6nU6aO3eu9OSTT0qSJEkvvvii9Mknn0gajUYqLCyU3n77bemVV16pxE/p8YgzgH/Azs6O1NRU1q9fT0pKCtOnT2f69OmsXLmSkSNH0rRpU1QqFa+++ip5eXkcOXLEZB/r1q1j5MiRNGnSBAsLC0aPHo2dnR27d+++7/4Bhg0bxvz587G3tyc1NRVra2vy8vIoLCys7I+hygkPD0culxs+7w0bNhAREcGqVase+r1ERESgUqmwsbFBrVaze/du9u/fT/369Tl+/Dj16tUzOtbJkyfJyclh3LhxqFQqgoKCWLZsGQ0aNHjgd3unTZs20a5dO/r27YtSqSQsLIyIiAjWrl1rWKdXr15YW1tjZ2dXcR9cFXW/71MmkxmtFxAQQFBQkOEz9vDw4JlnnkGpVDJw4EBatWp132MMGDAAPz8/1Go1vXr1Mpxp32nDhg0MHDiQ0NBQ5HI5r7zyCv/73//Q6/VMnz6dd955B4CkpCQcHBxITU0tx0+hYogE8A+Eh4czadIkNm/eTK9evejTpw87d+4kKSmJ+fPnExoaSmhoKG3atCE3N5ekpCSTfWRkZODl5WXU5uXlRUpKyn33D5CXl8eECRNo3749Y8aM4dChQwBI4pYOcrmcAQMGsGHDBgoLC9m+fTuDBg0q0/fi5uZm+Pvs2bNxdnZmwoQJtGnThvfff5+8vDyjY2VkZODq6opSeXtexcDAQBwdHR/43d4pMzMTT09PozZvb2+Sk5PvGVdtc7/v8253fkbXr1/H3d3daHndunXvewxnZ2fD35VK5T3nz09PTzfah0qlokWLFsjlcq5du8bw4cPp1KkTkyZNIjY2tlr8XxQJ4B+Ij4+nSZMmLF++nCNHjjBkyBDeeustXF1dmTBhAsePHzf8WbNmDf379zfZh6enJ4mJiUZtCQkJODs733f/Wq2WyZMn4+3tzYEDB1izZg2jR4+urLddLQwePJjt27fz119/ERAQgJ+fH25ubg/9Xm79qiwpKSEmJoapU6eyf/9+li9fztmzZ1m6dKnRcdzd3UlPTzfqMNasWcPhw4cf+N3eqW7duibrxcfH4+LiYhJXbXWv7/Nud35GHh4eJon2nxaUcnd35/r164bXWq2WmTNnkpuby5gxYxg9ejSHDh3il19+oWPHjv/oWJVFJIB/4PDhw/z73/8mKSkJtVqNg4MDdnZ2DB48mMWLF3PlyhUkSTKcOt76x2NhYUFubi4AgwYNYunSpVy4cAGtVssPP/xAZmYmXbp0ue/+lUolubm5WFpaIpfLSU1N5YsvvgBK/1EK4O/vj6+vL7NnzzbcxBs0aNADv5c7KRQKPvjgA3766Sd0Oh0eHh7I5XIcHByM1mvevDl16tRh/vz5aLVaoqOjmTlzJhYWFg/8bu/Ut29fjh8/zubNm9HpdBw6dMhwmUModa/v80G6d+9OWloaq1evpqSkhD///JOTJ0/+oxgiIiL4448/OHPmDDqdjh9//JFdu3Yhk8koLi42zLcfGRnJ0qVLq8X/xWpRD6Cqeuqpp7h69SrPPvss+fn5+Pn5MWfOHEJCQsjJyWHMmDGkpqbi4+PDvHnzqF+/PgBDhgxhypQpXL16lbfffpsbN24wduxY0tPTCQoK4ocffsDZ2fm++5fJZEycOJEPP/yQ5cuXU6dOHZ599lkiIyO5ePEiYWFh5v1gqojBgwczY8YM+vbtC5QmgPt9LwkJCUbbymQyvv76a6ZPn86CBQtQqVT079+foUOHGq2nUqlYsGAB06ZNIzw8HDs7O/773/8SEhJCSEjIfb/bO4/n6+vL/Pnz+eKLL5g4cSLu7u5MmTKFJ554ouI/pGrk7u/zQdRqNXPmzGHKlCnMmDGDDh060KxZMywsLB77+GFhYbz//vuMHz+etLQ0mjRpwrx581Cr1UydOpUpU6Ywfvx4vLy8GDp0KAsWLCA/Px9bW9vHPmZFE+MABEGocTIzM0lKSiI4ONjQ9swzz/D000+bJPHaTFwCEgShxtFoNIwYMYLIyEgAdu/eTVRUFO3btzdzZFWLOAMQBKFG2rBhA3PnziU1NRUvLy/GjRtHz549zR1WlSISgCAIQi0lLgEJgiDUUiIBCIIg1FIiAQiCINRSIgEIQgWaMGECY8eONXcYgnBP4iawIFSg3NxcJEkSc/4LVZJIAIIgCLWUuAQk1BorVqygZ8+eBAcH07t3b9atWweUFlxZvHgxQ4cOpXnz5gwdOtQwgAhK51eaNWsWHTp0ICQkhNGjRxMTE2NYXlRUxKeffmpY/vrrrxvmF7r7EtCePXsYOHAgzZs3p1+/fvz++++GZXl5ebzzzju0a9eOli1bMnr0aK5du1axH4pQq4kEINQKkZGRfPLJJ0yYMIGtW7cyYsQIJkyYYOhgv/76awYMGMDatWvx8/PjpZdeIisrC4A5c+awZ88evvrqK1auXImfnx8jRowwTOg3efJkduzYweeff87KlSvRaDS89dZbJjFcunSJsWPHMmzYMDZu3Mgbb7zBzJkzDZXcZs+eTUJCAkuXLmXNmjXI5XI++OCDyvh4hFpKTAYn1ApJSUnI5XK8vLzw8vJi+PDh1K9fHycnJ6B0Rs7hw4cDMHXqVLp27crmzZsZMmQIP/30Ez/99BMhISEAfPjhh+zbt4/169czcOBANm7cyNdff014eDgAH3/8MStWrECj0RjF8P333xMREcFzzz0HgI+PD3Fxcfzwww/069ePxMREbG1t8fb2xtbWlmnTpplMEy0I5UkkAKFW6NixI61bt2bgwIE0atSILl26MGTIEMPN2dDQUMO6KpWKwMBALl26RFxcHBqNhtGjRxvNN19cXMzVq1e5evUqJSUlNGvWzLCsXr16vPvuuyYxXLp0iYsXLxrVbi4pKTEUk3nttdd47bXXCAsLo02bNvTo0aNMUx8LwuMSCUCoFaysrFi8eDEnT55k165d7N69m6VLl7Jw4UKgdP7/O+n1ehQKhaHQy48//mhSyEWtVpOWlgaUrWCLTqdjxIgRDBs27J7LW7ZsyY4dO9i1axd79+7lq6++4tdff2X16tVYWlo+8nsWhIcR9wCEWuHIkSMsWLCAkJAQ3n33XTZu3EiTJk3YunUrAOfPnzesW1xcTHR0NIGBgfj4+KBUKsnMzMTX1xdfX198fHz45ptvOHPmDN7e3igUCqPtExMTadu2rUmhGX9/f2JjYw378fX15ejRo/z6668ALFy4kDNnzhAREcHnn3/OihUruHjxItHR0ZXwCQm1kUgAQq1gbW3NvHnzWLlyJYmJiezbt4+YmBjDpZsVK1awYcMGrly5wkcffYRSqaRPnz7Y2try3HPPMX36dPbs2UNsbCxTp05lx44d+Pv7o1arefrpp5kxYwbHjh3j8uXLTJ48mcDAQJOatC+99BK7d+/m22+/JTY2lq1bt/Lpp58azixSUlKYNm0aJ0+eJD4+nrVr16JWqw2FhAShvIlxAEKtsW7dOhYuXGioyzt06FBef/11unXrRrdu3Th58iRXrlyhZcuWTJo0CX9/f6B0bvkvv/ySDRs2kJeXR1BQEP/9738N9w0KCgr47LPP2Lp1Kzqdjg4dOvDRRx/h4uLChAkTKCgoYM6cOQBs376dOXPmEBMTg6urK88++yz/+te/kMlkFBQU8Omnn7Jz505yc3Np3Lgx7733nuHmsyCUN5EAhFqvW7duvPTSS7zwwgvmDkUQKpW4BCQIglBLiQQgCIJQS4lLQIIgCLWUOAMQBEGopUQCEARBqKVEAhAEQailRAIQBEGopUQCEARBqKVEAhAEQail/h8aDcnn9sCT/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax2 = sns.swarmplot(data = iris, \n", + " x = 'species', \n", + " y = 'petal_length',\n", + " hue = 'species')\n", + "\n", + "# ax2.set(xlabel='Species', ylabel='Petal length (cm)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The split-apply-combine workflow" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All your scientific experiments follow a very simple analysis workflow: *split-apply-combine*\n", + "\n", + "You do an experiment on 2 or more groups, apply some summary function to each group, and then aggregate the results.\n", + "\n", + "
\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
species
setosa5.0063.4281.4620.246
versicolor5.9362.7704.2601.326
virginica6.5882.9745.5522.026
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "species \n", + "setosa 5.006 3.428 1.462 0.246\n", + "versicolor 5.936 2.770 4.260 1.326\n", + "virginica 6.588 2.974 5.552 2.026" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris.groupby('species').mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_width
species
setosa0.0498500.0536080.0245600.014904
versicolor0.0729980.0443780.0664550.027966
virginica0.0899270.0456080.0780500.038841
\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width\n", + "species \n", + "setosa 0.049850 0.053608 0.024560 0.014904\n", + "versicolor 0.072998 0.044378 0.066455 0.027966\n", + "virginica 0.089927 0.045608 0.078050 0.038841" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris.groupby('species').sem()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The plotting package `seaborn` does this automatically for you." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABD4AAAFgCAYAAABT67n1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlx0lEQVR4nO3de5Rld1kn/O+TdEJICMRIS3MxE8cJIMMlSg+KYQCByQSFcdCMwBKZgGPG4e4I7Tg6DPC+8yoNy1FBkMiLgDCo3OQ2C4IOEIhcEiDmwkV4AyEpKZMYAhEiJPTz/nF2Y6XS3VVdXad21e7PZ61a55x99tm/5/z69JPKt397n+ruAAAAAEzREWMXAAAAADAvgg8AAABgsgQfAAAAwGQJPgAAAIDJEnwAAAAAkyX4AAAAACZL8MFhoar+d1WdMHYd+1NVZ1XVXcauA2AtNnuPXa2qekFVPWINr3toVb1zHjUBHIzN0o+r6i5V9aY1vG7F+tfaqzm8VXePXQMc9qrq/Ume3d0Xjl0LwJRVVWX2+8+edTzmQzPr4Y9a5f7buvvm9RofYKvQ/xiLFR9sClV1XFW9q6r+qqourarHDtu/WFUvrKqPDT//bNi+vareXFUXDD+nDdtvV1V/WFWXVNXFVfXTS45zx+H+E4ZjXVRVr6iqI4efVw9jX1JVvzSn93P/qvpAVX28qt5TVXeuqjOT7Ezy+qGm21bVw6vqk0Mtr6qq2wyv/82q+tTw3l48bHt0VX102P/Pq+pOh1I7MD0T7LEvrKqnLHn8vKr65eH+c4aaL66q5w/bTq6qT1fVy5J8Isn37queYduZw/1/UVV/OczZx6rq+Ko6Zsn7/2RV/dg+ajuxqv5sGP8jVXXfJTWeU1XnJnntobx/YOs6XPrx0HcvHbadVVVvrKp3JDm3qo6tqj8d6v6T4ffYnUvrX9K3/6CqLquqc6vqtsM+K/Xqk6vqg1X1ieHnRw/lPTIN28YuAAZnJPmb7v6JJKmqOyx57mvd/YCqemKS307yqCS/k+R/dveHquqkJO9J8gNJ/luSr3b3fYbjfNfSQarqB5I8Nslp3X3T8Evwzya5LMldu/vew34nLC+wqn42yXP2Ufvnu/vMld5PVR2V5CVJfrK7rxn+Q/c/uvvJVfW0DCs+quqYJK9O8vDu/uuqem2S/zTcPibJPbu7l9T4oSQ/Mmz7D0l2JfnlfU8zcJiaWo/946HWlw2PfybJGVV1epJTkjwgSSV5e1U9OMmXktwjyZO6+ylVdf8D1VNVRyf5kySP7e4Lqur2SW5M8swk6e77VNU9M/sF/u7Lant+kk9297+tqodlFnKcOjx3/yQP6u4b9/E+gcPDYdGPc+t/YH9gkvt293VV9ewkX+nu+1bVvZNctI+xklk/f3x3/0JV/WmSn07yuiV17q9XX53kX3X3P1TVKUnekNk/MnIYE3ywWVyS5MVV9cIk7+zuDy557g1Lbv/ncP8RSe5VVXv3uX1VHT9sf9zejd39lWXjPDyzXzwvGF5728ya4zuS/NOqekmSdyU5d3mB3f36JK9f6/sZGvu9k7x3GPvIJF/ex2vvkeQL3f3Xw+PXJHlqkpcm+Yckr6yqdyXZez753ZL8SVXdOcnRSb6wyhqBw8ekemx3f7Kqvqdm10bantkv0F+qqmckOT3JJ4ddb5fZL85fSnJFd39k2H75CvXcI8mXu/uCYbyvJUlVPSizADvd/ZmquiLJ8uDjQZn9cp7u/j9V9d1L/sfm7UIPOOwdLv345GW7vre7rxvuPyizQCfdfWlVXbyfw3+huy8a7n88yfJj7q9XH5fkpVV1apJv59Z9msOQ4INNYVjZcP8kP57kN6rq3O5+wd6nl+463B6R5IHLf4GsWWc/0IVrKslruvtXb/VE1f2S/OvMQoafSfLkZc+vOv3e1/tJ8tYkl3X3Aw9Q394ab6W7b66qB2T2H7LHJXlakodl9kv4b3X322t2nvnzVjg+cJiZWo8dvCnJmUl2ZPYvjnvH/43ufsWyY5+c5Ot7H3f3V1aoZ3/vc5/9eRX77D3W1/fxHHAYOYz68XJL+99qemmSfHPJ/W9nFt7cotTsew5+KcnfJrlfZvP3D6scjwlzjQ82hSEl/kZ3vy7Ji5P80JKnH7vk9sPD/XMz+x//va8/dT/bb7HsL8lfJDmzqr5neP7EqvonNTsX8ojufnNmSwd/aNnr0t2v7+5T9/Fzq/8A7Of9fDbJ9qp64LDPUVX1z4eX3JDk+OH+Z5KcXMO5nUl+LskHqup2Se7Q3f87ybPyj0un75BkYbj/75fXAjC1Hjv448xC4DMz+6U7mS0Bf/LQL1NVd91by7L5WKmezyS5S1X9i2H/46tqW5LzMlsqnuEUl5My6+1LLd3noUmu3fuvkACHUT8+kA9lFrikqu6V5D6reM2+7K9X3yGzlSB7Mvs9+sg1Hp8JseKDzeI+SV5UVXuS3JTkPy157jZV9dHMgrrHD9uekeT3hqVxe38Z/cUk//ew/dLMkuHnJ3nL3gN196eq6tczOy/7iGGsp2Z2PuAfDtuS5Fbp+KG+n+7+Vs0uxPS7w7LnbZmdE3lZZtf0+P2qujGzcyCflOSNQ/O+IMnvJzkxydtqdg2QyizNTmYrPN5YVQtJPpLk+w6xdmB6ptZj092XDcu9F7r7y8O2c2t2XvuHh6Xdf5/kCUOtS931QPUM/fqxSV5Ss4vp3ZjZsvKXZdarL0lyc5KzuvubS5agJ7Oe/IfD3H0jAmnglg6LfryClyV5zfCePpnk4iRfXcO4B+rVb66qf5fkfbHajvg6Wza5qvpikp3dfe3YtQBMjR4LsDkcTv24qo5MctRw8dHvz2x1yt27+1sjl8aEWfEBAADARjk2yftq9o2HlWFl9Mg1MXFWfAAAAACT5eKmAAAAwGQJPgAAAIDJ2lTX+DjjjDP63e9+99hlAGxltfIu+6YHAxwyPRhgXPvsw3Nb8VFV96iqi5b8fK2qnnWg11x77eQvYgywaenBAOPRgwHmZ24rPrr7s0lOTb7zlUULSd46r/EAAAAAltuoa3w8PMn/191XbNB4AAAAABsWfDwuyRv29URVnV1VF1bVhddcc80GlQNAogcDjEkPBtgYcw8+quroJP8myRv39Xx3n9PdO7t75/bt2+ddDgBL6MEA49GDATbGRqz4eGSST3T3327AWAAAAADfsRHBx+Ozn9NcAAAAAOZprsFHVR2b5F8lecs8xwEAAADYl7l9nW2SdPc3knz3PMcAAAAA2J+N+lYXAAAAgA0n+AAAAAAmS/ABAAAATJbgAwAAAJisuV7cFAAAmIZdu3ZlcXExO3bsyO7du8cuB2DVBB8AAMCKFhcXs7CwMHYZAAfNqS4AAADAZAk+AAAAgMkSfAAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLF9nCwAAm9z9n/PasUvI8dfekCOTfOnaG0av5+MveuKo4wNbixUfAAAAwGQJPgAAAIDJEnwAAAAAkyX4AAAAACZL8AEAAABMluADAAAAmCzBBwAAADBZgg8AAABgsraNXQAAALD57Tn6uFvcAmwVgg8AAGBFXz/l9LFLAFgTp7oAAAAAkyX4AAAAACZL8AEAAABMluADAAAAmCzBBwAAADBZgg8AAABgsgQfAAAAwGQJPgAAAIDJEnwAAAAAkyX4AAAAACZr29gFAMBq7dq1K4uLi9mxY0d27949djkAAGwBcw0+quqEJK9Mcu8kneTJ3f3heY4JwHQtLi5mYWFh7DIAANhC5r3i43eSvLu7z6yqo5McO+fxAAAAAL5jbsFHVd0+yYOTnJUk3f2tJN+a13gAAAAAy83z4qb/NMk1Sf6wqj5ZVa+squPmOB4AAADALcwz+NiW5IeSvLy7fzDJ15P8l+U7VdXZVXVhVV14zTXXzLEcAJbTgwHGowcDbIx5Bh9XJbmquz86PH5TZkHILXT3Od29s7t3bt++fY7lALCcHgwwHj0YYGPM7Rof3b1YVVdW1T26+7NJHp7kU/MaD4D5uv9zXjt2CTn+2htyZJIvXXvD6PV8/EVPHHV8AABWZ97f6vL0JK8fvtHl8iRPmvN4AAAAAN8x1+Cjuy9KsnOeYwAAAADszzyv8QEAAAAwKsEHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMma99fZAsC62XP0cbe4BQCAlQg+ANgyvn7K6WOXAABsYrt27cri4mJ27NiR3bt3j10Om4TgAwAAgElYXFzMwsLC2GWwybjGBwAAADBZgg8AAABgsgQfAAAAwGQJPgAAAIDJEnwAAAAAkyX4AAAAACbL19kCAABwyE57yWljl5Cjrz86R+SIXHn9laPWc/7Tzx9tbG7Nig8AAABgsgQfAAAAwGQJPgAAAIDJEnwAAAAAkyX4AAAAACZL8AEAAABMluADAAAAmKxtYxcAAAAA66GP7ezJnvSxPXYpbCKCDwAAACbhptNuGrsENiGnugAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTtW3sAraaXbt2ZXFxMTt27Mju3bvHLgcAAAA4AMHHQVpcXMzCwsLYZQAAAACrMNfgo6q+mOSGJN9OcnN375zneAAAAABLbcSKjx/r7ms3YBwAAACAW3BxUwAAAGCy5r3io5OcW1Wd5BXdfc7yHarq7CRnJ8lJJ510wIPd/zmvnUeNB+X4a2/IkUm+dO0No9fz8Rc9cdTxga3vYHowAOtLDwbYGPNe8XFad/9QkkcmeWpVPXj5Dt19Tnfv7O6d27dvn3M5ACylBwOMRw8G2BhzDT66+2+G26uTvDXJA+Y5HgAAAMBScws+quq4qjp+7/0kpye5dF7jAQAAACw3z2t83CnJW6tq7zj/q7vfPcfxAAAAAG5hbsFHd1+e5H7zOv5Y9hx93C1uAQAAgM1r3t/qMjlfP+X0sUsAAAAAVmne3+oCAAAAMBrBBwAAADBZgg8AAABgsgQfAAAAwGQJPgAAAIDJEnwAAAAAkyX4AAAAACZL8AEAAABMluADAAAAmCzBBwAAADBZgg8AAABgsgQfAAAAwGQJPgAAAIDJEnwAAAAAkyX4AAAAACZL8AEAAABMluADAAAAmCzBBwAAADBZ28YuAABgKnbt2pXFxcXs2LEju3fvHrscACCCDwCAdbO4uJiFhYWxywAAlnCqCwAAADBZgg8AAABgsgQfAAAAwGQJPgAAAIDJEnwAAAAAk+VbXQCAyTjtJaeNOv7R1x+dI3JErrz+ytFrOf/p5486PgBsFlZ8AAAAAJMl+AAAAAAm64CnulTVMUkeleRfJrlLkhuTXJrkXd192fzLAwAAAFi7/QYfVfW8JI9O8v4kH01ydZJjktw9yW8Oocgvd/fF8y8TAAAA4OAdaMXHBd39vP0891tV9T1JTlr/kgAAAADWx36Dj+5+14Fe2N1XZ7YKBAAAAGBTWvHrbKtqZ5JfS/JPhv0rSXf3fedcGwDAltLHdvZkT/rYHrsUAGCwYvCR5PVJnpPkkiR7DnaAqjoyyYVJFrr7UQf7egCAreKm024auwQAYJnVBB/XdPfbD2GMZyb5dJLbH8IxAAAAAA7aaoKP/15Vr0zyF0m+uXdjd79lpRdW1d2S/ESS/5HkP6+1SAAAAIC1WE3w8aQk90xyVP7xVJdOsmLwkeS3k+xKcvz+dqiqs5OcnSQnneRLYgA2kh4MMB49GGBjrCb4uF933+dgD1xVj0pydXd/vKoeur/9uvucJOckyc6dO10JDGAD6cEA49GDATbGEavY5yNVda81HPu0JP+mqr6Y5I+TPKyqXreG4wAAAACsyWqCjwcluaiqPltVF1fVJVV18Uov6u5f7e67dffJSR6X5P909xMOsV4AAACAVVvNqS5nzL0KAAAAgDlYzYqPOye5rruv6O4rklyXZMfBDNLd7+/uR62lQAAAAIC1Wk3w8fIkf7/k8deHbQAAAACb2mqCj+ru71xlurv3ZHWnyAAAAACMajXBx+VV9YyqOmr4eWaSy+ddGAAAAMChWk3w8YtJfjTJQpKrkvxwkrPnWRQAAADAeljxlJXuvjqzr6MFAAAA2FL2u+Kjqn69qk48wPMPqyrf1AIAAABsWgda8XFJkndU1T8k+USSa5Ick+SUJKcm+fMk/8+8CwQAAABYq/0GH939tiRvq6pTkpyW5M5JvpbkdUnO7u4bN6ZEAAAAgLVZzTU+PpfkcxtQCwAAAMC6Ws23ugAAAABsSYIPAAAAYLIEHwAAAMBkrXiNj6ranuQXkpy8dP/ufvL8ygIAAAA4dCsGH0neluSDmX197bfnWw6Ho127dmVxcTE7duzI7t27xy4HAACACVlN8HFsd//K3CvhsLW4uJiFhYWxywAAAGCCVnONj3dW1Y/PvRIAAACAdbbfFR9VdUOSTlJJ/mtVfTPJTcPj7u7bb0yJAAAAAGuz3+Cju4/fyEIAAAAA1tuKp7pU1V+sZhsAAADAZnOgU12OSXJckjtW1XdldopLktw+yV02oDY2wJdecJ+xS8jN152YZFtuvu6K0es56bmXjDo+AAAA6+tA3+ryH5M8K7OQ4xNLtn8tye/NsSYAAACAdXGga3z8TpLfqaqnd/dLNrAmAAAAgHVxoBUfey1U1U8t2/bVJJd099VzqAkAAABgXawm+Pj5JA9M8r7h8UOTfCTJ3avqBd39R3OqDQAAAOCQrCb42JPkB7r7b5Okqu6U5OVJfjjJeUkEHxySOx6zJ8nNwy0AAACsn9UEHyfvDT0GVye5e3dfV1U3zakuDiPPvu/1Y5cAAADARK0m+PhgVb0zyRuHxz+d5LyqOi7J9fMqDAAAAOBQrSb4eGpmYcdpSSrJa5O8ubs7yY/NsTYAAACAQ7Ji8DEEHG8afgAAAAC2jCNW2qGqfqqqPldVX62qr1XVDVX1tY0oDgAAAOBQrOZUl91JHt3dn553MQAAAADracUVH0n+VugBAAAAbEWrWfFxYVX9SZI/S/LNvRu7+y3zKgoAAABgPawm+Lh9km8kOX3Jtk4i+AAAAAA2tdV8q8uT1nLgqjomyXlJbjOM86bu/u9rORYAAMDU7Nq1K4uLi9mxY0d27949djkwWav5Vpe7V9VfVNWlw+P7VtWvr+LY30zysO6+X5JTk5xRVT9ySNUCAABMxOLiYhYWFrK4uDh2KTBpq7m46R8k+dUkNyVJd1+c5HErvahn/n54eNTw02usEwAAAOCgrSb4OLa7P7Zs282rOXhVHVlVFyW5Osl7u/uj+9jn7Kq6sKouvOaaa1ZzWADWiR4MMB49GGBjrObiptdW1fdnWK1RVWcm+fJqDt7d305yalWdkOStVXXv7r502T7nJDknSXbu3GlFCMAG0oMBxqMHj+tLL7jP2CXk5utOTLItN193xej1nPTcS0YdH+ZpNcHHUzNryPesqoUkX0jyswczSHdfX1XvT3JGkktX2B0AAABgXax4qkt3X97dj0iyPck9u/tBSR6z0uuqavuw0iNVddskj0jymUMrFwAAAGD1VnONjyRJd3+9u28YHv7nVbzkzkneV1UXJ7kgs2t8vHMNNQIAAACsyWpOddmXWmmH4dtffnCNxwcAAAA4ZGsNPlx8CQAmYNeuXVlcXMyOHTuye/fuscsBOKzc8Zg9SW4eboF52W/wUVU3ZN8BRyW57dwqAgA2zOLiYhYWFsYuA+Cw9Oz7Xj92CXBY2G/w0d3Hb2QhAAAAAOtt1Rc3BQAAANhq1nqNDwDgEH3pBfcZu4TcfN2JSbbl5uuuGL2ek557yajjAwDTZMUHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMlycVMAOIzd8Zg9SW4ebgEApkfwAQCHsWff9/qxSwAAmCunugAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFnbxi4AAAAA2Hx27dqVxcXF7NixI7t37x67nDUTfAAAAAC3sri4mIWFhbHLOGRzO9Wlqr63qt5XVZ+uqsuq6pnzGgsAAABgX+a54uPmJL/c3Z+oquOTfLyq3tvdn5rjmAAAAADfMbfgo7u/nOTLw/0bqurTSe6aRPABAAAAB/CBBz9k7BJy47Yjk6rceNVVo9fzkPM+sObXbsi3ulTVyUl+MMlH9/Hc2VV1YVVdeM0112xEOQAM9GCA8ejBABtj7sFHVd0uyZuTPKu7v7b8+e4+p7t3dvfO7du3z7scAJbQgwHGowcDbIy5Bh9VdVRmocfru/st8xwLAAAAYLl5fqtLJfl/k3y6u39rXuMAAAAA7M88V3ycluTnkjysqi4afn58juMBAAAA6+SE7pzYnRO6xy7lkMzzW10+lKTmdXwAAABgfp7w7T1jl7AuNuRbXQAAAADGIPgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyBB8AAADAZG0buwBgfe3atSuLi4vZsWNHdu/ePXY5AAAAoxJ8wMQsLi5mYWFh7DIAAAA2Bae6AAAAAJNlxQeso9NectrYJeTo64/OETkiV15/5ej1nP/080cdHwAAwIoPAAAAYLKs+AAAYNNy0W4ADpXgAyamj+3syZ70sT12KQBwyFy0G4BDJfiAibnptJvGLgEAAGDTcI0PAAAAYLKs+AAAYJ8+8OCHjF1Cbtx2ZFKVG6+6avR6HnLeB0YdH4C1seIDAAAAmCzBBwAAADBZTnUBAGDTOqH7FrcAcLAEHwAAbFpP+PaesUsAYItzqgsAAAAwWYIPAAAAYLIEHwAAAMBkCT4AAACAyRJ8AAAAAJM1t+Cjql5VVVdX1aXzGgMAAADgQOa54uPVSc6Y4/EBAAAADmhuwUd3n5fkunkdHwAAAGAlrvEBAAAATNbowUdVnV1VF1bVhddcc83Y5QAcVvRggPHowQAbY/Tgo7vP6e6d3b1z+/btY5cDcFjRgwHGowcDbIzRgw8AAACAeZnn19m+IcmHk9yjqq6qqp+f11gAAAAA+7JtXgfu7sfP69gAAAAAq+FUFwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTJfgAAAAAJkvwAQAAAEyW4AMAAACYLMEHAAAAMFmCDwAAAGCyto1dAMBmt2vXriwuLmbHjh3ZvXv32OUAAAAHQfABsILFxcUsLCyMXQYAALAGgg9gU/vAgx8ydgm5cduRSVVuvOqq0et5yHkfGHV8AADYalzjAwAAAJgsKz4AVnBC9y1uAQCArUPwAbCCJ3x7z9glAAAAa+RUFwAAAGCyBB8AAADAZAk+AAAAgMkSfAAAAACTNdfgo6rOqKrPVtXnq+q/zHMsAAAAgOXmFnxU1ZFJfi/JI5PcK8njq+pe8xoPAAAAYLl5rvh4QJLPd/fl3f2tJH+c5CfnOB4AAADALVR3z+fAVWcmOaO7/8Pw+OeS/HB3P23ZfmcnOXt4eI8kn51LQevrjkmuHbuIiTGn68t8rr+tMqfXdvcZq91ZD2ZgTteX+Vx/W2VO9WDWwpyuP3O6vrbSfO6zD88z+Ph3Sf71suDjAd399LkMuIGq6sLu3jl2HVNiTteX+Vx/5nTz8Gex/szp+jKf68+cbh7+LNafOV1/5nR9TWE+53mqy1VJvnfJ47sl+Zs5jgcAAABwC/MMPi5IckpVfV9VHZ3kcUnePsfxAAAAAG5h27wO3N03V9XTkrwnyZFJXtXdl81rvA12ztgFTJA5XV/mc/2Z083Dn8X6M6fry3yuP3O6efizWH/mdP2Z0/W15edzbtf4AAAAABjbPE91AQAAABiV4AMAAACYLMEHAAAAMFmCj32oqodW1TsP8PxZVfXSOYx7VlXdZcnjL1bVHdd7nDGtNLereP3Oqvrd/Tz3xaq6Y1WdUFVPWa8xN9Lyz8AB9nt1VZ15gOffX1Xr+l3bW3lek/Wb21W8/gVV9Yh9bP/OfA33f3S9xpwaPXh+9OAD04PnRw/eOvTg+dGDD0wPnh89WPCx2ZyVZMUP5OGsuy/s7messNsJSZ6ywj6b1VnZvJ+BE7J15zXZoLnt7ud295+vsNtDk/zoCvuw8c7K5v37tynowaM6IVt3XhM9mJWdlc37929T0INHdUK27rwmevDWDT6q6riqeldV/VVVXVpVj62q+1fVB6rq41X1nqq687Dv+6vqt6vqL4d9HzBsf8Cw7ZPD7T3WUMf2qnpzVV0w/Jw2bH9eVb1qGPvyqnrGktf8t6r6TFW9t6reUFXPHlKunUleX1UXVdVth92fXlWfqKpLquqehzxxq3tPo83t8D5PqJm/q6onDtv/qKoesSwt/O6qOncY4xVJajjMbyb5/mEeXzRsu11VvWmY99dXVd169PVXVScPY76mqi4eajh2X/O5r89AVT13+FxdWlXnrKXuqjq9qj48fI7eWFW3G7Z/saqev/zzNXym3ztsf0VVXVGzf3HZNPM61Lnhczt8rt8y3P/Jqrqxqo6uqmOq6vJh+3dS66o6Y6jxQ0l+am/dSX4xyS8NtfzL4fAPHv6uXF5b4F8eSw+emzHntvRgPXj170sPHlHpwXMz5tyWHqwHr/596cEHq7u35E+Sn07yB0se3yHJXybZPjx+bJJXDfffv3ffJA9Oculw//ZJtg33H5HkzcP9hyZ55wHGPivJS4f7/yvJg4b7JyX59HD/eUM9t0lyxyR/l+SozD50FyW5bZLjk3wuybOX1LlzyThfTPL04f5TkrzyMJjb30/yE0nuneSCJcf+XJLbLX19kt9N8tzh/k8k6WGuT95bx5Ixv5rkbpmFfR/e+2e2AXN58lDXacPjVyV5zgrzufQzcOKS+3+U5NHD/VcnOfMA475/+KzdMcl5SY4btv/Kkjnb5+cryUuT/Opw/4zNOK9jzW2SbUm+MNx/8fAZPS3JQ5K8YenrkxyT5Mokp2T2y8ifLvnsPi/D3/slr3njMI/3SvL5jZrHQ5h/PXiac6sH68Gbdm6jB2+WPnFW9GA9eHVzeXL04MnMbbZ4D96WreuSJC+uqhcmeWeSr2TWJN47BFZHJvnykv3fkCTdfV5V3b6qTsis4b6mqk7J7INz1BrqeESSey0JyW5fVccP99/V3d9M8s2qujrJnZI8KMnbuvvGJKmqd6xw/LcMtx/PkJRtgDHn9oOZ/YfjiiQvT3J2Vd01yXXd/ffLwsgHZ5iT7n5XVX3lAMf9WHdflSRVdVFmzeJDq6zpUF3Z3ecP91+X5L/mwPO51I9V1a4kxyY5McllSVb6zCz1I5k1kPOHsY7OrDHvta/P14OSPCZJuvvdm3hekw2e2+6+uao+X1U/kOQBSX4rs8/hkZl9dpe6Z2b/cfhcklTV65KcfYDD/1l370nyqaq604Hq2CT04PnRg9eXHjw/evB49OD50YPXlx48P3rwQdiywUd3/3VV3T/Jjyf5jSTvTXJZdz9wfy/Zx+P/K8n7uvsxw7Kb96+hlCOSPHBvA99r+LB9c8mmb2c23we7BGrvMfa+fu5Gntvzkjw1s381+LXMGs+ZufVfpv2NvT/7+rPYKMtrvCEHns8kSVUdk+RlmaWzV1bV8zJLTw9GJXlvdz9+P8/v6/N1MJ/RMec1GWduP5jkkUluSvLnmaXURyZ59irqO5Clc7lhSyXXSg+eHz143enB86MHj0QPnh89eN3pwfOjBx+ErXyNj7sk+UZ3vy6zpTY/nGR7VT1weP6oqvrnS17y2GH7g5J8tbu/mtnStYXh+bPWWMq5SZ62pK5TV9j/Q0keXbNzoW6X2dK0vW7ILCEe1Zhz291XZrac7JTuvjyz+Xp29t3wz0vys8PYj0zyXcP2TTGPS5y0d+6SPD7JR7L/+Vxa+94GdO3wWVnL+W4fSXJaVf2zYaxjq+ruK7zmQ0l+Ztj/9GzeeU3GmdvzkjwryYe7+5ok351Zqn3Zsv0+k+T7qur7l9S312acy4OiB8+PHrzu9OD50YNHogfPjx687vTg+dGDD8KWDT6S3CfJx2q2rOjXkjw3sz+0F1bVX2V2/uDSq8V+par+MrNz535+2LY7yW9U1fmZJVVr8YwkO2t2UZlPZXaxlv3q7guSvD3JX2W2vOrCzM4PS2aJ2e/XLS/qNIax5/ajSf56uP/BJHfNvpeNPT+zC+F8IsnpSb6UJN39d5ktabu0/vHiQ2P6dJJ/X1UXZ7aU7CXZ/3y+OsNnILPk8w8yW3L5Z5mdR3dQhoZ0VpI3DON/JLPmdCDPT3L6MK+PzGyJ3A2bcF6Tceb2o5kt1z1veHxxkou7+xapdnf/Q2ZL+t5Vs4s6XbHk6XckeUzd8qJOW83YfWIvPVgPXokePD968HjG7hN76cF68Er04PnRgw9CLatxkqrq/ZldQOXCsWtJkqq63XCe3rGZfWjO7u5PjF3XWmy2ud1sara88Z3dfe+xa1mtqrpNkm8P5/E9MMnLu/vUkcu6la04t4erzdYn9ODDx1bsE3ow622z9Qk9+PCxFfuEHjxdW/YaH1vcOVV1r8yWGb1mqzZ7JuukJH9aVUck+VaSXxi5HlhvejCbmR7M1OnBbGZ68EQdFis+1qqqnpTkmcs2n9/dTx2jnikxt+ujqt6a5PuWbf6V7n7PGPVMibkdnz4xP+Z2fegT82Nux6dPzI+5XR/6xPxMcW4FHwAAAMBkbeWLmwIAAAAckOADAAAAmCzBBwAAADBZgg8AAABgsv5/pcY3eRwkGwUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# `catplot` is short for \"categorical plot\", \n", + "# where either the x-axis or y-axis consists of categories.\n", + "\n", + "ax3 = sns.catplot(data=iris, \n", + " kind='bar', # there are several types of plots.\n", + "# errorbar='sd', # plot the error bars as ± standard deviation, use this line if you have seaborn 0.12.x\n", + "# ci='sd', # plot the error bars as ± standard deviations, use this line if you have seaborn 0.11.x.\n", + " col='species' # plot each species as its own column.\n", + " )\n", + "ax3.set_axis_labels(\"\", \"Length (cm)\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should quickly notice that the plot isn't as informative as we want it to be.\n", + "\n", + "The current plot only allows us to investigate the relationships the four metrics within species.\n", + "\n", + "Ideally, we want to directly compare metrics between species. \n", + "\n", + "To do so, we need to _reshape_ the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The Long-form vs the Wide-form of your data\n", + "\n", + "Our iris dataframe is in the wide-form (below right) and we want to turn it into the long-form. In the original iris dataframe, the data is organised by unit (flower, in rows) and the columns contain a mixtrue of variables (sepal length, sepal width etc). In a long-form dataframe, each columne is a variable, and each row is an observation. (Please read Hadley Wickham's https://vita.had.co.nz/papers/tidy-data.pdf to learn more about tidiness of datasets.) \n", + "
\n", + "\n", + "
Michael Waskom, Seaborn Tutorial 2022
\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "iris_tidy = pd.melt(iris.reset_index(), \n", + " id_vars=['index','species'], \n", + " var_name='metric', \n", + " value_name='cm')\n", + "iris_tidy = iris_tidy.rename(columns = {'index': 'ID'})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
..................
1456.73.05.22.3virginica
1466.32.55.01.9virginica
1476.53.05.22.0virginica
1486.23.45.42.3virginica
1495.93.05.11.8virginica
\n", + "

150 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n", + ".. ... ... ... ... ...\n", + "145 6.7 3.0 5.2 2.3 virginica\n", + "146 6.3 2.5 5.0 1.9 virginica\n", + "147 6.5 3.0 5.2 2.0 virginica\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "149 5.9 3.0 5.1 1.8 virginica\n", + "\n", + "[150 rows x 5 columns]" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IDspeciesmetriccm
00setosasepal_length5.1
11setosasepal_length4.9
22setosasepal_length4.7
33setosasepal_length4.6
44setosasepal_length5.0
...............
595145virginicapetal_width2.3
596146virginicapetal_width1.9
597147virginicapetal_width2.0
598148virginicapetal_width2.3
599149virginicapetal_width1.8
\n", + "

600 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " ID species metric cm\n", + "0 0 setosa sepal_length 5.1\n", + "1 1 setosa sepal_length 4.9\n", + "2 2 setosa sepal_length 4.7\n", + "3 3 setosa sepal_length 4.6\n", + "4 4 setosa sepal_length 5.0\n", + ".. ... ... ... ...\n", + "595 145 virginica petal_width 2.3\n", + "596 146 virginica petal_width 1.9\n", + "597 147 virginica petal_width 2.0\n", + "598 148 virginica petal_width 2.3\n", + "599 149 virginica petal_width 1.8\n", + "\n", + "[600 rows x 4 columns]" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iris_tidy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAFgCAYAAADglu6HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhcklEQVR4nO3de5RfZX3v8fcnhMgtCEg0XsrBVkQpIEqK0nA8qJQiWl1WKtpqjbaHVRW8rOK09hw5QNtlifSiqFXqEaRatIJWC5WLVorgjSD3i5eDXByZmhTQiAiEfM8fe4/+GCbJZJI9vz0z79das2b/9u15fvPkN/nM8+y9n1QVkiRJ6pcFw66AJEmSHsmQJkmS1EOGNEmSpB4ypEmSJPWQIU2SJKmHFg67AoOOOOKIuuCCC4ZdDUmS9EgZdgXmm171pK1Zs2bYVZAkSeqFXoU0SZIkNQxpkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknrIkCZJktRDhjRJkqQeMqRJkiT1kCFNkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg8tHHYFNDwjIyOMjY2xdOlSVq5cOezqSJKkAYa0eWxsbIzR0dFhV0OSJE3C4U5JkqQeMqRJkiT1kCFNkiSphwxpkiRJPWRIkyRJ6qHOQlqSvZNcPfD14yRv7ao8SZKkuaSzR3BU1beAAwCSbAOMAp/pqjxJkqS5ZKaGO18A/L+qum2GypMkSZrVZiqkvRI4e7INSY5JsirJqtWrV89QdSRJkvqt85CWZBHwEuBTk22vqtOrallVLVuyZEnX1ZEkSZoVZqIn7YXAN6vqP2egLEmSpDlhJkLaq9jAUKckSZIm12lIS7ID8BvAp7ssR5Ikaa7p7BEcAFX1U+AxXZYhSZI0FznjgCRJUg8Z0iRJknrIkCZJktRDhjRJkqQeMqRJkiT1kCFNkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknqo02mh1L3lpy2f9rGL7lnEAhZwxz13bNF5Lj/u8mkfK0mSJmdPmiRJUg8Z0iRJknrIkCZJktRDhjRJkqQe8saBIRoZGWFsbIylS5eycuXKYVdHkiT1iCFtiMbGxhgdHR12NSRJUg853ClJktRDhjRJkqQeMqRJkiT1kCFNkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknrIkCZJktRDhjRJkqQeMqRJkiT1kCFNkiSph5xgXZLmiJGREcbGxli6dCkrV64cdnUkbSFDmiTNEWNjY4yOjg67GpK2kk6HO5PskuScJDcnuSnJwV2WJ0mSNFd03ZP2HuCCqjoqySJgh47LkyRJmhM6C2lJdgaeC6wAqKoHgAe6Kk+SJGku6XK485eB1cAZSa5K8uEkO07cKckxSVYlWbV69eoOqyNJkjR7dBnSFgLPAv6+qp4J3Av86cSdqur0qlpWVcuWLFnSYXUkSZJmjy5D2veB71fV19vX59CENkmSJG1CZ9ekVdVYkjuS7F1V3wJeANzYVXnDcPvJ+23R8evu2g1YyLq7bpv+uXbdedrl1w7FetZTO9S0zyFJkrrR9d2dxwEfb+/svAV4XcflaTM8uPzBYVdBkiRtQKchraquBpZ1WYYkSdJc5NydkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknrIkCZJktRDhjRJkqQeMqRJkiT1kCFNkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknqo0wnWJUmbZ/lpy6d97KJ7FrGABdxxzx1bdJ7Lj7t82sdK2nrsSZMkSeohQ5okSVIPGdIkSZJ6yJAmSZLUQ4Y0SZKkHvLuziHafbv1wLr2uyRJ0i/M25A2MjLC2NgYS5cuZeXKlUOpw/H73zOUciVJUv/N25A2NjbG6OjosKshSZI0Ka9JkyRJ6iFDmiRJUg8Z0iRJknrIkCZJktRDhjRJkqQeMqRJkiT1kCFNkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg91Oi1UkluBtcBDwLqqWtZleZIkSXPFTMzd+byqWjMD5UiSJM0ZDndKkiT1UNc9aQVclKSAD1XV6Vvz5Ae+/axpH7t4zVq2AW5fs3ba5/nM4mkXL0mStFFdh7TlVfWDJI8FLk5yc1VdOrhDkmOAYwD22GOPjqsjSXNX7VCsZz21Qw27KpK2gk6HO6vqB+33HwKfAQ6aZJ/Tq2pZVS1bsmRJl9WRpDntweUP8sBvPMCDyx8cdlUkbQWdhbQkOyZZPL4MHA5c31V5kiRJc0mXw52PAz6TZLycf6qqCzosT5Ikac7oLKRV1S3AM7o6vyRJ0lzmIzgkSZJ6yJAmSZLUQ4Y0SZKkHjKkSZIk9ZAhTZIkqYdmYoJ1SZoXRkZGGBsbY+nSpaxcuXLY1ZE0yxnSJGkrGRsbY3R0dNjVkDRHONwpSZLUQ4Y0SZKkHjKkSZIk9dC8vSZt/aIdH/ZdkiSpT+ZtSLt3r8OHXQVJkqQNcrhTkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknrIkCZJktRDhjRJkqQeMqRJkiT1kCFNkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknpo4bArIEl9cfvJ+23R8evu2g1YyLq7bpv+uXbdeYvqIGnusCdNkiSphwxpkiRJPWRIkyRJ6iFDmiRJUg8Z0iRJknrIkCZJktRDnYe0JNskuSrJeV2XJUmSNFfMRE/aW4CbZqAcSZKkTUryb0l2GXY9NqXTkJbkScCLgA93WY4kSdJUVdWRVXXPsOuxKV33pP0dMAKs39AOSY5JsirJqtWrV3dcHUmSNBsk2THJ+UmuSXJ9kqOT3JrklCTfaL+e0u67JMm5Sa5ov5a363dKckaS65Jcm+Tl7fpbk+zeLr+6PdfVST7UXqa1TZIz23KvS/K2YfwMOgtpSV4M/LCqrtzYflV1elUtq6plS5Ys6ao6kiRpdjkC+EFVPaOq9gUuaNf/uKoOAt5H0xkE8B7gb6vq14CX84sRvHcCP6qq/apqf+DfBwtI8nTgaGB5VR0APAT8HnAA8MSq2req9gPO6OYtblyXc3cuB16S5EhgO2DnJB+rqld3WKYkSZobrgNOTXIKcF5VfTkJwNnt9rOBv22XDwP2abdDkzkWt+tfOb6yqu6eUMYLgAOBK9pjtwd+CPwr8MtJTgPOBy7aum9tajoLaVX1DuAdAEkOBY43oEmSpKmoqm8nORA4EnhXkvGgVIO7td8XAAdX1X2D50iTvAb3nyjAR9vM8vANyTOA3wTeBLwCeP203sgWmPJwZ5L9k7wkyW+Pf3VZMUmSNH8leQLw06r6GHAq8Kx209ED37/aLl8EHDtw7AEbWL/rhGK+CByV5LHt9t2S/Lf2erUFVXUuzZDpsxiCKfWkJfkIsD9wA7+4CaCAT0/l+Kq6BLhk86snSZLmqf2AdydZDzwIvAE4B3hUkq/TdDS9qt33zcD7k1xLk20uBf4I+It2/fU015udxEB2qaobk/xv4KIkC9py3gTcB5zRroN2ZHCmTXW48zlVtU+nNZEkSWpV1YXAhYPr2uvG3l9VJ03Ydw2/6GEbXP8T4LWTrN9zYPmTwCcnqcJQes8GTTWkfTXJPlV1Y6e1kTowMjLC2NgYS5cuZeXKlcOujiRJUzLVkPZRmqA2BtxPc6FdtbezSr02NjbG6OjosKshSdpCgz1g88FUQ9pHgNfQ3A67wQfTStJ8tvt264F17XdJ2jJTDWm3V9XnOq2JJM1yx+9/z7CrIGkOmWpIuznJP9E83O3+8ZVVNaW7OyVJkrR5phrStqcJZ4cPrJvyIzgkSZK0eaYa0hYAbxmfMb59GNxfd1UpSZI0uxz49rM29mT/zXblu38/m95rapKsAC6qqh9srXPOhKnOOLD/eECDn8999cxOaiRJkrR1rQCeMOxKbK6phrQFg1MpJNmNbidnlyRJ2qAkOyY5P8k1Sa5PcnSSA5P8R5Irk1yY5PFJjgKWAR9PcnWS7ZO8IMlVSa5L8pEkj2rP+VdJbkxybZJT23W/leTr7f5fSPK4mXqPUw1afw18Jck5NNeivQL4y85qJUmStHFHAD+oqhcBJHk08HngpVW1OsnRwF9W1euTHAscX1WrkmwHnAm8oJ3E/SzgDe33lwFPq6pKsktbzmU0My9Vkj8ERoA/nok3OKWQVlVnJVkFPJ/mQba/7ewDkiRpiK4DTk1yCnAecDewL3BxO33UNsCdkxy3N/C9qvp2+/qjNPN1vg/4GfDhJOe35wR4EvDJJI8HFgHf6+btPNKUhyzbUGYwkyRJQ9f2gh0IHAm8C7gYuKGqDt7EoZPekFBV65IcBLwAeCVwLE3n1GnA31TV55IcCpy4Vd7AFEz1mjRJkqTeSPIE4KdV9THgVODZwJIkB7fbt03yq+3ua4HF7fLNwJ5JntK+fg3wH0l2Ah5dVf8GvBU4oN3+aGB8bsFHTNbeJS/+lyRJW2xrPjJjivYD3p1kPfAg8AZgHfDe9vq0hcDfATfQXIP2wST3AQcDrwM+lWQhcAXwQWA34LPtNWsB3taWc2K77yjwNeDJM/HmwJAmSZJmoaq6ELhwkk3PnWTfc4FzB1Z9kUc+SuxO4KBJjv0s8Nnp13T6HO6UJEnqIXvS1HsHvv2sLTp+8Zq1bAPcvmbttM915bt/f4vqIEnS5rInTZIkqYcMaZIkST1kSJMkSeohQ5okSVIPeeOANA+MjIwwNjbG0qVLWbly5bCrI2kOuv3k/Wprnm+PE66b6eeukeRk4NKq+sJmHncozdygL96a9TGkSfPA2NgYo6Ojm95Rkua4NBN7pqrWT9xWVSfMUB0WVtW6Te3ncKckSZp1kpyS5I0Dr09M8sdJ3p7kiiTXJjmp3bZnkpuSfAD4JvBLSc5Mcn2S65K8rd3vzCRHtcu/luQrSa5J8o0ki5Nsl+SM9pirkjxvknrtluRf2vK/lmT/gfqdnuQiYErPgzKkSZKk2egTwNEDr18BrAb2opk54ADgwCTjMxDsDZxVVc8EdgeeWFX7VtV+wBmDJ06yCPgk8JaqegZwGHAf8CaA9phXAR9tp5EadBJwVVXtD/wZDw9kBwIvrarfncobdLhTkiTNOlV1VZLHthOtLwHuBvYHDgeuanfbiSa03Q7cVlVfa9ffAvxyktOA84GLJpx+b+DOqrqiLevHAEkOAU5r192c5DbgqROOPQR4ebvPvyd5TDuXKMDnquq+qb5HQ5okSZqtzgGOApbS9KztCbyrqj40uFOSPYF7x19X1d1JngH8Jk3v2CuA1w8eAkx2I8RUbmaYbJ/xc907ybYNcrhTkiTNVp8AXkkT1M6hmXD99Ul2AkjyxCSPnXhQkt2BBe3E6+8EnjVhl5uBJyT5tXb/xUkWApcCv9eueyqwB/CtCccO7nMosGa8J25z2ZMmSZK22DAemVFVNyRZDIxW1Z3AnUmeDny1uYmTnwCvBh6acOgTgTOSjHdWvWPCeR9IcjRwWpLtaa5HOwz4APDBJNcB64AVVXV/W9a4E9tzXwv8FHjtdN+fIU3qmM8ok6TutBfxD75+D/CeSXbdd2Cfa3hk7xlVtWJg+QrgOZOcZ8XEFVV1CXBJu3wX8NJJ9jlxsvpvTGchrb3b4VLgUW0551TV/+mqPKmvfEaZJGk6uuxJux94flX9JMm2wGVJPj9wZ4UkSZI2oLOQVlVFMxYMsG37tVWnjJCmYv2iHR/2XZKk2aDTa9KSbANcCTwFeH9Vfb3L8qTJ3LvX4cOugiRJm63TR3BU1UNVdQDwJOCgJPtO3CfJMUlWJVm1evXqLqsjSZI0a8zI3Z1VdU+SS4AjgOsnbDsdOB1g2bJlDodKk1h+2vItOn7RPYtYwALuuOeOaZ/r8uMu36I6SJI2T5d3dy4BHmwD2vY0zxc5pavyJEnS8Cw/bflW7Wi5/LjLN/u5a+0UUe+tqqM287h/A363qu7ZyD4nA5dW1Rc2t17T1WVP2uNpJh7dhmZY9Z+r6rwOy5MkSfNYVf2AZvaBh0mysKrWbeS4I6dw7hO2sHqbrcu7O68FntnV+SVJ0vyV5BSaSdM/0L4+EVgLvK6q9k2yAngRsB2wY5IXA2cCTwNuopnn801VtSrJrcAymgnZPw9cBvw6MAq8tKruS3ImcF5VndNOF/UeYEeaR469AHgM8I/tOoBjq+orW/IenbtTkiTNRp8Ajh54/Qrgign7HAy8tqqeD7wRuLuq9gf+HDhwA+fdi+aJFL8K3AO8fHBjkkXAJ4G3VNUzaC7nug/4IfAbVfWstl7vnf5bazgtlCRJmnWq6qokj22vQ1sC3A3cPmG3i9tpmgAOoZ0uqqqub+fWnMz3qurqdvlKmh63QXsDd7bTRjE+eXqSHYH3JTmAZq7Qp07zrf2cIU2SJM1W59Bcg7aUpmdtonsHlqd6I8L9A8sPAdtP2B4mfzj/24D/BJ5BM1L5symWt0EOd0qSpNnqE8AraYLaOZvY9zKaIVGS7APst/HdN+hm4AntdWkkWZxkIfBomh629cBrgG2mef6fsydNmoLbT57uZxnW3bUbsJB1d902/fPsuvO0y5ekmTCdR2Zsqaq6IcliYLSq7kyy50Z2/wDNUyeuBa4CrgV+NI0yH0hyNHBa+4ix+2iuS/sAcG6S3wG+xMN78abFkCZJkmatqtpvYPlWYN92+UyauznH/Qx4dVX9LMmvAF8Ebmv33bPdZ8348e36UweWVwwsXwE8Z0JVvgPsP/D6HdN6QwMMaZIkaT7YAfhSkm1prit7Q1U9MOQ6bZQhTZIkzXlVtZbmWWizhjcOSJIk9ZAhTZIkqYcc7pTmgdqhWM96aoetOv+xJKlDhjRpHnhw+YPDroIkaTM53ClJktRDhjRJkqQeMqRJkiT1kCFNkiSphwxpkiRJPeTdnVLHdt9uPbCu/S5J0tQY0qSOHb//PcOugiRpFnK4U5IkqYcMaZIkST1kSJMkSeohr0mTJGmWGRkZYWxsjKVLl7Jy5cphV0cdMaRJkjTLjI2NMTo6OuxqqGMOd0qSJPWQIU2SJKmHDGmSJEk9ZEiTJEnqIUOaJElSDxnSJEmSesiQJkmS1EOGNEmSpB7qLKQl+aUkX0pyU5Ibkrylq7IkSZLmmi5nHFgH/HFVfTPJYuDKJBdX1Y0dlilJkjQndBbSqupO4M52eW2Sm4AnAoY0SdK8tvy05Vt0/KJ7FrGABdxxzx3TPtflx12+RXVQ92bkmrQkewLPBL4+ybZjkqxKsmr16tUzUR1JkqTe6zykJdkJOBd4a1X9eOL2qjq9qpZV1bIlS5Z0XR1JkqRZodOQlmRbmoD28ar6dJdlSZIkzSVd3t0Z4P8CN1XV33RVjiRJ0lzUZU/acuA1wPOTXN1+HdlheZIkSXNGl3d3Xgakq/NLkiTNZc44IEmS1EOGNEmSpB4ypEmSJPWQIU2SJKmHDGmSJEk91OUE65IkqQO1Q7Ge9dQONeyqqEOGNEmSZpkHlz847CpoBjjcKUmS1EP2pEmaE0ZGRhgbG2Pp0qWsXLly2NWRpC1mSJM0J4yNjTE6OjrsakjSVuNwpyRJUg8Z0iRJknrI4U5JkjaD1z9qphjSJEnaDF7/qJnicKckSVIPGdIkSZJ6yOFOSb1x4NvPmvaxi9esZRvg9jVrp32ezyyedvGStNXZkyZJktRDhjRJkqQeMqRJkiT1kCFNkiSph7xxQJI079x+8n7TPnbdXbsBC1l3123TP8+uO0+7fM0f9qRJkiT1kCFNkiSphxzulDQnrF+048O+S9JsZ0iTNCfcu9fhw66CJG1VDndKkiT1kCFNkiSphwxpkiRJPWRIkyRJ6iFvHJAkaTPsvt16YF37XepOZyEtyUeAFwM/rKp9uypHkqSZdPz+9wy7CponuhzuPBM4osPzS5IkzVmdhbSquhS4q6vzS5IkzWVDv3EgyTFJViVZtXr16mFXR5IkqReGHtKq6vSqWlZVy5YsWTLs6kiSJPXC0EOaJEmSHsmQJkmS1EOdhbQkZwNfBfZO8v0kf9BVWZIkSXNNZ89Jq6pXdXVuSZKkuc7hTkmSpB4ypEmSJPWQIU2SJKmHDGmSJEk9ZEiTJEnqIUOaJElSDxnSJEmSesiQJkmS1EOGNEmSpB4ypEmSJPWQIU2SJKmHDGmSJEk9ZEiTJEnqIUOaJElSDxnSJEmSesiQJkmS1EOGNEmSpB4ypEmSJPWQIU2SJKmHDGmSJEk9tHDYFZAkaapGRkYYGxtj6dKlrFy5ctjVkTplSJMkzRpjY2OMjo4OuxrSjHC4U5IkqYcMaZIkST1kSJMkSeohr0mTJM2oA99+1rSPXbxmLdsAt69Zu0Xn+cziaR8qzRh70iRJknrIkCZJktRDhjRJkqQeMqRJkiT1kDcOSJJmjfWLdnzYd2kuM6RJkmaNe/c6fNhVkGZMp8OdSY5I8q0k303yp12WJUmSNJd0FtKSbAO8H3ghsA/wqiT7dFWeJEnSXNJlT9pBwHer6paqegD4BPDSDsuTJEmaM1JV3Zw4OQo4oqr+sH39GuDZVXXshP2OAY5pX+4NfKuTCvXX7sCaYVdCnbOd5w/ben6Yj+28pqqOGHYl5pMubxzIJOsekQir6nTg9A7r0WtJVlXVsmHXQ92ynecP23p+sJ01E7oc7vw+8EsDr58E/KDD8iRJkuaMLkPaFcBeSZ6cZBHwSuBzHZYnSZI0Z3Q23FlV65IcC1wIbAN8pKpu6Kq8WWzeDvXOM7bz/GFbzw+2szrX2Y0DkiRJmj7n7pQkSeohQ5okSVIPGdIkSZJ6yJDWsSSHJjlvI9tXJHlfB+WuSPKEgde3Jtl9a5ejh9tUe0/h+GVJ3ruBbbcm2T3JLkneuLXK1CM/LxvZ78z2Qd0b2n5Jkq367Czbuxtbq82ncPzJSQ6bZP3P27Fd/vWtVabmDkPa3LUC2OQvIPVLVa2qqjdvYrddgDduYh9tnhX09/OyC7Z3F1YwA21eVSdU1Rc2sduhwK9vYh/NQ4Y0IMmOSc5Pck2S65McneTAJP+R5MokFyZ5fLvvJUn+LslX2n0Patcf1K67qv2+9zTqsSTJuUmuaL+Wt+tPTPKRtuxbkrx54Jh3Jrk5ycVJzk5yfPsX2DLg40muTrJ9u/txSb6Z5LokT9viH9wsNcz2bn/2u6TxX0l+v13/j0kOm/DX9WOSXNSW8SF+MYvHXwG/0rbtu9t1OyU5p/238PEkk834MW8k2bP9WXw0ybXtz2aHydp5ss9LkhPaz+D1SU6fzs8zyeFJvtp+5j6VZKd2/a1JTpr4WWw//xe36z+U5LY0vd+29xQMo83b3wOfbpdfmuS+JIuSbJfklnb9z3vFkhzR1vEy4LfH6w38EfC2ti7/vT39c9vfLbfEXrX5q6rm/RfwcuAfBl4/GvgKsKR9fTTNc94ALhnfF3gucH27vDOwsF0+DDi3XT4UOG8jZa8A3tcu/xNwSLu8B3BTu3xiW59H0cwX91/AtjS/ZK4GtgcWA98Bjh+o57KBcm4FjmuX3wh8eNg/93na3h8EXgTsS/PA5/FzfwfYafB44L3ACe3yi2imVdsd2HO8HgNl/ohmVo8FwFfH/x3N16/2Z1TA8vb1R4C3b6KdBz8vuw0s/yPwW+3ymcBRGyn3kvZzuTtwKbBju/5PBtpy0s8i8D7gHe3yEbZ3/9uc5lmj32uXT20/08uB/wGcPXg8sB1wB7AXzR9c/zzwWT+R9nf3wDGfatt3H+C7w/75+jWcry7n7pxNrgNOTXIKcB5wN81/ohe3f0xtA9w5sP/ZAFV1aZKdk+xCE5I+mmQvml8U206jHocB+wz8AbdzksXt8vlVdT9wf5IfAo8DDgE+W1X3AST5102c/9Pt9ytp/4qbp4bZ3l+mCXu3AX8PHJPkicBdVfWTCX+8P5e2narq/CR3b+S836iq7wMkuZrmP6zLplinueqOqrq8Xf4Y8GdsvJ0HPS/JCLADsBtwA7Cpz9eg59D853p5W9YimjA1brLP4iHAywCq6gLbe1pmtM2reWj7d5M8HTgI+Buaz+02NJ/1QU+jCXTfAUjyMeCYjZz+X6pqPXBjksdtrB6auwxpQFV9O8mBwJHAu4CLgRuq6uANHTLJ6z8HvlRVL2u7ry+ZRlUWAAePh65x7S+X+wdWPUTTdps7xDF+jvHj56Uht/elwJtoekr/F81/ykfxyF/oGyp7Qyb79zHfTfzZrWXj7QxAku2AD9D0styR5ESaXpDNEeDiqnrVBrZP9lncnM+z7T25YbT5l4EXAg8CX6DpBdsGOH4K9duYwTae98PZ85XXpAFp7vD5aVV9jKbL+tnAkiQHt9u3TfKrA4cc3a4/BPhRVf2IZshstN2+YppVuQg4dqBeB2xi/8uA32qvf9iJZkhs3Fqa3h5NMMz2rqo7aIaw9qqqW2ja8HgmD2mXAr/Xlv1CYNd2vW07NXuMtynwKuBrbLidB3+m4/85r2k/V9O5HuhrwPIkT2nL2iHJUzdxzGXAK9r9D8f2no5htPmlwFuBr1bVauAxNL1mE6dBvBl4cpJfGajfONtYkzKkNfYDvtEOG/wv4ASaD+kpSa6hue5r8M6bu5N8heb6oj9o160E3pXkcpq/oqbjzcCy9qLXG2kuJt2gqrqCZtL6a2iGT1bRXKsCzV9zH8zDbxxQY9jt/XXg2+3yl4EnMvlQ1Uk0Fw9/EzgcuB2gqv6LZhjt+vziQnI90k3Aa5NcSzN8dRobbuczaT8vND0Y/0AzLP4vNNcZbZb2P+sVwNlt+V+j+Y97Y04CDm/b+4U0w3Jrbe/NMow2/zrN5SeXtq+vBa6tqof1mlXVz2iGN89vbxy4bWDzvwIvm3DjgOTcnZsrySU0F3iuGnZdAJLs1F7LtAPNL4ljquqbw67XXNG39tbUtEPQ51XVvsOuy1QleRTwUHud08HA31fVAUOu1qwxG9tc2hSvY5j9Tk+yD013/UcNaNKstQfwz0kWAA8A/3PI9ZE0ZPakzZAkrwPeMmH15VX1pmHUR92yvee2JJ8Bnjxh9Z9U1YXDqI+6Z5trGAxpkiRJPeSNA5IkST1kSJMkSeohQ5qkTiQ5IMmRG9m+LMl7Z7JOkjSbeE2apE4kWUHzBPdjJ9m2sKrWzXytJGn2MKRJ2qD22VMX0Dxs9zk0D04+g+bBq4+lmRHhBpqHhu5H81ifE4HPA98FtqeZmeFdwNOBJ9DMM7kGOJ3mGXQvbp/yfhrN5OQFnFRV587AW5Sk3vI5aZI25SnA79A8Lf0K4HdpJgN/Cc0E1jcC/15Vr28nn/8GzRyGJzDQk9bOh3ggcEhV3Zfk0IEy3kkz5dZ+7b67IknznCFN0qZ8r6quA0hyA/DFqqok19H0ij0JeEmS8Qmlt6N5MOtkPldV902y/jDgleMvqururVV5SZqtDGmSNuX+geX1A6/X0/wOeQh4eVV9a/CgJM+e5Fz3bqCM0AxzSpJa3t0paUtdCByXJABJntmuXwssnuI5LgJ+foOBw52SZEiTtOX+HNgWuDbJ9e1rgC8B+yS5OsnRmzjHXwC7Jrk+yTXA87qrriTNDt7dKUmS1EP2pEmSJPWQIU2SJKmHDGmSJEk9ZEiTJEnqIUOaJElSDxnSJEmSesiQJkmS1EP/H82RWs/hpA1zAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax4 = sns.catplot(data=iris_tidy, \n", + " x='metric', \n", + " y='cm', \n", + " hue='species',\n", + " kind='bar', \n", + " ci='sd',\n", + " aspect=1.5\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\xusy\\.conda\\envs\\nbdevdabestdev\\lib\\site-packages\\seaborn\\categorical.py:3750: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n", + "C:\\Users\\xusy\\.conda\\envs\\nbdevdabestdev\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 8.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAE8CAYAAAAokg4RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACvqUlEQVR4nOydd3hUVdrAf2dm0nsgPUBI6DU0aVJFQFSwoIirrmUtWyy7un5udd1dt1p3V3ftvWFXQAQFUQHpvbcA6QkB0vv5/nin3ZmAtJAEzu955iH3PbecO/cy971vVVprDAaDwWAwGM4lbC09AYPBYDAYDIYzjVGADAaDwWAwnHMYBchgMBgMBsM5h1GADAaDwWAwnHMYBchgMBgMBsM5h6OlJ+DN5MmT9bx581p6GgaDwWAwnCyqpSdgOD5alQWouLi4padgMBgMBoPhHKBVKUAGg8FgMBgMZwKjABkMBoPBYDjnMAqQwWAwGAyGcw6jABkMBoPBYDjnaFYFSCn1c6XUZqXUJqXUW0qp4OY8nsFgMBgMBsPx0GwKkFIqBbgLGKy17gPYgWua63gGg8FgMBgMx0tzu8AcQIhSygGEArnNfDyDwWAwGAyG76XZFCCtdQ7wCLAfyAOOaK3nN9fxDAaDwWAwGI6X5nSBxQDTgM5AMhCmlLquifVuU0qtUkqtKioqaq7pGAwGg+FkKSqCO++ECy6ARx+FxsaWnpHBcMo0ZyuMCcBerXURgFLqA2AE8Lr3SlrrZ4FnAQYPHqybcT4Gg8FgOBmmTYNly+TvhQuhogJ+//uWnZPBcIo0ZwzQfmCYUipUKaWAC4CtzXg8g8FgMJxusrM9yo+LWbNaZi4Gw2mkOWOAlgPvAWuAjc5jPdtcxzMYDAZDMxAbCxERVllaWotMxWA4nTRrFpjW+kGtdQ+tdR+t9fVa65rmPJ7BYDAYTjOhofDEExAUJMvJyfDXv7bolAyG04GpBG0wGAyGY3PzzZCTA999B3v3Qt++LT0jg+GUac4gaIPBYDC0durq4JNP4PBhuOwyaNdO5N98Axs2wIQJ0L27yF1jAF9+Cdu3w+TJkJ4usq1bJUg6MxNGjjzDJ2IwnBhGATIYDIZzlYYGGDcOliyR5V/9ClasgOefh4cfFpndDu+9J8qRi5/9DJ56Sv4ODIS5c+HQIZgxw5Mi/4c/wIMPnqkzMRhOGKV168k8Hzx4sF61alVLT8NgMBjODebPh0mTrLKf/xyefhpqvEI2Bw+GlSvl78JCSEqy1gK64AKpFbRhg0cWEgIlJRB8zrWAVC09AcPxYSxABoPBcK5S00ReSmUl1NdbZdXVkJsLO3ZAaqp/IcTqav991deLhclgaKWYIGiDwWA4V5k4UeJ7XISGinvrhz+0rtevH3TqJO6y4cPF4uNCKbjrLvl4c8stEBbWfHM3GE4RYwEyGAyGc5WgICly+NJLEsNz3XWiED37rCg769fDmDFwzTUeq1BxscQFvfCCBEFfeimcf76MdekCCxZIEPTMmS12WgbD8WBigAwGg8FwdHJzISXFKuvTBzZubJn5tH5MDFAbwbjADAaDwXB0kpPFCuTND37QMnMxGE4jxgVmMBgMhmPz4Yfwt7/B5s1w8cVwxx0tPSOD4ZQxCpDBYDAYjk1MDPz97y09C4PhtGJcYAaDwWCwsnWrBEG3awfXXitVog2GswxjATIYDAaDlSuvFCUI4K23pJjhiy+27JwMhtOMsQAZDAaDwUNBgUf5cbFoUcvMxWBoRowCZDAYDAYPcXFS9NCbPn0k8HnUKAmGNhWeDWcBxgVmMBgMBg82G7z5Jtx0k7S+GDMGcnJg9mwZ//ZbaX3xhz+06DQNhlPFFEI0GAwGQ9NUV0vl5w4drPLevWHTppaZU+vHFEJsIxgLkMFgMJzL5OdL9/fDh+HGG2HgQKitlXYYGzZINlhkJJSWerbp1Akee0xaYUybBlOmtNTsDYaTxliADAaD4Vylqgp69oR9+2Q5MBCWLoVHHoG33/asd+21UgyxqkqsQR07wpIlnvGXXhLlyQDGAtRmMEHQBoPBcK4yb55H+QGx/PzvfzBrlnW9tWulJ9iaNfDVV1blB+CZZ5p9qgbD6cYoQAaDwXCuEhXlL4uJkbo/3kRGwsqV8PXXkibv8ImeaGo/BkMrx8QAGQwGw7nKuHEwaRJ8/rksd+gAd98NsbHwq1+JLDAQEhNh4kRZttvhssvg/fdlOTQUfve7Mz51g+FUMQqQwWAwnKsoBZ99BgsXShD0RReJQvPAA9L0dMMGyMyUj4uGBsjLg1WrJAh6wgSIj2+hEzAYTp5mU4CUUt2Bd7xE6cDvtdZPNNcxDQbDUSgvl+DWHj0kgNVgcKEUXHCBv7xvX/kUF0Njo3Wsrg4GDZKPwdBGabYYIK31dq11ptY6ExgEVAIfNtfxDAbDUVi1SpSeSZOgc2d44omWnpGhLdG+PVx3nVV2zz0tMhWD4XRyRtLglVITgQe11iOPtZ5JgzcYmoHJkz0xHgAhIRLIGhHRcnMytC3q6yUzbPNmqfkz8pg/5ec6Jg2+jXCmYoCuAd5qakApdRtwG0BHY5o3GE4fOTny9p6fb5VXVUlRO6MAGVyUlUnV57g4j6yxDqoLIDRVsr6uvda6TU2NuMdSUjwyreW+S0iAgIAzM3eD4SRp9jR4pVQgMBV4t6lxrfWzWuvBWuvBcd7/+QwGw8mRnQ2DB0NqKiQnQ79+1vFx46wPLcO5zZ//LEHM8fFw+eWiIOfOg49S4aMOMKcPlO2ybvP++3JvpaZKHFB2tgRE9+7tKZT4xRctcz4Gw3HS7C4wpdQ04Kda64nft65xgRkMp4Ef/hBefdWzHBUFf/0rLFgAvXrBffdBdHSLTc/Qiti40V9BfuwRSHsUqvI8suRLYOyn8ndlpSg/R454xq+7DoqKrK7WDh1g715Jmz+3MC6wNsKZcIHN5CjuL4PB0Az4Nqk8cgTGj4cf/7hl5mNovTTV0HTDGkjIs8qObPb8nZ1tVX5c+ykqssoOHBBXa0zM6ZmrwXCaaVYXmFIqFLgQ+KA5j2MwGLzwbUyZng4PPijVfIcOlXYGBgOIOzQkxCq79EqI9UlvDxwCw4bJPfS730GXLtbxKVP877thw/yVn4YGuPdeaNdOepB9+unpOQ+D4SQwzVANhrON2lr4/e/h44+hWzcpbOfd2DItDXbvBpvphGMAFi2Chx6CQ4fgttvgpz+Fiv2w9j44tB6SJsEPPoEdXj3Drr5agqC3b4epU+FPf5LaQA88APPnS+HERx+VGCFv/vMfuPNOz3JQEOzff7YVUjQusDaCUYAMhrOdXr1g61arbM8eqQlkMHwf+/aJ0uxNjx7+99TxcPXV8K5PPsynn8Ill5z09FohRgFqI5hXQIOhLVNUBHfcIa6t3/xGUpkbGuBvfxMXxA9/CH36WLdJTpYAVV/efBPGjIFp02DFijMzf0Pz0FALGx6Ez4fC8luhylkK4Y03/K/xypWyPGaMjIPUibr1Vrmvnn/eP2uwTx+5t4YNkwD7hgZoqIH1v5Vjrrgdqp0xQa++CqNHS/8w3/04HDBwYLN9DQbDsTAWIIOhLXPBBdLHycWdd0rjyt/8xiPr0UOsPfPmiUvsuedg1CjrfubNkz5QLsLDJYOnffvmnb+heVh7P2z9p2c5biQ0/Nb/Gq9eLSUTyso88rlz4S9/gW+/9chmzoS1a8XlNWmSWIW8LUB/+hNMLoId//LIEsZBxT2iXLmIjBSX2TvvyL31yCP+9YXaPsYC1EYwzVANhrbKkSNW5Qfggw9EAfJm2zaJB8rIOHpK8oc+XWrKyyVtfubM0zdfw5njgE/eSdESWPqmVVZeDk89ZVV+AN56y6r8ACxfLnFjDQ2iGHftah3/8EPo45MFVrAI5vnci6WlUmvo5ZfPxfR4QyvDuMAMhrZKeDgkJVllXbv6P5zCwsTdceut8M9/Sh0XkGywn/4U7r9fsnJ88d2Poe0Q4XPtgtpDp57+6w0e7C/r2dPf8tclHbY+Aitvhbplcu9ZxrtAhE9mWHAidGvimF26GOXH0DrQWreaz6BBg7TBYDgBPv5Y66gorUHrlBSt16zRetcurbt1E1loqNbXXy9/uz4XX6z1+vVaBwV5ZPHxWo8eLX/b7Vr/4hctfWaGU+HQRq0/6qT1G2j9ToTW+97VuqxM63Hj/K/xfffJMsh4WZnW772ndUSEyDp21PrF0bIv1+ev18m9BVp37ar1zp1al6zV+sNUGZ8VqfWBj7Q+ckTrUaM8x3zggZb8Vs4ULf4sNZ/j+5gYIIOhrVNRIW6JHj0kqBSgsVFiNFJTpdbL2rXWbW6/HZ55xip7/XUJeg0P93ejGdoejQ1QuhXC0iDAy2Kza5f/NS4oEFeYd32f8nLIyoK0GPjEJ509JhNGLpZihz17ekoqNNZD6TYI7wyOMM/6O3dK/E9Cwmk+yVaJiQFqI5gYIIOhrRMW5p/ptX07fPaZBD37FqMLCrI2vXQRG+tf4M7QdrHZIdrnvsjLk/siKgquukqKIFZVSe2ew4dh+nSPWzU8XO6rulKwB0NDtWc/ATGweLHcZ0pJqQWAdRvgyy+lDtCFF3rWN+5UQyvEWIAMhrONefPg0kuhvl6WL7pIHlau2J8//lHaYgwfLtYAkGyyzz83sRlnM7t3w5AhUvAQpInpt99KRqDrdzcmRuLFfBXhTQ/Dht/K3/ZQWDkWHp0ryw6HBNmXlMANN4hTFeD//k/KMZx7GAtQG8EoQAbD2YZvarxSsGGDuMR69vRYi2pqJNMrLAzGjpX1DGcvv/ylpJ1789BD0ibFm3vv9V8P4PBm6QmmekHn/uJmdTF2rNSk2uzVMyw4WJQi31YbZz/mP1IbwWSBGQxnAxUV4trYvl1SlX2x26UlRmioRxYUJBV4x40zyk9bIysL5swRt5WL2iOQMwfK9zS9jbfC4qKpe6WxUaxACxd6rIgAJSGwKQyqAjxWHu9tfPff2Oi/3rFYvlzacnjPadcuqUvkm6pvMJwOWjoK2/tjssAMhpNg40at27fX7oyuq6/W2mbzLE+c6MkUU0rrf/6zpWdsOBX+/W/P9Q0P1/qbb7Qu+k7rWVHOLC2l9ZYmrvG2bZ7MLtC6b1+tKyrkX5csIsKTKQZa9+6t9cGDWj/6qNw7oHVkpNaTJnnWsdm0/vBDrZ9/3iMDre+++/jOp75e64su8mzXr5/Whw9r/de/eo4ZHa31ypWn8UtsVlr8WWo+x/cxLjCDoa3j21/Jbpe35u++kyDoF16AL77wjIeESNZPRMSZn6vh1Kiqksah5eUe2ejR8GAQ5C/wyOwhcEUBBPhc4337pNBhdDT84AdyD5SVSRuUQ4cka/D6663bPPgg/OMfcmwX48dL49Tt28WK6GpnsWSJuFUzM6UC9PFYFufM8e8F9uc/S3XpmhqPbMoUWbf1Y8ypbQSTBWYwtHUKC63LDQ2eB1lCAvz979bxqiqpIl1UJL2ZgoI8Y7m54iaLjm72aRtOgspKq/IDosxWB1tlDVVQWwo1RRCSAnbnNe7USQKVQ0M9CnBEBMyYIftetMj/mLm5VuUHoLhYWlrk51ub6g4fLllkKSlW5ScnR2LNvO+rQ4ekd53v/QuSXu+t/EDT6xkMp4CJATIY2jo33mhd7t9fWlikp0vj0759reMjRsCECdIaIzlZunFXVUnmWEqKKE2/+90Zm77hBGjXzt9acuONkH6jVdZ+JCy6AD7JgI9SILuJa/z738u6Dz4oyykp0rjUuwq0wyGWnokTrfvv318UnfR0+XvfPtiyBbp3l/sqNVWyESsqJAsxNVXqDv3pT7L9r38tx0xOhlmzpASDi4AAyVIcO9b/PA2G04hxgRkMZwPvvgvvvy8Pn507rS6xiAh49FFxg/XqBcuWScq7i/h4yRD65S+t+1yzBgYMODPzNxw/5eXwxBOwcSNMniyKgVKw9zXImQ1RvaBoGeR7XePgeNj3S/iFzzV++2245hqr7Fe/kp5dZWWi/IwcKX8//rhkeU2YAPfdJ+u4uPZasSgu8HLDpaRIq5Vf/9q6/7fe8u8x99vfSsZYZaUU6Rw2TKyUjz0mveymThWXXdvAuMDaCMYFZjCcDVx1lXxA6rt4U1YmcSK33irLvjVeCgth/Xr/fW7dahSg1kh4uCgMvnS+Xj4glh9vqgth1zr/bXybnoIoMs89Z5VFRHgsRjt3WpUfkHulyKcZak6OlF/wZckSf1lJiTRm9SYqStL0DYZmwrjADIa2TkWFxPuEhoq7y9fl1bWrvIWHhEiw6pAh1vHBgyWQ2puQEKknZGibpFxqXY4dApNnWGUhIWJt8S6NALLcsaMURfzNbyQ3a9UqUaxDQqTAoW9l50suEfeaNyNHwpVXWmXh4XDHHVIjyHd7g+FM09JpaN4fkwZvMJwE992nLenHsbFa/+pXkt48fbqkxXuPp6ZKI8w+fbSeOVPr/ftlP889p/XgwVpPmKD14sUte06GU6O+Sus192k9u4/W316rdcUBkT/7rOcaf/21yL7+WpYHD9b6oYc8qeeuz2uvSUNUb9lVV8mnb1+tf/MbrWtrJaX+5z+X++q667TOzZX9P/201oMGaX3hhVovWSKyRYu0Hj9e6yFDtH7hhTP+9TQzLf4sNZ/j+5gYIIOhrTNihMT1eLN2raQig8T9bN1qHd+zx5q9YzAAvPQS3HyzVXb99fDaa1ZZjx7+95TBhYkBaiMYF5jB0Jo5dEgyYgYMgLvuaroi7vDh1uXYWAmIHjRIgk19XWIpKdIJfuBA+OEPJc3Zm4oK+MUv5Ji33iopz4a2y9q1EkQ8dKh/nA1IwPSiKTB/BCTn+tfumTABOnSwygb3hSXXwmeDYOND0gW+uhruv1/uq5tvlvR8b+rKYNXd8NkAWHEH1JSc3vM0GE4QYwEyGFozl10mjSZdXHstvPGGdZ2yMlFUXFlgw4bBK694xrt1kzf2OXM8vcDeftszPnSoFE10ccst8OKLnuVJkySl2dD2KC+X2j8lXsrGa6/BddfJ39VF8ElnqK/wjOf8DB57T7b98Y+ljtTy5ZIRtmWLFCScuR30Ds82ff8AzxRZFazRo6UJr4ul10GW172bMhXGeN3bZw/GAtRGMAqQwdBa0VrqsHj3WAoL8y+E58vgwbB6tVW2fbsoQiBZYLt3W8fz86UuC0BcnL/Vp6rKP3DV0PqZN0/q8HgzfbqnTELW27DUJyU940cw1CcLzJvSnTC7m1UWMwBuK4LsbKv80CFP8cNZkVDvZcFUNrimTv49uzAKUBuhWdPglVLRwPNAH0ADN2utlx1zI4PBICgl2Tbbt3tk3bpJDZiVK6WJ6c03g80GH30EH3wgFqC0NKsCFB4OS5fCH/8o8UAZGVYFKC5OiiEuWiRury5drApQWpq1WrSh7dC1q9xH3i+66cmw9n6oKYb2I/y3CYqD1T+H+nJRhtoPFaX73/+WOkBTLgBHhFWZiewO3WOtClBSkhQ5XLxYlPIeXeHQGs94eMbZqPwY2hDNagFSSr0CfKO1fl4pFQiEaq0PH219YwEyGHxYvFhS1AsLpWpuZqb0+XLxm99I9d0bbvDIMjOhtlbcFRER4kbzDmI9/3zIyxMlKDpaLARvveUZv/BCKT534IBUBX7zTZEZ2iZ/+xv84Q/SWmLkCPjxflBORUXZoNNM2PcO6HpIGA+HN0GNs+2ELQAmfgfX/RY++8yzz/9dBzEfixIU2RPGzoG95RJrlJUlKfQTJ8I773i2ufMiGLceqnKlMOPIdyBh7Bn6Es4oxgLURmg2BUgpFQmsB9L1cR7EKEAGQxPU1sLevdJOIDoa6us9Y4mJEt/z1VfWbTZvlpYCSUkSi7F2rXX8wAGpupuaKjFBe/d6xmw2sQAVFhrrz9nCoUNw+DAEboXFF1vH0m+CzH9AQwUULYGlPhWXO9wGo5+1yvr3h5XfQlUeRHTxBE43NMCuXVJHqEsXa4C9wwGlh6EuG8I6gz3wdJ9la8EoQG2E5nSBpQNFwEtKqf7AauBurXWF90pKqduA2wA6duzYjNMxGNoogYFi5WlsFAXI2z3Vvr21dxNIN/i8PAlc7d7d2mcJJJZn1y6pyNu3r/SX8laAIiIk1qh792Y7JcMZJiZGPsVNNBS1RcEbH4uCdGGi/3hYotwz1dUeWft2kPc5lG2H5Ishpr/ID62Cui+gJFPuS28FKCoKAoMhxNxXhtZBcypADmAgcKfWerlS6kngAcDSZVFr/SzwLIgFqBnnYzC0bWw2yci59VZRhoKC4K9/lRTlhQs9mT6XXy6ZWw0Nsjx5sig1rhT6adNg/HhPXMjUqVLht6pK3uT/8hdRugxnH+2HQscZsN/pmgrtBPctgG+ekOXoSHh9DBxxZm9Fdofed8EfQuGBB0QWHg5XBcG302V5w+9h1IdQWwLf3eg51i2Xw/3bxfVms4krzm4/E2dpMBwXzekCSwS+01qnOZdHAQ9orS8+2jbGBWYwHAdZWeLSGjHCk7lVWipBzBkZUi9o0SLP+krBpk2wY4ekwc+caXWJBQRIzM/69eLaSE8/o6djaAGKV0gQ9Lo6uOQy69gvfgEPXAF15ZA4XuKAQILxt26FId1gsSuvxUn8GKgpgiNbPDJbEIzaCivWSXB9WlrznlPrwbjA2gjNZgHSWucrpQ4opbprrbcDFwBbvm87w3FQVydv/GFhEtBqOHtZuVJiccaPFysNyIPE92ESGSmWnaPxfS867duL5cibmhr48ktxkQ0deqIzN7QGGusgfyE4wiDe67dit4aDQN2x7oujjNlO4Pne1Kr1VVCwUAKh2w1pYgWD4czQ3N3g7wTecGaA7QFuaubjnf0cPChNBl2p0RddBLNni4nZcHbxwx/Cq6/K36mp0rm7U6fv3+7ee+Hrrz0usEmTpDiiq37QjBmwbp1HKbrjDlGgvMnNlfssK0uWr7pKUpoNbYeag7DgfCjdJstJkyVba+a1nuysjh0lCH7TJlmOioLMVbDgMVmO7A4XLoEnnre6wF6fDBXOrDBlhx73+rvAAi6G9J4eF9gzz8DMiTKnygOyTtp1MMKnzYbBcIYwhRDbGn/5i6Q+ezNvnjzkDGcP69aJ28Cbu+6CJ588vu03bhTFuFs3+O9/xZLjIjhYUpqXLpUg6Esu8W9/8MADEm/kzbJlokgZ2gab/wrrf22VJT0B4++xyu6+G/r1k0yxsYmw/TrreI/fw8h/WIOgJ4yHF38Kpa4g6H4iL14B+QsgJhOm/Bo2bPBs064dzPsB7PiXdf+T10Csz73etjEusDZCc1uADCeK1rBzp9R8CQ/3yA8ckMDUgwf9tzG9ms4+jnadDx6UeB/vRqbV1WKp6drVE2Tap48ESScnw8MPW/dTXS0pyklJEkDtrfzs2yeu1abuKXOftS1qmrheR7L9ZaWlcO1UTxq8LxX5VuUHoOggJE6EqD4Q0dUjjxkEB6MgtqP//XLkiLTeaGqeZbshKBYCY77/vAyG04Txm7Qm9u6F3r0l/TgpSYrX1dZKbEbHjvIwy86WoFUX8fHyBm84uxg9WgKaXSglyk1SkgQpjx8vD645c+S+6NlT1t+wQZQh7/uoTx/rvs8/H8aMkfpBycnw4YfSAHXSJIktSkqSjDDvjJ2OHaUppqHtkHadJ4AZJObmgvusblSbDUbWwodJ8HEa7HpO1nOPB0DvO/zbaUzrK9vM7g5zekP5XrE6duki91VKCowaZd3m2muhyy1YDCRhabD+t/BpF/ggCbb88zSdvMHw/RgXWGti5kxrk8qICHF53Xmndb2nnpIsnvBwcYt4WwMMZw95eeLyKiiQh8ktt1jH//hH+N//rLVWxo2T4ojelZ3Dw6WNwZdfiqK0eDHMn+8Zj4uD++6D//s/6/6fe07cXu3ayX2Wmnr6z9HQvBSvgN3PSxB09zshPB1ycuS+Ki6GK0ZA6a3WbXr9ChqqpcpzU60wJl8AgXdbW2F0ugYeLLK6WhMT5R5dvBgGDYKf/lSs2AWLYO9romjVlsKu/3q2UTaYugfCjiPWrfViXGBtBOMCa03s2GFdLiuTWBBfbDZ5OBnObpKSpHYKiJXGl82brcoPyD1UWmqVlZdLyvyNN8qyd6d3gKIieXv3JSwMXnjhpKZuaCW0P08+3qSkwD/+IX9nvQ1LfbapKfJvhhoeDr/6lfxduhNml1nHS7fDdh/3Vn6+BM/f6qNgJYyTD8DXl1nHdCOU7WrrCpChjWBcYK2JqVOty716SY8n7xiNwEApbGc4u/jNbyQTKz4enn5aZO++K+6KkBD4+GP/TK2rrhJXljfTpvnfR926iYXH4ZCg5yE+qcdDh8I111hlYWHyNh8aKpafN94Q+fPPi2IWHg6//OX3p9cbzgwHD8q1d13jZcvk2qy9H2ZFwAeJ4t4CyHoLPuoA74RC/nyxDnljCxZ31KxwWOu8xsXfwdx+8JYD1vwCIntYt0md5l+G4fyhsPpKeMsO886THmONdbDiDngnBD7qCMFJ1m2C4ppu0GowNAPGBdaaqK+Xyr4ffywPrYcfFvfWrFlifg4JkbewceNaeqaG08l774ky482CBXDxxRID5uKuu6SB6cGD4g770Y+kRtCvfiUu0QkT4KGHJEbM+z5qaLCmsCcni2I9f748LP/yF5G98go8+6ykQvfqBY8+6tnGbofPP5emqN6/Ga++Ctdf3zzfi+H4ueUWq2UvNRUWPgwrf+i1koLxX8CiSdL41EX3X0DZNqg9BMmXwIbfYqkBNOwVkblS1wE6TAdboLTCSJkKvX8NtfXSdHX+fGnIe0k2VC/wbBPdD9JvFAXKhS0A+vwecj6FkGTo+5Ano6ztYlxgbQSjABkMLc2998Jjj1llP/mJxxLk4sorRVk6UXr1kgq+3uzZc+zYseuvh9df//45/fjH/jLDmaepa/zR9VDhU2On609gp8/16nQtjHRa+Ha/BMtvto6nXQ9ZPvuJ7AGX+BzPl/fbSy0ib1KvgOwPrLIxn0LKWZXIYRSgNoJxgbUFXn9d3BRjx1qDV4/FN9+IRWDwYHmrN7RemqrmPX26fxf21FSYOFECSp96SmR5eaKs9OkD99wj2Vx1dfC734l1Z/p0qfHiTYcOYlHs00cC7w843+yfe07ulwkTPC02XDgccPXV/vWCTCXy1oHvdejYEfr4usoVdLzamhkGEJIIX06AeYOdVh6fa5w0yT8mJ7offDMd5vSVLK7GOqivhNU/hzl9YOl1EDPYuk3MAEjwcdnaAiHWVIM2tBBa61bzGTRokDb48NVXWovTQT4BAVrv3n3sbfLztQ4NtW738cdnZr6Gk+MPf9A6NlbrlBStn31WZB9+qHWXLlpHRGj9ox9pHR5uvabvvKP1qFFW2e23a/3gg1ZZly5aT5+udXCw1gMHan3NNdbxwYO1/uQTqyw4WPYVGal1585yLK21fvllrTt00Do6Wutf/1rrxsaW+sYM3pSUWK/xihVybdb9Rut3Y7T+sIPWu1+Sdfe9q/XH6VrPitR6+W1avxWi9Rt4PivvkvVnRWu9znmNi1dq/dkgrd8O1vrrK7X+pKt1m/W/03rFj62yz4ZovfAird8K0vrzEVof3qp1Q53WK+/U+p0IrT/O0Hr/By36tTUTLf4sNZ/j+xgXWGvnl7+ERx6xyv77X2lfcDTeektqbnjzox+ZzLG2zIcfwhVXWGUzZnhaGrhITpb04zVrrPJt26QuEEitlt27rePXXefv8nrjDf/7yHB2kfU2LJ1plWX8yD8LzJvSnTC7m1UWM0Cyxyp9Ci1OLzkXixsaF1gbwbjAzhTV1ZJ6evXVosA0Nop81izJwPnNb6CkRGSrVklQ4+23+2f+gARL33ij1NXYuVNk+/eLC+T66yV93pdevZrjrAxnip49/WX9+vnX5unVy/9aR0ZKb7AZMyRItWtX63hCgnSB98XcM2c/UU3cV0FxsPJnsOyHnsrQdWWw8SH4dobU8Qnw+V2K7Ckfb0JSwNHE75fB0FpoaROU9+esdoH94Afa4mJ44AGtX3zRKjvvPK23bhUztksWEaH1pZdqrZTWDofW114r/7rG27fXOidH69RUj0wprW+4QevAQFm++GKtKypa+hswnCp//rPWQUFyTSdN0rqsTOt587SOi9NuV9emTVrv26d1v34ii4rS+vrrrffZ8OFad+8uf7drJ+6vykqtL7lEZIGBWv/udy19toYzxfrfa/1WoLitvpyo9bvtPG6sNx3i/vpyotW9teR6rWdFyd9z+mldnqX14c1af9xFZO+11zrns5Y+s5aixZ+l5nN8H+MCOxPU1EhdFVd3bhA3Rbdu8mbuzU9/6glwdfGf/0gGUGAg/PnP8Pjj1vFf/MI/i+imm0RWWSluEcPZwZEjUtgwJcUjq62VFilpaVIk00VWllh3RozwL6h54IAESycnW4Otc3Ol9k90dPOdg6H1UXtYgpgLFsEyn2aoGbfCbh+XWHQ/mPgdVBdAeJpHrjVU7BXrj90niP/cwbjA2gimEvSZICAAYmOl4q6LhAQpeueNwyEZOr44HNIXLCRE2mP4kpbmL4uPl4eYeZCdXURFycebwEDpD+aL677wvc9CQmQfTd1LRlk+96grg31vixIUkuI/HpIM9hBoqPLIguIg+2NnHaBLIHaQyJWSdhsGQxvAWIDOFK+8InE9DQ3yAPrgA3mLHz/e0zX5d7+D++8X2cqVIhsxQgJYXfFBaWmyvavmx9SpEiD7wx96glgzMiQNPsmnyqrh3GT5cml0euSIPKD+8Q+pDG0wNNbBvEFw2NkKxR4urTMKFspyVG+Y8DXseRnW3gdoif9pN0yqSIP07zr/fehwWQucQKvEWIDaCEYBOpNkZ4srYtgwaN9eZBUV4gZLT/dk6TQ2wrffiuXniy/gwQet+3n5ZbEUhYfDeV59ftauFWVq7Fhrx3iDobRU7qkePZq2FhnOTXLmwGKfIoTd74G0a8UyFD8abE5HQfkeOLIVwjNgTi8s1aLjRsGFPu78cxejALURjAvsTJKa6p+1ExYGF11klTU0SJzH0ZQYpURxUkp87q7idBUVnkJ4RgEyeFNTI/dUZWVLz8TQmlBNJAIrG9SXQ30F6Abcj4n6Kqes3vPb497GfkamazCcTowC1NooLYWRI2HTJlkeNEjihQoKZLl7d+n3tGePLE+YAPPmSS8pV8fw1FRYurTpeCLDucc330gDXZfy88c/irvVYEi8EGIHQ4nT8h4YA8XLYZszqSI8AyYug13POnuEAfZQSLoIcufIsnJAz1+e+bkbDKeIcYG1Nv7zH7jzTqvsmWek9k9IiCg+f/6zdfyxxyQTzJv77oN//rN552poG1xwASxc6FkOChKF2jeY2nBuUl8FB96TIOjAdrDsB9bx3r+FbY9AQ7VHFj8Wet4LpdsgeQpEmZpRXhgXWBvBFEJsigMHYN8+q+zQIdiyxWr2/T6qq2HjRmtHb61lP4cONb1NU/KGBnGTTZzYtAsjL+/49gPiBtm0yZqS701pKWze7CnUCKJ8bdwo7jVD20A3wuHNUHvE/16oqZFimZs2yf1gODtpbIDDm6DO5xqX7YKqfM+yI0QsQckX+fd6A6nw7K38ANQdlvigpIukMar7mPVyzPqj/FY01ErAte/+jmyD6uLjPjWD4XRgFCBvGhulknLHjpJtdfXV8vB/6ilJD+7dWxpMZmd/76748kvJ8urXT1xRS5dCTo5U3O3dWzK0/v1v/+1mzpS4IBexsZIxlp4u+9m3T9KeXSQmSrsM787edrvUAfLlvffkPPr2lf253GwuXn5Z5tWnjwTL7t4tQdudO8t5JCfDxx9//7kbWpay3TC7B8ztAx8mw2V9rOOjR0vzzL595Zq++27LzNPQfBzeBJ+kw9y+cg/sf08UoS/Hw6dd4aNUWHOvrLv2l7L8aVfY+V8ITvTsxxYIXX8MyT6B0lF94IMkucdm9xCl6tA6+KSz55jZPr8VRUvh4w4wtx98mAL5X0B1EcwbAnN6wkfJsPmvzfq1GAzeGBeYNx99BJdfbpU984y4pLytOMfTV6trV9i1y7M8YAAMGWLtzB4QIMqUb52WTZtkvYAAiInxj9f473/FIhMeLoUTO3aE/HxxnxUXS0r88OHWbWprRSEr9nrLmjRJ4odALAGJiVYrz4wZUFgIixZ5ZImJMme7CXpstSyZKXVdXDjCgGdg3pfS3mL+fFiwwDPerp0UQPRWrA1tm0UXQd48z3JQe+j+C9jwa+t6w1+FZTdYZb0eEAtifZn0BYsdKEUSd/4XjmyGhAtg5R0SKO2i49ViKSrw+q0IToTLDniyyD4bBIe8etSFd5HU+a1evQ6VDS7dbS2u2PYwLrA2QrMGQSulsoAyoAGo11oPbs7jnTLeCouLtWutyo/3eg0N/opAQ4OYkV1Byt7bxPg0BayrE4tOu3bW/fTpA088Ifv5v//zn5NSYj1SymOyTkyU2KCm5lRfLzVgin1MzN7nkZfn7+LauVMUIG/y80VZMvEjLcvR7j27Hcp2WuX1FXDJEJh+DdjsotR7c/AgHD7sr4gb2i6+90BNMZRu9V/vYBMvnDUH4bxnAO3JEnOESsxPY4NUeq5vwq1WU2SVVefLeo4Iue9851Sxx1+mGyXdvm0rQIY2wplwgY3TWme2euUH4JJLrOnjdjvceqt/3ZQuXaBTJwkmnTlTFIcdO6S+j8Mh/15wgXWbyy/3ty517AgPPyxv3hkZ8mYO0hg1MlIUpvJyq18+OBhWrBA3WVwcPP20yF99VZSg0FC47TZRrtasEddVQIC484YMsR5/yBBxdQUEwF13+TfcvOIK/w7k48cb5acl2bBBrIkOB4waJQr0kSNynVwVoav6WreJ7Amr7oK3A8RdMcnnPhgxwig/ZxsdfP7fxo2U2j7eOMKh209FQfHGFggfxMGsMFh9jyglRUvk3nk7AFb9zL/xaYfLIdXn9639cFg8Fd52wNxMSBhrHU+ZBqk+8wxOgLgRJ3CiBsPJ06wuMKcFaLDW+rii21rcBQbiGnjkEYkH+vnPYcoUiYX5/e9h715Rkv78Z6jyKgv/m9/A4sVSaM7FkCGiCC1fLg+qhx4S5eTJJ6UDfFqaKB6vvurZJiZG3s6vvto6p4cfloKIISESQ/RXHz/5/PkSJO0d2PzEE+Iq277dI5s0SeKINm6ECy+EF18U14eLK68Ut9r27VJh+v77xXr0pz/J95KZKeceF3eSX67hlOnfX5QgF5MnixL7xBMeWUwULPwFFHwGkd2goVJiQFw4kmDzj+Dz+RIH9Kc/ifJsOHtoqIXND0Pe5xDdF/r9CUISIetN2PUMBERD799I1eeDK2Xd2kOQNAXWP2Dd19AXYMPvoSrHI+twhShOpdshdSr0vF/qA236s1SIjsmUWLSCLz3bRPaClClQ+DW0Gwr9/giB0bDzf5D1urTc6PMgRPc+A19Qs2JcYG2E5laA9gKHkJKhz2itn21induA2wA6duw4aJ9v9lVr49tvRaHx5sIL4auvxOriwm4X5eFYDB8O331nld1yC7zwglX22GOijIHE/LisPi5+8hN/2VVX+Qe3JiV5FJ6sLGvgNMiDdGsTZnJD66CqSpRob2Ji5LotW2aVr10rCivA7F7+7o+peyDc5/obDLtfguU3W2Vp10PWa1ZZZA+45Ht+K95vL+40b66uEHfa2Y1RgNoIze0CG6m1HghcBPxUKTXadwWt9bNa68Fa68FxbcGykJkp7ilvRo+WjzfDhsENN0jH9x/9SFKRGxrgD3+QQNQpU+TB5U18PEyb5n/MI0dg4EApkOh7bJsNrr3Wv/LzhAni/vJm0CBRjLp3F6XKt4nqmDHHOHFDixMS4u/GHDPG/96Li4Pa18VlsXgaxPS3jod1gq2Pw6fd4ZvpUOF86Xj6abEwjRljrRtkOHto6hoXLIIvxsDc/lCR5V8dOvkiCPNRlqP7y701uwes/T+xONWVw8qfyX317QyI9blXYwefC8qPoQ1xxrLAlFJ/AMq11o8cbZ1W4QI7HhYuFIvM/v0SA/T44xIsfOutsGSJxFTU1IhbzMVVV8nD6/77PbLERHFLffSRxAD9+9+y7SOPyD4dDnFLPf64ZxuHQyw+b78t7qo//hF+8APZxwMPSKDzLbeIm2zHDrj9drEGTJggQc8bN3r2dfXVcg6bN4tr77//NfE9rZ1duyTGa+VKGDdOsgUjIyVT8f335T66sy8EvuLZJqwztB8KuXMldiOsE+yf5RmPGQDVv7PGewUHSyC/aah79vDhh/7XeMtyWDHUWpen+z2Q86lkgXX9CfR9EErWwsqfSBZY8hQoWSnByi56/1pS2nd7ZcfGDITQVFGwYgfBec9CZNdmP81WgLEAtRGaTQFSSoUBNq11mfPvBcAftdbzjrZNm1GAvo/GRlFUvL/bsDBRgL76yrru8uXWhqa+3HcfPPqoVfb00/DjH5/YnAoK/OM8Onf2z1YztH18040BLtkGkc5mu59kWB9eAAuuhZfftMreeEOsi4azg1tvheeft8qe+CnEPWWVZdwCQ33W86Z0B8zubpXFZIoC5B0nBDC9RNprnFsYBaiN0JwusATgW6XUemAFMOdYys9Zhc3mn1HVp498vAkOlkytK68Uy1CRM430u++kIOPNN/u7vEBija69ViwB27aJbM8eiQ+aMcNT26eiQixEl10mFiPft3nf+RjaLnvfgG+uhLX3Q0QX61hAFOR/CV9fDut/AxE+D6/gROg/yH+fvdt8MKrBm6b+vw8a5y8LioPlt8GSa6HgK5HVHob1v5V7KG+B3FPeRPWBaJ/9h3YARxO/XwZDK8EUQmwuli0TZeTAAUlNfu89aVJ6xRUSSB0VJWnxL7/s2WbQIMkKGzDAU3soLExaYHz8sViVZsyAN9/0ZHzFxsL69TB0qCfAWSnJ2nrqKU+DVIBrrhH3XWGhPNw++khS+g1tm13Pw4pbPctRfcAeBCWrITAWki+2BrG2Gyb1WY5sguB4GPYyxI4TV+qHH0p5h1//2jRMPduorpYXp48+sl7jTQ/D5j9DQ424t4qWQp2zfYqyw4VLYf2voMArLiztemmGWlsirq4xH0u9qa8vl4D74EQY8RokTmiRU21hjAWojWAUoOakoUGUkpQUsQq5yMuD6GiJ//nmG+s2TWV0/fvfEmvkcEgQtXfKM0g8knecEMjD7M03rW64jh0lhqSgQJQxw9nBF2MktdibKZskxTioPXw+FA6vt45flg1oqbti8wqgLyoSy2SET20Yw9lDU9e4rkzigPI+h2XXW9dPvwX2+GSmRveFSSulwGJoinWsMtv/vjq3MApQG6FZK0Gf89jtUnfHm3XrJFg1Lc2/+JzD4Z+Z5ZI/84z8aDXlEsvI8JelpEiKdEmJR5aUJNliRvlpW2R/AsXfQfwoycgB6bu0/32pmBvkcx8pB1Tsh31vQUQ3eRh5Yw+VhpRF30BUX+h4lVTqBU+Np7wFErzabrAUuGuqSaahbdJUtm1AhHxCmgh6D+so90yDVyPm4CSxMvoqPyCBzwZDG8AoQGeSBQusBQtHjICEBLHIKCXFFn/yE3FDuOq6jBoFv/qVtCoAseL07evJ5rryStlm9Wp46SWRde8Ov/iFpNnfdpvUI4qIgL/97YyeruE0sOH3sOlP8veWv0L/v4pSsmgyaOd91H64KDnVBYCCDlfC4ouR8ltI76bAWHFXKBukToOvLvIco+BLGOqVvbPtSVhzj2e5530w4J/NeJKGVkPCeOgwHQ44C2dG94fud4o1cc0v5J4LjIH+f27RaRoMpwPjAjuTTJ0Kn35qla1eLVaa9HRPyw2tJRA6IADmzBG3lzcvvyxWn/BwT7E7kCaqBw9KvSCHU7fNzRX50KEmxb0tMitS0pFdBMdLDE/OJ9b1Jq2SuI3wdPjuJn+X2CXbxCoU2V3aE3i7xJQdrjwIgc774+M0T20gAHswXFV6Lrs0zj0OrZO6PnEjPHWBKvZL5ef2wyEgvEWn18ox5tI2grEAnUl8ixWCZHQVFoqFxqUA1daKzOFouuu6zSbjFRWScm+zidJUWCgKUHW1KEcAycnyMbRNbD7/RW2BTSsijfVQXSjtCZTPuLJJfEd1ocQE+W6v7FCZK7VfYjKb2D4A85t+jhGT6S8L6ygfg+EswShAZ5J774W5c0VBAWmhceGFUOZ8w7/7bukZNny4pyVFZqbE7uTlyXLPnvDb30oBQ4CxY6VP2OWXe6xLSUniQuvU6UydmaG56P1bWHuv1/JvxC2RO8dTvC5xAiy60GMpSrlMlJxGZ2uWpItg/jDP+h2mS50g3SjLyZfAvP6e9TvOgPLduF1ovf7PXxEzGAyGNo75VTuTjBghis2nn0qw8wsveJQfkGyv9u2t/bjWrZNqvyCtELZvl4akLr76SjLAvF1reXnwr3/5F1A0tD16/kJcDgeXQ9z5Ev8D4tLK/gTC0mD3i1Y3We4ncMFXcGitBEFv+bu10m/OJ5LaXPydZPOsvc+j/IBUjJ74HRQvlfYF8eefgRM1GAytEaVUJpCstZ57lPHBwA1a67vO6MROA0YBOtOkpUnbAvBPXW9slFYWvjQ0SNuD4GCp+eOLq4CiN6WlpzxVQwtQlS+uqui+nsyrmH5gD5Ru2i7COklwKsD2J6z70I0Q2A7iRsl63soRQGOtdN6OHwXhGVDnc680VIrc5hAFypvDmyConTVbqGKfKFiuStOGs5Paw1C+V+5NYxE8l8gEBgN+CpBSyqG1XgW0yeDd5m6GajgWt99uXR47Fu66yxO/A2IReucdyehKS4OdO0URcpGSIlWkvQsaOhzSD8zQttj4J/ioA3zWHz7LhKoCyJsPH6bAvMHwcQf/4GaALj73Uex5sPgSmDcQPkyW/l/exI+F+cNh3iAZb+fTiiVxIszpKeMfpUD2p1BdLHOY21fmuP63zmD9myVoenYPWDgR6qtO4xdiaDXseVXulXkD4ZN0OLy5pWdkOAGUUmlKqW1KqeeVUpuUUm8opSYopZYopXYqpc5TSoUppV5USq1USq1VSk1TSgUCfwRmKKXWKaVmKKX+oJR6Vik1H3hVKTVWKTXbeZxwpdRLSqmNSqkNSqkrW/TEvweTBdbSzJ8PH3wgCswdd4jys20bPPecBE2Hh/tX5P3f/8RNFh4uPcFSUiQA+r//FQvSDTf4dw03tG7Ks+TBgtf/x+4/F3dV+W6PLLofTGnCCpi3AA68L5ab4mWQ7VUB3B4Kw16USr6RvSTYueBLz3hgLAz+j7Np5QDY/ZI0u3QRmgpp18EWnzIKQ1+E5TdbZUOehq4n2KfO0Lqpr4IPE62WwpRLYcwnR9/m3KbVZQwopdKAXcAAYDOwElgP3AJMBW4CtgBbtNavK6WikRZWA4CrgMFa65859/UH4FLgfK11lVJqLHCf1voSpdTfgSCt9T3OdWO01ofOzFmeOMaO2dJMnEj9+PHY7XaUy+XRo4fU7FFKytU3xT//Kdlfriyx+HhRlOrrITDwzMzdcPqoyMKi/IA0LK3I8peBuJzsXpbApAshfrRkiX3uY9FpqJR2BanTwBYEO/5jHa8tgcQLoMPlss8ND1rHK3OgbJf/nA+t9Zf5Nlk1tH1qD/q7Sc11bovs1VpvBFBKbQa+1FprpdRGIA1IBaYqpe5zrh8MHC3t7xOtdVPm3gnANa6F1qz8gHGBtShVVVW89dZbPPzwwzz55JPs3LlT3Ar33y81e2JiJJbHu41GSIhkeIWHi3vsySdF/sILUlQxLAxuusnTS8zQNmg/XOJyvOk4HTpcYZUljIM5feGdEPh8mDyIag/DV5eK7OM06QXmTWQvWPljGf+0i7/Lq9158M0VMj67J8SNto6nXAKdZlhlQXHQ7U6wh3gJFaT6zNfQ9glNhXZDrbIO01tmLoZTocbr70av5UbEGKKAK7XWmc5PR631Vt+dOKk4ilzh9ybXejEWoBZk0aJF7NixA4AjR47w/vvv84uuXQn8p1fV3WeeEWvQokWi/PTqBX/5i4zV1sI990C3blLxudGZ1vzyy9C/v4wZ2gb2ILhgoVR9rsyBtB9A5+vEahPaEQ5+J0HN2R9Ls0mQzLAVd0BkD8idLbLK/XDgA6kYnTtXApNrD4l7DERhqquAvg9B/gIJaC3bA/mfy3jpNmiolfT7wkWSBdb3D1IJeNgrsPdlqTrd+7cQ2RXGfwlb/wENVdD1pxA3/Ax/cYYzwuiPYOMf4Mhmaa7b85ctPSPD6edz4E6l1J1Oy9AArfVaoAw43uaA84GfAfeAcYEZjkGeq7aPk5qaGkrWriXRd8XAQJg3T/7+2c/8dzR7tkf5cXGuxVKdDUR2hxGvW2UBETDwEfm7odo/DqdklXR296a+FJInQ+8HZHlOb+t4TQF0vh76/l6WP/Tp51SxR9Lv+//JKk+/QT7exA2HuA8xnOWEJMJ5/2vpWRialz8BTwAblMRjZAGXAIuAB5RS64C/fs8+/gw8pZTaBDQADwEfNNN8TxmjALUgaWlpZGdnu5fDwsKI69cPHn7YuuLBg9L/KzgYxo+3jtlscN118PzzVrfXuHHNOHNDi2APFlfEweUeWcI4sQAVL/PIghMkkDl3tqSxR/eDI1s842GdYcs/pPN3dF+x8ni31ojuL/2eDAbDWYHWOgvo47V841HGfFJKQWtdAhw1q0Zr/RXwlfPvcuCHpzzhM4RRgFqQ0aNHU1lZybZt24iJiWHy5MnYU1PhiSekRpDDAZddZlWI1q6Fn/8cZs2SOCBX5ej335emqcXFkgJ/881HO6yhLTPyTVjxY8nSShgHQ/4LAZFQc9CTBRbRHXb8S9Yv3yPFEtOuh7y5khIfkgy7nG/zFXshsjd0vBryv5AWCEP+21JnZzAYDGcMkwbf2rnvPv+Kzk8/LenvBkNTfDZIWl14c8k2T6HCTzL8s3guzxM3h8FgOFVaXRq8oWmMBagVsn//flasWIHNZmNchw74OSP69WuJaRlaA/WV0tqiZJUUNOzxc6nKu+dl2P8+RGRARBerAhQQDbnzYM29ENVTXGbeClBIkjRJ9SVntrTZCGoHPe+XoGeDwWA4SzAKUCujsLCQV155hUZnUPN2u517f/ADAt9+Wwoj3ncfjBzZwrM0tBjf3QT7Z8nfuXOhKk8sOyvv8KwT2UvS6ouXQXA8JE6GNfc4t5kD7YZAzACp4xOSDMNe9m9tkLcAFk/FndGa8ylM3Q2OsGY+QYPBYDgzGAWolbFlyxa38gNQ29DA2jvvZOhTT0lMUJh5AJ2zNNTAgfessn1viEXHm9ItMGWjBEMHRksLC28OroTLDkjRxMDYpvs67XsLSzmP6gKJEUqddjrOxGAwGFocowC1MiIi/Mst2O12vlq7FofDwYABAwgzStC5iS1AlJoqr/IJIakQkuK/Xvle2PuqWIdCkuDwBs+4IwxK1kHRYojqKzWHbHYo3Q57XxelKTDW//ihqc1xVgaDwdAiHLcCpJTqh5TLdm+jtW61+f1tlX79+rFhwwb2798PSKr8ggULqHWmuK9atYof//jHBAUFteQ0DS2BssHAJ2DZDdBYA44IGPBPCE2BwsVQlSvrdJgOX0/DbcGJHycxPjXFoByQMg2+vtSz38KvoMe90kKjoVJkYeniSit1ps9n3Aqxg87gyRoM5xhK2YCZSBHBDsABpC7PW2jdePQNWwbvHmBHGb8Rrx5ip/G4NwLztda5zuUs53GKT3Rfx6UAKaVeBPohTdRcF0LTigsctVUCAgK46aabyM3NxWazsXXrVrKystzjR44cYdu2bfTv37/lJmloOTpdDQnj4chGUUgCIkU+dQ8UfwfhnWHpdVjcV4WL4JIdUJUjdYG+mmzd595XpUeYS/kBKYY46gOxOAW182SQGQyG048oP+8DFwIuE38C8AxwJUpNb41KUAtxI7AJyD3VHR2vBWiY1rrXyRxAKWUHVgE5R9MUDVbq6uo4fPgwNpsNu6vZqRcOh/FcntNU50n3+NAOHgWo9pA0TlV2a5NUEKtQfbmM20PA5jvu8Onp5URr2aauDCK6yn4a66WAYl2Z9AgLCD/952cwnHvMxKr8uAgDJiINRt880Z0qpcKAWUijUztS7XkX8BgQDhQDN2qt85RSXwHrgPOASOBmrfUKpdR5iCUqBKgCbtJabz/BecQB/8PTXPUerfUSZ2f5jkC6898ntNb/cm7zO+AHiCWsGFiNVKceDLyhlKoCXL137lRKXQoEAFdprbcdz7yO90m6TCnVS2u95ftX9eNuYCvyhRq+h6qqKl544QUOHjwIQFxcHJGRkZSWSjfmxMREunc3b+PnLNv/Bavvlr+VDUa8KYUOF14A9c7+hCmXSoBzo7MyePLFMH+4uM1AXGSH1oBukOUev4Cut0tAdXWhyGIGSQPVGudy0iQYPRsWjoeib0QW2gEmLZcYI4PBcCrcg7/y4yIM+DknoQABk4FcrfXFAEqpKOAzYJrWukgpNQN4GHBVzg3TWo9QSo0GXkQqRG8DRmut65VSE4C/AFee4DyeBB7XWn+rlOqI9B3r6RzrAYxD+o1tV0r9F+jvPMYARE9ZA6zWWr+nlPoZ4npb5TwngGKt9UCl1E+A+4AfHc+kjlcBegVRgvKRDrIK0FrrYxakUUqlAhcjX/AvjvNY5zTr1693Kz8ARUVFXHLJJdjtdgICAujevbuxAJ2rNDbAhgc9y7oRNj4oWWD1Xs2Zc2bDhUvg8DqpCr3pjx7lByDnY5j4HRxcIa0w4keJ/OKtkP2RBEEXfg3bn/Rsk/c5bH/Mo/wAVB6Anc9Avz+c/nM1GM4tOpzi+NHYCDyilPo7MBs4hCg1C5yKgx3wbkr5FoDW+mulVKRSKhpRTF5RSnVFfOsBJzGPCUAv5zEBIpVSroyfOVrrGqBGKVWIuP7OBz7WWlcBKKU+/Z79u8JxVgNXHO+kjvdJ+iJwPfJlnogf8gngfo7RSVYpdRtwG0DHjh2PttpZT1FREUopd7CzN1prkpOTcTgcRvk5p2m0xukA1JXLx4IW11jMIAhPsypHAI11EBQnMUQRXsUNg2I9cUV5n/sfvraJps6+jVgNBsPJcAB58B9r/ITRWu9QSg0CpiCNTBcAm7XWw4+2SRPLfwIWaa0vV0ql4ez7dYLYgOEuhcaFUyHyejujAdFLTrSatmsfru2Pi+Ndcb/W+pPvX82DUuoSoFBrvdoZLd4kWutngWdBWmGcyDHOBhoaGpg1axY7duwAID09naCgIGpq5HqGhoayYcMG5syZA0Dfvn25/PLL8dKkDecKtgDI+BHsfNoj6/YTsfIUfOmRtRsGX10kFhpbgPT5KvFqMZMwHuYPldo+9mA471lImQqLJnkaraZebnWjRXSTatBZb0KlZChiD4H0m5r3nA2Gc4MnkIDnptxgFcDjJ7NTpVQyUKK1fl0pVY4YG+KUUsO11suUUgFAN631ZucmM4BFSqnzgSNa6yNOt1mOc/zGk5kHMB/4GfBP57wytdbrjrH+t8AzSqm/InrKxcBzzrEyjmFUORGOVwHappR6E/gUL23te9LgRwJTlVJTgGDE5PW61vq6k57tWciWLVvcyg/Anj17mDRpEuXl5dhsNhwOB4sWLXKPb9y4kf79+5ORkdES0zW0NIP+JZWcDzqboXacLvILFsGBD6QZasFXcPA7kTfWifz89yTdPbKnNE2tLpDxhmqJKSrPsnaZz/4Qhr0Ch9dLFljGbRAUIzE/u56F+jLofCNE9z5z524wnL28BUzHPxC6AlEe3j7J/fYF/qmUagTqgB8D9cC/nIqNA1G+XArQIaXUUpxB0E7ZPxAX2C+AhSc5j7uAp5RSG5zH/Bq442gra61XKqU+AdYD+5BEqiPO4ZeB//kEQZ8Ux9UMVSn1UtNz1MfVcvz76gW4OJeaodbX1wOwbNkyFi603lMTJkxg6NChACxatIilS5daxi+55BL69evnlyXW2NhIQ0MDAQEn46I1nDXMG2K1+ICkwYckShHE2T2gbKd1vPMNkg7vzYi3IO2a5p2roVXS0NBAY2Oj5bdEa01tba2pQfb9nJx5XlLhr0ECnl11gB4H3j4TKfDOLDB3cHFLo5QK11qXK6VCEYXpNq31mu/b7kQ4XguQDbhba33YObEY4NFjbmE4KgsXLmTZsmUA9O7dG5vN5m5/YbfbKSws5G9/+xs2m43evXujlMKlqAYEBJCVlcXcuXNxOByMGTOGESNGsGrVKr788ktqamro06cPU6dONfFC5yq+Lq+oPrD8FglgDu0IcedbFaD4sf4KUEA0JE08UzM2tCKWLl3K4sWLqa+vp3///lxyySVkZWXxySefcOTIETp27Mj06dObrFpvOAVEyXmTk8v2Oht5VinVC/EgvXK6lR84fgvQWq31gO+TnSrnggVoz549vPbaaxbZuHHjyMuTQPzExES++uory/iECRPYv38/DoeDdu3a8c0331jGZ86cydtvv433tZw4cSLDh5+SddDQVtEadvwHsj+GyG5QVQDZXt7qoDhJfc9fIFlgfX4nbq4DH8Hu5yAgCno9ADHHTPI0nIXk5+fzzDPPWGQXX3wxixcvprzcE/Det29frrjiuJNtzjXOqQBNpdRNSLkbb5ZorX/aEvM5EY7bAqSUitFaHwJQSsWewLYGL1yKjjcNDQ3MmDEDgC+//NJv3GazMXPmTADmzp3rN75z5058FdmmjmM4R1AKut8pH4A5PnE6NUXQaQb0fsAq73CZfAznLE39bhw4cMCi/BxtPcO5idb6JaCpMJlWz/EqMY8CS5VS7yFpcVcjtX0MJ0jnzp39ZA0NDTz9tGT2dOvWzW+8oqKC//znPzgcDr/gZ6UUmZmZrFu3zh1XBJI99uyzz1JdXc2gQYMYOXLkaT4TQ6uloRrW/lJq+kR0h+hMOOJVwzS8ixRPNBh8SEtLs7jcAbp37052djYlJSVuWVO/YwZDW+O4XGAATl/ceMS89+VJVoU+JueCCwxg3bp1LFmyhMbGRnr06OEX5Dxy5Ei2bt2KzWajW7dulnGlFMOHD2fLli0EBgYyduxYevbsya5du1i4cCGVlZX07NmTFStWuOOKAKZPn07v3iZj55xg7f/B1n94lkM7QuKFkDsHonpJJpnJ3jIcha1bt/LVV19RW1vL4MGDGTlyJEVFRXz22WcUFRXRtWtXJk+eTGBgYEtPtbVyTrnA2jLHrQCdCc4VBcibxYsX+8X8jB8/nlGjpDrv/Pnz3QHTLqZMmcKQIUOOus+NGzfywQfWCgUDBgxg6tSpp2fShtbNZwPh0Fqr7OKtENWjZeZjMJxbGAWojWDieFqYpCT/PkpKKWbNmoXNZqN9+/Z+4/X19bz99tsEBgYyYsQIEhMTKS4u5ttvv6WqqqpJ83RiYmKzzN/QCokZYFWAAmMgd7bU+4nqCb1/C8H+95XBcDQqKyv5+uuvKS4upkuXLgwdOtQUYzW0eYwFqIXRWjN//nxWrlwJQJ8+fdi4caMlLb5nz55s2bIFu91Onz59WLvW83ALCgri9ttv5/nnn6ey0tMmYeDAgWzatIm6ujr69u3L1KlTm+wsbzgLqSqAJVdLP6+QJEicAHu9Mg/bj4CJS1pufoY2x0svvcT+/fvdy+PGjWP06NEtOKNWzUlphg899JAN6Qp/D546QE8Abz344IPNXgfoRDne+n7H2H4wcIPW+q4mxrKQru/1wLVa66dPxzF9MRagFkYpxaRJkxg/fjwA3377rSV2p6GhgdTUVC699FJsNhtffPGFZfuamhqWL19uUX5c2/3yl7+ksbHR+OrPNUISYMJiqD0MjgiYN9A6XrwUKg5A2Mn2VzScS5SWllqUH4DNmzcbBeg04lR+3sdaCToBaY9x5UMPPTS9NSpBp4Kz4OL3WTyigZ8AT3/PeieFUYCOg7q6OtasWcPhw4fp2bOnu2nr1q1bycrKIiUlhb59+x6XSfjAgQNs2bKF6OhoBgwY4FZOXBVXo6Ki/Lax2Wx88803OByOJquwxsfH+8mioqJOqRBicXEx69atIzAwkIEDBxIeHk5VVRVr1qyhsrKSvn37Grdaa6ZgEWR/InWAQlLg8AbPmCMcSlbDtkelDlDnG6RnmMHQBCEhIQQGBloaNTf1O2U4JWbi3wYD5/JEpEL0CRdIVEqFAbOAVKTz+5+AXcBjQDhQDNyotc5zVoJeB5yHsxWG1nqFUuo8xBIVAlQBN2mttx/HsTcCo5AWFsXAz7XWryqlXgNeQaw792mtL1FKtUPagcQBK/BY0f4GZCil1iGNXOcA4c6M9D5I9/fr9Em6sowCdBy8+eabZGVlAfDdd99xzTXXUFBQYOnRlZeXx6RJk465nx07dvDWW2+5l7du3cqNN95oWadfv35s2rSJvXv3AtIcdcGCBdTV1QEQHh5OcnIyubm57vUHDhxIfn6+242WkJDgbqVxMhQXF/Pss8+6j7lmzRpuv/12XnrpJYqKigBYvnw5N910EykpKSd9HEMzkfU2LJ3pWY4fA8GJUJ0vik7KVPjmcs94wWIY8ar/fgwG5OVs4sSJzJ07l8bGRsLCwtwWa8Np4x6aboSKU/5zTq5C9GQgV2t9MYCz/9dnwDStdZFSagZS0sbV1ipMaz1CKTUaeBFRMrYBo7XW9UqpCcBfgCuP49hLkJ6g+4A9iDL0KjAM6Uk22GvdB4FvtdZ/VEpdjDRtBXgA6KO1znTOfywwAOgN5Hod49sT+E7cGAXoeygqKnIrPy5WrVpFfn6+n+zCCy/EZrMddV++8U379u2joKCAhIQEt8zhcHDDDTdQUFCAzWZj06ZN7Nmzxz1eXl7OBRdcQEJCAoGBgbRr1w6QzLDhw4dTWVlJcnLyKQUorlu3zq38ABw5coQlS5a4lR8QF9vq1auNAtQa2fmUdblwsfQCqymCiC7w5QXW8X1vwOAnJVjaYGiCQYMG0aNHDw4ePEhycrJps3P6+T5/9Mn6qzcCjyil/g7MBg4hSs0C5zPCDnhXtXwLQGv9tVIqUikVjXRef0Up1RWpA3i85uJvgNGIAvRf4DalVArSnb7c5xk1GrjCeew5SqlDx9jvCq11NoDTMpSGUYCah6YaiwYEBPjJAwICKCwsJDs7mw4dOriVmvLycnbs2HFUl1RNTQ1r1qwhJibGnb1VW1tLYWGhX7NTbwoLCwkMDCQ6Ohq73U5jYyNFRUVUVlYSGxtLSEgIADk5OeTl5dG5c2e3snTkyBF27dpFu3btSEtLc89j+/btOByOJo8ZHBzsJzOxRa0Ue6h1Wdk5UgW7soOIi6umo8Nn3BYIyrjADMfm4MGDFBUVERERQUyMKMuHDh1iz549xMfH06GDiSk7BQ4gMT/HGj9htNY7lFKDgCnAXxE30mat9dH6JPm6kjTiNluktb5cKZUGfHWch/8a+CnQEfgNcDnS8f6bo6x/vG6sGq+/GzgFPcYoQN9DdHS0u9IyiKIzcuRIiouL+eijj9zrpaenW3roXHzxxaSmpvLSSy+5fefp6ekWX3qXLl147bXX3BWcBw4cyIQJE3juuec4dEgU4Li4OKKiojhy5Agg7q0vv/zSXZo+NTWVG2+8kTfffNNtKQoNDeWWW25h8+bN7k7zSimmT59OaGgor7/+Og0NDQAMGTKEMWPG8Pzzz3P48GFAYooiIiIoKytzH2PYsGFkZWWxe/du9zHOO++80/dFG04fvX8NRV9LRWjgcPx1/PvZt93B9ZcOuoSBtrXQ6LTy9fwlBIS31GwNbYAFCxa4C7K6WvM0NjbyzjvvuO+rUaNGGdfYyfMEEvDclBusAukKf8IopZIRi8vrSqlyxLUUp5QarrVeppQKALpprTc7N5kBLFJKnQ8c0VofcbrNcpzjNx7vsbXWB5RS7YFArfUepdS3wH3Az5pY/WvgB8CflVIXAS5zdBligWoWjAJ0HEybNo1+/fpx+PBhunTpQkREBCkpKaSkpLBv3z5SUlJ4802re3bx4sWkp6dbAgf37NnDjTfeSElJCdHR0SxbtszSvmLNmjVERES4lR8QF9yll15KQEAADoeDvLw8SzPU7Oxsli5danGTVVZW8t1337mVNpB0+6+//prw8HC38gPilgsODnYrPyDWpWnTpmGz2QgMDKRr167Y7XauvfZadu/eTWVlJd26dXNbmQytjIQxcOlOyPscIrrx0dzdNDbucw/PWQu9frye4MNLJAi6/cnHixnOfqqrq/nuu+/cy42NjXzzzTc0NDRYMlaXLl3K+eefbyzDJ8dbiHXENxC6ApgPvH2S++0L/FMp1QjUIbE39cC/nIqNA1G+XArQIaXUUpxB0E7ZPxAX2C+AhSd4/OWImw3E8vNXmnZXPQS8pZRaAywG9gNorQ8qpZYopTYhsUtzTvD4x8QoQMdJU8UF27dv7y5U6B0z41r2lQHu4oaRkZEW5cdFTU2Nn0xrTfv27XE4HGRnZx/XNnV1dRZF52hz0lpblDRv+vWzdgO32Wx07dq1yXUNLUh1MZRuhdiB4HD+doamQsYtANTVbbOs3tjYSJU9kYKAC2kf0t7za6s1lKySbvCR/j3pDOcWFRUVFBcXExUVZVF0QH5LfGWNjY1UV1eTl5dHXFwcoaE+rlbktyo/P5/4+HjzAuXFgw8+2PjQQw9diWR7/RxPHaDHgbdPNgVea/058HkTQ0erYfC+1vpXPvtYBnj/IPzOKf+K73GHaa2v9/p7KWDzWnZvr7U+iGS7ufi513rX+uz2K6+xpqxJx41RgE4T5513Hl9//bV7eciQIXTu3Jlt27a5GwsmJibywQcfcPjwYZRSfr25MjIyGDZsGOvWraO6WtwXYWFhrF27ltmzZ7vXCQgIcCsy0dHRjBw5kh07driDlO12O0OGDMFut7N69WrLnMLDwy01Pbp3787QoUNZt26dW5GKiIigRw/TNqFNkPUmfHczNNZIEPOY2RA3wrLKeeed5+eudRXOtNvtXHzxxQzo3VmCow+tca50Mwx74QyeiKE1sW7dOmbPnk1DQwOhoaGkp6dbrMznnXceDQ0N7t8lkPvqf//7H1VVVdjtdqZOnWp5idqzZw/vvPMOtbW1BAQEcMUVV5jfGS+cSs6bnFy2l+EkMJWgTyNbtmxh//79dOjQgV69eqGUIicnh82bNxMZGUlubi4bN250r6+U4uqrr2bfvn3ExsaSmZlJQEAAhw4dYt26ddhsNpRSlnR7gEsvvZRDhw65a/SEhYVRVVXF2rVr3TV6EhISaGxsZOPGjeTl5ZGenu7uNJ+VlcX27dtp164dmZmZOBwOSkpKWLduHQ6Hw133x9DKaayHD5OgptgjO0qV5z179rBz507i4uLYuHGjJbMxKCiIX06pw77p99aNLlzip0wZzn7q6+t59NFH3S9hAJ06daJfv37uZqjp6ekA7N69m127dhEfH8+aNWssFuqQkBDuvfded1LFf//7XwoLC93jUVFR3HPPPWfmpM4s51SPEKXUTcDdPuIlWuuftsR8TgRjATqN9OrVi169ellkrlghgNdee80yprUmMjKS0aNHExQU5E6hj4mJYeTIkSilWLx4sd9xtNacf/752O12d2ZZSEiI+63MVSzRZrPRr18/unbtajFHp6WlubO/XMTGxpoAxjaC1pqqqipCAxqg5qB1sPKA2xXhfc3T09NJSkoiKCjIHczqoqamhsbyA/jl/lWeVOKJoQ1QX19v+a0Az30FWJQfgLKyMjIzM6mpqbG4rjIyMkhKSiI4ONjvt6qqqoq6ujr3Nq5EDu99aq1NT7E2jtb6JeCllp7HyWAUoDNI7969LWbk2NhY5s+fz759+wgLC+Piiy+mR48ezJ07lzVr1mCz2ejTpw9KKbcbLTAwkL179zJnzhwcDgejRo1i1KhRrFixgoULF1JTU0OvXr24/PLLyc3N5YMPPuDIkSMkJiZy1VVXERsb21KnbzgNZGdn88EHH3Do0CHi4+O5JWMCgcUL3OOHoy/ipSefpLS0lOTkZK666ipsNhvvvvsu2dnZREREkJaWxsGDHsWpc+fOBGSMgawXcWeiBsZA0rELexraJkf7rfjwww85fPgwiYmJdOjQgQMHPApwcnIyTzzxBGVlZaSmpnLVVVehtWbWrFnk5uYSGRlJhw4dLEpOp06dePnllykoKCA6OtodEuCid+/eRvkxtCjGBXaGWbduHZs3byY6OpqamhqLSywwMJCLLrqIjz/+2LLNhRdeyIEDBwgICCA6OtqSBQZwzTXX8Pbb1iSBCRMmsGrVKkt2V5cuXfjBD35w+k/KcMb4z3/+Y1FeuqYlcG3/LChZS2PCBTz5uaK0zNMXrkePHgQEBFjus5CQEM4//3x3/ZZRo0bJW33OHNj9nARB97wfoq0xaoa2T0lJCf/+978tsqZ+Kzp37kxSUhIFBQWkp6ezZMkSS7/BPn360NDQwNatW92ysLAwhg8fzt69e0lISCAnJ4d9+zzZh7GxsfTv35/9+/eTkpLC+eef32SdtbMAo9W1EYwF6AyTmZlJZmYmAC+8YA0yra2t9Ws6CBIrNGPGDADmzp3rN+6qzeNNbm6u5QcN8KtebWhb1NfXW5QfgOyCUsj8GwCV5eWUlj1qGc/Pz/d7yFRVVdGrVy9GjPCJ70m5WD6Gs5aCggI/WVO/FUVFRdxwww2AFE5dsGCBZTw/P98vy7SiooJ+/foxcuRIAP75z39axktKShg+fLhpompoNRgF6DSQlZXFggULKCsro2/fvlxwwQWUlZUxd+5csrOz6dSpE1OmTPELLE5PT7cEDUZERNCnTx/Wrl3rlimlKC8v58knnyQgIIAuXbpY9mGz2cjMzGTt2rWWtPpu3bpx+PBhd88wkIKGr732GgUFBXTp0oXJkyc3WeHZ0DpxOBx07NjRoiSnpqby+uuvk5+fT3p6OnFxcZaWJRkZGTgcDossNjaWRYsWsXv3buLj45kyZQrt27fnm2++YfXq1QQHBzN27FiTodMC7Ny5k4ULF1JZWcmAAQMYM2bMaXUTdezYEYfDYfmt6Nq1K0eOHCEnJ8ctS0lJcf9WZGRkEBsbS0lJiXs8PT3d3Q7HRfv27VmwYAF79uwhMTGR1NRUduzY4R7v0KHDKVl8cnNz+fzzzykpKaFHjx5MmjTJtOQwnBLGBXaKVFdX8/jjj1tq6UyaNInt27dbMm26devGzJkzLds2NDTwxRdfsHXrVmJjY5k4cSKJiYmsWbOG7777DpvNRpcuXViyxJPVo5RixIgRbNu2jcDAQMaMGUP37t3Zs2eP5Ydz1KhRHD58mHnz5rmzwA4cOGCxIAwYMICpU6c235djOO2Ulpby2WefkZubS1paGvn5+ZbMmm7duqG1diu5kyZNQinF/Pnz2blzJ+3btycwMNDiuoiLi2PUqFF88MEHbpnNZuOuu+4yXb/PIOXl5TzxxBMWy8rUqVMZMGDAaT3OyfxW9OjRg/r6egoLC+natSuTJk1Ca83nn3/Orl27SEhIwGazsX27p0l4fHw8SUlJ7N27l+TkZCZPnnzS91NDQwNPPvmkuzo9wMiRI5kwYcLJfxHNx8lprG8qG9IV/h48dYCeAN7iWn1SdYBOBqXUjcB8rXXu96z3MjBba/3eUca/Qrq9n7aHurM32bVa66edy2Odx7jkZPZn1OdTJDc316+Q4N69e/0aqLq6u3tjt9uZNGmSXxf5gQMHMnDgQADmz59vGdNaExUVxc9+Zq3/lJ6e7k5NdREdHc0111wDyI/ro49a3SNNzcnQuomMjHS7Q6urq/n73/9uGc/NzeXee+/12+7iiz2urX/961+WsaKiIsubOkhRu3379vkVwzQ0H/v37/dzK2VlZZ12Behkfivy8/O5+27fTGcpyeHiscces4wVFhZy4403npaCh8XFxRblB/D7jW3TiPLzPtZK0AlIe4wreVNNP4NK0I3AJqTbemsjGvgJ8PTp2FmzKUBKqWCkv0eQ8zjvaa0fbK7jtRTx8fHYbDZLVdSkpCRKS0stMTcJCQnMnz/f/ebuSmNfuXIl27ZtIyYmhjFjxhAZGcnu3btZsWIFNpuN+Ph4v2PW1dXxxhtvEBgYyMiRI0lOTqawsJBvv/2WyspKMjMz6dOnD1VVVXz99dfuZqiRkZGUlpZa5mk4M+zdu5fly5cDMHz4cDp16mQZ37lzJytXrsThcDBixAhSU1MpLi7mm2++oby8nP79+/spI0FBQcTExFhap8THx/PZZ59RWFhIRkYGI0aMwKaAbY9DzmyI6kVS/DDLNq4Mnk2bNln2X1FRweuvv05ISAijRo3yuxfXrVvHxo0biYiIYNSoUe5muy5WrVrFli1biI6OZsyYMURFRbm/B6UUw4YN8/sezmWa+v8YFhbGe++9R01NDQMHDqRnz55UVlayePFiyzVWSrFs2TK3lW/s2LGEhYWxfft2Vq1a9b2/FdXV1SxevPiovxVxcXHMnTvXXQdo2LBhgLS/cLlS4+PjLUpKdHQ03333Hfv27SM5OZnRo0cTHBzMxo0bWbduHWFhYYwaNYq4uDhycnJYunQpdXV1DBkyhK5du1JeXs5XX33FwYMHycjIICgoyFL1PjExsRmvxhlnJv5tMHAuT0QqRJ9UgURnA9N5SFuKAcAO4AagJ/AYEA4UI4rPSGAw8IZSqgoYDvwSuBQIAZYCt+sTdB0ppSYi7S6CgN3ATc6O8FnAK879BwBXaa23KaXinOfbDlgJTAYGAX8DMpxd4BcgrTHClVLvIV3uVwPXHe/8ms0FpsRxHeY8yQCk/8fdWuvvjrZNW3SBAWzYsIHPP/+cqqoqevTowWWXXUZJSQkffPABRUVFJCYmEhwcbHljGTJkCO3atWPevHluWVxcHJdffjnPPfecO+3dbrfTp08fNm3a5P57zZo17m0CAwO54447eO6559w1PABmzpzJypUr2bVrl1vWq1cv8vLyOHToEB06dGD69OlERkY24zdjALGw/O9//3MryXa7nR//+MduhSE7O5sXX3zRfc0DAgK44447ePHFF6moqHDv56qrrvKrM5Wdnc2HH35ISUmJu96UdyzH+eefzwUJy2DD79yy0vAxvFd8AwcOHCAmJoZp06aRmprK7Nmz2bBhAwEBAfTp08cS3xESEsLdd9/trhuzceNGi8ssIiKCu+++2130buXKlZaA/Xbt2nHVVVfx7LPPWr6Hn/zkJ6Y0gxerVq3iyy+/pKamhp49e7Jr1y6Lhfn666/nm2++sfyWjBo1CrvdzldffeWWpaamMmHCBF5++WW3LDAwkNtvv50XXnjBktF1PL8VdXV1lhe6sWPH0tDQYMlITUlJQSlFdnY2sbGxJCQkWFyt3bt3p3///syaNcstCwsL4+abb+Z///ufu7q9Uoqbb76ZuXPnkpeX5163f//+7Nmzh7KyMjIyMrjiiiuabLfRCjhxF9ibaiWieByNVVyrh5zUZEQB2gucr7VeopR6EdiKdGefprUuUkrNACZprW/2dV0ppWK11iXOv18DZmmtPz1eFxiQBXwAXKS1rlBK/R8QpLX+o1MBelRr/W+l1E+AgVrrHyml/gPkaK3/qpSajPQBi0OUtdla6z7OY4wFPgZ6IxarJcAvtdZN9Rvzo9ksQE4NrNy5GOD8tJ6Ao9NIv3793GmhriC/xMREfvKTn1BTU4Pdbufhhx+2bLNlyxa/H/6ioiJWr16Nt1La0NBAUlISl1xyiTuWw5va2lqWL19uUX5AHlDeP2ggD8t77rmHuro607DwDLJt2zaLhbChoYFt27a5s2W2bt1queZ1dXUsX77covyA3DO+ClBqaio/+9nP3H3eHnnkEb9tLqiZZZFFli/m5hmvURuQQEBAgDvIdtq0aUyZMgW73c4nn3xi2aaqqoq9e/e6A6O3bNliGS8rK+PAgQPuApu+4wcPHmTVqlVNfg9+2WjnMIMHD2bgwIE0NDSwfft2v+9xw4YNfq6fzZs3+wUDZ2dnW5IpQH4rVqxYYVF+oOnfigMHDvDzn/+curo6d5yj7zF9e4Hl5ORw3333ERAQQEBAgJ8bbfv27W4F2UVFRQXLly+39CjUWrNmzRqL8gOSweaa01n4+9XhFMe/jwNaa1cw6evArxGLyQLn/387kHeUbccppe4HQoFYpHHqpydw7GFAL2CJ81iBwDKvcdeb1GrgCuff5yMKGlrreUqpQxydFVrrbACnZSiNphuu+tGsMUBKKTtyUl2Ap7TWy5tY5zbgNpAMhbaKzWZzV3L2JigoCK01ERERfubh6OhoS7Exu91OXFxck/tetGgRDoejSX96QkKCnywmJoawsDDLQzQ6Ohql1Nn449GqiY6O9pM5HA4WLFiA3W63VON10dQ1DQsL4+uvv6ayspL+/fuTlJREY2Mj69atIy8vj06dOhEcHGyp4hsdHQ1haXDYUwcIRwQ79h9k554NJCQkMGDAAOx2OwUFBaxbt47g4OAm36xra2uZN28eYWFhhIX5WurlYfbZZ58RFRVFRESEZcxmszV5bzf13ZzruH5LmvpuYmNjm7zGDofDEgwfGBjobtTszfH+VkRFRbF69WoKCgpIS0sjMDDQYomKjo6msbHREigdHBzM3r172bdvH4mJiURFRVn2GRERQUxMzHHNqX379paeh65jnsW/XweQmJ9jjZ8KvsaHMmCz1nr4sTZyhrI8DQzWWh9QSv0BONHUYQUs0FrPPMq4y6/ZgEcnORErmnc3cO99fC/NqgBprRuATGfk9odKqT5a600+6zwLPAviAmvO+bQUSimmTJnCBx98QF1dHSEhIUycOJHw8HCys7M5dOgQNpuNCRMmMGjQIHbt2uV+I+vSpQvz5893p62GhYWRmprqTp8fMGAAAwYMoLCwkO++E+9iUlISw4cPJyEhgY8//pi6ujpCQ0OZOHFi0xM0NCu9evVi06ZN7kDjjIwMFi5c6H6ghISEWNLb+/Xrx4ABAygpKWHp0qVorUlISGDnzp3u2J2VK1dy8803s2rVKtatWweI+6RPnz5s27aN+vp6wsPDJUsmZACUrIGqHLAFsSf2Lt6a5Sm2uW/fPkaOHMnzzz/vDsKNjIwkKSnJ/Rbeq1cvPv74Y/dbf7t27dwp967Gvu+957GEJyQkuFOnbTYbF1xwgfve3rlzJwA9e/Y0qfbHIDU1lcGDB+MKC0hNTeW8884jOjqaTz/91HKN7XY7eXl5lJWVYbfbmTx5Mr1792bnzp3u+yozM/OovxWJiYl89NFH7t+KoKAg5syZA8h91bdvX7Zu3Up9fT0RERFccMEF7mzD8vJyHA4HXbp04f3333fPv2vXroSEhFBVVUVAQABTpkyhQ4cO7N69m/z8fJRSDB8+nAEDBrB//37Wr18PSKueIUOGEBQUxGeffUZDQwORkZFne6ueJ5CAZ/83C6hAusKfCh2VUsOdnd1nAt8Bt7pkzjCVblrrzYhy5HqDcSk7xUqpcGA60KTL6xh8BzyllOqitd6llAoFUrXWO46xzbfA1cDfnfFDLs3Ze26nzBlLg1dKPQhUaK0fOdo6bTUG6HipqamhuLiY+Ph4t6ussbGR/Px8oqKiLG/VRUVF2Gw21q9f71f5edq0aSQnJxMQEGB5ozpy5AhVVVWW4MDq6moOHjxIQkKCqZnRwhQXF6OUYvPmzX4Nbi+++GJ3jRZv12hpaSmVlZWUlpby1ltvWbbJzMxkw4YNFldETEwMt956KyUlJSQmJnpcDo11cGgdhKfz9AvvWOoCKaUYMGCAJbYM4OqrryYmJoaQkBAWLVrkfkC5uP766wkJCSE8PJw5c+ZYUqABfvSjH6GUIjIy0lIDy/U9+AZNG5rm8OHD1NTUWCwlVVVVfte4oaGB/Px8YmJiLBa8wsLCE/qtiIqK4rHHHrO4Zdu3b89NN93EoUOHmjxmbGwszz//vKVWkFKK++67j0OHDtG+fXu3pdOlOIWGhlpiEA8dOkRdXZ0l2L6yspJDhw6RlJTUpIW9lXIyMUBNZYGBKD/zgZPOAnPGAM1FkpJGADuB64FuwL+AKMQY8oTW+jml1JXAXwBXEPRvkCDsLMQStU9r/YcTSYNXSo0H/o4EQQP8Vmv9iTMGaLDWulgpNRh4RGs9VikVD7yFKD6LgRlAZ611jVLqTaAfEhc0B680eGfs0Cqt9cvH8900ZxZYHFCntT6slAoBJiBfwDlLUFCQO1DVhc1mIzk52W9dl7ugKfdIYGBgk9lhUVFRfnU2goOD/Y5paBlcLommTPhKKXJycggICCAyMhKHw0FjYyO5ublUVFQ06XIKCgrC4XBYXBOBgYEUFhZSUFBAUFCQ+5glh8vYtVsTF1fqd0/Z7fYmC2I2NjaSk5NDaGhok8pzQ0MDOTk5RERENFngLjg4uEklpynXjOHoNOUKa+oau4oZ1tbW0rlzZ0AUJdd9FRERgcPhoKGhgdzcXCorK4mIiHDfW67firq6Oux2u6VYYlBQEAUFBRQVFVmu66FDh8jJyWkyLicgIIDAwEC/35+KigpycnIICwsjPDwcm81GfX29ez+RkZHu+zE0NLS1BjqfXq7VjbyprkQUjZ/jqQP0OPD2aUiBb9Ra3+EjWwf4leXWWr+PKGMufuv8+K5347EOqLUe6/X3QsAviFtrneb19yrAtc0RJCi7Xik1HBinta5xrnetz26+8trHzzgBmtMkkAS84owDsiGR47Ob8XhnJQMGDGD16tVu10dKSgrdu3dv4VkZToXMzExWrVrljp+Ij49n8eLF7hixxMREbrnlFt5++213m5OgoCCLmywsLIxhw4YRERHBF198AYgyHRsb6878UUpx9dVXY7fbefvtt92Wou7du2O3293urvPPP58BAwawceNG9xxcWWGuWJPk5GRCQ0PdAbRpaWm89957buWrU6dOljTl/v37GwtPM/HFF1+4i6Me7RoPGzaM4cOH89xzz1FeLrkoycnJ3HTTTbzxxhvuQOovv/ySW265xXKtAgICGDVqlNtKabPZCA8P59VXX3UvX3PNNTQ0NDBr1iy3pahHjx4UFha65zB69Gg/xbmoqIgXX3zRfV+lp6czc+ZMXnjhBXeW2aJFi7j11lv94sjOekTJeZOTTHc/y+gIzFJK2YBa4NbmOIipBN0GqKurY8eOHe5WGG3IFGw4CvX19ezYsQO73U5+fr4lhRlg3Lhxfm6ygQMH0qtXLyorK+nWrZvbkpOfn09+fj7Jyck8++yzlmJ6ycnJOBwOS/sMm83GbbfdRl5eHgkJCe76M7W1tezYsYPg4GB27tzJihUrLMefOXMmNTU1hIWFsWHDBj+X2A9/+ENKS0uJiooy9X2aiZqaGv75z38e1zUeOnQoy5Yts2w/fvx4Fi5caJGdd955XHTRRX7HysvLo6CggKSkJEv5ApC2Fi4LoQu73c5tt91Gbm4uiYmJTdbpmT17tqW8AjR9r48bN64t9ww7p5qhKqU+BDr7iP9Pa/15S8znRDBBIW2AgIAAevc2nbnPJhwOhzul3btfmwtv94OLxsZGoqKi3GnGLsLDw4mKiiIoKMgvNbm+vt6vl1RjYyOBgYFERUVZYnMCAgKIiooiODjYryIxiLXBFavW1LjD4TCVo5sZrbXfNW7qWjQ2NjZ5D3lnVXlvX1RURHV1Nampqe77JTw8nOrq6ibvq4aGBr/jNjY2EhQU5HdfNTY2kp2dTUhISJNzbWqeTa1naJ1orS9v6TmcLEYBMhhamMzMTJYvX+52H0VFRTFixAh27drlzsKy2+1UVlby1FNPARIj9sMf/pBdu3bxySefuB8+Xbp0cWdZAQwdOhSHw8GHH37olmVkZPDss89SXV2NzWZjypQp9OrVi1deecXdLbxr166Wppmuop2uINcePXpYKqCnpqaaWLMzQHBwMP3793dn/oFYcHyvcd++fRk6dCjr1693uyljYmIYOXIk27dvd6fMOxwOSktLefpp6SyQkJDADTfcwLZt25gzZw6NjY0EBweTkZHhdseC3FcNDQ2WelFdunThv//9LzU1NdhsNi699FK6du3KK6+84g6679atm8X9mpiYyMiRI9m4caO7I31QUBCZmZmn/bszGHwxLjCDoRVw+PBh1q9fj8PhIDMzk7CwMGpqali3bh0VFRXEx8dbUoxBmkGuWbPGUgQzJSWF8847z90M1RUMu2/fPnebhHXr1rFv3z73NkFBQQwbNozFixdb9n/55Zdz8OBBQkJCKCkpYeXKlZbxq6++mtzcXCIjI+nfv//ZWp+l1dHY2MimTZuOeY379euHzWajpKSEDRs2EBgYSGZmJqGhoVRXV7Nu3ToqKyuJi4uzVPQGid3xVshBarQNHDiQwsJCunXr5nZxZmVlsXPnThISEli5cqW7PAdIeYdBgwbx7bfWmnRXXnklhYWFhIWFkZmZSVBQEJWVlaxdu5b6+nr69evXZL2gNsQ55QJryxgLkMHQCnD1y/ImKCiIoUOHAvilmIOkyPtWAC8vL6dPnz6kp6db3BCdOnWiXbt2hISE+D2Qampq3G/f3tjtdoYOHUpAQIBfZWiQjLMLLrjguM/RcHqw2WxNuho7derkF3sVGxvL2LFjLbLg4GB3L6/Nmzf77efIkSMW5Qc891VVVZXlvkpLS6N9+/aEhob6xRZVVVVx5MgRv/07HA6/mj6hoaHuyugGw5nCKEAGQxugc+fOhIeHuzN6QDKtamtrLcpRamoqjz/+OOXl5SQkJDBjxgxsNhvvvPMOeXl5hIWFkZ6ebqngm5GRwYABAyxBzSEhIaxfv5733nuvyRi0yMhIE+h8FtClSxdLdh9I5mlFRYWlPUZycjKPP/44FRUVJCUlMWPGDBobG5k1axb5+fmEh4fTqVMni8LTrVs3MjMz2bjRU4Xcdf8ZDK0B4wIzGNoIJSUlLFmyhKqqKjIzM+nWrRu1tbUsWbKE/Px80tLSWLJkiaX9QPfu3XE4HJY3/eDgYMaMGcPevXuJj49n5MiRBAcHs3v3btasWUNQUBDBwcF+GURTpkxhz549hIWFMXLkyLbupjA4KS4uZunSpdTU1DBgwAC6dOlCTU0N3377LYWFhXTu3Jmvv/7aYm3s3bu3u5ebi7CwMM4//3z27t1LQkICI0eOJCgoiJ07d7J27VpCQkIYMWLEuVAe4eRcYItX2ZAqzffgqQP0BPAWYwafah2g40YpdSMwX2vtn51hXe9ljlEI8TiO80fga631Fz7ysTiLGzr/rtVaLz0dx/TFWIAMhjZCbGwsl156qUUWGBjIuHHjAHFT+DbLLSws9KvFUl1dTY8ePdxuEBcZGRlkZGQAWAJqXYSHhzNjxoxTPg9D66J9+/ZMnTrVIgsKCnK7N48cOcLnn1szmgsKCvwytSoqKujdu7fffdW1a1e6du3aDDM/ixDlx7cSdALSHuNKFq+afgaVoBuBTUh39WZDa/3741htLNJUfWlzzMEoQAZDG2H79u18+eWXVFZWMmDAAMaPH09JSQlz5swhLy+P9PR04uPjLU0xMzIycDgcltYXsbGxfPHFF+zevZuEhASmTJlCXFwcixcvZvXq1QQHB/u5KQICAtp0s+JzhSVLlrBixQocDgejR4+mf//+7Nq1iwULFlBRUUG/fv2YMGECtpo62LkPyiogKgK6dYJAr2reFVUyXlFFZHQkce3bU1Rc7B7OyMigsbHREhgfFxfHvHnz2LNnD4mJiVx88cW0a9eORYsWuS1A48ePl/5vhSWQlQsNDZAcB538q+GfY8zEvw0GzuWJSIXokyqQ6GyFMQ9YDgwAdgA3AD2Bx4BwoBhRfEYCg4E3lFKuVhi/BC4FQhBF5Hb9Pa4jpdR5wANa6yuUUtOAt5GWGzZgi9Y63duao5SajFi7ioE1XvO+A2hQSl0H3Onc/Wil1C+AROD+U7EGGQXIYGgDlJWV8e6777rfur/99ltiYmJYsWKFO3V9y5YtdOvWjdjYWAoKCsjIyODCCy9EKYXWmh07dhAXF4fdbne7xPbt28esWbMYPXq0OwusvLyckpISRo0axdatWwkNDWXcuHFNtuMwtB527NjhrgoO8NFHHxEdHc0777zjLmewbNkyoqKiGBoQKcoPwMHD8kjs08Wzsy27oVKqNaviQ1xz3vnM372VwsJCunbtagl+37VrFwkJCWit2bJlCyDZYe+++y7Dhg1z9zIsLy/nvffe4547fkz41r2eY2XlQkgwxHt64J2D3EPTjVBxyn/OqVWI7g7corVeopR6EfgpcDkwTWtdpJSaATystb5ZKfUznD28QPpraa3/6Pz7NeAS4NPvOd4aRNkCGIVYlIYgOsdy7xWdHeefA8YDu4B3ALTWWUqp/wHlrh6iSqlbkC4T5wM9gE848easbowCZDC0AbKzs/1cDrt373YrPy5yc3O59957/bafPHkykydPBuBf//qXZezgwYOW2kEgqdbt27fnpz/96emYvuEM4Gpv4c2mTZv8Cg3uy8piaGKGdcUjZZ6/a+vcyo+L2EbFNddc47f/KVOmuP9+7LHHLGOFhYWW2kEgBQ6P7M8hHB8Ol53rClCHUxz/Pg5orZc4/34d+DXQB1jgLHxpB/KOsu04pdT9QCgQC2zmexQgZw+vXUqpnsB5iKVptPM43/is3gPYq7XeCaCUeh247Ri7/0hr3QhsUUolHGO978UoQAZDGyApKcltyXHRoUMH8vPzLR24ExISmD17NoWFhWRkZHD++eejlGLJkiXuGjHx8fHu3nKAu3XFpk2bLMcsKyvjlVdeITQ0lFGjRjXZ2sDQemiqqXK3bt1Ys2aNpZJzckoKBIeIm8tFWKi4vMorIToCggKhptZrPAR2ZEFFNcRGQcdE0BoO5EPJEQgLJSUpiW1lHkUqNjaWDh06WALwlVKEJyVA2QHrRCPOeeviASTm51jjp4Kvy6oM2Ky1Hn6sjZzWmaeRju0HlFJ/APw7JzfNN8BFQB3wBfAyogDddxzzOxbeNRpOqeaSUYAMhjZAdHQ0l156KV988QXV1dX069ePIUOG0KFDBz766COKi4vp2LEjVVVV7rfuAwcOUFdXh8PhcLu3Dhw4QEJCAmlpaWRlZdGuXTumTZtGSkoK+fn5rFu3jsDAQHr37m1xp+zZs4d77rnHr5O8ofXQu3dvcnJyWLVqFXa7ndGjR9O1a1emTZvG/Pnzqaqqok+fPhKkXF0L2/aKEhQRJspMrjNOrLQC2seAzQZV1RIjVF0LB50p7qXloBuh0akAObeZ3Kk7VTU17Nu3j/bt23PZZZeRmJhIQUEB69evJzg4mAsuuICopARoVJCVAw2NkNQeEs/6zLDv4wkk4LkpTbAC6Qp/KnRUSg3XWi9D4o2+A251yZRSAUA3rfVmRDlydaJ1KTvFSqlwYDrH73L6GngVeNXpZmuHxO34Fp/aBnRWSmVorXc75+eiDIg8sVM9fkwavMHQhnD1grLb7RZ5fX09NTU1PPLIIxZ5bGwsDofDEhgNcM899xAWFuaXIdbQ0IDNZuPjjz/2a3Y6Y8YMCWA1tGpc1h7vpslHu29odCoyS9Za5YEBMLy/jNfVw3cbrOOhwaI0VVkLJjK8P/U2ddT7ytKXTmv5nH3NnU/cKtF0FhiI8jMfOOksMGcw8VxEIRkB7ASuB7oB/0KCkx3AE1rr55RSVwJ/AVxB0L9BgrCzEEvUPq31H74vJV0pFQIcBi7VWs9XSj0LJGqtpzrH3dv7BEF/C/RxpsF3QxSuRiQI+hbvYyqlyrXWfh7V48VYgNoAhYWFrFmzBofDweDBg4mOjm7pKRlaCKWU5SHW0NDAmjVryMvLIy0tjZCQEEu9lpiYGD8FKCgoiH379pGVlUVCQgKDBg3C4XCQl5fH2rVrCQ4OJjQ01O/Ypu5PK+PgYfmEBEsmld0OFVXY8opEqUiOg+AgqKtD5RRhr6uD+HYQFS6KR16xMwssHAIdUOsVKxQcBDkFUF4lLjG7XTK2XIQEieLkrQA57OCw4/BVaEorsBcUg8MBKfGiXNXUQm6hWIAS20N4qChbuUVilWoXJVaoc4UxgxtZvOpKRNH4OZ46QI8Db5+GFPhGrfUdPrJ1SFyOBa31+4gy5uK3zo/vejce64Ba6yogyGv5Np/xG73+nofEAvnuYwfgXfb8G5/xk1Z+wFiAWj3FxcU888wz7kDGsLAwfvrTnxISEtLCMzO0Bj766COLpaZPnz5s376duro6IiMjufbaa7HZbLzxxhscOXIEh8NBz549LdV5e/fuzciRI3nhhRfcgdaRkZFERESQk5ODUorhw4dz4YUXnvHzMxyF/GLYnuVZjomELh1h9RZRJAACHDC4N6zfbg1q7t8NCg9Bnqc0AnExEsvT0CgKSmiwBCa7iI+F4sOy76BA6NtVlKhNO6GmThSu7p1EwfKmtBzWbZd1QRSrgT1g1RYJtgZQCgb2hH25cgwXXTtCcvwpflEtQqvqBea0AM3WWvdp6bm0NowFqJWzYcMGSxZHRUUF27ZtY8CAAcfYynAuUFtby4YNVtdEdnY29957L4cOHXKnvAPcddddFBYWEh0dzYsvvmjZZvPmzQQFBVmyzEpLS5k0aRJxcXEEBwcTERGBoRXhrbwAHCoVi41XsDN19RKj45PRRW6RVdEAOFIOw/qLRSfIAct8XF7llTC8n8QChYWI0gIwtJ9YbIIDxcLjS36xR/kBqK6RObmUH5DxnCbmlFvUVhWgVoXWOgvJ+GoWlFIfAp19xP+ntf68qfVbE0YBauUEB/sH3DclM5x72O12AgICqK31ZOsEBweTk5NDQUEBNpuN+Hh5gBw8eJC9e/cSFxfnF8gcEBDQpEUxODiYuLi45j0Jw8nh8InlUUosPr4EBDQhc4DdBvVeLi2HHcoroKxSXGI2m1WZstslOLqySo4VJvdLYVGRu6Cmu3hmbR0UH5Jt7E3E9zQ5JzvYlLjVjnaOhlaJ1vrylp7DyWIUoFbOgAEDWL16tTvVuUOHDnTr1q2FZ2VoDdjtdsaOHetuf2Gz2YiOjua1114DJF5o+vTpOBwO3n77bXcKfbdu3bDb7W6Lz6hRo8jMzGTTpk3uZpYZGRl07uz7UmdoNXRMhsPlHiUlNQFSEqTCsisuJzIcUuNFsSlylj0IcMi6YSGwc7/IlBKX1/odnv3HxXi2UUpihDa6akVlQ+8ubC3K491333XfV8OHD2fiqDGwZiu4rNZhweJSc1l8YqPk+CVHPC624ECR2W1SFBFEGTLVoQ3NjIkBagPU19eza9cuAgIC6Ny5syW7w2AoKioiPz+fxMREnnnmGYsrKykpCYfDwYEDnjIiSinuuOMOCgoKiI+PJyFByo/U1dWxa9cugoODSUtLs2bsGFoftXVwuFSCoF11dBobRbmw2SQuyHUND5dBXR3ERHksK5XVEgQdEQqrt1otPqHB0CtDXF/hoRJb5P2siAzjuVXfkpvraRdlt9t54OrrcOR5WmYA0CsdUHLc6AiZk9Yyp4YGmZPLUlReKS61mEhra462hfmP00YwFqA2gMPhMOnHhqMSFxdHXFwc1dXV+L7QNDY2WorguQgLC6Nv374WWUBAAD179mzWuRpOI3abxN14x964XGE2m0f5AZFpLZYVF6HB8mlotCo3IMt2u2dfTYz73leNjU3sxzUn34wupWTeSlnn5PA6psHQzBgFyGA4SwgODiYzM5M1a9a4ZcOGDcPhcPD++56s1r59+5q+Xm2d8kpxWblcTZ1TJGB4/XYZA3E39ekiri5X0HRwIGT2kEwuF3ZnynyOV62o8FBY7gyEttvFInOo1DOemsAw+zA++ugjtygzMxNHh0RxnTU4laPQYJmHN1rDlj0SJwTijuvfHQoOwm6npdJhl0yzyFPKcjYYjolRgAyGs4hLLrmE9PR0CgoK6NKli7uDe3R0tLsZau/evVt4loZTJivXo/y4ljUe5QfEFZZbZM0Yq66VLKwuHa37y+ggFZ/LnUHQW/Z4xhoa5NMzXdxTsVEQFU7/+HbExMS4m6H26tVLLDqDekPhQVFiEtr5W3MOl3mUH5B95hTAAa++dvUNsDdHFCODoZloNgVIKdUBKYOdiFRxfFZr/WRzHc9gMEh8T+/evf2UnNTUVCIiIggLCzMxZGcD3mnkIFaVmhr/9aqq/WW19aJgNDZ64myUkuKDEaGisPg03qWuHtpHi0Um2GM96tixIx3jE2Q/LpdbSBAkxcl+vDO5XMf0nTtIYURfV21dvf96BsNppDktQPXAvVrrNUqpCGC1UmqB1npLMx7TYDD4cPjwYd5++20KCgoICQlh6tSpJqasrZPQTgKYXUSGiwss/6AnDsdul+yqg4fF8uPCpmDZelE4YqMkSLm0QnqD1daJAhMVLrWBXESESW2g+npxWfXuAmjYtEuCqQMc0D1NXGVb90hNH6WgYxKkJUuRw/15kuYeEymKkXcaflKcFFT0drMlnPP9wQzNTLMpQFrrPCDP+XeZUmorkAIYBchgOIMsWLCAggJxL1RVVfHJJ5/QpUsXv35NhjZESrwoEcWHRWHpkChKSP/u0mLCbpO0+OAg6N8Dsp3FB6Mjpeu7i5IjkF0gbTFclpmqGrHodEqGikrZZm+OxypUUQV7skXRchVZrKuXytQdEj0FDbUWxScs2JPeDqLkpCZInFBDgyg/keGSdXYgX2oNxUaJ3GBoRs7IL6CzFPcAYHkTY7cBtwHueAWDwXD6KCqyVg2uqqqivLzc9JRr6yS087eSRIXLx5vgQE/Mj3fsjYuKKnFBeVNVA5nOOjzVNbBrv3W8sso/46uu3hqD5MK7pYaL+gaxGHnjsEswt8Fwhmj2YAClVDjSWO0erXWp77jW+lmt9WCt9eBzvupsXRksvQ5mRcC8wVDs1Bc3PQwfJMDHabD7xWPuwmDwpWvXrpbluLg4o/y0VooOwYqN0p199wFRMiqqYO02+GaNuJyaiqE5XqIi/Kszu2J7vIkMg7Vb5Zi7syWby5vYKP/srvBQKaDojU154oF8tz8e6uphy274do0UWCyvlO9kbw4sXQfLN0rAtcFwEjRrIUSlVAAwG/hca/3Y961/zhdCXHU37PiXZzkkGQb/G7650mslBVPWQ3Rfv80Nhqaor69n4cKF7Ny5k7i4OCZMmEBsbGxLT8vgS02tPNC9f5O7dZL09IoqjywuRtxFJ8uRMnFJ1dVLJ/bUBDn27mxRMGIioKRULD8u2kVLTI/LPdU5RbLO9ubAoSMSF5SeKi633ELJPLPbxY0WEylWIFfmWlKcuPCOh+1Z0k/MRXAQdEqyNoIFOK+vuAJbB6YQYhuhObPAFPACsPV4lB8DUPS1dbkqF7I/9VlJQ+E3RgEyHDcOh4OJEycyceLElp6K4ViUVvi7lQ6VWpUfsAYnnwxREf7p5UGBzorNiIUp16fZakWlND71pUsHoINVlhzv38Q0OgIyTyKl/YiP+6y6xhoo7aK0vDUpQIY2QnPGAI0Ergc2KqXWOWW/1lrPbcZjtm3aDYVD6zzLwfGQNBH2vmxdr/3QMzkrQ1tHa9iXJwGvocHy9u5dCM/QOogI9ZdFhkN5lTWdPSxELCAVldJGolOSWGeausaFJc6gaDt0TBTlp6xC1q2rh6T2YgWqrYOsHGcdoAiJG/LOHAsLkSyxymqxAHVMFPl+5zHDQiXbKyhQChq6LUBJcg6lFbA/V2J/kuIkdqm2TixIvuexPw8OOs8jNMTT2wxk/9ERcl6W784U9jScOM2ZBfYtxhR4YmT+FaryIHc2hHeB856B+DFweD3s+A/YgqDvgxA7qKVnamhLZDlTkEEefhVVMKhXy87J4E9wkAQG783xuKdS4kUh2b5Xrlt0hPT0cllByiolnd1m87/G6amSku7icBkM6gkbdnhS0EvLRVHJLfQEK5dVSlyQ3e7py1VVC5VHPPvXWo6bXeDZpqJKlKBte63HHNgTNmz3VIc+Ui4Bz/vz5fiu7RsawWET5cx1nNBgTxXq0GD5fiLC5Fh5xRLP1DnFP0bJYDgOTDPU1ohuBOUTNKi1tbePwXC8rNrs70YZ2lceuIbWSVP/37UWxWjZeqs8OEiCjSt9ih4mtBNrjDfJcf7uLe/O7y4CA2B4f2eBxTpPWwwXocEyVuVTfPF4jxkf62/FCQ70KF3enNdXxpr6Plrnb2KrnJTBH1MIpKXJmQ0HPoDwDOj2MwiMgiObYeczYAuArj+ByK7f/x+9MlesRDXFkP5DiBsJDTWw839waA0kToDO15+ZczKcORob5eFSXilvyk0VjwsOsj5U7HYIaLOdts8Nmvr/rpSnWah3leSQILEAeStAdrvU3/ElIhzwUUZCg0Xh8c4uCwmSmjwVVRAd7l+4MCRYXtS8FSCHo2lLzNGO6XcewWLR8b1XAx1H/z4MhlPAKEAtyd7XYZmXUpI3D4a9BJ8PgwZnPY29r8DFWyEk4ej7aaiBBSOhIkuW97wIF3wFu/4HWW849/MqVB6A3r9uhhMxtBjbszxv0gUHJW6jU5J1nfRUeahU18gDpmtH/1RoQ9vA5rx+2/dJEcGgQOnjpZT/NW4fA4fKPO6ylHhIbCfxRAfyxYISGS5ZYOFh4rpqaIAgZ1uLPdmyXcFBsdgcPCxuquAguae0hsqdcs/ZbdCto8QHHSr1uNNSE+SYlVVyTBCXXkqCM64oy3Me6alyfhVVoli5ztVu9/0WDIbTgnGBtSRfjIPCr6yybndZU+EBhjwNXX989P3kzIXFF1tlnW8Q5Ud7vbWFdYZpezCcJTQ0wLdrrbLgwKazdVxVe4MCrf2ZDG2ThgZRPEKDPZaQo13jKqdSFOhl9autE4uOt8XGtc8Ah7+bLTQYBvSUdPmmjulyX7mPWe203vgcs6FBLD0ncx5tB2OaaiMYC9CJUnMQ9r0j7qlOMyAgEhpqxY1VlQsdLofwzse3r0CfomHKLplffthhx1NgD4aOV0NAhFh9DrwP1QUQlua/SVA7cIRD3ZGjH8/F4Y2Q+xlE9YLki+WHqKoA9s+SfXS6Ghxh0FAN+98TN1vH6RCaenznaWgelJKHjHfjSodDMmgqKuVtPNyZWVRR5czWCRG5UvJAKiqRfcTFmDfttoTdLtfSG6X8ZdB0enhggFU58d5ngzOo2rs5qcMuKekVVaC97qujHrMJV1hgAHCUYx7PeRgMpxljAToRqgpg3kBRdAAiusLkNfDNFZC/QGT2ULjw6+PL1CpZA19eAHWHZbnnL6HPb2HBKDjsDDqMHQwV+6GmUJYje8KklWLxKVwsMkc4tBsGBV/IcmgHmLgUDnwEq+8CtGSQjf4Qki+yziH7Y5m/dv7Ydbld3GTzBomiA1JzaOJyWDgBipeKLCASJi4TpcnQcuQUetoUKCXKzcHDnvGe6RIgu3m3R5YUJ2nMa7Z6YjDCQiRbx3SKN4C4q1wuMJtNiiMe9HqZ6p0hLjZDUxgLUBvBWIBOhL2veJQfgLKdsPURj/IDEruz7UkY8er37y92IEzbC/lfQkQGxGSKfPJqyP9CrExFS2Djg55tSrfKMV3KD0B9OYR3gn7fioUq8UJwhED3n0HSJDi8DuJGQUii/xy2/MOj/ADsfl4UKpfyA2Ih2vIPj/IDUFcqVqkhT33/eRqaj5R4CX6uqJRaLKs2W8cP5IsC5E1ekbhEvANQK6rkAefbysBwbtIhEdpFyX0RGuJ/X+3PNwqQoc3Ttl/3Ghth539h62PQWA+NDVCwSJSG5rBseSsKblmDv4xGKFkLuZ+Lq8pFxQGp7FztlRGhHOLasnmZjJXNKQtC6s0fxzF1o2xjDxZXmgt7oOzb5mV6riuV7LPSHU2ck276PGnq3Jta7yjUHpFjlu3y2mW9KH/F38lyQ418ZyVrm95HW6O0XNxO3q6Eqhrplu2tfNTXi9XGu9id1hJM6qqT4qKswn+focEQF+vv0nDtp6n/Ck3+/zjK/5nSJo7ZHOdhaF0om/NzFINGZbVc7/qmfgMNhtZP27UA1VfCR6lQ66xfseG3kkp+ZJMsJ4yHcfOsD/5TpfMNsP1xqHa6o8LSoNcvoegbj0XGFgS1h8VVBhDWCSZ8AwVfwvIfifJiD4ZRH0BICiwcL1YbgN6/hV7/B1+OhZLVIms3DALbQa1znfAu0Ot+cXcVLxOZPQQq86SBKkB4Olz4LeR8Cit/7FSOQmHMxxAYK64s1/fWcQYcXI774df5h9D9Tqk+7VonsofMK3culDhdlI6wYwdme1O8AhZNdMYjKSn42OU2WDDa63qNg/I9ULFPltNvlIy4tojW0sCx+LAshwRLG4DCEmlwCWKB6dNVrDMbdnrieNJTpQDeum2etOZ2UdC7i2TpuDK+goNkn94VnR12qezrXXOlQ6IcY4tX8HtiO8nCKTjoeXiFBku/J1827/Z0EA8JgsweUjPG5Xaz2aBvE+fROUVcbeu3e9KaY6Ogj+95BMo+TWXq1oW3a9Vuk2tX4uUCCw6Elc7/uw479OtmqjEb2hxtNwZozS9h2yPHXmfU+9DhilOfmDdV+ZD1pihWaT+AoFgJDt73trjHonrD15dZt+l+t2RkebuVovtLDNGB9zwy5YD+f4Z1D1i3H/I/qC8TRSftBxAYDfVVsO8tCYKO6AbfTrdu0/M+2PW8J74IIHYIhCRBzicemS0Qxs4Vq1lUL0i9HGx2qMyR83SEQefrJOanvgKy3pLz6HS1KFrHw6LJkPe5Z9keDL1+DRt/f+ztLlrrcQu2JQ6XyYPfm46J8lBp8LJ4RIXL27UrZRhEoeiQ4KmG6yKjg0d5ctEhURQmb7SWt/LyKoiN9HT5LqsQF1dYsLgulJKMnsISecDFt/PPuDne84gMl31492iyKZmf73l06QC7fM4jNUHOz9A6aGyUTuve1zgiTK5nRZVc7007rVbE2ChRhA1gYoDaDG3XAlSV/f3rVBdKawlboGRFuag9Im6gMK8f3YZaqZMT3tlahbl8r2RmOZxvNyGJkHatKCtBzo7a9mBRtGoPiVvJbx4FHmuKi5pCUWS80fVQ0cR56XpRfGyBnm0cIdDhSjkPV8C0N1X5UO/TNLCm0OoeA2isFUtWeGcIThLlByA0RY5pDxLlB+Q76Dgd6sr+v70zj5KrPO/083ZV9b7vm6TW1lqQEIsAgzHBAY8dbMbJGA/m2OMQnHGCzXHM2DmOZ+IBZ+KFMd6CQ2zMeBsyBow92AYmhthmM+BIQkL7vrekXqVu9V7V/c0f7y3uraWlRnSpu7rf55w6qvrq3u/e79ZV16/eNenajcDg0QmuXV2iyw9UMA61pZ5zMnFL20xkZFTFSiTNf6FoNHVsNJr4hQLqPkp2L4yPa+XddMdLOU5MH+PjvgUlHghdVJBY6bm4UDPEciP+MfNytb5LTk6i+InFIDae6N56/TzSrSMK48n3lUssrBcnuXJwfB2TxTlNm86NWC2jTDE2nvoZx2KBrEKX6kJ9I5+hYcwQslcArfysWl0SCAPef8RImcacrLtdxcqyT8AlX4Xt98Dmu2B8RN1kb/sZ9KyDlz6oX7hFLXDN4yqYnrtRm5OGS2Dtt1T4vPxhPa7kaMbU2m/Brm/Ca/8Vxoag+iooXACDnisHgUW36TkcfMg/1YW3QmlrYjBz1RUauLz/QRUJoOLj+L/A+jtUvLTeAZd+A7Z/RS0oY8NegHOzLwolBxZ/RMXN4UcTj1nQAN2v+GOVl8Hz/x56t0OkHK74LjTdCL+7BY7+Xz3v5XfCxf8Ttn4Btv4PvXb11+u163oZXvoQjHSqReiax/XaP3ejCrNIKTT9sVajjlN3HSz9Sy3YOO59SUZKINrP6664ohaovXaSN8N5ZHxc3Undp1RINNelWmEqylIr6zbUwGgs0Y1QV6XiI2jZqSjV1gHt3f6XTCSsx+nsSRRH4+Nar8U5/XJauUgL3+06oK6tgjx1s4noL/bBYRU6rQvU3RVcR1OtWmEOHVOrjXNqoUqu1ttQo3MHM83qq3Ud/YP+WHkJNNTCicA6wmG1InSdShR06apXp2NoxF9HyFtHbeXk9jUmTySs90fwMy4pglde82sHlRRq/6449ZP8DA1jBpG9LjCAo0/Aa3+jX6KrPqexKnu/rZaS/DrYcnfi9lf9HxU6wWDPVXdpvEs89gSg9hr9Mt//A38sVAiXfB3W/UXinFc+BK98ODEgeOntuv1wu8YNNbxDrSS7/kFjaOr+EJb8ZxUqhx/zW2Esv1OtSj0btIWFhKGgMdVVdNU/q+gIrqP1EyqQRrpg8Z9pTE1sSIsq9mxUwbL4I17X6Efg6ONQskyFSdsv/XlyK2D13bDhr5KO+WN46ZbEsdWf16yxwcAXeN3bVYwd/N/+WLhYr137rzWNf/knVRh1vQJ7H1DLUusnVDTu/5Fa3JZ/cmbWGWprT3XhXLzcdzXFGRrRbWNjKhDKSzQ+5mi7uhEqy3QcVOx0n1KrTVOdV3Ol3++o3VyrcUTDI3C0Q3+NlxbDnkOJx1zYpPMHBUtlmYqTeBwP6PwLGlNdassXJjayBBVGkGYdHX6toboqva/au/0u3s3eOvq8deSEdK7CfLXgtHnnWVelom8ybN+X2LMqHIK3rDFLUCYIfsblpbD/SKJVqLJMRdHgsDZONSEaxFxgWUL2WoAAmt+jjyBVD+q/G/5L6vZdL5GS6dK7LVH8APTuUJdYkLFBtRSlmzM5G2qwTQOOg4TyNGA6mfk36SNI5aVqiQHYmGafzjTrGDoGb/tJ4li4QIOXk1lwsz4AnlyV+N7oyfRZWJ2/Sx3r3ZYofgD6dnqWnACxfu1NtuTPE8er36KPOKVLVajNZJIbTsbHkgVQQR4smZ84FvKERzJ1ValWkLJifQTJz9MYGoCOpIaToMIq2RUxOJyaBh8bS7TWxOkbSB2LxrSWUMo6GlK3TbeO0uLUa5Ofe24xP8nXPjamVrZ0hf6MN0fwMx4eTRXbwyMW82NkPbP3p1PzjYmvc3LVZRUpS9ruj9UiE6TpxtT9ixerCyko7iWs2Ux51YnbFjbBzxfBo8Ww7uOa7t27A56+Ch7Ohd+8U5uXRvvhdx+ERwpUiLR77rCtX4DHquBn9Ylp9PF1LP2L1KrO+XXw84XwaAms/ystCXBqq/YVezgXfnuDxgVF++DFm+HhfHjqQqi4OHGe8tXq6ks4Zp66rCJJv9Tn/Qeo/YPUa9eUJEpLWqF0GbOC5EypHFErx4uvwiub/U7Y7d36+sWNamlxTgORN2yH5zfA1r0aOxONwba9OrZhu4oQ57QI3Ysb1cV1wgue7+jRrtwvvqquruSihTWVqZk4VWWp51xUkPqLXURdb8nWlHDIW8er/jr6B+FVbx1b9qgIicY0Y+z5DbBhm14T5+BAG/zOW8dxLxasM7COvYd1u4EhLcz4/AbYvFtdZLExddM9v0Hr0CRXBy7MN/FzPsjPTb326TIGDSPLyG4X2Nk48JB2SA8XwgX/Deqvg+51GgM00qGCZtkdGvuz6TPQ7bmnLvqi1s7Z9gV1T5UsgTVf1JidQ4/Crm+oEFn5Ga2s3LMRNv93Dextei9s/6LG38S55OvajPRkwLLSdKMKg51f9cfyquDyB+GFP0lcx+q/0xT0cIHGPjW8Q891y10qaprfq7E5LvDr/7L7de292/2xeTdpDNDu+wLHrFWX2bH/p+6pi74MxS3qitpzv7qnVv2tura6fq9uxZFOjWtq/Zgef9NndG1118GaL+i12fr3GkNU0qpp7yVL3vznOVM40aWp5qEcDQo92p74/ppWeC0pGL61BQ4f11/OceKuo7jAAQ1MbmnUJqfJc25OyrxproWBYXWJNdToY2RUxdPAkLqWFjbptgePafxRYb7GLOXnJa5jfoNu39ev20Zj+iV36FjieSxdAEdPJAYz11bqHMeD64jAwuZUl9qFrSqagutYMl/FUbALeHW5Xou2QCB8OKRrjK9jYbMJoPPF8Ajsb9OmppVleo9a1fCJMBdYljC7BdB00PYkPJdkAWn+ExUDQXIrVRwEA5JB43T2/a/EsUu+pvFBE3HkZ/DC+xLH5r0fjiS5xAoaNNMrGJAM8O7tULZi4vmNidl1QAN9gzTWJNbiARUJ8do3cfLz1IKU7NpJt+1Ecya7p6aSjm7YkSRgairVghMkL1cFUPI66qp8i1icdOuoqoDupCzJSFgtD8FAW4C1F1ifKGOmYwIoSzAJP9VUXqoWkCC1b9O6P0Gqr4KaqxLHciuh4YbUOWMD8MzV8OvrtXIyaB+xZ2+Ef7lcrTySFM5V9wdq0Uk45pX6CJJfq+4949xIjm+B9O0kyksS09IBSotS98/LTR8UHK/dEyQ3rO6iV3f4VqSRUbW6bNimlqDxcX0caNOxHft9K1R7N2zcoXPEaxH1DaiF5tUd6VPWy4tTrS5laeJ8ciOTX0dFcaqoSRc7FAmbxccwjCkju4OgZyIF9ZqltfHT6lpb+Keaut7wTnjlNi8L7O1w+T9pPNLQMe3qXrxE+2rVvV1dXju/5nWc/wBs/pw/f+cL2ivsN++AUe+XeM86WPoxTfsf6YLFt2m8U83b4PcfUfdU/fWash/PTmv7uVqgLvsnbZdhnBv11eqGOt4JkZC6ZcpLYVmLio6xMXXb1Feru2z3Id89tXieioFozHfrtC7ws2uOdWgwakujbr+8Rd0Q0Zhaf9o6fVfSrgEVCIeOa6wRaDHEcQch0d5N8bGBIT120D3VexouWaliKF7N+fSAWmy6T0F0zHezlRSlX0cs5meBLV2gAm9gKM06Fqo4i8Y0fbqxFspKYPdBtfhUlMLS+brPaFTT5gvydE5zuxiGMUWYC2yms/GvtflpkKUfhz1JTUjnvx+ufhRjjpDOPfVG3Gxp3VO1KlaS58ykm80wZh/mAssSzAI0E+nZqPWMJAz5aTq4V1+pAcrBVPiSWZJlZSh9/RpUHMrR2kDJrp+C/NR9igpSCxcW5qcKoHBIrVHJAqi0CJJinilMc5yxMQ1OjluA4vWMOgJ1gOL1jAzDMGYoJoBmGn274Zm3alVpgHApNN6gWWASUlfXwg9q/Z0td2tV5tprYMWnpvW0jSnk9ABs2uW7tzp64PJVWkk5Trw309F23a6i1C80uOugXwl6UbMKoIFh7dIeCqkrqbpc436ClaDrqjQ+KF4JurxEhUwyOw/4jV47etRNFQr5zTNBCzle2JqZ62MYhjEFmACaaRx62Bc/oP28Gt8Nlz/gVbiu0fEL/kZr84ye0rR1Y/bQ3pOYJh71YmuSiwwualYRNDbmB1hXV2grjpFRFUDxgOPLLtCg5ryIihXQzuzDoxojFIno2IJGdYUF5wwSjfniJ86JLn/OOCf79Bysy7thGDOUjEUUisj3RKRDRLZm6hizkrjACSJh7el15KfayDVObrmJn9lIbprfJQ44ckKDreNBymNj2uKi86QKGVDhdLJPU9WDKeT9gzrW0+eLq5FRHes8pRaj1+c8pZadYM2i7lNaE6h/MLVYYiSS2hRWxFpUGIYxo8lYELSIXAP0Az9yzq062/ZgQdCAVof+12v8oolVV8DpvTDqxWuUtMIfvep3pzdmH9EYbNrpx+2UFauYGfdarhQXwJrluk28eGAoBJes0NicYCDz8oWaObV9nz9WX61tDjZs94VPYb7u/9puP4sslAMXr1ALT7DYY02F35MrJwdWL9F/N+/xxdnCJi2uaBhzDwuCzhIy5gJzzj0vIi2Zmn/WEimGd66Djmc1Df7Es9B9l//+6d1w5HGNAzJmJ5EwXLpSY3RCIbXy9Ab6q/UPaTXmYOXksTFtMBqsxgy6XXLq+IkuCOf44gdUbB054Ysf0OaXbe2pwdL9QxqTNDCk6etx689bVus5FxakD542DMOYQUx7DJCIfBT4KMD8+fPPsvUcISekbTvA7w8WJLmQnDH7yMnRlgOQ2Mn9jKS7L97IvTLJbQXNQkvORAuHNQbJMAwjC5h2J71z7gHn3Frn3NqamjTxL3OdxbdpteY4pcu0gasxd2ioSQwyLi7U4OfiQn8sHNJMrsak/0Pz6vWRMF+1l6Ye+P1TmA/z6hKbqcZT8JMzwZLnMwzDyEIyWgjRc4E9YTFAb5Khdjj8CIQKYMHNqV3ZjdlPPGA5HNYYnFBI3V6dJ7UCc02lZlw5p1Wl4zV64oKmf9CvNl1VrlbE0agGO4dyvIamIXV7dfZoHFJNhZ8J1tOrc5SXpG//YRhGHDPRZwkmgAzDMAxj6jABlCVkMg3+x8DLwDIROSoiH8nUsQzDMAzDMN4ImcwCuyVTcxuGYRiGYbwZpj0I2jAMwzAM43xjAsgwDMMwjDmHCSDDMAzDMOYcJoAMwzAMw5hzTHslaCMNHT3ae0kE5tdr3RbDMAzDMKYMswDNNHr7Ycd+7cnU1w/b9sHg0Nn3MwzDMAxj0pgAmmn09Ca+dg56+qbnXAzDMAxjlmIusJnGRF20dx7QBpnNtdpt2zAMwzCMc8YE0EyjthJO9kF7t76uqYB9R/z3O3vgslWQG5me8zMMwzCMWYAJoJmGCCxfCIua9fmRE4nvx8ag+5R2CDcMwzAM45wwAfRGOD2g4qMwX7tvi2iX7vZudU/VVUEkrF2623sgGtXt4m6trlM6R3mJduo+E3ELTzpLT2SS1h/n9HxPD+rxyksS11GQrxanidZhGIZhGLMU+5abLF0nNSMrTncvLGyCDdvVKgNwrAMuWQGb96jIADh8HC5aDp0nfWvO4eOwZD401Z79uPXV0N4F/V4mWEUpVJVN7pz3HYG2Dv+YrQtU2CSs4xQsmuetI6ZjbR2wdiWEQpM7jmEYhmFkGSaAJsvR9sTXHT0qJuLiB2BoBI60++IHYNypoOg8mTTfickJoHAILlmp6fE5AqXFkzvfsXE41pk4dqQ91aLUeRLycn3xAzA8otaquqrJHcswDMMwsozsToN3TtPGu0/B+Pj5P36OpI6lGULSDmp9n44edT/FiUZ1rH/QH3NO3Wpj4/o8Tu9pFTBjARE2OOzPmXxYmej80oxNB2Njup7e09N9JoZhGMYsJ3stQOPj8Nou6POsLYX5cPFyCGdoSfPqoW+fL0Dqq6GpTmN9RqP+OTTXw6l+/0s8lKOWnrxcOHTMn6+kENZt0+cicMESiIRg824VOqBVoJvrYeNOGBrWsbJiuLAVdh7UjDBQq85FyzV7bM8hf86qMrXkxJnfoFar3v7AOqrSr6O6fIou3CQZGoFNO/1zqKmAlYvP7zkYhmEYc4bsFUBdp3zxA2r5ONENzXWZOV5VucbFdPeqQKgsU5GxdqVaLXJy9Es7FIILl+r5jUZ1LC8XiguhvFgDkkuLYMsef27n4GAb5IZ98QPqshLxxQ+oeGnr8MUP6HGOnEh0szmn1+TCVrUmlZeq6AJYe4EfzP36Oi7QOYPrOJ+0tfviB3QtpwegpOj8nodhGIYxJ8heARSMvXl9LBDH4hwMDEF+nsbRxBkcVqtMXq4/NhrV+YJFCMfG1CpRmK+iADRrqsJBfq7v1opENDA5J8cXDTk5mnEViyUep6RILVR5kUShE19PsqvMOYjGSCEoFIJrH0u6JrExFVuRcOLaCvL0nBPWEU5dR/xY0RgUBYovprs2ccGVG0nMIBsaURdbfp4/Fo3CaNKc6daZ7jM2DMMwjCkgewVQWRrLwKHjmnYOamEZGdUv6GUL1IKzdS+c8lxTTbWaibX/qJ+dVVoMq5foNjsPqEjJjcDqpTrPlj0aIJyTA0vnawr5tr1+q4qGamhtUWvO4RMqCkqKdP++fp0zNqZzVpSqyypOQ7WKqWAAdUWpnueJbj/GKRJWd1x3b6JlqKFGhcuJrsA1KoaXN6tgyY3AqiUqBrfsUWGSkwNL5mmw87Z9fhuO+mrNGDt0XLPHnFPr0epWPb8d+3UdkbDOmRvROQeHNS5q0Txdz479vguutlLrGx05AQeP6ZzFBTrngBcLlfIZTzLg2zAMwzDeINkrgIIupCD7j+q/8cDi8XHYcxiGRn3xA+pGKi5MLDTY57mX2jp8C81oVNPJw2EVP/E59x5Wq0uwT9fxLhVRh477Y6cH9BgdPb5FYzSqVqAl89Q9VVEKtV7GVSTs1ejJU/ETCmls0/EuFRdNtV7MzzJNux+NQV0llJWo1am4EPoH9PX+o75VKL6O3IiKn9fXcUTXGuxBdqJLLUfBmKXTgyqGOk/664jGdP/CfBU/oFlv+46o1ScYf9TRo+d3oM0f6x/SOSfqdbbvqApNwzAMw5hislcAjaZxmYDvcgkSG4OhNB3VTw+mjg0Op7pjhkYgkuSOGRtXy8Vk5hwaScz0Ahge1eBj5xJdX9XlGrwcHCsuVLEE/nhuBBY0Jo6JJ5Cc0/PbdTD1PJKz5cYnWEf/JNcxNJyaDeecX7coyETXJi4skzllTWANwzCMzJC9AqiuKtHdE6emXP89HLDslBRBXbVmOsXJyYGmGq1+HIydqa1Ua0nQWlRdrpaZoCgoKlBX0Ynu1Dk7exJFVE2FCo2glaWsGNZvU/FRVgIrFur+Ow/odvl56oYq9yw5xzpVaCxo0Myw9m4dj8b0nFsXqHjbeUDnLC1WK04wULymQoXT6eR1JF3LHIHGWrX2BNdRWwk4db+9fm0qdI7efn+sIE9dYMcDdYhEoLFGrVvBGKbqCo3JSq6TBOpONAzDMIwMkL0CaFmLuqwGA3EwCxo1dVxExUR3r345tzRqMPKKRfqlHArpdoUFsKZV3TDRmMbRVJWrYDp4zHdPLWjQOUX87KmWJp3zgsXqMsvJ8ee8sFXdYNGoCq/aSp3nYJuKj/ISFUnDnjWl97S66XLDvkgaHtEYmkXz/CKM46hbqDBfrTvxVPb2bh3r6PGtOX39KrIaa/xWGPF1gN8Ko6VRxVZwHfPq9bqtWaZusNGoCs7aSqgshQPH/JYeCxo9C5BTEZOfp9emIE/jg9o61CLXXK+WrDWtcPC4WpJqK1Uo1VRAbq5mgsWprbQYIMMwDCNjiAsW1pvqyUXeBXwTCAEPOue+fKbt165d69avX5+x85kxRGPw0qbEsdyICqBk11Fdld8ZPk5DTaJ1BVS4dZ9KHAuH4K0XT8EJG4ZhGJNkppSWNc5CxipBi0gI+Efgj4CVwC0isjJTx8sqIuHEFHBQa0pZSeJYbkSFTTK1lalxNxUlqTVzkuczDMMwDAPIbCuMy4G9zrn9zrlR4GHgvRk8XnaxYpG6eEIhjTFaMk+bq9ZV6VhJkVaHrqnQ8dyIupeWtahYWrlY3V7hsBZ/bKzVOKLyEo2pqSrXuCDDMAzDMFLIZAxQE3Ak8PoocEUGj5ddFBVo+4pkli9MHZvfoI8gVeWp1qGCfI3bMQzDMAzjjGTSApTOD5oScCQiHxWR9SKyvrOzM80uhmEYhmEYU0smBdBRYF7gdTNwLHkj59wDzrm1zrm1NTU1GTwdwzAMwzAMJZMCaB2wVEQWikgu8AHgFxk8nmEYhmEYxqTIWAyQcy4mIncAv0LT4L/nnNuWqeMZhmEYhmFMlowWQnTOPQU8lcljGIZhGIZhvFEy6QIzDMMwDMOYkZgAMgzDMAxjzmECyDAMwzCMOYcJIMMwDMMw5hwZbYb6RhGRTuDQdJ/HDKYa6JrukzCyGruHjDeD3T9np8s5967pPgnj7MwoAWScGRFZ75xbO93nYWQvdg8Zbwa7f4zZhLnADMMwDMOYc5gAMgzDMAxjzmECKLt4YLpPwMh67B4y3gx2/xizBosBMgzDMAxjzmEWIMMwDMMw5hwmgAzDMAzDmHOYAJqhiMitItI43edhZD8i8ncicv057HetiDyRiXMypgcRaRSRx85hv6dEpPws25zTfWYY04XFAM1QRORZ4NPOufXTfS7GzEdEBP3/PD6Fc16L3oPvmeT2YedcbKqOb5w/7LMz5iJmATqPiEiRiDwpIq+JyFYRuVlELhWR50Rkg4j8SkQaROQmYC3wzyKySUQKROQ6EdkoIltE5HsikufN+WUR2S4im0XkXm/sRhH5vbf9v4pI3XSu25g8InKPiHws8PpuEfmUiPy1iKzzPufPe++1iMgOEbkfeBWYJyI/8O6tLSJyp7fdD7x7ChG5TERe8u7BfxOREhHJF5Hve/tsFJG3pzmvShF53Dv+KyJyYeD8HhCRp4EfnYdLZEySM9xLW73Xt4rIT0Tkl8DTIlIoIo96n/Ej3t+Qtd62B0WkOnDPfVdEtonI0yJS4G1ztvusRUReEJFXvcdV03BZDMPHOWeP8/QA3gd8N/C6DHgJqPFe3wx8z3v+LLDWe54PHAFavdc/Aj4JVAK78C155d6/FYGxPwe+Ot1rt8ek75GLgecCr7cDH0bTjwX90fIEcA3QAowDb/G2vRR4JrBv/H74AXATkAvsBy7zxkuBMPAp4Pve2HLgsHfPXQs84Y3fB9zlPf9DYJP3/G5gA1Aw3dfOHpO6l64BtnqvbwWOApXe608D3/GerwJigb9BB9E2GC3e+EXe+KPAhyZ5nxUC+d7YUmD9dF8je8ztRxjjfLIFuFdE7kG/xE6if2ieUQ8GIeB4mv2WAQecc7u91z8EPg58CxgGHhSRJ705AZqBR0SkAf1jdCAzyzGmGufcRhGp9eK/atB75ELg3wEbvc2K0S+Qw8Ah59wr3vh+YJGI3Ac8CTydNP0y4Lhzbp13rD4AEbkaFTg453aKyCGgNWnfq1EBj3PuNyJSJSJl3nu/cM4NvfnVG1PJBPfS4aTNnnHO9XjPrwa+6e27VUQ2TzD1AefcJu/5BlQUBZnoPisCviUiFwFjpN5jhnFeMQF0HnHO7RaRS4EbgC8BzwDbnHNXnmVXmWC+mIhcDlwHfAC4A/11fh/wNefcL7w4jrunZAHG+eIx9Jd0PfAw+gXzJefcd4IbiUgLMBB/7Zw7KSJrgHeiAvk/ArcFdwHSBf2lvb8msU18roE07xkzg+R7KZngZzeZ+wBgJPB8DChIen+i++xOoB1Yg1oyhyd5PMPICBYDdB7xfokNOuceAu4FrgBqRORK7/2IiFzgbX4aKPGe7wRaRGSJ9/o/Ac+JSDFQ5px7CnWJXeS9Xwa0ec//NHMrMjLEw6igvQn9AvsVcJv3eSMiTSJSm7yTiFQDOc65nwKfAy5J2mQn0Cgil3nbl4hIGHge+KA31grMR12rQYLbXIt2vO570ys1Mk3yvXQmXkRFMyKyElh9jsec6D4rQy1D4+jfsNA5zm8YU4JZgM4vq4GviMg4EAVuR/3p/+C5E8LAN4BtqD/92yIyBFwJ/BnwE+8PyTrg22gM0M9FJB/91XWnd5y7vW3bgFeAhedjccbU4JzbJiIlQJtz7jhwXERWAC97rtJ+4EPor+8gTcD3RST+w+azSfOOisjNwH1e4OoQcD1wP3qvbUHvx1udcyPeseLc7c29GRjEhHVWkHwveVbDibgf+KH3GW8ENgO953DMM91nPxWR9wO/xSyHxjRjafCGYRgGIhICIs65YRFZDPwaTbwYneZTM4yMYBYgwzAMAzRL67ciEkEtyreb+DFmM2YBMgzDMAxjzmFB0IZhGIZhzDlMABmGYRiGMecwAWQYhmEYxpzDBJBhzHFkEp2+DcMwZhsWBG0YhmEYxpzDLECGkQWISJGIPOl1194qIjd7Hbrv8bpt/1u8UriI1IjIT0W7x68Tkbd648Xid33fLCLv88YPelWkEZEPeXNtEpHviEjIe6R0mTcMw8hmrA6QYWQH7wKOOefeDeBVDr8H6HPOXS4iH0ariL8HbWj5defciyIyH22lsQJtj9HrnFvtzVERPIBXbfpm4K3OuaiI3I+2v9gGNDnnVnnblWd6sYZhGJnGBJBhZAdbgHtF5B7gCefcC16rih977/8Y+Lr3/HpgZaCVRanXDuF6tC8UoM1Tk45xHXApsM7btwDoAH7JmbvMG4ZhZB0mgAwjC3DO7RaRS4EbgC+JSFyEBIP44s9zgCudc0PBOURVzZmC/gT4oXPusylvnLnLvGEYRtZhMUCGkQWISCMw6Jx7CLgXv9P7zYF/X/aePw3cEdj3ognGE1xgaO+nm+Kd5kWkUkQWTKLLvGEYRtZhFiDDyA5WA18RkXEgCtwOPAbkicjv0R8zt3jbfgL4R6+rdxh4HvhL4O+98a1oJ/nPAz+LH8A5t11E/hZ42usoH0UtPkOcocu8YRhGNmJp8IaRpYjIQWCtc65rus/FMAwj2zAXmGEYhmEYcw6zABmGYRiGMecwC5BhGIZhGHMOE0CGYRiGYcw5TAAZhmEYhjHnMAFkGIZhGMacwwSQYRiGYRhzjv8PL8y0FWSFzcwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# f, ax = plt.subplots(1, figsize=(3,3))\n", + "\n", + "ax5 = sns.catplot(data=iris_tidy, \n", + " kind='swarm', \n", + " x='species', y='cm', hue='metric',\n", + " size=4.5,\n", + " aspect=1.5,\n", + "# errorbar='sd', # plot the error bars as ± standard deviation, use this line if you have seaborn 0.12.x\n", + "# ci='sd', # plot the error bars as ± standard deviations, use this line if you have seaborn 0.11.x.\n", + " palette=['red','grey','orange','pink'],\n", + " \n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scatterplot and linear regression line\n", + "\n", + "Next to the categorical plot, the scatter plot is a very useful visualization tool for biological experiments. Often we want to know how one variable is correlated with another, we can then use a scatterplot to easily take a quick look." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEHCAYAAACp9y31AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABHXUlEQVR4nO29d3xc1Zn//z53+oy6LVnNxjY2GGxsS5gWShxCCCSEYlIgvQDZZDdhs/1bNrtLfrvZfDebBLYklGx6QgqmBQiEECD02HLBNsYY21iWJUtWl6bPnN8fd0YayZqRZjwzmvK8X695jXTm3jnn3is999zPeYrSWiMIgiCUD8Z8D0AQBEHIL2L4BUEQygwx/IIgCGWGGH5BEIQyQwy/IAhCmWGd7wEksnDhQr106dL5HoYgCEJRsXXr1uNa6/q5bl9Qhn/p0qVs2bJlvochCIJQVCil3kpne5F6BEEQygwx/IIgCGVGTg2/Uup0pdT2hNeIUurPc9mnIAiCkJqcavxa69eB9QBKKQvQBdyfyz4FQRCE1ORT6nkn8KbWOq1FCEEQBCG75NOr5wbgZ9MblVK3ALcALFmyJI/DKV+e3tvLnc8eoHPQy+JaN5+9ZDkbVzXM97AEQcgTeZnxK6XswNXAL6d/prW+S2u9QWu9ob5+zm6oQoY8vbeXLz+0m95RPzUuG72jfr780G6e3ts730MTBCFP5EvquRLo0Fofy1N/QhLufPYANovCbbeilPlusyjufPbAfA9NEIQ8kS/DfyMzyDxC/ukc9OKyWaa0uWwWjgx652lEgiDkm5wbfqWUG3gXsDnXfQmzs7jWjS8UmdLmC0VorXXP04gEQcg3OTf8Wmuv1nqB1no4130Js/PZS5YTimi8wTBam++hiOazlyyf76EJgpAnJHK3zNi4qoHbrl5NQ6WTYV+Ihkont129Wrx6BKGMKKgkbUJ+2LiqIeeGXlxGyxe59oWPzPiFrCMuo+WLXPviQAy/kHXEZbR8kWtfHIjUI2SdzkEvNS7blLZcuYyKrFBY5PPaC5kjM34h6+TLZVRkhcJD3IWLAzH8QtbJl8uoyAqFh7gLFwdi+IWsky+XUYlCLjzEXbg4EI1fyAn5cBldXOumd9SP2z75ZyyywvyTj2svnBwy4xeKFpEVBCEzZMYvFC0bVzVwG6bWf2TQS6t49RQE4mlV+IjhF4oakRUKi7inlc2ipnha3QZynQoIkXoEQcga4mlVHMiMXygYRCIofiSAqziQGb9QEEgwVmkgAVzFgRh+oSAQiaA0EE+r4kAMv1AQSDBWaSABXMWBaPxCQSDBWKWDeFoVPjLjFwoCkQgEIX+I4RcKApEIBCF/lIzU4wtG8IUi1LhsGIaa7+GUPZm4ZmYiEYgLaHrI+RKghGb8Gs2QN0jnoJdhXwit9XwPqWzJl2umuICmh5wvIU7JGP44kaimfyzAkUEfY4HwfA+nLMmXa6a4gKaHnC8hTs6lHqVUDXAPsAbQwKe11i/mut9QJErviJ9hm4U6tx2X3TL7TkJWyFf0Zr76yUQeKURJRaJqhTj5mPHfDvxGa70KWAe8loc+JwiEInQP++ge9hEIR2bfQThp8hW9mY9+MpFHClVSkahaIU5ODb9Sqgq4BPgugNY6qLUeymWfyfAFI3QN+ugd8ROKROdjCGVDvlwz89FPJvJIoUoq4jIrxMn1jH850Ad8Tym1TSl1j1LKk7iBUuoWpdQWpdSWvr6+HA8HxgJhjgz6OD4WIBKVBeBckC/XzI2rGnh/ewt9owFe6xmlbzTA+9tbstpP56CXcCTKgb4x9vaMcKBvjHAkmlIeKdQoZHGZFeLkWuO3Au3AF7TWLyulbgf+Dvj7+AZa67uAuwA2bNiQF0ustWbEF2LMH6bWbafKZc7MhOyRj+jNp/f28quOLuorHSyxWfCFIvyqo4u1rTVZ67vCbmF/3zgWpbAoRTii6Rrys6Lek3SfQo5ClqhaAXI/4z8CHNFavxz7/VeYN4KCIKo1/eOmB9C4eAAVHfmQVCYmBCrhldg+AyKpCIVOTmf8WusepVSnUup0rfXrwDuBPbnsMxNCkSjHRvy47BbqPHYc1uLxACpE75F80TnoJRAKc/D4OFENhoIFHhvBcPbWcEYDYVpqnBwfCxKMRLFbDBqrHCldhaUkpFDo5CNy9wvAT5RSduAA8Kk89JkRvmCErqCPSqeNWrcNq6WwwxzKvsxdNErfWGjyVw19YyFaq7N33eKyzfL6iok2bzBMQ6Uz5X4iqQiFTM4tm9Z6u9Z6g9Z6rdb6Wq31YK77PFlG/SE6i2ABuFC9R/LFgM+cdStAqQkVZqI9G4hsI5QiJZOrJ9vEF4BH/WGqXTaqXTYsBZYDqNwDcgLhKDYDIhq0No2/VZnt2WLjqgbef2SIe547yHgwgsdu4aaLls06m7/jyX0n7PPFy07L2rgE4WQobC2jANA6lgNowMvAeJBoAT0BlHtAjsduAaVwWC04bRZzbUYpsz1LJHoOndFYSX2lg191dKUMxrrjyX3c/tR+fKEIVsO8Jrc/tZ87ntyXtXEJwskghn+ORGM3gMMDXgYL5AZQ7jLETRctI6ohHI0S1dHYu9meLTKR0+557iCGAqthYCgj9m62C0IhIFJPmkS1ZtAbZMQfosY1vzEAmXqP5MMTKBOpI91xxb8vnX7S7SMTOW08aM70EzGU2Z6tcQnCySCGP0MiUTMGYNgXosZjo8ppm32nHJCu90g+PIHiUoc5652UOoCkRjnTcX3xstPmrJ1n0kcmwVgeuxlMlrgkFNUklaDK3jtLyDslIfUMjAf50s+3s71zKO95+MPRKMdHAxwZ9OJLMaMrFPLhCZSJ1JGPcWXSRyZyWroSVLl7Zwn5pyRm/D975TCP7z7G47uPsbzew6a2Ft65qgGHLX+BWMFwlO5hH267lTqPHfv0Z/0CIR+eQJlIHfkYVyZ9ZCKnpStBlbt3lpB/SsLwn9FUyfrFNWzvHOJA3zhff2Ifd//hIFetbeLqdc3UVzryNhZvMIw3GKbKZaPWbS84F9B85JFJV+o4mXGls5awuNbNof4xRnzhiSjcKpeVpQsqZtw+TibBWOlIUIWc20coTQpzWpoml65axE9vPo///kgbl53RgNVQDPtC/OTlw3z4npf5yq/3sKtrOK8y0IgvROeAlyFvYXgAxcmHJ1Am3jaZjCtdt8kLltfRO2qmXjAUBCNRekeDXLC87qSP+WQod+8sIf+oQqpNu2HDBr1ly5aM9vUGw/QM+wHoHwvw8I5uHt55lEHvZEj/6Ysq2dTewsbT67HlMR2D1TCodtuochZGFtC4B0ku88icjFfPXMe19h8fjxn9yWsZjkZx2Szs/Md3n7D9jXe9xMHjY4z6J2f8lU4ryxZW8LNbzs/8YLNAPq6JULoopbZqrTfMdfuSkHqms6DCwScvXMqHz1vC06/3cl9HF2/0jvH6sVG++the7nz2AO9b28T71jVT57HnfDzhaJT+sQAjvhC1HjsVjvk97fnII5OO1BEn3XGlu5bQOejFYTUYTWhzWI2C0tILZxomlDIlIfUkw241uHx1I9/5aDt33LCet59Wj6FML6AfvPgWN979Ev/62F72HRud/cuyQLwO8JFBL96gpIE+WTx2C9NVtFRrCRV2C11DfsIRPSW3fjYjfTOhUEs1CqVLSc74p6OUYk1LNWtaqukd8fPgjqM8srObEX+YJ/Yc44k9x1jTXMWm9lYuXrkw5wuywXCUnmE/TpuZBtqZR++jUuKmi5Zx+1P7CUdNzT6qSbmWcEJufQCdOrd+Pkh05wRw2614g2HufPaAyD1CTigLw59IQ5WTmy9ezsfPP4UnX+tl87YuDh4fZ9fREXYd3UN9hYNr1jfz3rVNVLtyG5TlD0U4OuTD47BS6y5cF9BCjSpN120yk9z6kPvjF3dOId+U5OJuOmit2dY5xOaOLl58s39CY3VYDS47YxHXtTVPycWeSwqxDkBiVKkrVt4wFNFFWav1xrteOsFtMp5bP9nibj6OP5NxCUIi6S7uFo6FmSeUUrQvqeX/u3YNP/rMubz/7BY8dguBcJRHXu3mph9u5S9/uYPn9x/PeW7+eB2AgfFgwdQBKKWo0kzcJvNx/OLOKeSbspN6UtFc4+LzG1fwybct5fHdx7h/WxdHBn1sOzzEtsNDNFU7uXZ9M1euaaLCmZtTF08DPeILUeM26wDMpwZd6DJEOm6jmUTh5uP4pVSjkG/E8M+A227lurYWrlnfzJZDg2zuOMIrhwbpHvbz7WcO8L0XDvHuMxu5rr2FJXW5ia6Mas3AeJARX3hek8AVclRpJsng0nUZzdfxS6lGIZ+UvdSTCkMpzl1Wx79ev5bvf+ocrlnfjNNm4A9FeXDHUT75vT/yd/ft5OWD/URztFYSTwLXOTA/LqCFLEPkI+99IR+/IGSKzPjnyJI6N7e+cyWfuXAZj+3u4YFtXXQP+3nl0CCvHBpkca2L69paePfqRlw58AsPRUwXUJfdQq07fy6gG1c10PLMfl48OFkq+YJltQVRenA8GEGhCYQjE6UXs533PtPSi4JQyMiMP00qnFY+cHYrP/z0uXzlmtW0LakBoHPQxx1P7eeDd73Ifz+9n6NDvpz07wuaLqC9I35CkezVlk3Gl+7tmGL0AV48OMiX7u1Iuk++Sg/aLYpw1PTd1xDLD2S2z0QmgVKZlF4UhEJHDH+GWAzFhSsW8u8fWMc9Hz+b957VhN1qMB6I8KutXXzsu6/w9w/souPwYE6Sw40FwhwZ9NE/FshpEriHdvYA5mw6/kpsn4l8lR5cWGFmXVVMjcmKt08nEw+dUvJqEoQ4OZd6lFKHgFEgAoTT8TUtJF45MMC9f+yke8RHU5WLG85ZzLmxrI7L6yv4y8tP46aLl/HIzm4e3H6UvrEAz7/Zz/Nv9rNsoYfr2lp41xnZrRGgteY/f/cGv9x6BG/IlCFuvnh5ViWVZG6lqdxNM8nHnwkaqHZaGfZPrn1Up/C2ysRDp9C9mgQhE/I143+H1np9MRv92596g/7xAFVOK/3jAW5/6g1eOTAwZbtql40Pn7eEn958Hl++6kzWNFcBcPD4ON/47T4+dNdL3P2HA/SOpB9oNhM/euEQP3jpLfzhCJaYpPKt372RVUklWfqKVGkt0s2hkymVDivjwQgOq4HTZuCwGowHI0mT4C2udeMLTb35zOahk8k+glDoiNQzB+79YydWw4zcVJjvVkNx7x87Z9zeYig2nl7PHTe28Z2PtnP5mYuwWRQj/jA/e6WTD9/zMv/08MnXCPjF1iMYCiwxScUSk1Tu+sMB/KHszK6vXtsIgNaTr8T2mcgkH38mTJw7nfBKbJ9GJh464tUjlCL5MPwaeEIptVUpdcv0D5VStyiltiiltvT19WXciSJ3QU7dIz6ctqmnymkz6BmZfQH3tEWV/N2Vq/jZzefziQtOodZtI6rhmX19fPHe7XzuJx08sbuHYDj9hVpfKML02C6lwBtfAB71Ez7JBeBv3tDOdeubJmb4FkNx3fomvnlDe9J9vnjZadx66QpcNgvhqCmN3Hrpiqx79YwFI7TUOLFaFBGtsVoULTXOpJLSxlUN3Hb1ahoqnQz7QjRUOmdNvZDJPoJQ6OTDnfNCrfVRpVQD8Ful1F6t9bPxD7XWdwF3gZmrJ9NOXHYLS+rcjAcijAXDBLI04wVoqnLRPx7AlaDP+0NRGqtcc/6OOo+dT7wtXiOgj80dXbx+bJR9x8b419+8HqsR0Mz71jWxIMni5HTiuWPCOoomtsCpmBjnmD+MNxCh2mWjxp15BPA161vpGQlOuEBes7511n3Wttawurl6Yp+1rTUZ9Z2KxbVuDh4fm9IWCEdZtnD23Erp/KFJcJVQauR8xq+1Php77wXuB87NVV9Wi1npqqXGxeI6d9aKnt9wzmLCUY0vFEFjvoejmhvOWZz2d9ksBu86cxH//ZE2/uPG9bzjdLNGwKA3xA9feosb736Zf3n0Nfb2jMz6XRcsr5twZYRJl8bEUoJRrRn0Bukc8DHiD834PanI1AUyH/nlL1heR9/Y1FKKfWPJSylK3ntBMMmp4VdKeZRSlfGfgcuBXbnsM47NYlDjttNa62ZxnZsFFQ7cditGBrPec5fXceulK1ngcTDqD7PA4+DWS1dOePVkglKK1c3V/P1VZ/Kzm8/nI+ctocppJRzVPPlaL5//yTb+7Kfb+P3e3qRyzfGxEJUOy4TIpYBKh4XjYyca+HgEcLpFYArZBfLFAwM0VNqxWwyiGuwWg4ZKOy9OW3TP97gEodDJtdSzCLg/JjFYgZ9qrX+T4z5PwGYxqHYZVLtsaK3xh6L4QhF8ocicJaFzl9edlKFPRX2lg89ctIyPnreEp/b2ct+2Lg70jbOne4Q9j4ywsMJu1gg4q4ka92SpyO4RH43VzinrGxqdcu0hXgTGZTeLwDisqT1tMnWBDITCHDw+TlSbrpwLPLaM1jFmG5t9WgpruyV5KcVMXTMLtR6BIGRKTg2/1voAsC6XfaSLUgqX3TKRViESk3C8wTD+oOmBMl84bBauPKuJK9Y0suPIMJs7unjhzeMcHwvy3ecO8cMX3+KyMxaxqa2FUxsqTmrtwReM0BX0UeGwUuuxJy0+n1GSMq3pS3jqiGroGwvRWpNdd84Ku4X9feNYlJpSSnFFvWfG7TM5lsR8/Iny0G0gxl8oWsrendNiKCocVhoqnSxZ4Ka11s0CT+ayUDZQSrF+cQ23XbOaH3/mPD5wdiseh4VQRPPYrh5u/tFWvvTz7axpqSIUiZ7U2kM8Avj4WGBGSSkTd8aBcdPoT4+ojbdnixNKKapp7dMo1Hz8gpBvJEnbNOxWA7vVoJrMZaFs0ljt5HMbT+WTb1vKE3vMGgGHB7zsODLMjiPD1LhtGEox7AvRXO2eElE8V7TWjPhCjPrDVDqt1Lgmq4Blkis+EIliURBJcJ2xKLM9FelKKumWUswk4VrnoBeLggN9YxN9LKywizwkFDVi+FOQShbyBSN5rZLlslu4Zr3p7rn1rUE2d3Tx8sEBhrwhhgjhtBqct9zFouq5uYLOROINoMpppcZtN4PR0nRndFgNvMGIOQFXgDZvAm5b8gfMTCSVuHSTWBozXrIwWR/xhGtLYq6wv+roYm1rTdI+Kh1W3ugdw2IoLIYiHDXlpJUNyV1GRR4SCp2yl3rSIVEWOmWBh+YaV15TJINZI+CcpXV8ddNZ/PDT53BdWwsumwV/OMrDO7r51Pe38De/2slLBzKvEaC1ZtgX4vCAl/6xQNo3uDqXOZ/QxKJ9p7XPRCaSSrrSTSZ9pBsdnGk/gpBPZMZ/EjhtFpw2C7VAdOJpIIIvGMnLInFrrZsvXLqCT1+4lN/s7uH+bV0cHfKz5a1Btrw1SGuti2vXt3DFmkVTFjTnSvwGMOoPU+Uyy0CmytEzgWFQ5TAYCUyegyqHgTKSzzMykVTSlW4y8eqJRwdPkZMqHCkTzkliN6HQScsaKKXeBixN3E9r/cMsj6koMQyFx2HFE0sQFgibNwBfKII/FM1JauY4HoeV69tbuXZ9Cy8f7GdzRxcdh4c4MujjP3+/n+89f5B3r2nkurYWWmrmHm0cJ5pQB3guN4BKh5WeYT8Oq4FS5qzfG9K0JEmeFt8nE0klHekmE6+edOWkTPsRhHwyZ6lHKfUj4OvARcA5sVdRZtvMBw6rhRq3naZqF0sXuGmsdlLtsmUlkjgZFkPxtlMX8vUPrOO7n9jAVWubJjJWbu7o4uPffYX/c/8utr6VWY2A+A2gc8DLwHgwqQSUiTySD0klX0naJLGbUOikM+PfAJypczl1LWBOxksjbpTiM8D4IrEvC7JQsjoByxZ6+It3ncZNFy3j0Ve7eWD7UXpHA7x4oJ8XD/SzdIGbTe0tXHbGorTXKBKfAKpjTwBGwhPAWDBCrdtK/3hoSgBXKnkkk306B70EQ5EpgWILPfakgWKZeChl4gmUST/iBSTkk3QM/y6gEejO0VgKlmx7acQXiSsSZCFvIMJ4MJxWdGu8ToDVUFPqBNzKZDqJKpeNG85dwgc2LOa5/cfZ3NHFq13DHOr38o3fvsHdfzjIe89q4ur1zTRWJZcvZiKeB2jEb94AqpzmDaDCbqFn2I/NmJR6Br1hVtQn9zjKZB8F9I4FJ1z4tTZ/X1ybXM5K10MpE0+gdPsRLyAh38xq+JVSD2M+eFcCe5RSrwCB+Oda66tzN7zCIFFSAHDbrXiDYe589kBW/jEdVgsOq4Xa2Gx1LBBmzB+e9UkgsU4ATGbrvPePnSf48lsMxdtPq+ftp9XzxrFRNm/r4qm9vYz6w9z7x05+saWTi1Ys5Lr2Fta2VKeVyTMS1QyMBxmOPQFMkBi9pZMHVsEMwVhz2Of4WCC+2Yzt2SDX1z5ffQhCInOZ8X8956MocPKZ48VuNaiz2qnz2PEFI4wGQngDkRldM7tHfFRNKzU4lzoBg+Mhjg0HqHHZsBgG48Ewo/4wz75xnGffOM6K+go2tbdw6aqGtNYk4jeAIV+IxioHA+NBQlE9a2AVpB+MBRCMaAwg8fZoxNqTke41yYeHjngBCflm1v9qrfUzWutngPfEf05sy/0Q559Myu9lIwWwy26JxQy4qa90nKDFN1W58IemPhXMlqsnsYxkjduGzaLw2C3csGExZzRVArC/b4z/9/jr3HDXS/zP8wfTnkE3VrlQStFa52ZlQyXLFnqwWoxZvWesFoPl9RWsaqxieX3FrPs4LAZRpmZsiMbaZyKTa5KP0otS3lHIN+m4mLxrhrYrszWQQma+c7wopah02miucdFa66bWbdYZyKROwExlJG0Wg709o/zXh9v5rw+38c5VDVgMxZAvxI9fOsyNd7/MPz/yGq91z14jABLqFwQjhCIRRvwh/KEoN6covZjJOa7zmLPkaY5AE+3TyUeQWCaIF5CQb2Y1/EqpzymlXgVOV0rtTHgdBHbmfojzTybl9zoHvVOyZkJ2Ht/tVoNaj1ln4PoNrfzf95xBfeXc6wTMVkbyjKYq/s97z+BnN5/Hx85fQo3LRiSq+d3eXv70p9v405928LvXegmlyLszvX5BndvBF96xguUNFfQnSQa3cVUDZy+p5lC/l11HRzjU7+XsJdWppTGlqK+wEXcoMhTUVySvNJbJNclH6UUp7yjkGzWbd6ZSqhqoBb4K/F3CR6Na65krXmTIhg0b9JYtW7L5lfPGjXe9dEIQTzzw52e3nJ/1/oLhKOOB8KyeQX/x8x0npHL2hSIs8Dj4xodOzKAdDEd5am8vmzu62N83WeZwgcfO1eubuWptE7UJNQLmglKmV5MpNZk3oTue3MftT+3HUKYBj2rzlapWb7rnON/XRBDyhVJqq9Z6znFVc9H4h7XWh4A/BUYTXiilZn6mFvL++J74JLC4zkwt7bJbTpj9pisP2a0GV6xp5M6PtfOtD63jkpULMRT0jwf53vOHuOGul/jab/ayv3dsxv1nQmvNqD9E54CX3hE/gXCEe547iKHAahgYyoi9wz3PHUz6PemeY5FUBMFk1hn/xIZKHQIWA4OY62g1mD79vcDNWuutJzuYUprxw6QHyVyDeHJBNKrxhiKM+cOmsdd6IuirZ8RHY0LQ11zpGfHz0PajPPJqN6P+Sa+bs1qqub69hQtXLJxbTp8ELvvGM1gNMJQxcbOK6ijhKLz5L8l9CNI9x4VwTQQh26Q7408ngOs3wP1a68djHV0OXAH8Avhv4Lx0BloOpBsslAuMhGCxSFQzHgyzcVUD5526YM5pG2aKDr7lkuV87IJTeHLPMTZv6+Ktfi+vdg3zatcwDZUOrl3fzHvOaqLKNbeHQpfNgi8YQRNFY84sDMVE7qNk7DwyxO6jw4wHIwz7Quw8MpS1wCpBKFXSmfFvmX5HibcppbZrrdef7GBKbcZfyGg9NZtossXaxOhgp83AH4oSjuopi8haazoOD7G5o4uXDvRPeNc4rAaXn7mIa9taWLZw5nKIcf7lkT08ubfvhPZr1jVy+41nz7hPJusCglCK5HLGP6CU+lvg3tjvHwIGlVIWpsbQCEXA9PxB8cXh0WkRw3OJDlZKcfYptZx9Si1dgz7u397Fb3b14A1GeHhnNw/v7ObsJTVsam/lvOV1M5a0PD4WosppYdQfmZjxVzotvDXg5/hYYEpVsDiJ6wJgGv9wNMo9zx0Uwy8IKUjH8H8Y+AfgAcz/y+dibRbgg1kfmZBXzJKTdmpjEcNjgTDeYJjuER8WBZ2DAUKRKDaLQa3bljQ6uKXWxZ+9YwVrm6u5+7mD9Iz4iUQ1Ww8PsfXwEM01Tq5ra+GK1Y1TZJzuER+Lqpw0Vk3eFDSanmHfRFUwj8NCtcuGw2rehMaDEQw0gXAErUEps8RjqsRugiCkYfi11seBLyT5eH92hiMUApPlJh3UuGzs7x3DMBRGLE/+sZEApyxILt28cmCAO/9wAKuhWLbAxZAvzIjfdDM9OuTnv37/Jv/z3CGuWNPIdW3NtNa6aapyneBmmhiFrLVmzG/mMHLYLFQ6rdgNhS+sJ1P7aAjNUuJREIQ0DL9S6jTgrzixEMul2R+WUCgoTClH6VjutLiAn2JtaLo8VOe247JZ8NitnNZYyRO7e/CFIty/rYsHtnVx3vI62pfU8OguM/Fr4lrCTG6mgVjh+yqXFd9o8IQkbckidwVBMElH6vkl8B3gHiCtZ+nYOsAWoEtrfVU6+xYKmSRcy0eO9VyPa3rpQZtFsajCgS+c/E8gmTw05Avy55et5DMXLeXRV3t4YHsXx0YCvHRggJcODNBQ6UBrGPaFaK52z+5mqhS1bitD3vDEusACjzWtzKKCUI6kY/jDWutvZ9jPrcBrQFWG+88rmeRLz0eO9XyMK1npwdZKJ801Lkb8IcYDkSmuoR67lbf6x5PKQ5VOGx86ZzHvP7uVF97s5/5tR9jeOUzvqJkMrsJh5bTGCpYsSJ2kLC4P1VdM1hHwhSI0VDoZC4TxzBDAJghCeknaHlZKfV4p1aSUqou/ZttJKdUKvBfzSaEoySS5VzaTtM3nuFJFuzptseyhdW4WVDhwxPX5JGUUp8tDFkNx8cqFfOOD67n7Y2dz5ZpGbBbFWCDML7Yc4aPffZkvP7ibHZ1DM8YcJItC/sDZrfSO+Dk84KV/LJAyr5AglCPpzPg/EXv/64Q2DcwW7/4t4G8wC7mcgFLqFuAWgCVLlqQxnPyRSb70fOVxtyg40Dc2kcN+YYU9q+PauKqBs7cf4aGdPUSiGouhuHpt45SnA8NQEyUYA+EIvnCURVUOBr2hBKnHjjeUXB46taGCv3736dx88TIeiZWK7B8L8tz+4zy3/zjL6z1samvhnasaJm4w5y6v41ZWJo1CjkQ1w74Qw74QLruFSqdNngIEgfS8epLn1E2CUuoqoFdrvVUptTHJ994F3AVmAFe6feSDuNyRmNxrtnzpmeyTLpUOK2/0jmExFJaYpNI15GdlQ0XSfdId1x1P7uOhnT2mv7xVEdXw0M4eli3cN6OvvMNqYekCD8dGfCxb6CAS1RPBYg2e5GUU49S47XzkvFP40IbFPPuGWSpyT/cIB/rG+foT+7j7Dwe5am0TV69rpr7SwbnL6+aUbiJe39hiKDyxSOZ0aw0LQqkwZ6lHKeVWSv1fpdRdsd9Xxgx7Ki4Ero7l+bkXuFQp9eOMRztPZJLcKx8JwXQSSSVVNHa648o0eVo4atYStlkU4WiUqIYPn5e8TsB0rBaDS1c18J8fbuO/P9LGZWc0YDUUw74QP3n5MB++52W+8us97D46POfUE2A+BYz4Qhwd8nG438vxsQA+8fsXyox0Ujb8HNgKfFxrvUYp5QJenGuqhtiM/69SefUUcsqGTJJ7ZZpAbK4eOhd97SksiinlChdW2Ilq+MPfJveyTWdcp/7vRyeSp8XJNHna20+vxxs0C7NkYmz7xwJmJPCOowx6QxPtpzdWcn17C28/rX4izXO6WAxzvaPCYY3FMAhC8ZBuyoa0c/UopbZprdtibTu01icmcZ95/40UseHPNYneNvG0CKGITlmQIx/55df+4+P4QpGJtAhgpkVw2Szs/Md3Z/y9wXCUYV+IsUA4rRl7fN+nX+/lvo4u3khIB13nsXP1uiauWttMnSe9GgGJiBwkFBtZz8efQDA2y9exjk4F5lyMVWv9dLH68OeDQi0LeNNFy4hqYnJNdEK2uSlFGcW5YLca1Fc6WFzrosZtn3Jjmcu+l69u5Dsfbef2D63n7afVYygYGA/y/Rfe4sa7X+JfH9vLvmOjGY0tUQ7qHPAy5A3OWDVMEIqVdLx6/gEzNfNipdRPMPX7T+ZiUOVIJh46G1c1cBvkNL98fAH3nucOMh6M4LFbuOmiZVlLgma1GNR57NS6bWnLQEopzmqt5qzWao6N+Hlw+1EefbWbEX+YJ/Yc44k9x1jTXMWm9lYuXpl+jQCAUCTKwHiQgfGgeAYJJcOcpR4ApdQC4HzMIMmXYvl7skY5Sz1XfPMZ9veNY1EKpUyX94jWrKj38JsvvX2+h5dX/KEIIzEZKJN9f/daL5u3dXHw+PhEe32Fg2vWN/PetU1Uz7FGQDIMpXDbLVQ4rWbRerkJCPNM1tMyK6XapzV1x96XKKWWaK070hmgMDMTxkPFXgCasjQqTpsFp81CTQbrAE6bhfeubeI9ZzWyrXOI+zu6eOHNfvrGAtzz3EF+9NJbXHbGIja1z14jIBlRrRkLhBkLhGU9QChK5iL1/HuKzzQgSdqywGggPCUnjt1i0FjlyGjWWyrE1wHqPPaJ1MyJtQJSoZSifUkt7UtqOTrk44HtXTz2ag/jwQiPvNrNI69207akhk1tLZy/fEFGMhBMrgeM+EJYDIXLbsFtN58EMv1OQcg1sxp+rfU75vJFSql3aa1/e/JDKk+S5cRpqHSm2Ku0SObOajEUtR47NRmsAwA017j4/MYVfOpty3h8dw+bt3VxZNDHtsNDbDs8RFO1k2vbWrhyTSMVs5R6TEUkOpk6WimzYpnbbsVjt5xQREYQ5pO0NP6UX6RUh9Z6uiyUFuWs8WfizllKpHv8oUiUUX+YUX+ISDS9v+Go1mw5NMjmjiO8cmhwot1pM3j36kaua2thSV32IqzN7zbTUrsdloxjDQQhGTnz459DxxP+/ZlSzoYfMgsSKxUyjUnQWjPiDzPsDc1ZBkrkcL+X+7d38fjuHvyhyf3PXVrLpvZWNiytnbFU5MngsFnw2C14HFa5CQhZYT4N/7zN+POR976UKMTzddHXnqLGZZuymK21mWQtVRRy4rYj/jAjvlBG2TjH/GEe293DA9u66B72T7QvrnWxqb2Fy89szElEr91qUOmw4XGIHCRkTtkZ/nKXSNKlUM9XNqOQxwNhhn0h/CmygSYjEtW8dKCfzdu62HZ4aKLd47DwnjVNXLO+meYaV9rfOxccNgsVdqvcBIS0yWXk7mwcyuJ3zZl85L0vJQr1fGUzCtnjsNJc46Kl1kWFM72KXBZDceGKhfz7B9Zxz8fP5j1nNWK3GowHIvxy6xE+9t1X+PsHdtFxeDDtVBOzEQhF6B8PcHjAS/ewj1F/iGia6xeCMBfm4se/KdXnWuvNsfeU2+WKfOS9LyUK9XzlIgrZYbXQUGkh7I4yksFC8PL6Cv7q8tO5+eLlPLKzmwe3H6VvLMDzb/bz/Jv9LF/o4bq2Fi47Y7JGQLaIp5HuV0HcDguVDpskjxOyxlx8196X4jMNbM7SWDIiH3nvS4lCPl8bVzXkRG5KTAuRyTpAtcvGh89bwgc3tPLc/n42dxxh19ERDhwf599/u4+7/3CAq9Y2cc36FuorZ685kA5RPekiajUMXHYLHodFIoaFkyJrGn82EI0/98j5Mhn1hxjyZrYQDLDv2CibO7r4/eu9hCLm/5Ch4JKV9Wxqb2F1c1VODbOhJiOG5UlAyOnirlLqvcBqYCKqSGt9W1ojTMHJevUUmhtkut4z+fK2KdTzNR+MB8IM+UIEMlgIBjMj6K93HuWhHd0MjAcn2k9fVMl17S1sPK0euzW3C7VWw8DtsEjaiDIml/n4vwO4gXdgFk5/P/CK1vozmQx0JkrJjz/dmbXMxOcXXzDCkC+YcTWuUCTK06/3sbmji9cT0kHXum28b20zV68/uRoBcyUuB7nsFkkbUUbk0vDv1FqvTXivADZrrS/PdLDTKSXDn657Yj6KqgizczKZQcGMJ9jTPcLmji6e2ddHfC3Zaig2nl7P9e2tnN5YmcURp8Zps+CO3QgcVnkaKFWynp0zAV/s3auUagb6gZOrxlHCpOs9U6jeNuVGYmbQIV+QMX96NwClFKubq1ndXM2fjAZ4cHsXv95p1gh48rVennytlzObqri+vYWLVy7Mub++PxQx4xnGJ58G3LGnAUOeBsqWdAz/r5VSNcC/AR2YHj335GJQpUC63jOF7G1TjtitBg2VTmpcUYa8wYyeAOorHdx08XI+dv4p/G5vL5s7ujhwfJw93SPseWRkskbAWU1Uu0+uRsBcCEejjPqjjPpDKKVwWA3csWyiuV6HEAqLdKQeh9Y6EP8Zc4HXH2/LBqUk9YjGX1oEwhGGvCHGTyJNttaaHUeGua/jCC/s7yf+n2e3Gly2qoHr2ls4NSE7az6xWQwqHGYSOZGEio9cavwnpGTIRpqGRErJ8EP63jPibVP4ZOMGANA97OOBbUd5dFc344HJBeX1i6vZ1NbKBadmXiPgZInfBDwOeRIoFrJu+JVSjUAL8GPgw0zWh6oCvqO1XpXhWE+g1Ay/ULpk6wbgC0Z4Ys8x7t/WxeGByfWcxion17Y1c+WaRiqduZeBkmGzGHgcZmEZp82QoLECJReG/xOYRdU3AIlWeQT4QTxlQzYQwy8UG4FwhGFv5l5AcaJas/WtQTZ3dPHywYGJdqfV4PLVjWxqa2HJgvld7zGUwmkzF4Zddos8DRQQuZR6rtda35fmYJzAs4ADcyH5V1rrf0i2vRh+oVjJ1g0AoHPAy/3bunh89zF8CYFlG06pZVN7C+cuq8t6jYBMsBoGTrshpSYLgFwa/kbgn4FmrfWVSqkzgQu01t9NsY8CPFrrMaWUDXgOuFVr/dJM24vhT59CzK1fzmRLAgIYC4T5za4e7p9WI6C11sW161u4Ys2iKV5g840j9jTgtlskgjjP5NLwPwZ8D/g/Wut1SikrsE1rfdYc93djGv7Paa1fnmkbMfzpIZ5AhUswFgcwHoicdPrmeI2A+7d10ZFYI8Bu4Yo1jVzb1kJLjmoEZMqELBSLGRBZKLfk0vD/UWt9TmKJRaXUdq31+ln2swBbgRXAf2mt/zbZtmL400OifQufcCTKoDfEqD+Ule87eHyc+7d18ds9xwiEzQRzCrjg1AVsamuhbUlNQS7AiiyUW3IZuTuulFqAGbiFUup8YHi2nbTWEWB9LPjrfqXUGq31roQB3wLcArBkyZI0hiNItG/hY7UY1Fc6qHbZMg4ES2TZQg9/8a7TuOmiZTz6ajcPbD9K72iAF97s54U3+1m6wM2m9hYuO2NRQckt4WiUMX90IhLabp28CYi3UP5JZ8bfDvwHZnbO3UA98H6t9c45d6bUPwDjWuuvz/S5zPjTQ2b8xUcwHGXEH2LUH85KBa9IVPP8/uPc19HFq12T87Aqp5X3nGWWilxU5UzxDfOPUqZUKd5CmZNLqccJ/BnwbmAUeBH4D621P8U+9UBIaz2klHIBTwBf01r/eqbtxfCnh2j8xUskqhnxhRj2hYhmqSbGG8dG2byti6f2Tq0RcNHKhWxqa+GsluqimFmLLJQ+uTT8v8D03f9JrOlGoFZr/YEU+6wFfgBYMOv7/iJV/n4x/Okj0b7FTTSqGfGbN4B0ykKmYmA8aJaK3HF0So2AFQ0VbGpr4dJVDUU1qxZvodnJpeHfobVeN1vbySCGXyhXIlHNkDfISJYkIDBrBDyzz6wRsLdnskZAjcvGVeuauHpdMwsrslsqMtcYSpk3ALsFt82S8+ymxUIuDf/3MVM0vBT7/TzgE1rrz2cy0JkQwy+UO+FIlAFv+umgZ+O17hHui9UIiD9ZWAzFxtPMUpFnNFVltb98YbNMTTVdDFJWLsil4X8NOB04HGtaArwGRAGttV6b5lhPQAy/IJgEwhEGxjOvCJaM42MBHtpxlId3dDPsm3QxPaOpkk1trbz9tNzXCMgVhlIT1cfK7Wkgl4b/lFSfa63fmmunyRDDLwhT8QbDDIwHCYYzKwqfjGA4ylOxGgH7+8Ym2hdU2LlmXTNXrW2ixp37UpG5pJxcRnNabD3XiOEXhJkZC4QZ8mb/BqC15tWuYTZ3dPHc/uMTpSJtFsU7Vy1iU3sLKxrmp0ZANklMMOe0GyVXc0AMvyCUMN5gmEFviEAouxIQQM+In4e2H+WRV7sZTVhjWNtazab2Fi48dWHJuFbGXUbj8QPFLguJ4ReEMsAXjDDoDZr1dLP93aEIT+45xuZtXbzVPxkFvqjKwTXrW3jvWfNbIyAXJC4SO63FV49YDL8glBG+YIQBbzAnTwBaazoOD3FfxxFePjAwUSrSaTV415mLuK69haULPFnvd76J1yN22SxFU4pSDL8glCG5WgSO0zXo4/5tXfxmdw/eBE+js0+pZVNbC+ctL4waAbnAaphPAx5H4bqMiuEXhDJmLBBmcDxIKJKbG8B4IMzju81SkV1Dvon25hon17W1cMXqRjyOwqkRkG3iAWSmLGQtmDUPMfyCUOZorRnxm15A2UoDMZ2o1rxycIDNHV1seWtwot1tt3DF6kaua2uhpbawagRkG6UUTpuB22ad9+RyYvgFQQAm8wANebOXCG4mDvXHagTsPoY/oUbAecvr2NTWwtmn1BakPJJtbBZj4mkg35KQGH5BEKYQiWqGY5lAc/n/PuoP8eirPTywvYtjI4GJ9lMWuLmurYV3nbkIV5kkWZtINR3zFLLl2F1UDL8gCDMSrwY2FsheIriZiEQ1L7zZz+aOI+w4MlkjoMJh5T1nmaUiGwu8RkC2yXVOITH8giCkJBiOMugNZqUg/Gy82TvG5m1dPPnasSk1Ai5cYdYIWNtaHDUCskni00C26hGL4RcEYU74Q2YiuFwEgU1nyBvk17EaAf1jkzUCTq33sKm9lXcWWY2AbBJ/GljgsWd8ExTDLwhCWuQyDcR0wpEoz75xnM0dR9jTPVkjoNpl46q1Zo2A+sriqhGQLZYu8GQcMSyGXxCEjMhlFPBMvNY9wv3bunj69T7CCTUCLlm5kE3tLZzZVFVWMpAYfkEQ5o3RmAtoroLAptM/FuDhHd08vPMog97JGgGnN1ZyfXsLbz+tPudeMYWAGH5BEOYVrU0X0FzHACQSDEd5+vVeftXRxf7ehBoBHjtXr2vmqnVN1BZ5jYBUiOEXBKEgiEQ1g94go1msBTwbWmt2dY2weVsXf3ijb0qNgEtXNbCprYWViyrzMpZ8IoZfEISCIp8uoIkcG/Hz4Aw1As5qqWJTeysXrSidGgFi+AVBKEjy6QI6vd8nX+tlc8cRDiXUCGiodHDN+mbec1YT1a7irhEghl8QhIIm11lAk6G1ZtvhITZv6+LFN/snagQ4rAaXnWGWily2sDhrBJSM4VdKLQZ+CDQCUeAurfXtybYXwy8IxcN8LAAn0jXk48HtXTz2ag/jCTUC2pbUsKmthfOXLygqGaiUDH8T0KS17lBKVQJbgWu11ntm2l4MvyAUH/OxAJyINzhZI+DI4GSNgKbqWI2ANY1UFEGNgJIx/Cd0ptSDwH9qrX870+di+AWheAmGowyMB/EG87sAHCeqNX88ZNYI+OOhyRoBLpuFd69exHVtLSyuc8/L2OZCSRp+pdRS4FlgjdZ6JKH9FuAWgCVLlpz91ltv5WU8glBIPL23lzufPUDnoJfFtW4+e8lyNq5qmO9hZcTju7q585kDdA37aKpyccM5izl3eV1ex3C438v927p4fE8P/tDkOsS5y+q4vt2sEVBopSJLzvArpSqAZ4B/1lpvTradzPiFcuTpvb18+aHd2Cxm1kZfKEIoornt6tVFZ/wTj8VuMRgPhglFNLdeujLvxh9gzB/msV3dPLD9KN3D/on2JXVurmtr5vIzG3HZC6NGQD4Nf87joJVSNuA+4CepjL4glCt3PnsAm0XhtltRyny3WRR3PntgvoeWNonHYrUYVDltOKwG927pnJfxVDitfGDDYn746XP5yjWrWb+4BoDDA15u/91+PnjXi3z76TfpHval/qISI6crHsrMsPRd4DWt9Tdy2ZcgFCudg15qpvmgu2wWjgx6k+xRuEw/FqUUFQ4rx0f91LjtjPjmxwPIYiguXLGQC1cs5M2+Me7v6OLJvb2MByL8cusR7us4wgWnLuD69lbWlUGNgFzP+C8EPgZcqpTaHnu9J8d9CkJRsbjWjW9aQJQvFKG1tnAXIpOR7FgW13mo89hZXOem2mWbV8N6an0Ff/Xu0/n5zedz00XLWFhhJ6rh+f39/MUvdnDzj7by6KvdectSOh9IAJcgzDOlqvGnOpZIVDPkDTIyTy6giYQjUZ7bf5z7OrrYfXTC74Qqp5Wr1jZxzfqWvNQIKLnF3bkihl8oV+JePUcGvbQWuVdPOseSrzrAc+X1nlE2b+vi93t7J2oEGAouWVnPpvYWVjfnrkZAPg1/4Uc1CEIRkql75vybvuwxl2OxWgzqKx3s6Bzk208f4MiQd95cQMGsAfC/rlzFZy9ZzsM7jvLQDrNGwNP7+nh6Xx+nLapgU3srG0+rL+pSkTLjF4Qsk650U45ST7J9HFaD8UCY4Dy6gCYSDEd5el8fmzuOsO/YZI2AWreNq9c18751zdR5slMjoKTcOQWh3EjXPbNU3TnneiyJ+1gMgyqXHafN4Bfz5AKaiN1qcPmZi/j2R9q544b1vOP0egwFg94QP3jxLW646yW++theXu8Znf3LCgiReoSiJl1JJRMJJt190nXP7Bz0EgiFOXh8nKg2NeUFHhvBcOrMl4UY7ds56MWi4EDfGMFIFLvFYGGFPaVr6kzny2O30jcWYEGFgyFvkEh0fpUJpRRrWqpZ01LNn4wGeHB7F7/e2c2IP8xv9xzjt3uOsbq5ik1tLVy8ciHWAi8VWdijE4QUxCWC3lE/NS4bvaN+vvzQbp7e25uV7TPdJ233TK3pGwtNVJqKaugbC6Vc7MxkXPmgwm6ha8hPOKKxKEU4ouka8uNJER2b6nxVu2wsrnVT67YXTIqF+koHN128nJ/fcj5/+a7TWB5LA7376AhfeeQ1PnLPK/z05cMMJ9QPLjTE8AtFSz4klUz2+ewlywlFNN6g6anijaUt+Owly2fcfmDcNBAq4ZXYnq1x5YMJj5dpB5PKE2a282UYitpYDECls3CKrThsFt67tom7P3423/jgOi5csQAF9I0FuOe5g3zo7pf4+uOv82bf2KzflW9E6hGKlkwklVFvkOHA5Oyy2mFJKalkElW7cVUDt8GcXRoDsWIm0+f3gRRFTjKRVDLhS/d28NDOHiJRjcVQXL22kW/e0J50+9FAmDq3jePjwQnZaqHHzliKko1zPV8WQ1Ff6aDKZWVwPJR2FtBXDgxw7x876R7JbvI4pRTrF9ewfnEN3cM+Hth2lEd3dTMeiPDorh4e3dXD+sXVXNfWyttOPbFGQHxcfWN+ltR58iLZieEXipbFtW56R/247ZN/xqkkFX8wPMXoAwwHItisyQ1Iun3E2biqYe7/vMkknRRST6XDyhu9Y1gMhcVQhKOmpLKyoWJufc6BL93bwf3buyd+j0R17PeOpMa/0mHljWE/NouBUuYhDHhDrGxIHQCVzvlyWC00VlvwBsMMjAdnXQsB07je/tQbWA1FldNK/3iA2596g1vJrudQU7WLz208lU++bSlP7Olhc0cXnYM+tncOs71zmMYqJ9e2NfOeNU1UOK1TxpUo2d0GOTX+IvUIRUvakkoSzTVZeyZ9ZEKydctU65kT+r9OeCW2Z4GHdvYAoNTkK7F9vsYVx2230lrrZmGlA6uR2pTd+8dOrIbpYqow362G4t4/5sZzyGW3cM36Fr73qXP42vVncd4y8+bSM+LnO88c4IN3vcjtT77B9184NDmuPEp2MuMXCoZ0vVQ2rmqg5Zn9vHhwsujGBctqk+6TiYHduKqB9x8Z4p7nDjIejOCxW7jpomVZ9QRK1n0qUzkWjOCxGSfIVoklCGfijif3nXAsX7zstBm3TeZJk8rDZiwYoaXGyfGx4IQE1VjhmHVcJ0OV00alw8qIL8yQb2YPoO4RH1XOqebOaTPoGUmdlfNk5SFDKc5ZWsc5S+voHPDywPaj/GZXD75QhAd3HAXAbbdQ67Jhs5g5jPKRoE9m/EJBkImXypfu7Zhi9AFePDjIl+7tmHH7uLY6fQabqi7r03t7+VVHF/WVDs5orKS+0sGvOrqy6gmUbN0zlROLwpSpEtdQp8tY07njyX3c/tR+fKEIVsOUrG5/aj93PLlvxu2TnZdU52txrRurxWB5fQWrGqtYXl+B1WLkPOGcUopqt+kBVOexnzDGpirXlIIsAP5QlMYqV9LvjMsw/eOBKfLQKwcGMhrj4jo3X7h0BT//7Pl8fuOpNFU7AfAGI3QN+3mjd5yxQDgvCfrE8AsFQSZeKulKEVevbQRM3Tn+SmzP1rjS3cdIMoFO1g5wfCxgHgtTFJWJ9pm457mDGAqshoGhjNi72T4TmZyvfEhjqTAMRY3bfsIN4IZzFhOOanyhCBrzPRzV3HDO4qTflSt5qMJh5f1nt/LDT5/Lx88/BXvM5z8YiRKORPNyvkTqySGFGGBTqGTiPRN/pJ8uHyeTIswFyfS8VDoHvQRDkSnBVQs99ux6AhlqZr0pxcw6GJn5GJO1A4wHzZn+9C6SyTCZnK90PZriZPt/JX4DqHLaGPKFOP/UBYBpzHtGfDTOQbbJVB6aKxZD8ckLl3JmUxXfe+EQPcO+vCXoE8OfIxLzj+Rztb5YycR7JgN7yTdvaOebN8x9XAroHQtOyClam78vrk0uEaR7LB67JSa/TFrlcDSKy5Y86MlAM5O5NlKsDMT7STw/UU3K4Kp0zxek6dFEbv9XDENR57FT7bLhcVjT0uebqlz0jwemXIfZ5KFMOHd5HecurzupXD3pIlJPjijUAJtCJROJoM49czBPsvZMyERSSfdYbrpoGVFtGvuojsbezfZkGEm8WJK1Z9pPPsjH/0o8BqCl1oUzxQ01kUzkoWJBZvw5opTK6eWDTCQCp91KdTh6gmeLy569P+tgRGMAicKOQWpJJd1jiXvVzNXbBiAc1VgUJA7DopjIIZ+tfvJBJv8rmUpDDquF5hoX4wEzBiCUIkju3OV13MrKtOShYkEMf47INPCnnElXIlhc66bXarAk4Rx7g2EaKp1ZG5PDYuCNRkh8AI8C7lmScKV7LF+87LS0DHBctrGnIQ9l0k8+SPd/JRvSkMdhxeOwMuoPMeQNJb0BxGWYUkOknhwx394N5UA+znGdx5yJTpd64u3zRaHKNpmQ7nXMpjRU6bTRWutiQYUjpZtqqSGGP0dsXNXAbVevpqHSybAvREOlsygLaxQyeTnHSlFfYZtYEDUU1FfMb7FwMGfut166ApfNQjhqSiO3Xrqi4GbzcyHd69g56D3hyeZkZFSl1EQW0DpP4WQBzSUi9eSQdB/3hczJVbb2uAzRWD0pO2RbTsqUQpRtMiWd/5VcyahxF9BKp61gCsHnCpnxC0VLPnLSi2RXeOT6mlgMxYIKB621LjyO0pwb59TwK6X+RynVq5Talct+hPIkH26AItkVHvm6JjaLwaIqJ03VrqIurD4Tub6dfR/4T+CHOe5HKEPy5TJbSpJdqUST5/OauOwWWu1uhn2hgigDmQ1yehvTWj8LZJbRSBBmIe0Sh2VOoZZrLBbiC8DVrvlf3D9ZSuv5RSgrRH9PD4kmP3mMmP7fUuOasrhcbMy74VdK3aKU2qKU2tLX1zffwxGKCNHf0yPbbpDljN1q0FjtpLHaiW2WYL5CZN5vWVrru4C7ADZs2FD84pmQV0pJf881Ek2efdx2K65aCyO+MIPeINEicf8svluVIAgZIdJYbpgoAlPnptI5vxHdcyXX7pw/A14ETldKHVFKfSaX/QmCkByRxnJLJhlA54ucSj1a6xtz+f2CIKSHSGO5J50MoPPFvGv8giAIpYjHYcVttzDiDxec/78YfkEQhBwRTwBX6bAyWED5f2RxVxAEIccUmv+/GH5BEIQ8Eff/X1Q1v/7/83/rEQRBKDPi+v+QN8SQL5R3+UcMvyAIwjyglKLWY6fCaWVgPJjXvsXwC4IgzCPx9M/5RDR+QRCEMkMMvyAIQpkhhl8QBKHMEMMvCIJQZojhFwRBKDPE8AuCIJQZYvgFQRDKDDH8giAIZYYYfkEQhDJDFUKK0DhKqT7grZP4ioXA8SwNp9go52OH8j5+OfbyJX78p2it6+e6U0EZ/pNFKbVFa71hvscxH5TzsUN5H78ce3keO2R+/CL1CIIglBli+AVBEMqMUjP8d833AOaRcj52KO/jl2MvXzI6/pLS+AVBEITZKbUZvyAIgjALYvgFQRDKjKIy/EqpxUqp3yulXlNK7VZK3TrDNkopdYdSar9SaqdSqn0+xpoL5nj8G5VSw0qp7bHXl+djrNlGKeVUSr2ilNoRO/Z/mmGbUr72czn+krz2cZRSFqXUNqXUr2f4rGSvPcx67Glf92IrvRgG/lJr3aGUqgS2KqV+q7Xek7DNlcDK2Os84Nux91JgLscP8Aet9VXzML5cEgAu1VqPKaVswHNKqce01i8lbFPK134uxw+lee3j3Aq8BlTN8FkpX3tIfeyQ5nUvqhm/1rpba90R+3kU80S0TNvsGuCH2uQloEYp1ZTnoeaEOR5/SRK7nmOxX22x13TPhFK+9nM5/pJFKdUKvBe4J8kmJXvt53DsaVNUhj8RpdRSoA14edpHLUBnwu9HKEHjmOL4AS6ISQKPKaVW53dkuSP2uLsd6AV+q7Uuq2s/h+OHEr32wLeAvwGiST4v5Wv/LVIfO6R53YvS8CulKoD7gD/XWo9M/3iGXUpqZjTL8Xdg5u1YB/wH8ECeh5cztNYRrfV6oBU4Vym1ZtomJX3t53D8JXntlVJXAb1a662pNpuhreiv/RyPPe3rXnSGP6Zv3gf8RGu9eYZNjgCLE35vBY7mY2z5YLbj11qPxCUBrfWjgE0ptTDPw8wpWush4GngimkflfS1j5Ps+Ev42l8IXK2UOgTcC1yqlPrxtG1K9drPeuyZXPeiMvxKKQV8F3hNa/2NJJs9BHw8tsp/PjCste7O2yBzyFyOXynVGNsOpdS5mNe4P3+jzA1KqXqlVE3sZxdwGbB32malfO1nPf5SvfZa6/+ltW7VWi8FbgCe0lp/dNpmJXnt53LsmVz3YvPquRD4GPBqTOsE+N/AEgCt9XeAR4H3APsBL/Cp/A8zZ8zl+N8PfE4pFQZ8wA26NMKzm4AfKKUsmH/Yv9Ba/1op9SdQFtd+Lsdfqtd+Rsro2p/AyV53SdkgCIJQZhSV1CMIgiCcPGL4BUEQygwx/IIgCGWGGH5BEIQyQwy/IAhCmSGGXxAEocwQwy8I04iluT0h/W0a+29QSt2R5LNDSqmFSqkapdTns9WnIKSDGH5ByDJa6y1a6y/OslkN8PlZthGEnCCGXyhKlFIepdQjsYyEu5RSH1JKna2UekYptVUp9Xg8La9S6mml1LeUUi/Etj031n5urG1b7P30Ofb9amzGrpRS/Uqpj8faf6SUuixx9q6UWqCUeiLWx51MJhP7V+BUZRbO+LdYW4VS6ldKqb1KqZ/Ew/AFIduI4ReKlSuAo1rrdVrrNcBvMDMTvl9rfTbwP8A/J2zv0Vq/DXOW/T+xtr3AJVrrNuDLwL/Mse/nMdNnrAYOABfH2s8HphdG+QfguVgfDxFLrwH8HfCm1nq91vqvY21twJ8DZwLLY30IQtYptlw9ghDnVeDrSqmvAb8GBoE1wG9jE2ULkJik62cAWutnlVJVsYRnlZj5b1ZipvC1zbHvPwCXAG9hVnq6RSnVAgzEKmQlbnsJsCnW9yNKqcEU3/uK1voIQCwX01LguTmOSRDmjMz4haJEa70POBvzBvBV4Hpgd2wGvV5rfZbW+vLEXaZ/BfAV4PexJ4b3Ac45dv8s5iz/Ysz0yH2YibL+kGy4c/zeQMLPEWRiJuQIMfxCUaKUaga8WusfA1/HrK9ar5S6IPa5TU2tRPShWPtFmCl7h4FqoCv2+Sfn2rfWuhNYCKzUWh/AnJX/FTMb/meBj8T6vhKojbWPYj5xCELekRmFUKycBfybUioKhIDPYRajv0MpVY35t/0tYHds+0Gl1AuYxao/HWv7f5hSz18AT6XZ/8uYchKYBv+rzCzL/BPwM6VUB/AMcBhAa92vlHpeKbULeAx4JM3+BSFjJC2zUPIopZ4G/kprvWW+xyIIhYBIPYIgCGWGzPgFIQlKqU8Bt05rfl5r/afzMR5ByBZi+AVBEMoMkXoEQRDKDDH8giAIZYYYfkEQhDJDDL8gCEKZ8f8DR7yP+T/9VlMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Draw a scatteplot of petal width versus length with a simple linear regression line\n", + "ax6 = sns.regplot(data=iris, \n", + " ci=95,\n", + " x=\"sepal_width\", \n", + " y=\"petal_length\")\n", + "\n", + "\n", + "# ax6.set(xlabel='Sepal width (cm)', ylabel='Sepal length (cm)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEHCAYAAACp9y31AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABL40lEQVR4nO29eZxb1Xn//z73Shppdi9jY8bL2IAxGBsMZscOa1hCIQkkgSaAKS0BypKm9EvC71WS0pQ0DWmSthRMWExIwlKWQEiCQwhb2G3iBbAxYI/t8TbjbVbtOr8/zpVGmpFmJI2kWfS8Xy+/JN3tnKs7/ui5n/uc5yitNYIgCEL5YA13BwRBEITSIsIvCIJQZojwC4IglBki/IIgCGWGCL8gCEKZ4RruDiQzceJE3dTUNNzdEARBGFWsXLlyt9a6IdvtR5TwNzU1sWLFiuHuhiAIwqhCKbU5l+3F6hEEQSgzRPgFQRDKjKIKv1LqUKXUqqR/HUqpbxSzTUEQBGFgiurxa60/Ao4CUErZwDbg6WK2KQjCyCIcDtPS0kIgEBjurox6vF4vU6dOxe12D+k4pXy4ewbwqdY6p4cQgiCMblpaWqipqaGpqQml1HB3Z9SitWbPnj20tLQwc+bMIR2rlMJ/CfBI34VKqauBqwGmT59ewu6UL6+1vMayD5axrWsbjdWNLJm7hEVTFw13t4QxSiAQENEvAEopJkyYQFtb25CPVZKHu0opD3AB8H9912mt79VaL9RaL2xoyDoNVciT11pe446376DN30atp5Y2fxt3vH0Hr7W8NtxdE8YwIvqFoVDfY6myes4F3tNa7ypRe0IGln2wDLftxufyoZTC5/Lhtt0s+2DZcHdNEIQSUSrhv5Q0No9QerZ1bcNre1OWeW0v27q2DVOPBGHksGzZMrZv3z7c3Sg6RRd+pVQlcBbwVLHbEgansbqRQDQ1uyIQDdBY3ThMPRKEkYMIf4HQWvdorSdorduL3ZYwOEvmLiEcDeOP+NFa44/4CUfDLJm7ZLi7JggAvLy+lUvvfYtTfvAnLr33LV5e3zqk43V3d/O5z32OI488kiOOOILHHnuMlStX8pnPfIZjjjmGs88+mx07dvDEE0+wYsUKvvrVr3LUUUfh9/t58cUXWbBgAfPmzeNv/uZvCAaDAHzrW9/i8MMPZ/78+dx8880A/OY3v+H4449nwYIFnHnmmezaNXKdbTWSpl5cuHChllo9xUeyeoRSsm7dOg477LCstn15fSu3PfsBblvhc9v4w1HCUc3tF8zl1DmT8mr/ySef5Pnnn+dnP/sZAO3t7Zx77rk888wzNDQ08Nhjj7F8+XIeeOABTj31VO68804WLlxIIBDgkEMO4cUXX2T27NlcfvnlHH300Vx++eWceOKJrF+/HqUU+/fvp76+nn379lFfX49Sivvuu49169bxox/9KK8+D0S671MptVJrvTDbY4yoIm1CaVg0dVHRhV5+XMqXvtf++gOvz3rfpa9uxG0rKj1Gmio9LnpCEZa+ujFv4Z83bx4333wzt9xyC+effz7jxo3j/fff56yzzgIgGo0yZcqUfvt99NFHzJw5k9mzZwNwxRVXcNddd3H99dfj9Xr527/9Wz73uc9x/vnnA2a8wle+8hV27NhBKBQacq59MZFaPULBkZTR8iXdte8IddAZ6sxq/637evC57ZRlPrdNy76evPs0e/ZsVq5cybx58/j2t7/Nk08+ydy5c1m1ahWrVq1i7dq1/OEPf+i3XyY3xOVy8c4773DRRRfx61//mnPOOQeAG264geuvv561a9eydOnSET1SWYRfKDiSMlq+pLv2AHv8e7Laf9q4SvzhaMoyfzjK1HGVefdp+/btVFZW8rWvfY2bb76Zt99+m7a2Nt58803AlJT44IMPAKipqaGz0/xIzZkzh+bmZj755BMAHn74YT7zmc/Q1dVFe3s75513Hj/5yU9YtWoVYCykxkaTJPHQQw/l3d9SIFaPUHC2dW2j1lObsqxYKaNiKY0s0l17hSIUC2W1/9cXz+K2Zz+gJxRJ8fi/vnhW3n1au3Yt//RP/4RlWbjdbu6++25cLhc33ngj7e3tRCIRvvGNbzB37lyWLFnCNddcg8/n48033+TBBx/kS1/6EpFIhGOPPZZrrrmGvXv3cuGFFxIIBNBa8+Mf/xiA7373u3zpS1+isbGRE044gU2bNuXd52IjD3eFgnPV8qto87cloj0Af8RPg6+B+8++v2DtxG0Ft+3Ga3sJRAOEo2FuPf5WEf9hIt21v27Kdcw4eAZNdU1ZHePl9a0sfXUjLft6mDqukq8vnpW3vz8WkYe7wohkydwl3PH2HQApglzolNFkWwFIvC77YJkI/zCR7toDTPBNyPoYp86ZJEJfZMTjFwrOoqmLuPX4W2nwNdAR6qDB11CUKFxGIY880l37Wk8tNZ6a4e6akIRE/EJRKEXKaGN1Yz9bQUYhDz99r/26deuGsTdCOiTiF0YtMgpZEPJDhF8YtZTKUhKEsYZYPcKophSWkpAbQxm5K5QGifgFQSgYQx25O1q47bbb+OMf/5jzfi+//HKixMNwIhG/IAgFI1OK7R7/nlGX2aO1RmuNZfWPj2+//faS9CESieByFV6mJeIXRgyvtbzGVcuv4pwnz+Gq5VdJbZ9RSLoU21xG7gKw4QVYdj78ZJ553fDCkPp0yy238L//+7+Jz9/97nf50Y9+xA9/+EOOPfZY5s+fz3e+8x0AmpubOeyww7juuus4+uij2bp1K0uWLOGII45g3rx5iVG6S5Ys4YknngDg3Xff5aSTTuLII4/kuOOOo7Ozk0AgwJVXXsm8efNYsGABL730Ur9+7d27l89//vPMnz+fE044gTVr1iT6d/XVV/PZz36Wyy+/fEjnngkRfmFEIIXdRj+RWIQDKg+gO9xNKNor9BqNx/Jkd5ANL8Dvb4bOXeAdZ15/f/OQxP+SSy7hscceS3x+/PHHaWho4OOPP+add95h1apVrFy5kldffRUwVTkvv/xy/vKXv7B79262bdvG+++/z9q1a7nyyitTjh0KhfjKV77CT3/6U1avXs0f//hHfD4fd911F2DKRTzyyCNcccUV/Yq2fec732HBggWsWbOGO+64I0XkV65cyTPPPMOvfvWrvM97IET4hRGBFHYbfWit6Qn3sDewl21d22jpbOH8g84nGA0SiAQSKbaQw8jdN34Klgc8laCUebU8ZnmeLFiwgNbWVrZv387q1asZN24ca9as4Q9/+AMLFizg6KOPZv369Xz88ccAzJgxgxNOOAGAWbNmsXHjRm644Qaef/55amtT6xB99NFHTJkyhWOPPRaA2tpaXC4Xf/7zn7nssssAU+xtxowZbNiwIWXf5G1OP/109uzZQ3u7ma/qggsuwOfzUSzE4xdGBKUs7CbkT1zU/RE/wWiwX+nihZMXcs2R1/D0x0+zJ7CHxurG3Ebu7t9sIv1k3D7Yv2VI/b744ot54okn2LlzJ5dccgnNzc18+9vf5utf/3rKds3NzVRVVSU+jxs3jtWrV7N8+XLuuusuHn/8cR544IHEeq01Sql+7WVTAy3dNvFjJfehGEjEL4wIZC7gkUk4FqYz1ElbTxtbO7ayo2sH+wL7EhF9OhZOXsgdi+7g+Yue5/6z78fr8qbdLi31MyDs79MJP9RPH8JZGLvn0Ucf5YknnuDiiy/m7LPP5oEHHqCrqwuAbdu20draf4rH3bt3E4vFuOiii/jXf/1X3nvvvZT1c+bMYfv27bz77rsAdHZ2EolEWLx4Mb/85S8B2LBhA1u2bOHQQw9N2Td5m5dffpmJEyf2u6MoFhLxCyOCUhV2EwYmFA0RiAYIRoIEogGisejgOxWSk24ynn4IE+mH/RALmeVDYO7cuXR2dtLY2MiUKVOYMmUK69at48QTTwSgurqaX/ziF9h26iQw27Zt48orryQWiwHw/e9/P2W9x+Phscce44YbbsDv9+Pz+fjjH//IddddxzXXXMO8efNwuVwsW7aMioqKlH2/+93vcuWVVzJ//nwqKytLWsNfyjILIwaprV96wtEw/qifQMSIfVQXRuiVUsyonQHkNucuYB7kvvFTY+/UTzeiP/usgvRrLCBlmYURSz4ins8oXPmxyJ5oLMqftvyJh9c9zI6uHUyqnMQXDvkCCydnrRelYfZZIvRFRjx+oeCUKjVTUkAHJhw1/vxu/25aOlt4+pOn+cG7P6Ctp41KdyV7A3u5Z/U9rNhVmLvscDTMxv0beXHLi/xszc+44cUbsnrIKZQeifiFglOqCVJkIpZUIrEIwWgQf8RYN5FYJGX9Ux8/hdtyU+EyXnOFqwIiZnkuUb/Wmr2BvWzq2ERzezPNHc1sat9ES1cLMR1L2XZXz66hn5hQcIou/EqpeuA+4AhAA3+jtX6z2O0Kw0epUjNL1U4+dlIpLKjBhL4vu3p2Ue2uTlnmsT0DinMoGmJL5xaa25tThL4j1JFxn1pPLTPrZjK/YX5uJySUjFJE/D8FntdaX6yU8gCVJWhTGEZKNUFKKdpJntc32U66lczln/PZZzC01oRiIYLRIMFIkGA0OKjQ92Vy5WT2BfYlIn4wwj65cjJaa/YE9qQI/KaOTWzr2tYvio9jK5upNVNpqm1iZt3MxOu4inFYlpV4uLuPfXmds1A8iir8SqlaYDGwBEBrHcIkagljmFKlZpainXzspEJYUOFo2Ih8NEgoGiIUCw3ZL//iIV/kntX3oMPmOD2RHgLRAC7LxVd/91U6w5kraNZ56oy41zUxs3YmM+tmMrV6Km7bPaQ+CcNDsSP+WUAb8KBS6khgJXCT1ro7voFS6mrgaoDp04c2SEMYGSyauohbubXoVkcp2snHTsp1n2gsmhD4QDRAKBrKGGXngtaa3f7dKRF8VEf7WTvNHc2J97aymVYzrTeKd4R+XN/RtKOc7du3c+ONNyYKrWXLeeedx69+9Svq6+szbnPbbbexePFizjzzzCH2sngUW/hdwNHADVrrt5VSPwW+BfxzfAOt9b3AvWDy+IvcH6FEjJUJUhqrG9ncsZnOUCfhWBi35abGU5OwMTLtM5AFFffmA5FAQvCHSiASYEvnFja1b6K5oznhxXeFuzLuU19R38+mmVozFbc19qP4Aw88MK3oD1YG+Xe/+92gxy5VyeahUGzhbwFatNZvO5+fwAi/IAyZYnjpfVk4eSErd61EKYWNTSgWYrd/NxcdclHGffpaUP6In1A0xBcO/gJbO7cOaTSs1po2f1sigo8L/Y6uHcRIf5fgUi6m1UxLCHxTXRNNtU0jNoov9IPxW265hRkzZnDdddcBZsRsTU0NDz74IO+//z7Lli3jt7/9LYFAgO7ubp577jmWLFnC+vXrOeyww2hubuauu+5i4cKFNDU1sWLFCrq6ujj33HM55ZRTeOONN2hsbOSZZ57B5/OxZMkSzj//fC6++GLeffddbrrpJrq7u6moqODFF19kz549XHbZZXR3G+Pjf/7nfzjppJMK8t1lS1GFX2u9Uym1VSl1qNb6I+AM4MNitimUD6VI51yxawUTfRMTEb/H8lDjqUmb+x7TMcKxMAsmLeCGBTfwq/W/Ymf3TiZVTuKLh3yRIyYekZPoByIBNndsTkTwmzqMyHeHuzPuM9473oh7UiQ/tWYqLmt0ZG4X48f8kksu4Rvf+EZC+B9//HHuueceHnzwwcQ2b775JmvWrGH8+PHceeediQqe77//PkcddVTa43788cc88sgj/OxnP+PLX/4yTz75JF/72tcS6+Mlmx977DGOPfZYOjo68Pl8TJo0iRdeeAGv18vHH3/MpZdeSqkrFpTir+EG4JdORs9G4MpBthdyoJxHrm7r2kYgHGBzaDMxHcNSFuM84wpinSS3Md47PqWssNaals6WFKumb5bN4RMO53snfy+rNrTWtPa0pqRLNnc0s71rO5r07qfLcjG9ZnpC4OMiX1dRN7QTHmaK8WOeXJa5ra2NcePG9XueeNZZZzF+/HjAlEu+6SZTG+iII45g/vz0aakzZ85M/Cgcc8wxNDc3p6xPV7IZoLu7m+uvv55Vq1Zh23a/cs2loOjCr7VeBYywMeFjg1JYHSMZHdPsCe5JfI7pGHuCezjQPrBgbRxYdSCt/la8theNmYrPH/UzwTeBnd07cz6eP+JPRPHJfnxPpCfjPvEoPtmLb6xuHDVRfC4Ua2xG37LMfUkug5xt9lRy0TXbtvH7U6uKZirZ/OMf/5jJkyezevVqYrEYXm8O1UsLxNj7yykjyn3k6r6QyQ9X9P7n0ujE8lzRWhOO9aZRhqNhPjfrc9y9+m6isSge20MoGiIcC/PFQ7444LFiOmaieEfc4687u3dmjOLdlttE8XWpVs1oj+JzoVhjMy655BL+7u/+jt27d/PKK68QDAYzbnvKKafw+OOPc9ppp/Hhhx+ydu3avNpMLtl87LHH0tnZic/no729nalTp2JZFg899BDRaIkroCLCP6op98lLQtEQLuUipmNoNAqFreysrJ5wLEw4GiaiIyZP3hH0vtHeMZOP4Zojr+Gpj59iV88uJldO5ouHfDGlxEFPuCeRUZNs18Rnn0rHRN9EZtTOYGZtb8pkY3UjtmVn3KccKNbYjL5lmfvaMslcd911XHHFFcyfP58FCxYwf/586upy//EdqGTzRRddxP/93/9x2mmnFX3SlXRIWeZRzFXLr+oXHfkjfhp8Ddx/9v3D2LPScNIjJ+GP+HGp3vgloiP4XD7euPQN8zmWKuzhWJhILJJTnvyKXSt46uOn2Nm9k/He8RzZcCS2shOR/M6egS0fS1k01TZxxvQzmFk7kxl1M/r9YI81hlKWebifW0WjUcLhMF6vl08//ZQzzjiDDRs24PFkOW9wkZGyzGVOuU9ectlhl7F0zVLCOoyNTZQoWmu+cPAX2Na1jUgskvdo155wD80dzbzS8govbX2JaCxKOBamzd/GR/s+SrvPRN9Emmqb8Ef8fLjnQxQKCwuNprndZOPMa5g3lFMeNVhDKPw73GNAenp6OO200wiHzR3g3XffPWJEv1CI8I9iSjVCdiSgtSYSiySi9nAszOcP/jztwXZ+/emv8Yf9+Nw+LjzoQr40+0uEo+GsjhvTMXZ27+znxQ9UuEyh8Lq8nNJ4irFqnNz4+Lyyl/z2EixlYate2yZKlGc+fYZL51w6tC9imLCUlTgn27LNa/J7y8bC2WaU21U1NTUlT68sNSL8o5yROnnJ3avu5uF1D9MT7qHSXcllh13GtUddO+A+r2x9JdGvKVVT+PLsL3PMAccQiUWI6mja6P2SOZdwyZz+WRrp6A53s7x5Ocubl7M3uBeFSvyYZMJSFl7bi8f2UGFX4LE9uJSL7kg3Ny64Me0+/rA/RfTBRMD+vnPJJhG3kzI9R8gGpcwdhlLK/ENhKRN5K8yyfp+d7ePn2u8fhRHyTBkuQm4UypoX4S8zSpECevequ1m6ZilKKVzKhT/i557V9xCNRblq/lVEYpGEmMeF9+0db3PP6ntwWyZLqbWnlR+/92OuOfKanAUwqqPs6t6V8rB1U8cmWnv6T6Ydp8KuYHrNdGbVzUo8bJ1RO4M73rmjX0XLYCTI5MrJGY/lc/sIRALY9ApmjBg+ty/t9it2rUice7W7mn2BfSxdvRTXUS5OOPAEbGVjKQuX5UpE3ZayEuKulEosG4l4vV727NnDhAkTRPyHgNaaPXv2FCT9U4S/zChWCmiykP/8w58DJITPwkIrzS/W/4LzDzo/7f75ThLSFepic8fmFIHf3LGZYDRzup7LcuGxTASvlGKibyL/sfg/+kXp0FvRkghZp3NeeNCFPLr+UaJEU549fOmQL1FXUZci0JayeO7T5/C6vPhcPhSKCruCQDTAbzb+hs8f8vmM7YwWpk6dSktLC21tbcPdlVGP1+tl6tSpQz6OCH+ZkU0KaDQWJaZjRHXqa/yfRicyY6KxaL8JunvCPdjKTslXH8zqGGySkKiOsqNrR79Zn9r8mcXEa3uZUTsjkRP/6EeP4rE8dIQ6EhUw6yvq2R/cn1b0wdTq6ZvOefEhFycicdvqjcbj2UX/cMw/UOOp4Zfrfok/4h/U6trZs5NaT21KNDyW0nLdbjczZ84c7m4ISYjwj0G01mlFW6OZXDmZ3f7deF3exLaBaIAJ3gls6dhSkHLAuVodkDpJSDQWJRQL0R3qxlIW33z5m2zu3Jx1KYZTDjyFyw6/jAOqDkiJrp9vfp4tHVsSYh3VUVp7Wplemzp8PyHkzp3BuTPP5fxZ52NbNi7lysquuH7B9Vy/4Pqs+luqiWsEIY4I/wggIcxaEyPpvY4RI+m9I97x9/F946UE4vsP9ADorw76K+5ZfQ8xHUuxLr5wyBcKIvqQanVYWIk+XXjQhSnbRXWU7V3baW5vpq6ijo/2fkRU97+D2BfsHYnrc/kSA59e3PIikVgEW9kJMY7qKH9p+wu3VN/Sv2PaGeWb9PUoTNXNib6JuCwXbstd8qyUck/LFUqPCH8exIU47mnHo+q+wh0X6fg+cesjRayd11KRzrrIJ4NkIOIpi898+kwizfKcpnOYO2Euz376bMKL39KxhVAscxQ/rmIcc8bPYWadedA6s24mkysnJ6L45c3LU0Qf+ltKSik8lgeP7SEYC3JA1QHsDewloiO4LTfjveMJxAJUe6r7tV8qyiktVxgZiPDnyNaOrf0i0tHGwskLCyr0yURjUbZ3b6exupHzZp5nMmvaN/Hkx0/y5MdPpt3H5/Kl1ImPZ9RUugeennkgS2mcdxwVdkXiAS7AtJppbO7YbD47v7XhWHjASVUEYSwiwp8jmQpslSMdoQ4z4Clpgu4tnVsGzIufUjWlX6XJSZWT8kpF/PxBn+eR9Y+kZM8AXHH4FWkLm+UzqUopKPcqq0LpEeEXBiUai9LS1dJvdOvewN6M+1S6KvtVmZxROyPlAWauVNgVeF1mMJXH9vCt479FXUVd1gPFcplUpZSUe5VVofSI8AsptAfbE+IeF/jNHZsz2lsKxZSqKSnT+s2sNVH8UAbrKGXy2b22lwqXsWzS3RVce9S1g44IjpNpUpXB0iaLPdK53KusCqVHhL9MicQitHS2pE4IMkgUb2HSHG3L5ozpZ3Dq1FOZUTsjkRo6VDy2JzGQyWt7Cz7KM5+0yVLYMJLOKZQaEf4yYH9wv/Hhk0oYbO3cSkRH0m6vUBxYfSBNtU18sv8TIrEIVZ6qRA57MBJkc8dmDh1/6JD65bJcKUJf7DTKfNImS2HDSDqnUGpE+McQ4Vi4XxS/qX0T+4P7M+5T5a7q97B1es30RBR/1R+uoq6iLiX6Th5Rmwu2ZeO1vXhd5p/bcud8jL7kUgwun7TJUtgwks4plBoR/lHKvsC+3vo0jsi3dLZkjOItLKZUT0kR+KbaJhp8DQNaKskjauOEoqEBi5TFqbArEv58hV1R8Dli0xWDW7pmKcCA4p+LoJbKhhnuGvRCeSHCP8IJR8Ns7dzaz4sfKIqvdlenCPyM2hkpUXwu5FKkzG278dqOdePyFr1a5MPrHk6IPoALFxEiPLzu4awf+A6G2DDCWESEf4SgtWZfcF9KTvymjk20dLZkzKixsGisaUwI/Mzamcysm8l47/iCPRgdaKSvy3Lhc/nwuXxU2BUlL3XQE+5JmXYRTEXQnnBPwdoQG0YYi4jwDwOhaCglio9H8h2hjoz71HhqUibmbqprYlrNNCrsioz7FIqPN/6JjW1r8QPd3a1s9UziwoMuxG1n9ujzmYglVyrdlXSHugEzYjc+3V+VJ/Pk1cM9n6sgjARE+IuI1pq9gb0pEXxzezMtXS0ZC6JZyqKxujERwceFvpBRfLZYyuKxt37IoztfQ2H+WILAQ9texPvyrVx7xg/T7peP954PixsX89tNv018jhFLLE9HPqmZMqpWGIuI8BeIUDTEls4tKQI/WBRf66ntl1EzrWYaHnv4JnaOj46N2zdPb38Fi94/FAuIAA9vXc61pBf+UnjvAG3+Nuor6ukIdRDTMSxlJcQ5HfmkZsqoWmEsUnThV0o1A51AFIhorYtTHazIxC2C5vZmxnvHs2DyAtyWOyH027q2ZYzibWUztWZqIoJvqjX/ChHFP7L+kZQqmBcedGHWE3rblp2YiSo+p2xfn74H3e+PxHaWZ6IU3juYVMspdhUHxnogGgLbhbarMqZa5pOaKaNqhbFIqSL+07TWu0vUVsF5reU1bn/zdvYH9xOKhWj1t7J+3/q029Z56lIi+Jl1M5laPXVAPzxfHln/CI+ufzQx52ogEuDR9Y8CpBV/W9n43L5EGYRs8ugrUfj7iH/UWZ5xH3cl/ogfV9JeUaKDVtvMlUbLR9v+T/ApBZYNsTCBjm00jj84/fZ5pGbKqFphLCJWTxYs+2AZFa4KAj2BlOVe28sJU05IEfr6ivqSefHPfPpMQvSBRIXKZz59hkvnXJqodxPPvMnHQrps2tks3fo8EUykH8VUNL5s2tmZ9znsMpauWUqESMqcs5cddlle55mJJe3t3KEApfCiCShFGM2S9vb02+eRminpnMJYpBTCr4E/KKU0sFRrfW/ySqXU1cDVANOnT0+z+/ATv91v8DVgKQu37cat3HRHuvnHhf84bP3yh/3YKEiazMRWNv6wn8lVkwtS7+baM37I5ufaeH73SoIY8T9n4jEZH+yCeYC7uWMzzzc/T1AHsZXNOU3nFDyrZ9H+Ni6oquBhV4gepanUisuiFSzqSH9zuWjqIm7ddi7L1v2cbbEgjVYFSw67fECvviTpnNEIhLog1A2V42GAKSoFoRCUQvhP1lpvV0pNAl5QSq3XWr8aX+n8ENwLsHDhwhFZ7D5+u99Q2UAoGkKjCUaCWY1eLSY+y00gGky1YXSUKifCLwSvtbzG6uAuptfPTES8q4O7eK3ltQEzYVa3rWZ67fTefdpWD7hPXn2rb+DZWBsTsfBqRQB41g5yRH0DaVvZ8AKL3rqfRZYH3OMg7Ie37odxh8HsszK2U5RRteEAhHuM2EeChT22IAxCcYdWAlrr7c5rK/A0cFyx2yw0S+YuIRwN44/40dqIfqbRq6XAZbmo9lRzadSDBuLDuxI2TKRwzxOSs1qUUvhcPty2m2UfLCvoPnn1ra4Otwaf1igUPq1xa7M8LW/8FCwPeCpBKfNqeczyYhOLQbATOnfB3o3Q3gI9e0X0hWGhqBG/UqoKsLTWnc77zwK3F7PNYpB8u7+5YzOTKicVfJ7agbAtO1HB0uvyJmre3LS/E09fqyPi4druzoK1PZIzYbbF/NTWNkJ3m5PV48Fb1cC2mD/9Dvs3g3dc6jK3D/ZvKWi/EkRCEO6GUA9EAlDCuZUFYSCKbfVMBp52fGYX8Cut9fNFbrMoxG/3t3RsyZi2WSiyrmJZP4NrO3dxrSdJzEI9UF+4ZyX5ZsJs3vMRnaEOwmjcKGo8tcyYMLQyzmnb6dhMp9tF2Na4LRc1RJhRnWEO3foZJuL2JGUXhf2Df18bXjB3Bfs3m2OcdFNmaygcMPZNqAuimaegFIThpKhWj9Z6o9b6SOffXK31vxWzvdGKrWyq3FVM8E2gsbqRaTXTaKhsoMZTM3DK5Uk3mQe7oR4TTYZ6zOeTbipY3/raXP6If9CsloWu8ewOtRNCYwEhNLtD7Sx0jS9Yv8DUEdrt300oFsLCSsyhm/FOLJ/va8ML8PubzQ+Gd5x5/f3NZjk4x+mGrlbYu8lYOP59+Ym+1uYY4Qx3LIJQICSdcxiwlJUyQjbvkbqzzwLudKLRLSZyHSgazYN8slpWbH2JiTHotCAMeICamFleSHKeQzef7yv5uQCY16CGP/8IDjjCPKDN18IJ9UDr+7Dzfdi5BnauhcB+uOxpOOj0/I4pCFmQk/ArpU4CmpL301r/vMB9GnMkzx/rdXmpsCsKl+s/+6yCCn06cs1q2RYLMl7DhHDEiKJSaMvFttggDzJzsVTIfw5dZ8vsTmb/ZlA27P7YeY7gBt942LfZRPqZaH4d/vIQdGyH2gPhqMuhfhrsWtsr8ns+gXS24baVIvxCUcla+JVSDwMHAavoTSTRgAh/Gkpdm34k0YhNWyyATwMK0JpALEyjPcB8AHFLxfKkWircmVH8c37+kEsbWhvLxV1pRF9Z5l80DJ07YPyszOfS/Dq88n2TyaOjsOtD+N0/pBd5MMc6YB4cMB8OPtO8CkIRySXiXwgcrrWkJqQjU+ZNObIk7OYO20T3iRG1yizPSDpLJeQszyD8OY+qHayNuF8f6jbZOLGYGVyVIOlPX/d5v38L7FxtbJuPfgeRDD69p7pX5CcfYd5X1PSur2sEq3yCBGF4yEWd3gcOAHYUqS+jioL59GOQRf4At6oYyypibHO5aIxEWBK0WKQHsHrilsqeTxKpmVQ1DJhqmfNI3HTpnC4v7GuGjh3p/fpwN1RPgcBeE+3bbqioNw9w373PsW3eh2D6MhHYHpMy6vJBLApX/s7cOQjCMDKo8CulfoMJdWqAD5VS72DKsgOgtb6geN0bedRV1CXmkC11ffxRQ0Uti9rWs0jZRuS0Y3k0zBlwH9rWG/FXthHZ9q0D75PrSNz6GdCxE9xep08xs0/1pMx+fc0UJ6On1hlt64eu7Wbd23f3OYcamDwP9m0ydwveWlM8Dsy+VRNE9IURQTYR/51F78Uooq4iw6hQoZeUqDmDPVKIfbKxh+JefdgPR/41vPQ9iIVNpB8JmPcLrug9ZqgLdn0AO1bDrvfNj1HactLK8ebnm39T5pkfFmUZj//VH5gfL2Wnb0cQhpFBhV9r/QqAUuoHWutbktcppX4AvFKkvgmjlVAn1E6Dnt4RtVQeaES1kPsMZN3EyyEk2zfTjoPFtzjZNjug5gA45Bzo2QN/+p6xbfZuJG3Gj7LBckHlBDj8C3Dkl41fn46mk4GkdmqnGNFvOtk5ljLHclWY87Td5tVyi78vlIRcPP6zgFv6LDs3zbKxSY6phqViRM4hWz8Ddn+auiwShIkHFX6fXR8av50YYBnLaOJBRvj7Euw01kvjQrDXmoh++x1pDqxgwkFOND/PPODd8HuTzVM7BRoOzSz6cWaeAgefZsTc9oDtct67jej3tQlH6N+XMDbJxuO/FrgOmKWUWpO0qgZ4vVgdG1HkkWpYCkbsfLBNi2DLm4ByrI4gRFqhaUlh9okEjXXjHQf+PUkrYhDcD1WTjX+/b7Pz8NXJm88UzVfUmcFYcdtm8lyIT9get20st9mue4/5zC0mgrdsJ3Kv6I3cbXevt58NI/TvSxi7ZBPx/wr4PfB94FtJyzu11mnCqjFIHqmGpWDEzgfb/BpUT4ZAu7FtXBXgrTPLM90gZtpn06tw0vW9Yp9c7GzjnyAxE1iSoH+8HDa/ZiL8vigLxidF8wfMNyN4Mz2o/8tDRvTdPqeiZ5V5ULvmMTj6ssJYMyP070sYu2Tj8bcD7Uqpv++7Tinl1lqP/UpU+VZ1LPLte95VMIttK+zfDJUTTTpmnHiu+2D7VE50Mm60yQTau9H45MnomKlpk8jE6RPF62iv6HvrTKbNFEfoA52w9jHY8gbsbzajcMclFXVTyonaPeDyQNcu8I5PFXjLBR0thfPjS101VCh7cvH43wOmAfswYVY9sEMp1Qr8ndZ6ZeG7N0LIp6pjCW7f85oPthS2Qrbfl9Ymko8GnbTJVnBXJO0TMJ56oMP48XHbZtf7A5dLUDaccZuJ5uum9Ubzza870XWSbfPaf4DnX2D2Z3sftiZH/+Nm5lfRMxfyrRoqCHmSS8jyPHCe1nqi1noC5sHu4xj//3+L0bkRQz5VHUsw6Uc+lTNLMhlJuu8rGoTjrgH/flPJcv/W3glJutrgyK86+/ghHDTLulvN+vtOg9/cAO/+DLa+nST6Gf58qybDnPN7LRzbZc5z9S/B9pr8elcF+OrBVQnvLetd1tfyKUEF1JK0IQhJ5CL8C7XWy+MftNZ/ABZrrd8CKjLvNgaYfRaceyfUTDbVE2smm88DRcj7N/efO7XAt++Lpi7i1uNvpcHXQEeogwZfA7ceP8iD3RL0i4PPgM/eYQYs9ewBXx2ccjNMmgPdu00EHwkakQt0wObXTfGySBDaN8P+TeahbbjHWC1goviJh8IRF8OZt8PXfm0GXvkm0PtnbIFvIljKtF3XaHLtxzWZQmmdO6Ci2qm7o7I793yufa6Uog1BSCIXq2evUuoW4FHn81eAfUopG5NLN7bJtQpmiW7fc54PttD9ikZMNB8JmoeykaAZuNRwKFzwP6nbxhzPfufa3iqV+5oHPv7U42DhVSbTpu8PVt0088NSO8UZEavMudRMBt+4/sfK99xLUAG1JG0IgkMuwv/XwHeAX2M8/j87y2zgywXv2WjnpJuMdx7CCFbYPzJu3/PtVyyWKvBxkR9oZG2gPUnk15qaNuE03ryyAW2OZdm9ZQ1iMWj9EKYuNA9S7QozQMvlvH7mFnMukVB25zJSr4kglBg1koptLly4UK9YkWESjdFIInumOJOkFK1f0XBSBB8w72PRzMeDpGjeyZnfucbYSunwjXdSKZ10ykmHw9LFJlvGSvLYY5hSB//canLj8zmXoW4vCKMApdRKrXXWk4DnUo9/NnAz/SdikRkjMjFSb9/j/UoW+M6dTiQf7h/F951UZMEVxnpJRPJrTX2bdNG8ZcOE2U7evDNIqrax/0PUiioIdkNMA7rXuvHWZBZ9gO3vmR+ZYJfxx7e/N/B3PlKviSCUkFysnv8D7gHuo3ciFmE0oHWq/x4JGNsmlsWjmebX4ZV/N+9jMWhdbyYVyXQHUDkhqd78PJh0WH9vXilj17grHevGC7PPM/n1iT47fTvknMx9e/kH8Op/AMqkaIZ6nM/AqeVRSUQQ8iEX4Y9ore8efDNh2IhGjDUSDaf68IPZNH3x7+uN5Nf+n1MoLY0laDmZNgfM6x0kVXNg+lGwLo8Rendl7yjYZDq3Gwso0G4GYCnbDL7q3J65n2/dBTjpmqYR8x28dZcIvyAMQC7C/xul1HXA06TW4y+Psg0jhYS4h5yMGkfgY5H8Jv2ORWDPp8a22eEMkGrfmnl7ZZsCZZYLrnjWROv9tlGw5W2TH9+xDeqb4ORvDJ7+WjctNcNmsNG+wS5jCcUfMiunzk9wgIqegiDkJPzxYuL/lLRMAwNMPirkjNapEXssYj7HwiZyH+rD+EQ074h864cmu6Uvlg0T5xjhDrQ7E6RYgDZ3AONn9Yq+Uua922deN73mFDbzmDz7rtbBRwfnk2rp8jrPFZy7B61Bh8FdlccXIwjlQ9bCr7WeWcyOlB3JtkwsKXJP93A1X2IRM5VhItNmbeZovnJiUuEyx5t3eeFXXzF1b5RyJk6P76Cgcnyv2CdbN2/+d+5Fx/JJtaycCO3d9LOhKicO9s0IQlmTS1ZPJfBNYLrW+mql1CHAoVrr57LY1wZWANu01ufn3dvhJJ/CZuufN/u0b4HaqXDM30DTiYUV9+SMm6oGmHq8+UHZuRZaPzAPcvuinFLCYCpiHn2FKXGQzpvvN+esByobzMPhyvHp+5TH/Lnmu7wzt1RLpU15hp7dvc8FKif2FuwUBCEtuVg9DwIrgZOczy2YTJ9BhR+4CVgH1A624YhkoMJmB5+eZM0kWTSfvgKv/rtT0rfapEv+6V/MDFDxmZiGQjQM7z8J797b6/V37jDRfV+qGnqjeQ2sfdypPulMP/juz8yD1eR+WbZ5EDuuCbp2Q/Xs3nWhHjM6NhP5zJ8L+Y+Orp2Sfd8EQchJ+A/SWn9FKXUpgNbar7KYbVwpNRX4HPBvmDuG0cfrPwHlNlGyjpq88mjYpDmOz+CA/WWZI/qOD+72QhgTnecj/D17krz5eDQfTL+tuwoOv7A3rbLmgN51T19tRL9fv34Oh57tWDc+k4UDcMo/OhZMT/YWTD7z5+aDjMQVhLzIRfhDSikfzv9kpdRBJGX3DMBPgP+HmbGrH0qpq4GrAaZPH6YytNGI8cNjjt8eizqvzoPVvZ+aMr6xpKkHXBXGXslEx3azTzIub//a8mn7E07y5h2h78hQY99yGaF2+4yI217z8HXRPw7SL+X49hZU1EB3W+oPRJx8LJh85s/Nh3z6JghCTsL/HUxp5mlKqV8CJwNLBtpBKXU+0Kq1XqmUOjXdNlrre4F7wZRsyKE/2RNNEvVoOPdMmdoDTe12d1LqYiSQajEMZZ/u3UmjYJ1Mm3TRvOU2dkl8FOyqX5nqlaEuk60TcptUy/pp6ftkWVA33bRXUd3r6Yd6Bs6eyXV0bNyCmXBw77JiWTAyElcQciaXrJ4XlFLvASdgHp/dpLXePchuJwMXKKXOA7xArVLqF1rrr+Xd40zEoqZOe3KkHn8/VIthwRUmPTFMry8eC5vlue5z5NfMBOHJ0XymQUrVk3vtmgPmm4qXtqd3/b5mePc+TPRumWJlkT0w9wu927i9xqv3VJm7lMX/ZOyRsD87eySf0bFiwQjCiGbQIm1KqaMHWq+1fi+rhkzEf/NAWT1DKtIW6s7ORsmXRPbMDhO1L7hicK+++XVYcZ+ZdMTlMeLbvs1kxPTF9jjRfFLxsupBIuSnr4Z9WyHc5WTcOA+SxzfB15407aWb9DuXQmX/Pt2IvZ0UI0QjJkXzWwNk6UgxNEEoGcUo0vajAdZpoDyKtDWdPLjQR8Owe0NqhcrODD9G1ZN7I/kD5plofuu75sfl0z/1FkMbqM2O7SalUk1wJhdxCpt17TIzSmUiF3sk2GUi/WSyGR0rFowgjFiymWz9tGwOpJQ6S2v9wgDHeRl4OeuejQa62pLmgV1rCphljOYPS7Jt5pnZo5Jpft0Z7Zo0H+yrPwAypH/abuOlx/36OIP59blSUW2OmfynoqOpbQqCMKrI5eHuYPwAyCj8o55oGHZ/1Cea35l+25oDkkbBzjeFzAYqLQwm0h8s/dPtNfaNu8pYR4tuzj3VMldO+Hvj6UcjJtLXUUCb5YIgjEoKKfxja7xkV2tqqYO2dSY1sS92hZlLNm7bTJ4H1Q25t5cp/bNzp7k7SOfXlyKdMf4A9627jL1TUW1EX6pfCsKopZDCP3Km8sqVaAjaPkotXhaf5LsvNVP6RPOzB4/ms6H2wD4Paj3gqYWGgwvn1+fLqbeI0AvCGKKQwj966NrVJ5pfP0A0f1hq8bKqPKL5wbBdMOMU2P4/zkNa2/TH3wZNVxa+PUEQyppCCn9zAY9VOKIh89A1/gB259oBovkDjbhPOdJYNhMPKUw0nw7LqWtfUWO8++3vmWcDgXbTZ1eFmYik+TVAom1BEArHoMKvlPriQOu11k85rwNuVzI6d/aP5pNLLcRxVZhJvuPR/OR5UFXkcr6uCufhbGXqiF4wFS0rJ6beUQw2EclYI58KqIIg5Ew2Ef9fDbBOA08VqC/5s2E5rHwIWt6F7tb029Q2OnbNkeZ1wsHFi+aTcXtNZO+pTh0E1Zd8JiIZSwxUAVXEXxAKSjZ5/CPfZN7zCXz0297PLi9Mmps0CnaemQS8FMRno/JUgqdmYLFPptzLHLzx09wnbxEEIS9y8viVUp8D5mLq7gCgtb690J3KGeUyNkk0ZCL7Y6+GWYtL175lJ1k4laYYWq6UstLkSLRU9m82kX4ybl95WV2CUCJymYHrHqASOA24D7gYeKdI/cqeDS/A2/8L3npTojjshz/facS4EBOeZCLu18eLnxWCUqRmjlRLpdytLkEoIbmEpidprS8H9mmt/wU4EchQ/7eExC0Ct88MIXN7zQjYvzxU+LbcPvMAeFyTKX1cOb5wol8qki0Vpcyr5THLh5OTbjLWVqjHPNQO9ZSX1SUIJSQXq8fvvPYopQ4E9gDDPwF73CLQsd5l2U54MhhK9ZY0zlTpcrQxUi0VmVRFEEpGLsL/nFKqHvgh8B4mo+e+YnQqJ+IWQXLkPdgkKQNhu5P8el/6CchHMyPZUpGKnoJQEnKxev5Da71fa/0kMAOYA3yvON3KgbhFEPabn6JwFpOk9MVVYWyb+ukwboaxc+JWyFhDLBVBKHtyEf4342+01kGtdXvysmFj9llw7p2mkFmwA6omwOIMpYzjxL3t6oY+fr0n8z5jhfj3VTPZTKNYM9l8lkhbEMqGbEbuHgA0Aj6l1AJ6q3DWYrJ8hp/ZZ0HTSQP7+kr1evXuqvxSLnMl17TJUqVZiqUiCGVNNh7/2ZhJ1acC/5m0vAO4tQh9KhyW5YyadTz7Ulo3uaZNjtQ0S0EQxhzZjNx9CHhIKXWR4++PbGy3I/bOw9nhIteRqDJyVRCEEpGL3/G6Uup+pdTvAZRShyulripSv3LHrjAPZsfNMD7/cIo+GLumbx8GSpvMdXtBEIQ8yUX4HwSWAwc6nzcA3yh0h/LGdpWm6Fq21M8wmUbJDJQ2mev2giAIeZKL8E/UWj8OxAC01hEgWpRejQVyTZuUNEtBEEpELsLfrZSagDPFolLqBKC9KL0aC+SaNilploIglIhcRu5+E3gWmKWUeh1owBRqEzKRa9qkpFkKglACchH+D4GngR6gE/g1xucXBEEQRhG5WD0/x5RpuAP4b+AQ4OFidEoQBEEoHrlE/IdqrY9M+vySUmr1QDsopbzAq0CF09YTWuvv5N5NISMjcVIVQRBGNLlE/H9xHugCoJQ6Hnh9kH2CwOnOD8ZRwDnJxxCGSHy0b+eu1NG+G14Y7p4JgjCCyUX4jwfeUEo1K6WaMQXaPqOUWquUWpNuB23ocj66nX96KB0Wkhipk6oIgjCiycXqOSefBpRSNrASOBi4S2v9dp/1VwNXA0yfLoOVcmKkTqoiCMKIJmvh11pvzqcBrXUUOMqZxOVppdQRWuv3k9bfC9wLsHDhQrkbyIWRPKmKIAgjlhLUJjZorfcDL5PnnYOQBhntKwhCHhRV+JVSDU6kj1LKB5wJrC9mm2WFjPYVBCEPcvH482EKpqSzjfmReVxr/VyR2ywvZLSvIAg5UlTh11qvARYUsw1BEAQhN0rm8QuCIAgjAxF+QRCEMkOEXxAEocwQ4RcEQSgzRPgFQRDKDBF+QRCEMkOEXxAEocwQ4RcEQSgzRPgFQRDKDBF+QRCEMkOEXxAEocwQ4RcEQSgzRPgFQRDKDBF+QRCEMkOEXxAEocwQ4RcEQSgzRPgFQRDKDBF+QRCEMkOEXxAEocwQ4RcEQSgzRPgFQRDKDBF+QRCEMkOEXxAEocwQ4RcEQSgziir8SqlpSqmXlFLrlFIfKKVuKmZ7giAIwuC4inz8CPCPWuv3lFI1wEql1Ata6w+L3K4gCIKQgaJG/FrrHVrr95z3ncA6oLGYbQqCIAgDUzKPXynVBCwA3i5Vm4IgCEJ/im31AKCUqgaeBL6hte7os+5q4GqA6dOnl6I7gjDieHl9K0tf3cjWfT1MG1fJ1xfP4tQ5k4a7W3kxls5lrFL0iF8p5caI/i+11k/1Xa+1vldrvVBrvbChoaHY3RGEEcfL61u57dkPaO0MUO9z09oZ4LZnP+Dl9a3D3bWcGUvnMpYpdlaPAu4H1mmt/7OYbQnCaGXpqxtx24pKjwulzKvbVix9deNwdy1nxtK5jGWKHfGfDFwGnK6UWuX8O6/IbQrCqGLrvh58bjtlmc9t07KvZ5h6lD9j6VzGMkX1+LXWfwZUMdsQhNHOtHGVtHYGqPT0/nf0h6NMHVc5jL3Kj7F0LmMZGbkrCMPM1xfPIhzV9IQiaG1ew1HN1xfPGu6u5cxYOpexjAi/IAwzp86ZxO0XzGVSjZd2f5hJNV5uv2DuqMyEGUvnMpYpSTqnIJQb+aY06hL0rVTkci6SAlpaJOIXhAKTa0rjWEqBzOdcxtL5jxZE+AWhwOSa0jiWUiDzOZexdP6jBbF6hFFNrhZBPpZCrvts3ddDvc+dsmyglMat+3oIhiNs2t1NTIOlYEKVm1AkVtB+lYKt+3qwFWxs6yIUjeGxLSZWewZM58z1+xppRGOamDb/tMZ5b5Zr5318PZqUz8nbzxhfiWWVJglShF8YtcQtAretUiyC2yGtAOa6fb775JzSqDVtXeHEx5iGtq4wU+vt9Nvn2a9SUO2x+aStG1spbKWIRDXb9gc4uKEq4z7DlQIaSwg2CRGOxgU51ivOMQ1aa2ed2S++rdaj86mMCL8wakm2CAAqPS56QhGWvroxrfjlun2++3x98Sxue/YDekIRfG4bfzg6YErj3m4j+smxnk5aXqh+lQIzWB9zMvET0knL05DN96X7RMfJ0XLUEWpN6rp4tJ1YHks+xugU7EIhwi+MWvKxVDp7QrQHo4lldRX2gJZKPjbEqXMmcTtGnFv29TB1EBsmGDXt95Wi+PJM/crVUsmHf3j0PZ5ds5NoTGNbigvmH8CPLzk64/YdgTDjfC52d4fRGO2fWOWmIxCmKxjpFeMk4Z7bWMc3z5zNw29tZnu7nyl1Xi49djoHTapm857uxPZD5Z2Ne3n03a3s6PAzpdbHJcdO47hZ44d83ExorYnGNOGYJhrVhGMxIlFNJPGqCUdjrNnazh8+3MX+niCzGmq47tSDiv7jLcIvjFpytQgCoUiK6AO0B6O4XZGCtRHn1DmTsv/Pm0nUBhC7mgoXH7d2YVsK21JEYsZSOWRSdXZtkmp1aOJRcm9E/O0nV/Pc2l2J7aMxzdOrduAPv8t3Ljiin4DHNFS4bHa2B3DZCqXM8fb2hJkxwUNrRyBjX+ZPq+OH0+anLAs7P3zRmCOg0RiRPu8jiVezLHWdI7IxzYadXbywbicKhctWbNrTxfd+t47jZ45nUm1FQojjotx7LLMsGtOJ9sJR3a/txH6xmCPypp+54vX4S2LZifALo5acLZWe9NZJpuX5tJEPmfQhqiEYMT9U8d8A7Yh0JBozohsDHIHVWhOORGntDIB5jthrjTjCFIzECEVjRhz7RJ8pIhqL8dsk0U9m+QetHDxpc4rohaNG6HZ3BU17UZ0Qfg3sbA/wrafWEo3GCDv7mWg41ica7u1HXHzz0M+seXGEpYx6XTYaXXTLToS/yIQiMfb3hBJ+p0pycgewPQctcNTXM023fd/jq0xHzbQ4i/7F+9HXnx7k0DmR3I/kczh+1gT+v/PmcP+fm9m2v4fG+kquOrmJY2eOpzsYSelH3GJIR0wbi8Jsl7puwYxx3HL2oSx7o5lt+40N8bXjZ3DQpGpjs0SMSCVeo1EjYE7UGI4aIQs5gheORJ1lzvpYbMCBTv/w6CpHKFPFsHlvD7alCMeM+CvAshSb9vRw3k9f641W42JeQPXUwP+89Ong2yU12ROO8s6mvQXrw0BYCty2hcu5G3LbFvt6QtiW89ejzKtS5m5i/tR6XJa5E3BbFi5b4XJezf69n11W8nvL2Udh2xZuS+Fy2nXZKqUPLmdd32N9/RcrqfW6sFB4XBaWZaG1LnpGkwh/kYnGNF3BzFZCORL3PpOjy0hUs7J5H8+u3k5bV4AJVRWcedhkZh9Q3e+2PX4rHYnGeG71dj7a1YUGtu8PsLsrwKuf7E4RvPi+A3Hx3W/0u22PR5/BSIxQxAj09vYAK7fsL8XXBMDv3t+Z1XYaEtbC7q5QEXtkmDWxygiaI2C2ZeGxFet3dhKOxnBZFijzgxTVGp/b5vQ5k3DbVq8QJomhbcVFsfe9bSk8toXtLI8LqctKsyxJUK00Ecs3H1vNnu5gSuVQfzjKhKoKfnjx/H7bxyn2c4HGukqnX1YiiCpFRpMI/ygmW+8z2bfs3U4TjaXzK2P9BDnZ+0z1OVO9z0jfKHMI3uee7jAbWrty+j40sHF3Dxt3b8n5u9ywK7e2ciEuQz6Pjddt9xOslr09BKP9v5Mqj82JB01whLI3SnTbFm9v3MOmPf2jwsOnVPP5BVOd4xsBjbf1woc7+e3anViKhA0T0/CVhVP56xNm4HFZCUG2LcX3nvuA5R+29Wvj7MMb+Oe/OiJtps5bn+zmRy9swG0rKtw2Qccau/mzh3LiwROy+K6yv0fUA9wr9T3OFSfO4IcvfEQwEsXrtgmEo0S15oqTZlBVkV4G3/hkN//10se4LZMyu68nyH+99DE3u8y5ZNPX5D4m3wHF3152wnR+9MIGApEoblsVxUpMhxpJeagLFy7UK1asGO5uFIy1Le08t2Y77f5w/wdOfcUwSThHgvc50uh7i2xbasDI9timcf1u912WYnXLfrbt733IOHNCJafNmZRyGx4XS7dt8fM3m+kKRqhw2Y6dAqFwlPqqCv75/MMS27ltE/G6XTbffGwVe7uDiZGoAD2hCA01FTyw5FiUUklWGRz/b3+ks89DZ4CaCpv3bvtsiq0Wtyjmf3c53aFe/z+uwdUVLtZ89+y038n87y7HH46aaNwhEovhc9sZ98k1qwd6B5Zlk9FUSnLt16X3vtXvwX5PKMKkGi+PXH3CsPUrHUqplVrrhdluLxF/EXnqvRYefKN5uLuRwFIYgUsWw7igWgo7xeNM8iv7btvH++zvg/Z6n72e58De5/97YjU1XhcKZQTOEbLuQJjHrzkJyzLLLYWzDRx/x4sZz3XZlcehkrYFEp/j760kIc2UZ/7A65uwgB3t/sSo2olVHrqDEU4+OP1UoW1dQep97pRjVle42NkeoMbr7rd9TzhGhUthqV5BjukYPeEYbjt9VZWecMyMAnU+a23qr8R/DNLRHYri6nM4Sw28z48vOZofX5JxdVpyymhyKMUo5Fz7VaoRxfl8X0NFhL9IvLy+lefW7MDrtrCUSgzXPvSAGibXevuJYepDo+SHRclC6USldv9b/2Tvs+9DpoG8z0LQV5Aty3y2HAFXGJFPbGOZdcnbHDyphjYnukqOkmc21DB9QvpRn5ZKnxFjKTLevud8bkBrVygxHklr83naOF/GfXJNAa3ymGyh5NH6MW2WZ8JC0zcXKQa4B7A/8mmnFIzUUchjeVIZEf4isfTVjdT6XEyqqUjkI/vDURSKb507Z9j6pfoIrhFgR5ST1lnKCLQi6XOKmDvLC1Rb5NrPHMRtz36APxzNOm1yfKWb3WlGt46v7B9V58vuriDQf3BVfHk6ck0B/dtTZvLTP31CJBZL/JjFtFmeCcuyIM0Da8vKXHcxn3ZKwUgdhVyKVN7hQoS/SMRvE5MfoXjdFjs7/Dkfa7CIOi7MtkofTfcV95FIrqNdAbweF3WRWL+RuD5P4f6sQ1GNRa+lAsZSCaV5GBsn13O58czZANz35010h6JUeWz+9pSZieXpiMQ0tjK5/nFsxYBpm/m0UwrysVRKZQ3l+jc5WhDhLxLx20Sv23bS2hSBcJQD631UVxg7w7ZSxdruE1WPdLEuNLl6ndPGVdLqspie5uFboaiwLXpi0ZT8jRhQmcF7j5Prudx45uycBDhu23jSPKgtZDulIFdLpZTW0HD476VA6vEXifjco4FwFI9tOXnkihtPP4RJtV4aaioYX+WhrtJNrddNdYUrke7ncVmJfOdyEf18KMX8ruOrTCSqk/4lLx8u/vaUmcS0EfuYjjmvw2/b5EOu11Hq9w8dEf4iIXOPFp+SfMdK0VDtTjwQtRQ0VLuH/Qf5xjNnc9PpB+Nz20Rixhq56fSDR1w0nw25Xset+3r63dmMpvr9IwGxeorIWL1NHIkUa0hD3IY4oK7Xdii0nZQvI9G2yZdc/q+M5WybUiERvzBqKcVcraWwk4TckGsydET4hVFLKbxesexGHnJNhk5RrR6l1APA+UCr1vqIYrYllB9jeWRlsRiJ8/Tmw1i6JsNBsSP+ZcA5RW5DKFOmjavEH04tNyBeb2ZKYY0Jo4OiCr/W+lWgNEW4hbJDvN7ckDRIIc6we/xKqauVUiuUUiva2vqXgBWETIjXmxuSBinEGfZ0Tq31vcC9YMoyD3N3hFGGeL3ZI2mQQpxhj/gFQSgNYo0JcUT4BaFMEGtMiFPsdM5HgFOBiUqpFuA7Wuv7i9mmIAiZEWtMgCILv9b60mIeXxAEQcgdsXoEQRDKDBF+QRCEMkOEXxAEocwQ4RcEQSgzlNYjZ8yUUqoN2DyEQ0wEdheoO6ONcj53KO/zl3MvX+LnP0Nr3ZDtTiNK+IeKUmqF1nrhcPdjOCjnc4fyPn859/I8d8j//MXqEQRBKDNE+AVBEMqMsSb89w53B4aRcj53KO/zl3MvX/I6/zHl8QuCIAiDM9YifkEQBGEQRPgFQRDKjFEl/EqpaUqpl5RS65RSHyilbkqzjVJK/ZdS6hOl1Bql1NHD0ddikOX5n6qUaldKrXL+3TYcfS00SimvUuodpdRq59z/Jc02Y/naZ3P+Y/Lax1FK2Uqpvyilnkuzbsxeexj03HO+7sM+A1eORIB/1Fq/p5SqAVYqpV7QWn+YtM25wCHOv+OBu53XsUA25w/wmtb6/GHoXzEJAqdrrbuUUm7gz0qp32ut30raZixf+2zOH8bmtY9zE7AOqE2zbixfexj43CHH6z6qIn6t9Q6t9XvO+07MF9HYZ7MLgZ9rw1tAvVJqSom7WhSyPP8xiXM9u5yPbudf38yEsXztszn/MYtSairwOeC+DJuM2WufxbnnzKgS/mSUUk3AAuDtPqsaga1Jn1sYg+I4wPkDnOhYAr9XSs0tbc+Kh3O7uwpoBV7QWpfVtc/i/GGMXnvgJ8D/A2IZ1o/la/8TBj53yPG6j0rhV0pVA08C39Bad/RdnWaXMRUZDXL+72HqdhwJ/Dfw6xJ3r2horaNa66OAqcBxSqkj+mwypq99Fuc/Jq+9Uup8oFVrvXKgzdIsG/XXPstzz/m6jzrhd/zNJ4Ffaq2fSrNJCzAt6fNUYHsp+lYKBjt/rXVH3BLQWv8OcCulJpa4m0VFa70feBk4p8+qMX3t42Q6/zF87U8GLlBKNQOPAqcrpX7RZ5uxeu0HPfd8rvuoEn6llALuB9Zprf8zw2bPApc7T/lPANq11jtK1skiks35K6UOcLZDKXUc5hrvKV0vi4NSqkEpVe+89wFnAuv7bDaWr/2g5z9Wr73W+tta66la6ybgEuBPWuuv9dlsTF77bM49n+s+2rJ6TgYuA9Y6XifArcB0AK31PcDvgPOAT4Ae4MrSd7NoZHP+FwPXKqUigB+4RI+N4dlTgIeUUjbmD/txrfVzSqlroCyufTbnP1avfVrK6Nr3Y6jXXUo2CIIglBmjyuoRBEEQho4IvyAIQpkhwi8IglBmiPALgiCUGSL8giAIZYYIvyAIQpkhwi8IfXDK3PYrf5vD/guVUv+VYV2zUmqiUqpeKXVdodoUhFwQ4ReEAqO1XqG1vnGQzeqB6wbZRhCKggi/MCpRSlUppX7rVCR8Xyn1FaXUMUqpV5RSK5VSy+NleZVSLyulfqKUesPZ9jhn+XHOsr84r4dm2fZaJ2JXSqk9SqnLneUPK6XOTI7elVITlFJ/cNpYSm8xsX8HDlJm4owfOsuqlVJPKKXWK6V+GR+GLwiFRoRfGK2cA2zXWh+ptT4CeB5TmfBirfUxwAPAvyVtX6W1PgkTZT/gLFsPLNZaLwBuA+7Isu3XMeUz5gIbgUXO8hOAvhOjfAf4s9PGszjlNYBvAZ9qrY/SWv+Ts2wB8A3gcGCW04YgFJzRVqtHEOKsBe5USv0AeA7YBxwBvOAEyjaQXKTrEQCt9atKqVqn4FkNpv7NIZgSvu4s234NWAxsxsz0dLVSqhHY68yQlbztYuCLTtu/VUrtG+C472itWwCcWkxNwJ+z7JMgZI1E/MKoRGu9ATgG8wPwfeAi4AMngj5Kaz1Pa/3Z5F36HgL4V+Al547hrwBvls2/ionyF2HKI7dhCmW9lqm7WR43mPQ+igRmQpEQ4RdGJUqpA4EerfUvgDsx86s2KKVOdNa7VepMRF9xlp+CKdnbDtQB25z1S7JtW2u9FZgIHKK13oiJym8mvfC/CnzVaftcYJyzvBNzxyEIJUciCmG0Mg/4oVIqBoSBazGT0f+XUqoO87f9E+ADZ/t9Sqk3MJNV/42z7D8wVs83gT/l2P7bGDsJjOB/n/S2zL8Ajyil3gNeAbYAaK33KKVeV0q9D/we+G2O7QtC3khZZmHMo5R6GbhZa71iuPsiCCMBsXoEQRDKDIn4BSEDSqkrgZv6LH5da/33w9EfQSgUIvyCIAhlhlg9giAIZYYIvyAIQpkhwi8IglBmiPALgiCUGf8/Qfp/O1crlnEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "for s in iris.species.unique():\n", + " ax7 = sns.regplot(data=iris.loc[iris.species == s], \n", + " ci=95,\n", + " x=\"sepal_width\", \n", + " y=\"petal_length\", label = s)\n", + " ax7.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Seaborn allows you to do that more systematically with pairplot\n", + "\n", + "This is like doing a scatter plot for each pair of the variables in one go. On the diagonal, distributions of values within each species group are plotted for each variable. \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAALFCAYAAADUTOzTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXQbV9qHn5FkyZJtmZkZwszUQJOmKTdtiimlDLvdbmm7he0Wtl+32+2WMWXmpkmbpG2YyUkcO4mZGWWQpfn+mBhkOYmdyJj7nKPTzKs7d67cq9H87n1BkmUZgUAgEAgEAoFAIOgtVH09AIFAIBAIBAKBQHBmIUSIQCAQCAQCgUAg6FWECBEIBAKBQCAQCAS9ihAhAoFAIBAIBAKBoFcRIkQgEAgEAoFAIBD0KkKECAQCgUAgEAgEgl6lX4gQSZL+JEnSAUmS9kuS9IkkSc4naj9//nwZEC/x6o1XlxHzUrx68dUtxNwUr158dRkxL8WrF1+CfkifixBJkoKBu4CxsiwPBdTA5Sc6p7S0tDeGJhB0CzEvBf0VMTcF/RExLwWCM5s+FyHH0AB6SZI0gAHI7+PxCAQCgUAgEAgEgh6iz0WILMt5wP8B2UABUCXL8i8d20mStEySpB2SJO0oKSnp7WEKBJ0i5qWgvyLmpqA/IualQCBoQZLlvnWVkyTJE/gKuAyoBL4AvpRl+cPjnTN27Fh5x44dvTNAwZmO1NWGYl72H3Kqc0gpT6HB0kCMRwyJXolIUpf/Vw4EuvVhxNwcvMiyTGpFKmkVaejUOhK9EgkzhvXlkMQ9cxDQ2NxISnkKmdWZeOg8SPRKxN/Fv6+HdToMqh+AwYKmrwcAzAEyZFkuAZAk6WtgMnBcESIQCATHI6sqi1tW30JubS4ATion3pj7BmMDxvbxyAQCx7OnZA83rrqRJmsTAAGGAF6f+zpRHlF9PDLBQGZN9hruX39/6/HEwIk8NfUpfA2+fTgqwWCjz92xUNywJkqSZJCUpcrZQEofj0kgEAxQdhbvbBUgAGarmVf3vkpDc0MfjkogcDxNlibeSn6rVYAAFJoK2Va4rQ9HJRjoFNYV8sy2Z2xsWwq2kFaR1kcjEgxW+lyEyLK8FfgS2AUko4zpjT4d1GnS1Gzlq525lNc1nbyxQCBwKCUmez/zvNo8IUIEg45GSyM5NTl29oLagj4YjWCw0NDcQEVjhZ29pqmmD0YjGMz0uQgBkGX5UVmWE2RZHirL8tWyLDf29ZhOh+d/SeUfPx7k9o929fVQBIIzjtH+o+1sl8RdgoezR+8PRiDoQdy0biyOW2xnnxg0sQ9GIxgs+Lv4Mztsto1No9IQ6R7ZRyMSDFb6hQgZTDQ2W/hkWzaPnTeE1KIajpbU9vWQBIIzimE+w3h2+rP4G/zRa/TcMPQGzo06t6+HJRD0CPMi5nHLiFswaAz46n3559R/MsJ3RF8PSzCA0Wv0/GnMn1gUtQgnlRPRHtG8OudVYj1j+3pogkFGfwhMH1RsSS8n2FOPv9GZceGerEkpItrXta+HJRCcMThrnDkn8hwmBEzAbDXjZ/BDJYn1FsHgxM/gx20jbuPi2IvRqDT46H36ekiCQUC4MZzHJj/GHaPuwEXjgruze18PSTAIEb/MDmbD4VKGBClf1sRAIxuPlPXxiASCMxNvvTcBLgFCgAgGPZIkEeASIASIwKFo1VqCXIOEABH0GGInxMFszyxn4bBAAGL93XhvUyayLA+2GgWCQUhjcyMHyg5wsOwgns6eDPcdTqhbqE2bzKpM9pXso9ZcyxDvIST5JOGkcmp9v7KxkgOlBzhSeYRQt1CG+Qzrk5SOGVUZ7CvZh8lsYojPEJK8k9CoxO1OMHBp//30cPZghO8Iu+9nR3YV7SK5NBlZlhnmMwwvvRd7ivfQaGlkmM8wEr0ThUgXdIrJbOJA2QFSylLwN/gzzHcYQa5Bdu3ya/NJLk2mqK6IBO8EhnoP5WjlUZJLk1vvv2P8xqDVaPvgUwj6O+JX2YE0W6ykFtZw51kxAHi5aFGpJAqqGgjy0Pfx6ASCE7MhbwP3/H5P63GEMYJX57xKiFsIoAiQG3+5kSJTEQAqScWrs19lcvBkAMwWM8sPLOet5Lda+5gfMZ9HJj6CUWfstc+RXpnODb/cQGl9KQBqSc1rc14TwbqCAc3Jvp8d2VawjTvW3kF9cz2g+PnfNeount3+LKAEGr897+1OEzkIBD9n/Mxjmx9rPR7mM4wXZr5gU7CwuK6Y+/64j32l+1ptb859kwfWP0BZg+IFopbUvDDzBWaFzeq1sQsGDmIJxIGkl9bh5aLFoG3TduHeBlIKqvtwVALBySmvL+e5Hc/Z2DKrM0kpbyvZs7t4d6sAAbDKVl7a/RJ1TXUAZFVn8e7+d236WJm5kvSq9B4cuT27ine1ChAAi2zhlb2vYDKbenUcAoGj6Mr3syMrMla0ChCA+uZ6kkuTiTQqGY6arc28u/9dzBZzzwxaMGApqC3g3zv/bWNLLk22qxOSVpFmI0A8dZ4klya3ChBQ7r/v7n+X6kbxHCSwR4gQB5JSUE24t8HGFuSuJ61IZMgS9G+arE2UN5Tb2evMda3/rm6y/xEpbSil0aJk1G6wNGCRLXZt2j8I9QYVDfb57UvqS2iyiLo9goFJk7Wp03nd/vvZkZJ6+3o5FQ0VNruShaZCzFYhQgS2NFmbOq0J0vFebmq2Xdhx17lT1Vhld155Y3mv/w4IBgZChDiQQwU1dm5XgR7OHC4SBX4E/Rs/gx+Xx19uY9NIGmI92lIyDvcdjoRtbNOS+CV46b0ACHENIcEzweZ9b2dvwo3hPTTqzunMveSKhCtEnRDBgMXP4Mdl8ZfZ2Dp+P1uQZZkDpQeYGz7X7r2xAWM5UHag9fiKhCswOBns2gnObAIMAZwTdY6NTafWEeQaxJrsNby651VWZ60m2DUYZ7Vza5vM6kyG+w636+/86PNt3LgEghZETIgDSSuuYWiQbRaJYHc92zPsV5gFgv6ESlKxJGEJOrWOL9K+INAlkLtH302CV5uoGOI9hP/N/h8v7nqRioYKrky8knOj2+pv6DV6bhp2Ez9l/sSuol0keiWyKHoRLk4uvfpZhvkM439n/Y//7v4vlY2VXJ14NfMj5vfqGAQCR9KV72cL+0r2cd2q67g84XLuH3c/Hx36CGS4JukaQt1CCXUNpd5Sz/VDrmdGyIw++DSC/o5Oo+P2kbfj7ezNj+k/EmmM5I5Rd7AiYwUfHPygtd1ViVfx6txXeXn3y6RXpXNu1LnEe8XzzLRneDP5TWqaargk9hLmhc/rw08j6M9Isiz39Ri6zdixY+UdO3b09TDsmPHcb9w2M4Ywr7aVpUpTEw99k8zuv4sv4QCly2nN+uu87A6yLFNWX4azxhlXbef1bWoaa2iyNuGt97axH644zCU/XEKiVyJJ3klkVGWwo2gH7y94n1F+o3pj+DZUN1VjtpjtxjlI6Fa6vcEwNwVd+34+tP4hfkj/AYBgl2CuSrqKcGM400KmAVDVWIXFamndwewBzqh75mDGYrVQ3liOi8aFjOoMLv/xcrs2ny78lEj3SOqa6/DSeaFWqQEoNhXTZGk6buKEPkCkKO2HiJ0QB9FssVJQ2UCA0dnG7q53osFspbrBjNHZ6ThnCwT9A0mS8DGcuNaAm86tU3ujpRGrbOVA2QEbl4+G5gaHjrGrGLW9l5FLIOgNTvb9tMpWSkxtsSB5dXk8u/1Zzo06t1WEuOtEzQdB11Cr1PjqlRTrjc2NnbZpsDRgcDLYufX5Gfx6fHyCgY+ICXEQuRX1eLk4odXY/kklSSLA3ZnsMpGZRzC4CXULZbiPrT+wn8GPSPfIPhqRQHBmoZJULE5YbGdfGLWwD0YjGEyEG8NbM6u1EGGMINytd2P+BIMLIUIcREZpHYHundcC8XPTkVshRIhgcOOuc+fJKU9yWdxl+Bv8WRC5gFdmv0KAS0BfD00gOGOYEDiBp6Y+RaQxkliPWP5vxv8x2k/UAhGcHt56b56f+bwSZG7w5/zo8/n3zH+fdOdcIDgRwh3LQWSW1eHnpuv0PW9XHdnlQoQIBj+RHpE8MOEBbht5G65aV7RqUSVXIOhNjFoji6IXMSN0BpIsHdd9UiDoLrGesTw66VFqmmpw07rhpBYu5oLTQ4gQB5FZWofP8USIi5accpEjW3BmoFFpejLoVSAQdAEREyXoCZzUTuL+LnAYQoQ4iMwyE2PDPTt9z9dNx65s+0JTAsFAI60ijY15GymtL2V6yHRG+I7AWeN88hMFAsFpUWeuY0/xHjbkbSDQJZApwVOI9oju62EJBgFNlib2lezjj9w/cNe5MzV4aqfpnwUCRyNEiIPIKTdxzrDATt/zcdWRVyF2QgQDmyMVR7hu5XWtldPfP/g+/5n1H2aHze7jkQkEg581WWt4eOPDrcfv7H+H9+a/R4R7RN8NSjAo2FqwldvW3NZ6/FbyWyyfv5x4r/g+HJXgTEAEpjsAWZbJq6w/bkyIj6uWouq+SVMqEDiK3SW7WwVIC6/seYWaxpo+GpFAcGZQairlxd0v2tjKGspIKU/poxEJBgsms4nX9r5mY6sz17GtYFsfjUhwJiFEiAMoqW3E2UmNs5O60/dddRoam63UNjb38sgEAsfRWZ54k9mERbb0wWgEgjMHi2zptN6O2Wrug9EIBhMW2UJdc52dvd4ivDcEPY8QIQ4gp7wef2PnuyCg1ArxddNRUCm+1IKBy0jfkWgkWw/Oq5OuZnXWah7e8DArM1ZSWl/aR6MTCAYvfgY/lg5ZamPTqXX46f14YvMTvLz7ZVLKxK6I4OTIskxySTIv7HyBp7c+zZGKI3ZzSy2pmRAwoW8GKDijEDEhDiC3woSP6/FFCCgZsgqqGoj1F+kSBQOTJJ8k3pr3Fu8ceIcSUwmXxV/GofJDfJr6KQDfH/2eG4bewO2jbsdJJVI3CgSOQpIkLoy9EHedO5+lfkaYWxgXxl7IA+sfoKyhDIAPUj4QfvyCk5JcmszSlUtbd9E+OfQJ785/l6enPc0HBz7Ay9mL64ZexxCfIX08UsGZgBAhDiC3oh4f1xPXQ/By1VJYJeJCBAMXlaRiTMAYhvsOx2w1s7dkL49tfsymzfKDy7kg5gIRLCsQOBgfvQ+L4xdzbtS5NFubuW7lda0CBBQ//l1Fu4QIEZyQ1Vmrbdz4ZGTeSX6HF896kdmhs1Gr1KK+k6DXEO5YDiC77OQ7IR56LfnCHUswCHBSO2FwMtBkabJ7zypbscrWPhiVQHBmYHAyICHRaLWP0Wqy2n8nBYL2NFqUeRNuDG9N8VzfXA8y6J30QoAIehWxE+IAcipMTI3xOWEbLxct+WInRDCIiPaIxlfvS0l9SavtwfEPsqtoF//d/V/G+o9lesh0woxhre+bLWZ2l+zmx6M/olVrWRi1kOE+w1GrOk/q0BlVDVVsK9rGqsxVRBojmRsxlzjPOId+NoGgryg1lbKlcAurs1Yz1Hso00KmkV2dzc+ZPxPqFkqkeyQFtQXcN/Y+/rrur5iaTYBSJHS03+g+Hr2gL8muzub3nN/ZVbyLaSHTmBI0hQCXAJs2CyIWEOQaREpZCk3WJi6IuYBY91g06t59HKxqrGJH4Q5+zvyZcGM488LniV28MxAhQhxAbkU9fm4nLtjmZdCSViRSmQoGDyFuIbw25zW+OvwVe0v2cnXS1fye8zsrM1cCsCZ7DT9n/Mx/z/ov3npvAHYW7+SmX25q7eOrtK94d/67jPQb2eXr/pjxI89se6b1+NPUT/lgwQfCBUww4DFbzbx/8H3ePfAuoHyHvjr8FTNDZ/Jr1q8AeDt7c1HsRTy04SH+PfPfvL7vdfz0flyReIXw4z+DKasv46/r/sqBsgOAMncWRS3ikUmPoNfo2xpK8J+d/6FZVrJ1/pr1K6/OebXXx7syYyVPbn2y9fiz1M/4YMEHRLpH9vpYBH2HcMc6TWRZprC6Ae8uxIQUiJ0QwSAjziuOB8Y/wPIFy4n2iG4VIC3sK91HRlUGABarhY8OfmTzfrPczKrMVV2+XlFdEa/secXGVtlYyaHyQ6f4CQSC/kN+TT4fpHxgY8utzcVN25bQpKyhDI1KQ3VTNVWNVbw17y2enf4so/1Ho5LET/qZSnpVeqsAaeGH9B/Irs62sa3JXtMqQFr4KOUjmq29V0KgxFTCy3tetrFVNVaJujdnIGIn5DQpqW1Ef4IaIS14GbQUi4KFgkGIJEno1DpkWe70/fYxIp390HW31kFndUlEHIpgMCAjd/o9kjn+d0v48Avg+PfAjvOp03uwxcxxpliPYJWtnd7Hj/cbIhi8iGWT0ySv4viV0tvj5qyhwWylwSwKuwkGJ2HGMGaEzLCxxXrEtm6vq1Vqrky60uZ9CYkFkQu6fA0/gx83DbvJxubq5Cp8iQWDgmDXYC6Nu9TG5qv3tSlUaNQakWUZg8ZAgldCbw9R0E+Jco8i2j3axjYnbA6hxlAb29zwuXY7ZlcnXd2lmJCc6hzeP/A+N666keUHlpNTnXNKY/V38WfZ8GU2NhcnF3EfPwMROyGnSV5l/UkzY4GyWuzlqqWouoFwb5deGJlA0PtMCZpCqFso+0v3E+upCJD2P3hj/cfy6pxX+eTQJ+hUOpYkLmG4z/Au999SL8HX4Ms3h78h2iOai2Ivas3yIhAMZJzUTtw47EZiPWP5Mf1Hwo3hjPUfS15tHqP9RhPpHslQn6EcqTjCO2e/Q4xnTF8PWdBP8DX48sLMF1iRuYIt+VuYGz6X2eGzcXGyfd4Y5juMt+e9zSeHPqG+uZ4lCUsYFzDupP1XN1bz2ObH2Fa4DYCthVtZl7uOf8/8N+46926P97yo8/By9uLrw18T5R7FRbEXEeMh5vOZhhAhp0leRf1J40FaaClYKESIYDCSXZ3NU9uewlPnSYxnDOty1/FF2hckeCW0BqY7a5yZGjyVKUFTAEVUdBcvZy/Oiz6Pc6POFT7wgkGHv4s/k4MmszpzNTsKd/DtkW/Ra/QM8R7C/Mj5jA8YL+a9oFMiPSK5feTt3Dri1uPOESeVE2MDxjLGfwzQ9XtwRlVGqwBpYVvhNjKrMhnhN6LbY/XUe7IoehELoxaK+XwGI/7PnybZ5Sa8XbomQjwNyk6IQDCYqWisYHvhdopMRcdtI8ky3ZcftogfLkG/wOp4F1sZmZ3FO8mtzQWUOg47inZQZ64T8/5MpotzrStzRJKkbi0CHbftad7IxXw+s+kX//clSYqXJGlPu1e1JEn39PW4ukJORdfcsQA8DE6iarpg0BJmDGNu+FwbW6JXIlHuUW2GJhMc/hU+vgw+uxoy1kGzKLAmGIDk7YLv7oTl58G+L8BU7rCug1yCWDp0qY3Nx9lH1MM5UzGVQ/KXylz77nbI3dHrQwg3hjMhcIKNbXzAeCKMEb0+FsHgoV+4Y8mynAqMBJAkSQ3kAd/05Zi6Sn5FPT5DA07eEKVqekGVqJouGJy4OLnwl7F/YXzAeH7L+Y3xAeOZEzan1RULgKyN8NElbcepP8LSFRA+ufcHLBCcKkUHYPm50FSnHGdtgAX/ggk3O6R7tUrNFfFXEGGMYEXGCpK8k5gfMZ9Qt9CTnywYfBz4Bn76s/LvrA2w/yu4YTUEDO21Ibjr3Hl00qP8nvM7G/I2MDV4KjNDZp5SPIhA0EK/ECEdmA0clWU5q68HcjJkWSa/qh7fLu6EeLk4kSoKFgoGMUGuQVyecDmXJ1xu/6bVAls6FMWSZUj+SogQwcAif0+bAGlh/f/BkAvB1c8hl/A2eLMoehGLohc5pD/BAKW2GNY9Z2sz10P+7l4VIQChbqFcnXQ1Vydd3avXFQxe+oU7VgcuBz7paJQkaZkkSTskSdpRUlLSB8Oyp7q+GQlw0XVNy3m6aIU71iCjP87L/khdQxXm5iZQa0HthDlyOs3hk0FSgdqpr4c3KBFzswdRdVIXSqVR5rO57R4vy7JNet32nMg+mOsliHnZTSSVMrc60jIHzQ3KYk4vcry5257G5kZMZlMvjEYwkOlXOyGSJGmB84AHO74ny/IbwBsAY8eO7Rd36JwKE35G5y639zJoKapu7MERCXqb/jgv+xPZ5Wn8XrCJnzNXEeQSxKUz7kIecQFvZf+MVlJzzcjnGOM3BlFuzfGIudmDBI4EZw9oqFSOdUY49wVY/ZjiqjXqGtLCx/JVxo/sKd7DgsgFzIuYR5BrEJlVmfyQ/gPrc9czPWQ6i6IXEW4MJ682j18yf2FlxkpG+Y3i4riLifWM7bvP2EOIedlNXHxg1kPw7a1tNmd38EuEjS/C/q8hbCKMvhb8k3p0KJlVmfyY/iPrctcxLWQai6IWEeEeYdOmqbmJLYVb+OzQZ1Q1VXFBzAVMDZ5KgEvX3NYFZxb9SoQAC4BdsiwfP61OPyK3oh7fLqbnBWUnpKyuEatVRqU63dxAAkH/xmqx8G3GCt7c/zYA+0v3sz5vPU9OeZJtxbsA2FC0nXfmvc3Js9QLBP0IvwRY+iMc+A4qMmD01fD5NdBQBUBe9HRu+f19SupLAThYfpC0ijT+PObP3L/ufg6WHwQgpTyFzfmb+c+s//Cfnf9hZebK1vZrstewfMFyglyD+uYzCvoPCefCEi8lON0zDIZeorj/7f9Keb9gDxz8Hm74BTx6Jm6osqGSB9c/yP6y/YAydzfmbeTVOa/i6ezZ2m5n8U7uWntXa0X0vSV7eXjCw5276ArOePqbO9YSOnHF6q/kVpjw6mI8CICTWoVBq6GsTmQDEgx+MisP80nqZza2+uZ6ik3FNrafM1b25rAEAscQMAxm/w0ueRvqK1sFCMBRV49WAdLCj+k/klmd2SpAWthXuo/DFYdbBUgLhaZC0ivTe2z4ggGEsxHi58Mlb8HsvytpcVsESAs1+VByqMeGkFmd2SpAWjhQdoDMqkwb246iHa0CpIVPUz+lpE643gns6TciRJIkAzAX+Lqvx9JVcspN+Lh0XYQA+LiKDFmCAU5zo31QbjtkWaauqQ6VpEartt8p1Kq1TAuexqSgSWhUGvRO+p4crUDQ8zh7QsJCMHgB0EnECGpJjVrq7B0lG1Zn7zlrnKkz19FsbXbkaAUDlcZaJaW5pDl+XFIPoe7sep3YtSotKknFuIBxzAiZgUFjQKfSoVZ3fr7gzKbfiBBZlk2yLHvLslx18tb9g+xyE75u3RMhngYRnC4YoFgtSordz66Cd86G3R9Ane1qb1ZVFi/tfokrf76SX3J+4/qh19u8PzNkJlq1lorGCurN9dwz+h4WRC7ozU8hEDiW3B2w4y2oyISRV8HIK4gpzyfWPdqm2TVDriHKPYoZITNs7FODplJiKuGy+Mts7LeOuJW9JXu5asVVPLzhYQ6UHujpTyLor9QWw473lPvu59eCqRSm3WfbJmAY+Cb22BAijBHMCpllY5sZMtOuTsjEgIncN1YZW7GpmGuGXMNtI2/Dy9mrx8YmGLj0t5iQAUVuRT1zk7oXbOXlIqqmCwYo+XuUYlktq7Lf3QEL/w3jbgCgprGGJzY/wbaibQC8tOclbhtxG89MfZr1eRsIcQsmyj2a+9ff39rlnpI9vDXvrd7+JAKBY2ipF2KubzueeCv+MfN4wWsZG4u2k1KWwtSQqYzxH4O7szsPT3iYWaGz2JS/iTBjGFWNVTy44UGuTryap6c+zdaCrUwKmsSu4l18dsyd8UjlEdbnruejhR8R6R7Zhx9Y0Cfs+xx+eVj5d9F+OLoalv4EvnFwZA0EjoKY2WDsueDvZmszCd4JRHtGk1mVSYR7BE4qJ/tdOgme2/EcVtkKKLEjj09+vMfGJRjYOFSESJIUB9wHhLfvW5blsxx5nf6ALMvkVdZ3eyfEXe9EfqUQIYIBSO62NgHSwsYXIekCcPEmpyanVYC08MreV3hr3ls8M/0Zmq3N3PLrLXbd/pzxs10lXoFgQFB0sE2AtLBzOUy6g3D3EMK97LNbBboGEu8Zz/KDy1mft576ZuX8D1I+4L2z3+MfU/9BdnU2D2942Oa8GnMNRyqOCBFyplFbBJv+a2uzNEFxCoy5FoZe3CvDyKrO4tW9r6LX6AlwCWBj/kbqm+uZFDgJL33bLsf2ou2tAqSF5QeWMzd8Lm5at14Zq2Dg4OidkC+A14A3ActJ2g5oqurNSo0Qbff8HL1dteRVipgQQf/AKlupaazBoDXgpDpJvQ5NJ+mota6tfshqlRoJiQhjBIneiWRUZZBSnoKzxpnqqhy0OiNGrdGuC6PWSE1jDQ2WBnwNvo74WAKBY2mqA6sVnDs8RLn4wJCLIHNdm2uik17x2TdVgEHJGtRsaabOXIebzg2VpEKtUpNRldHaTYQxgiTvJDx1nhTWFqI+Fk/V3Gwr+p1ETZ0zD0kDTgZ7u0an1Aepr1Tuw5oTzA1zAzQ3gN6j1WQym5BlGRetS5eGoTl2nw92DSbOMw6NpOFw5WE0atvHSGe1MxpJw8SgiRg0BrYUbMHVyRW1pKauqQ5JkjC0+zzVTdXo1Dp06u4t6AoGB44WIc2yLL968mYDn5zyevyNzkhS91Lterno2JlV0UOjEgi6TmZVJl+kfcHanLWM8RvDNUnXEOcVd/wTwiaA3hPq283fWQ+B3h2AcGM4T039J5vyN7O7ZDfxnvHcPPxmdudv4eH0HwgzBHB54lWszVnbmj0lyhjFSL+R3LbmNqqaqrgo5iJmh88m1K1n0kwKBN3C3KgIjD/+BU01MPkuiFug1GnI2azsBFblwPDLwVQGqSvg/Ffg5/sUt5kRV5CaMJflaZ+zu2Q3c8LmcEncJYQbwzk/+ny+P/o9Nw+/mfy6fCLdI/k49WM25m8kwTOBf079Jw9teKh1pyTcLZw4zxN8PwWDExdvmPUwfH1jm83gDb7xsOZxOPAtBI+BKXdB4Ajbc2UZcrYqFdcrMmDMddQPuZCt1Ud4Y98bNDY3ct2w65geMr3TBaL2RBgjeHLKk2zI28C+kn0M9RnKtUOutYsJmRA4gXvH3svKzJXk1+azOH4xEwIm8EfOH7yV/BZatZabR9xMrEcsq7NX80XaF4S4hrBs+DJG+Y3q9jOVYGDjEBEiSVLLXtwPkiTdBnwDtFblk2W53BHX6U/kVHQ/KB2UmBARmC7oa2oaa3h88+PsKNoBQG5NLlsLtvL+Oe8T6BLY+Ul+SYof8tG1iotA7DwIaavw0dRQyWeHPmVP6b7WPg+UHWB22GyyqrPIqs4ip66IV896iR0le9CqtAzxHsLta29v3b5/fufzWGUr1w+7vtMhCAS9St4O+OiStuNvb4WL3gSfOHj/fLCYFfvm/8GUe+DKL+HDi6GxGoD85hpu+eNPlB5L1/vegfdIq0jj+RnPc9fouzgn8hxe2/saLloXiuqK2Fq4FVC+O7uKd/F/M/6PnzN+ZqjPUKYGTRU1Q85Umhtg7hOKC5beUwlC/+1pOLxKeb8iA9J/g5t+A8/wtvOK9sP75ykZDQF++Rv7fEK5c/MjrU0eXP8gz894nnkR8044hCZLE8sPLOdw5WEAcmtzOVx5mKnBU23a1Zpr+df2fyGj1KFMT07HR+/DK3teobpJ+V48t/055oTP4Z397wCKq9f2wu18vPBj4r3iT/nPJBh4OCo71k5gB3AtSkzIpmO2FvugI7vchE83aoS04O2ipaimEVkWhWIFfUdObU6rAGmh0FRol/PdDv8hMPlOmPckRE5XXE9a+qxMbxUgrX3WFdr4AWfWZFJalc2do+7k5hE3s7d0r53/8BdpX1BQW3BqH0wgcCSHf7G3bXkVCva2CZAWdi1XHvaOCRCADBf3VgHSwqb8TeTW5uJn8MPD2YPdJbsZ6j20VYC0UN5QTrGpmN3Fuwl1DSXcPRzBGUhNkbLj8evfIXMD7PlYER0tAqQFUxmUpNraig60CRAA72h+zd9gd4mPUj7C3HE+dyCrOqtVgLRwtPIoWdVZNrbthdtbBUgLnx36jElBk1qPZ4bO5NNDn9q0abI2kVrRYfyCQY9DdkJkWY4EkCTJWZZlm2V+SZI6cSQf+GSV1eF3Cjshzk5qdBoV5XVNeJ+CiBEIHIGTygmVpLITAJ3V9Tgp5nporMVJrUVCsvsBUnVY69C182t30dj7I7tqXYV/sKB/4OyhxELFzgMnZzj8q7IS7dTJz5qzu12dBl0n63xqSd0af9X6PcSKRqWxyzSkkTTk1eYdt0aDYBBTXwmSBGon0BmVuiARU6G+XHGzUjvZC2GN7sTHTSbcnVztLuXp7HlSN6jj/TZ0tLt20r+b1g2T2dR6XN9cj6vWFVOzyaaduO+feTi6TsimLtoGPFllp+aOBeDjqqNAuGQJ+pAwtzCuSrzKxjY1aCrRHWobnJS8XfDFUnh9GmFFh1kSfb7N25ODJtusngUZ/En0aPNrH+k3Eg+dh805Nwy9wSbbikDQZ8TMU/zxy48q9UDGXq/EhdSVgluHdKhzHgOPCMVV5hhRhSlM8Btj0+yapGsIcwsD2r6Hv+f8zoUxF9q0G+o9lLrmOpK8kkQsyJlEfTXs/QzengNvzYWMdXDO/ylZCDM3QF0JeMco87A9YZPAr0OdkMCR4B7WdlxTwFnBM9Br2naw1ZKaq5Oubg08Px4RxggWRS2ysZ0bdS6RRttsbeMCxtnEl0hIXDf0OrYXbm+1rctdxx0j77A5L8g1iCSvpBOOQTD4kBzhFiRJUgAQDHwIXAG0SGoj8JosywmnfZF2jB07Vt6xo2+9vKY+u5Z75sQR7NH9as/P/5LKTdOjOHtIz+X0FjiMLkfJ9Yd52R3KG8rZXbyb5JJkYj1jGe03mkDX48SDdEbZEXjzLGg4Vl906MWURs1gr7OO5Mo04owRDNMHkyuZ2VG8mwC9L+P8RhMRONqmmz3Fe9heuJ2qxirGBYxjbMBYXJy6lrHlDKZb0ZsDbW72GzLWwXLbBy9mPQxbX4dx1yuuLlYLxJ2txEc56aE8QynqWXYUwiZS4BfPzrL9HKk8wgjfEYz0HYmn3rO1u5bvYZmpDK1aS2pFKqFuoYS5hVHWUMYY/zGEuIX08gc/LQbtPbNXSPlBKQjbgkeYkvhg3b/abCo13LBaic3L2aoEqYdPUdp2pPSwIl6q85SdlOBxpNRms61wG42WRiYETmCo99Au7ba1uAemlKWQ6JXIKL9R+Ln42bVLq0hje8F2qpuqGR84nqFeQ0mtTGVrwVacVE5MCJxAuDGcvSV72VG0gwBDAOMCxhHhHnEKf7AuIyLe+yGOEiHXAkuBsdjGgNQA78my/PVpX6QdfX3jarZYSfz7St6+dhxO6u5vJr23MYNJ0d4snSLyvQ8AxA/q8Ti0Aj5d0nY8469KFiG1FnwTFJFiNsHV30L0rON2IzglhAjpDX75G2x6ydYWMBzcgyH1Z9C6gFcMXPUVuIr00scQ98zT4cNL4Mivbcdjb4CU79pSQLdw7n9g7HW9OrQBjhAh/RBHxYQsB5ZLknSxLMtfOaLP/kxBVQMeeu0pCRBQMmTlilohgoFKQ5WSutSp4y6gBJKK2mn3UhA+Ae/iVLx+vr/THPfl9eWoVCo7VyyBoF/h0omw0HtCw7Hg86Y6kK32vvfHMJlN1Jnr0Gv0mMwmPJ09bWp9NFmaqGyoxKgz4tyuDk+ztZmKhgpcnFxsaioIzgDcOuxGN1YrsUkdRYjOVYkJqStT6td0sd5HC5UNlVhl6wldX5uamyioK8BN54aX8/Hb1ZnrMJlNeDl7ifglQbdwdJ2QcEmS/tzBVgXslGV5j4Ov1WdklZkIcD/1eHtvVx1HimsdOCKBoBdoblLSQK5+HEylcPbTEDpJqZcAkP4Hu5f9wgepn7Bt6yMkeSVx47KVjPdsS7lY2VjJr5m/8mbym6hVau4YeQczQmbgqrUPZhQI+pyYObD+39BQqRyrNJC4CH7+q3IsSUqtHGf7Ggv7Svbxxt43mBI8hTXZazhUcYhZobO4buh1RLlHcaTiCG8mv8nG/I2M8RvDrSNvJcErgezqbD44+AErM1cS5xnHnaPuZKTfyF77yII+Zsy1kPy5kpYXlJTo5/wffNlu18MYrOzA/XQvHPoBAkbC7L8p9UJOgsls4o/cP/jf7v/RZG3ixqE3Mi9iHp7OnjbtUspS+Cz1M9ZmryXMLYxbRt5il44XYFfRLl7c9SIZVRksjFrIFQlXEGoUdZ4EXcMh7litnUnSxyguWT8cMy0EtgMJwBeyLP/reOd2h77ewv1wSxa/pxZzw9SoUzo/raiGL3bk8ONd0xw8MkEPIFwLWsjeAu/OVzKztHDpe0ol6YoMshIW8OctfyetIq31bW9nb16Z8wpJ3krA4Yr0Fdy//n6bbl+Z/QrTQsR3oZsId6zeouggZG9WssD5D4HCZEWUNNUpwek6I4y7weaUzKpMLv/pci6Lv4yvDn9FVWNV63sjfEfw3LTnuGXNLaRXpbfa/Q3+LJ+/nKe3Pc0fuX+02vUaPZ8t/IxIjwHjvivumaeDLEPhXsjaApIKwiaCTzzk74ScbUqhwuAxsOohZVGoBWd3pU6I94mTi2zI28Ctq2+1sT019SkWRbfFPtU21vK3TX9jTfaaVptOrePNeW8yym9Uq+1I5REu//FyGi1taYAXRCzgH1P+ge44u4N9iHDH6oc4eifEGxgty3ItgCRJjwJfAtNRaoY4RIT0NRmldadUI6QFH1cded1xx6otVnyTiw5A1CyYeT/o3E5+nkDgSHK32woQgFUPw83rwOVisnPX2wgQgLKGMjKrMknyTqLZ2sznaZ/bdbsqc5UQIYL+i3+S8gLY/Ar8+ojifqXWKa4yboGQeJ5NTEhmdSZ15jq0Kq2NAAHYW7KXrJosGwECUGQq4kjlERsBAko60/Tq9IEkQgSngyQpWa0CR9rawycrL1CeBdoLEFDcZEsPn1SErMlaY2f77NBnnB1xdmu63ayaLNZmr7Vp02hpJL0y3UaEpFem2wgQgJWZK7l91O2EG0VdG8HJcbQICQOa2h2bgXBZluslSWo8zjkDjvSSWkaEepzy+R4GJ+oaLdQ3WdBrT+I/2VAF78yHoFEwZimkrYS35sDSFeDifcpjEAi6Skl9CSpUeLsGgKs/BTPvo8HZnfAdy1GZGxWf+Ko8nDXOqCU1Ftlic76b1o2iuiKc1c6EuoWSXZ3NrLBZWKwW1mSvIcBFZIkT9FNqixXh7eavHLcs/jQ3thWBc/FTaom0oyUFamf+8RqVBp1ah4TE2ICxJHgl4K/3x0vvhZ/BDzetGzVNNTbndFZPRzDIqS0GGXCzzz6FRqe8mjs8VulO7tbqZ/DDXefO7LDZOKmc+C3nNwJdA1GhothUjJPKCZ1ah5vWrbXCeQt6jZ765nqqGqtw17lj0BjQqDTMDJlJgEsAO4t2kluTi06lo6KhArPVjK/e96Q1SARnLo6uE/IxsEWSpEeP7YJsBD6RJMkFOOjga/UZmWUmAoynHhOikiR83XTkVZpO3vjXR8EnVhEgvgkw+W7wHwqfXG5fqEggcCAVDRV8lPIRl35/KYt/XMwfRi9+OP9f3JD9DVclv8jzSTM4eu4z8OkV8PI4EoqOsiR+iU0fc8LmkFOdwwXfXcDSVUuZGTKTKxKuYE3WGjbkbWBJwhJmh87smw8oEByPhmrY/RG8MQNemwybX4bDq5UaDcbgtnaSCuY8qgQGtyPGI4bJQZNJLU9lUuAkm/cuib2EHUU7eG76c2gkDV+mfcnvub9T01TD8zue57npz+Grb9tVGec/jljP2B79uIJ+hKkctr0Jr02FN6bBjveUwoXt8YyE6X+1tUXPBt8OdUI64ayws7gq8So25m3k16xfWRCxgCsSruDt/W9z0fcXseSnJeTW5nLbyNtszkv0SiTMLYx7f7+X8749j3t/vxdPZ08emfAIOTU5fH34a8Lcwnh+5vPsK93HFT9dwUXfX8Tr+16n2FR8en8TwaDFoTshsiz/Q5Kkn4EpKP53t8iy3OLweaUjr9VXWKwyeZX1pxWYDuDnpiOnop4YvxO4VVVkwoFv4IJX22ySBKOvgbVPwm9PKT+AAkEPsCl/E89se6b12GRt4qFNj7Qev5/yAU4qDfdYrdBUh9s3N3P5kg8ZNu1ZMqszCXULpc5cxz+3/hNQ/If//MefuWPkHZQ1lAHw6t5XGeIWTqLP0N79cALBicjaDN+1ewhb9ZCSgnrrm0p9EJVa2f2ImKbsUnfAW+/NE5OfILk0GYvVwvkx55NSloJRZ2RX0S7MVjPfHPmGnJocAHYU7SCzOpMFkQu4f/39vDTrJfaX7SfAJYBhPsPw1otd7zOG9N9hxV/ajn+8W4kDSWpXr6apDmqKYfbfwVSmxIPUFkN9xUk9JIpNxby85+XW4+UHlxPgEsA7+9/B1GyiqrGKO9feyXtnv8d/Z/2XtIo0fPW+JHoncs9v95Bflw/A+rz1jAsY1xrgDrAqaxVN1iZqmmrIrc0F4OU9L6PX6Ll2yLWO+fsIBhWOdscC2A3kt/QtSVKYLMvZPXCdPiG/sh53vRM6zemlofNx05JTfpKdkC2vQuxc+/gPSQWT74Qf7oak8zr9ERQITgeL1cKXaV+2Hvs4+3C06qhdux8zVnDJ2KsJ+X4nAOGfXEX4bZsh6hwKagtY9K1toTerbKXJ0mRjW5WzlhnRC3vgUwgEp0jK9/a2o79B0EhY/7wiQrxjYcz10C7lbnv8Xfzxd1HcuH7J/IXPUj+jwaJkPLpl+C2tAqSF0vpSXDQuVDVWUWgq5Oqkqx36kQQDhN0f2Nv2fWorQiqzYfvryr+d9EomLVmGmLngE3PC7tsHm7ewImMFI/1Gsil/U6ttS8EWbh91O7PClBpPO4t2tgqQFkxmU6sAaeH3nN+5afhN7ChqSzjweernXBBzAe469xOOTXDm4VARIknSncCjQBFgQdkNkYHhjrxOX3K0pJag09wFAfBx0ZFVdgIR0twI+z6DBc91/r7eE0ZfC9/fBcv+AJWjPesEg4LaYiW1rjFQeXDqQH19BRX1JbhpPXBzbfM9VqvUhBvDyavNY3bYbFSSCqPWiFFrZF74PFy1rvyR+wcuGhc0WlfyZ/wFr8zNOBfsgWP+8Dq1Dh+9D3m1eTbX7OgnH+ISSHlVLk2WenyN4ag1SjBvnbkOb2fv/phlRTDYaV952uANQy4Ev0RI+0WxWS3gGQHmBqjMVbJkqTVUVudhMptwdvagQTajV+upt9Tjo/dpFSAASKCSVFhlq81l/Qx+aCQNrk62vv1mi5mS+hL0Gr1dKlXBIMMzCoypSipoZDj4PXh1yMTppAeNMw1jr6M8YjKu5ZkYf3taWbCsr1ISJhi8Oq0dEuQaZGfzM/hhtVq5dsi1mMwmfsn6BR+Dj00bg8aAhIRMW3ISlWT/3OGmdcNktn22CXQJRKfSUVRXhCRJ+BmU3xqz1UyJqQRntfMJ65UIBi+OfnK9G4iXZXmILMvDZVkeJsvyoBEgAOkldQQ6QIT4GZ3JLKs7foOja8E9VPlxOx7RZylBwZ2tnAjObMz1iivfGzPhf2Pg179Dpe3Ka1rhbu5ddx/n/LiYZWvvYG/uJpv3L4m9hDnhc/juyHd8d/Q7Er0TuWHYDazPW88nhz5hhO8I7h59F39K/4Jzcr7iwaBQ0pd8qDycAV56L/467q9I7TIjxnnE2QTdGrVGhvuP5dJfrmXRiit4c/fLbMrdwPUrr+ecr8/hwQ0Pkl5pm0VIIOhxEhYqCz0RU5X0uwe/U+LzPEJhxBIlLm/YpfDuPPjfaCyb/8fGjFXcvf5B1hZt5bpfb2Dh1wv5+6a/82P6j7x/8H2emvJU60Pbutx1XB5/uc0lz444m/2l+3l88uMkeCW02rOrs/nHln+w8JuFXLXiKtbnrqfZ2tyrfw5BLzL6Khh6Eez9FPZ9DsMvg6GX2LbxjOTo0m+5X13JOdv+zo0lf7Dryg8VcfLhRfDfEfDFUiWLVgcmBU6yKRLrrHbmqsSr8NZ783nq5/yW8xvXJl3LOL9xNudFukdydaLt7pyfwY+x/mNtbH8e82d2FLbtgmhUGm4feTsfHvqQC767gIu/v5jPUz8nozKDp7c+zbnfnMuVK67k95zfMVtFnOuZhqPrhPwGzJVluUfvkH2ZW/zBr/ehVauZP/T0Mvqkl9Ty3qZMfv3zjM4bfHWT8iOYuKjz91soTYPfn4G7dncpM4ag2wzMnPdZm+DdBba26X9VCqtJEhXVuVy35jaOVme0vm3UGvl0zpuE+irpSL8/+j0Pb3i49f0/jf4TL+x6wabLKxOu5Lec31q36cf5j+W/Z73UWnzQbDFzsOwghysP465zJ8k7idqaAg6Vp6KWVPi7h3PH73/C1KysnN024jbe3v+2TdrHCQETePGsF3FxEhmC2iHqhPQ0JalKTZCvbGuAMOdxCB4N75/XmrL60FWfsGTTw9wy4hZe3/e6zcPU+IDxaFQaGpobuHn4zaRVpBHsFky8ZzwZVRkklyajVWtJKUthdfZqjFojb897mwTvBJosTTy26TF+SP+htT+1pObjcz4mySepV/4Mp8DAvGf2F5K/tJ9zly6HIRe0HlbXFnHrb3exr7wt349eo+ezcY8S+fEVbef5JsHSH23iRFZmrORo5VEkSUKWZYw6I7VNtbyy9xWbS745700mBk60sVU2VHKg7AD5tfkEuQaR5J1Eo6WRg2UHKasvI9ojmiTvJIpMRRwsO0hDcwOJXomklKfw901/t+nrkYmP8M+t/2zdDZSQ+OicjxjmO+xU/mpdQaTo6oc4OiYkHfhdkqSfgNanCFmW/+3g6/QZR4prmZPof9r9+Budya2oR5Zl+/R1Vgsc+RXOef7kHfnEKQW0Nv0PZj1w2uMSDBLydtvbdi2HcTeBmx95VZk2AgSguqma7KoMQn2TsFgtfJ32det7Lk4ulNSX2HW5Ons1k4Im8e2RbwHYXrSDgroCYrVKNh8ntRMj/EYwwm9E20muwcQHKqtnb+34T6sAAbDIFru881sLt1JQV0CMx4l9nQUCh+IbDzvfs7cnf67cd9st4KU3lNIsN2O2mu1Wc7cVbuPm4Tfz+r7X8TH4MDl4cut7uTW5vJn8po1bVnVTNRnVGSR4J1BsKmZFxgqb/iyyhfTq9P4sQgSnw+4P7W3JX9iIkILqLBsBAko9mSxzFTbVZEoOQmWmjQj5Lee31jklITE/cj4HSu13THYU7rATIR7OHkwJnmLXtmOa9XBjeGudELPFzD+2/MPunM35m4l0j+RopRJrKCNztOpoT4oQQT/E0e5Y2cCvgBZwa/caNKSX1BHsoT/tflx0GpzUEiW1nZRPyd8Nzp7g2kl+8M4YcQVsfVVJ7Sc4c5FlxeWqKsemcForHuGgVeauQeuKk8o+oNb1WBIEtUpNlHubH3KjpbHTnQg/gx9l9WWtxy5OLq01ErqCr7NtJheNSoNeo+f86PNZNnwZEwMn4ubkhl59+t85gaDbREyDKXfbFoDzigZnj7ZjZ3f8jeHcNOymTgNvjVojpmYTBo2h9btR3VhNTk0OHjoPdCr7mCej1ggoq9s+eh+7992cBtXPqqA9vvFKCt7JdykJaDzClTT97dAf5z7r2qFeDWotaG09JIJdg/E3+HNN0jUsHbIUtaQm0CXQri9/w+ktthbVFZFXo8QDtv8tad9/ZUOlja1l3gvOHBwqQmRZflyW5ceB/2v597HjQUGVyYypyYKXi9Yh/QV56Mks7SQ4/ehaJQtLVzEGKpVUN/znpE2PVBzh7xv/zq2/3sqHBz8UPpiDhdpiWPccvDweXp6opA/1iWt7X6WB2Y+0ZloL80rkziHX23Rxcfh8otv5ol8cf3Gr8Gi2NuOp8yTMrS1gV6PSsHTIUpuMKveNupsQt5AuD3uU/2jCXNral5pKeWDc/ewq3sUb+97AIlv414x/EewWfIJeBAIHY6pQqqN/swy2vg6RM2DE5YrPffhkOPgNzHyQJt941sx7mL9ufYK3979NQ3MDEwNsV4+vSryKFekr+MvYvxDiGkJySTLLfl3GOV+fw5Nbn+SpaU/ZPFCeE3kO8Z7xgJLq96EJD9nEVY32G20TMyIYZIy4HOLmwfa3YMc7kHAuJF1o0yTUO5F7h91sY1sQPJMYa4eFpbMeUURzO2aGzmRh1EK+Pvw1Hx/6GL1Gz9IhS9Gq2p5rgl2DGRdgGxPSVerMdXyV9hUX/3Ax5357Ls/veJ5L4y/FoDG0tvFy9mJG6AwqGitabUO9h5LodfI6J4LBhaNjQiYBbwOusiyHSZI0ArhZluXbTnJqt+grP9KdWeU8+HUyj5/nmJoGr/1xlIXDAlk8LtT2jXcWKKl5Q7pxE6grUVL23rUbXOxXzgDWZq/lkY2PMDd8Lv4Gf9bnrUeSJF6f83qrD7/AjoHh37znE/j2lrZjlRqu+BKaapWc8v5J4D/MJotaramElOJ95Nbm4af3JclnCJ7uYTbdHq08Smp5KpIk4erkypaCLbg6uWKVrTipndCYGxmidiG/qYpwNCQVHMJ53lOg73oqxrzSQxwsO0C9pZEQzxhuXH2LjTge7Teal2e/LOaoLSImpCdJ+QE+u8rWNufYetrml6CuFGY9zL6I8Vz1+102GYPuG3sf/npfapvr8Nb70NTchI/Bh0TvRKoaqrj8p8tb6+QA+Op9eWbaM6RVpOGj92GY9zCC2xVENFvMpJSnkFGVgVFrJNE70c79pZ8xMO6Z/ZW9n8I3tgKDS96BoRe3HZsqMG19lUPBQ8lqKMVH60ZSVSneYVOUZ4HqfCVBSNBIuxT/a7PXcvdvd9vYnpz8JPFe8RyuPIxOrSPRO5FQtw7PJV1kS/4Wbvr1JhvbnaPuZG7YXA6WH0QtqUnwSiDYLZhDZYdIr0rHTetGolciga72OzIORMSE9EMcHRPyH+Bs4HsAWZb3SpI03cHX6DPSimoJcoArVgt+Rh3ppbW2xuZGKNgNU+7pXmcuvhA5DTa9BHPtN59Sy1N5ZOMj3D36biLdFa/R0f6j+TjlY+75/R5en/O6XepUwQDBarX3I7ZaYOe7cNnxM6e5GnwZFzGbE0ndaI9ooj2UlbR3kt/h/YPv27zvZ/Djc/0QJuxY3maceFu3REiwTwLBPsrK7uqs1Xa7c7uKd1FYV0iMVsSECHqJQz/Z21K+V4rC1ZUqx3s+JiMo1kaAALyw8wV+uuinTlOh7q/ZbyNAAErqS1CpVFyVdJVde1Diqob7Dme476BKNCk4Hns+trft+9JWhFTlYvjjWUYDo9u3W/IJxJ9zwu5/y/7NzvZJ6ie8v+B9ErxPf4dtZ9FOO9s3R75hcdxiFkbZ1oMa5jtMxICc4Ti8uIQsyzkdTBZHX6OvSC2sIcjdcSIk0OjM0ZIOIiR/N7iHgdbQ+UknYshFyoNnfaWN2Ww1c/+6+7k07tJWAQJKju8lCUuoaqzigxSR5nfAolIpKUM74tf9wNWG5gayqrMoqiuy787FPkYpzBCIvqpdASuDN9UaHZnF+6iozu329d209r7uRq0Rg9MpfB8Egq5gaYbyDKjIbgs294m3b+cRBjWFStr0ibfCtHtxb+diYtQaWRy/mDtG3dFpvBWAm87NxrUKlPuwXq0nsyqT8noR13dGUpkDZUeVRciATu7lAUNoNFWQVbibwpKDSubMTmqA0IUaMpEekYS4hbB0yFJuGHoDsR6xxHnGoVE5Zk26s92MSGMkzh3jVQQCHC9CciRJmgzIkiRpJUn6C5Di4Gv0GYcKqwnxdKAI8dCTXtKhVkjWZqUo1qng6q+4cG17w8b8ReoX6J30TA6abHeKWqVm6ZClvLnvTQrrCk/tuoK+Z9SVyg9TCy4+kHR+t7rIqs7iofUPseibRVz6w6WsSF9BQ3NbgbWRHnHEGNsCDLUqLXdEX4Th6FrFoHHm4OK3uGnjAyz6+Uqu+fVmdmT/0a0xxHnGMT9ivo3t/vH3d7qqLBCcNtX5Sg2dl8fBKxNg44tKgo/4+eDW7mHK2R3CpyquLaOuVtwff7iLxOIMxviMIMIYwQ1Db2BN1hr+s+s/PLrp0U7r20QYI1g2fJmN7cZhN/LBwQ9Y9O0irll5DdsLt/f0pxb0FxprYef78NpU+N9YxaU6YZHdvTwnYT6PbH6URauu5ZI1y/g+73caLn3Ptq8RS7r07DA1aCqzQmbxWepnLD+4nCTvJC6Nu7TTwoOnwhj/MUQYI1qPndXO3DT8JiFCBJ3i6JgQH+BFYA6K/90vwN2yLJed8MRu0ld+pGP+8SuPnzcEb1fHVHBuMFu4+cOdpDwxH7Xq2OrYR5dC0CglK8upUJEFqx+FP+0HJz31zfWc/eXZ3D36bsKMYcc97Zsj32C1Wnlm+jOndt3By8Dxby5JU4pTSZKymubddfcls8XME1ueaE2128L7C95nlN8o5SDlRwpyNnLII4B6rERbIM7JG6m5DkyllIRP5qrd/2qtGQJKtqzP5rxFuF/X46jK6stILU+lrKGMMLcwErwSRNV0e0RMiCPY+gb8fJ+t7bKPIPFcKEuHomTFtdF/CGgMULALPr/GpnnxohdI8wzitvV/tXHNmhEyg+dmPGeXxai6qZpDZYcoNBXiq/fl2yPf2qThNWgMfH7u54S7hzv+8/YOA+ee2dekr4P3O9QCm3SnsojUXA9AszGEf5lS+eTodzbN3p3+b8ZqjMounosfBA4/bjxoe1ZnreZPv//JxvbwhIe5POHy45zRffJq80gtT6WhuYEYzxjiPONOflLPI2JC+iEOjQmRZbkUuNKRffYXymobaTA7LjMWgLOTGg+9E7kVJsK9XRRXgLydyorGqeIZrjx87vsMxizl67SvifaIPqEAAZgfMZ+H1j9EemU6UR726fQEAwDfOOV1CpQ2lPJzxs929syqzDYRkr+HwE2vYLPZ7hYA0++Ddf9H4WXv2AgQUDKl5NZkdUuEeOu9bWopCAQ9grkB9nxkb09bpYgQ7yjl1Z6D39g19/vtabbPfcAuNuSP3D8oMZXY3XuNWiPjA8cDsL90v10dEFOziZyanIEsQgRdpWCPvS35c4ibr9R1Asoveo2fcuzjOA5XZTB25DIIndCtS/6RY787/e2Rb7ko9iK0asc83wS7BhPsKjIaCk6OQ0SIJEkvAcfdUpFl+S5HXKcvSS2sIcLHxb6w4GkS4qnnSHGtIkIqswAJDCdfzTghiefBxv9iGXkl7x98n6VDl570FL1Gz+yw2byx7w2xGzJAMZvrya84ApJEsEcsGqeu7x4YNAbC3cJJq0yzsXvo3KHsCKAC306CFv2Hg9YNpv8FV507rhpXZobNJMg1iPL6clZkrMBdd3I/ZTuq86GhWnGJ6UaQu0DQZdRaCBhu/yDod5zgXKsVDN729qDRBLiHc/PwmzlYdpANeRuQkfE3+KOxmKH4kCLW9R52p7o6uaJT6+wKdLo7izk/KKgrU7JVGbw6r/vl3smDunc0VOe1Hhoqcwl3DSG5Q3FCH2cvqmsLKaktwM3ZAz+PY/GeZUfBVAbGIHC3T5ce4xlDpHskZ4WehVqlZmPeRhK9Eh0WEyIQdAdHxYTsAHae4HVCJEnykCTpS0mSDkmSlHIs1W+/4lBhDSEOzIzVQoC7M0eKjwWn5+1UChWdrtAJGAaSxMFt/0Ov0RPtHn3yc4Czws5iXe46ERsyACkuP8q/tz3DBSuv4cKV1/C/nc9TVpnZ5fPdde78dfxfbX6IxvmPJakiH16eoPjLFyXDxNvbTvKJgxGXwa+PwLr/I+zQLzw19UkOlh3kjX1vsDF/I49MeJhIz27EOFma4dAKeGOGcs0PL4LC/V0/XyDoKioVjL7a1v/ePQwiO0noWJWv1OEpPqi4Zh2jIXQc3484j7s2P8rr+16nvrmeO0bdgUpSsl09uuVJ0rJ+hw8vhoJku27DjGHcN87WHezapGu7fM8W9GNyd8C7C5T72FtzIWO9fZvgcRA4qu1Y4wzT/wqF+1pNrrs+5M/Db7Gp4zHCM5FAjyhuWnM7F6y6hiW/3sj6jF+wHl4N758Hb89V5lzGOrtLTgqcxMSAiXxw8APeTn6bcGM4F8de7LCYEIGgOzg0JuSkF5Okl2RZvrMT+3JgvSzLb0mSpAUMsixXHq+fvvAj/fPne/A0aJmTeHpVRDuyJqWIclMT/148ElY+BE01MGzx6Xd8ZDUpBz7j56nLmBbS9fiSTw99SpBrEPeOvff0xzA4GBD+zV/se4cndr9gY3t63EOcm9R11z6rbOVwxWElb7uTG3GmGvw+7uAnfMEroNYp9Ue8ouGDC8DaDEDxhGVcUbubIlNbZi29Rs/n535OhHtE1wZRkAxvzlD88FsIHAXXfNvpSvIZjIgJcQRb34C6IpDUyuJPY63i3pJ0nm27/V/Dl9cpbcZcpyQBcXZnT2ACV/9uu9E/K3QWM0Nn8lbyW+TU5DDKawgvmzS4lWXA0h/BYLsz2NDcQGp5Knm1efgafIn3jMeoG9CVowfEPbNHqc6HN8+CmoI2m84Nlv2h7HS0pypfWeBpqlN2m/2ToDxdie9DAv8hyO5hHC7cTnpVJgaNnnDPGO7a8CDp1Rmt3WhUGr6IuYaYVY+19e0RBld9Cz5t11yVuYq//PEXmyHcP+7+46aIHkSImJB+SG/vv03paJAkyQhMB5YCyLLcBDT17rBOTkp+NZePP3FcxakQ7KlnS/qxuP28nZCw8MQndJHKoOEEbf4v0/VBx/eT64RZobN4Ztsz3D7ydpHNYoBgtTTzU779itev+eu7JUJUkop4r3jiveIVEfDuAvtGab/A4mM1QQ7+0CpAAArdfCkqtk3tW99cT15tXtdFSEW6rQABpW5OTb4QIQLHYq5XYkI6umPVV9qLkNxjGatkWaliDeAZQeb8R+y6/SP3D6Lco8ipUbLV7y4/QHHUlbil/KC42XQQIc4aZ0b4jWCE3wgHfChBv6Ayx1aAADTWKC7XHUWIe5Dyao9XlPI6hgTEBU8kLngiAIfyttgIEIBmazM5WLBJR1KZDRWZNiJkfa79jswP6T9wafyl6NQiAYigd+kP+29RQAnwriRJuyVJekuSJLsE2JIkLZMkaYckSTtKSkp6dYBmi5X00jrCvBxfqyDEw0B6aR2yxaKshnQjo9GJ2FK0i0PeYYSm2Acbnwh/F38i3SNZmbnSIeMY7PTlvGxBpdYwzGjvvjHE/TTmkkoNIWPt7YHtHpRcbP3jjZZmjFojF8ZcyLLhy7g8/nKMWiMeOg/bPpoboSRVyebVbFuYsNN4KIM3DOyV4T6hP8zNfo1aB4Ej7e0BQ6H0yLH5eSxWwzPCvp1PLF56+xiRcLdwCusK8dR5cmXildwx8g6c3IKU3RMxj8+Mean3UGKO2iNJ0Ml8ORXcdO64Orna2T2lDuvKTno70RvnGUecZxw3DbuJm4ffzCi/UQzzHmbj7iUQ9Bb9QYRoUIp+virL8iigDnigYyNZlt+QZXmsLMtjfX19e3WAR0tq8XXT4ezk+Irirs4anJ3U5GelKj9QOvtibafCxvxNNETNwjvtV1Tm+m6dOy1kGp8e+tQh4xjs9OW8bM95UQvxdW77gQsyBDA77KzT63TElbbBlB7htjt1fkNg7A2th2EHfuDJyY+zvWg7b+x7g9XZq3lg3P1EGdsKZFKZAz/dC69MhFcnwZrHoabd7on/EBi9tO1YUsG5L3QaYCk4Mf1lbvZbVCoYd4NtsLl3rPKg+Mp4xZd/5YPK7kXYJGW+t6AzwqQ7SfSMZ2ZQ2wa/k8qJG4bdQEpZCkuHLGVF+gr+t+d/3J3xJQcXvwWejt9NH2icEfPSOwbOftrWNuPBU85e2JFgn0QeGXWPTeHLK2MvIYYOOxmzH1WSL7Rjkv9YhvsM49397/LGvjfwdvbmguhFDk+6IxB0hd52x+pslucCubIsbz12/CWdiJC+5EBeNeE9sAvSQqinnrS0QwR7xzqkv/zaAqqbqvD1S8LkHY334TWUJJ3b5fOH+wzn45SPSatI6y/5vQUnITZgNO/PfpUjFWlISMR4xhPcWdXn7hAwBK7/FUoOAipFIHiEtr2vd4fZf4ehF0NdMSVeETy54S8Um4oBKK0v5Ykt/2CYWwQR/sd+CA/9BLs/UP4tW2HzSxA0EoZdcqxPD5jzGAxfDHXFStzJqRbvFAhORuBwuHE1FKeASqOI3k8ua3MJ3PG2kuhj7HVw6XvKbrW5HvySIHg0vtlbeLy2mbSEG6nBQoQFfEty8Z/wILesvgWLrPRzpDqDh3e/wLt+w/Fw9uizjyvoJVRqpYBs0Cioyga3ICXWw8lByW3qSplzeAOfTn6anMYyfJyMxOXuw3XIdLjic8UVzCMCgkaD2vYx70jJfr48/FXr8ers1Yz0iGGocAcU9AG9LUJe7GiQZblQkqQcSZLiZVlOBWYDB+1P7Tv251f1iCtWC0EeetJyCpjl55i88FsLtxLvGY8KicqwCfjt/5aSxIVdzrqlVqmZHDSZr9K+4sEJDzpkTIKeJ8QnkRAfBz+we0Uor+Oh94AIZSW4KHtdqwBpocHSQF5NtiJCLGbY/4V9H6k/t4kQUNwHIuzCxwSCnqG9//1Hi+1jkvZ/pYiQzurwlB3Fa+8XTNzbbl5LKuqu/rhVgLRwpPIIRaYiIULOFJz0EDJGeTma6ny0u94nadf7JLW3B485aVzphqKtdrYVeeu4POladDp7Fy+BoCdxVJ2QHzhxnZDzjv33veM0uRP46FhmrHTgOkeMy1Ek51YxN8mxWbHaE+yp51BWAyQ6Jh5kW+FW5oTNAcDkG4v6wHe4FKVQF5B0kjPbmBI8hae3Ps29Y+91WAEjwQCgvlIJZtQawDOKalMpR6rTUUkqYowxOOuN5NTk0GhpJMQ1BFdt24+W0dkTZ7UzDZaGVpuEhKf+WJyH2glCJyqpK9sTNIq+oKiqgeLaRrxdtAT1QPrtwUBNvZmcChPOTmrCvV1QqwaRy0ZjrRK0q9GCuVHZBRl3EwSNgPTfIWeb0i5s4vH7cOnEncg3ES+9fWyTh84Do1bEhDiaxmYLWWUmZFkmzMsFvdbxbtOnTHUB1BYplcyP51JqboTi/coOm3csuHXhWcPZQ3k1VNraO5uPHUh0j+F7frGxjfCIw2RpIrlwB1qVllivWPQax94T65vrya3JRSWpCHULFc8VAsBxOyH/dzony7K8B+gkCrbvsVplUgqruWl6z1URD/PUs7HOFbwCT974JOTV5lNvrifQ9Vi2DUlF1bHdkIxuiBA/gx8hbiH8nvM78yLmnfa4BAOA4kPw7W2QvxM0zqRd8yWvHP2KNdlrUEkqFkUtYkLAeP6++VGarc2MDxjPIxMfac18FeadyN9G/4lHtj/TWj36jiHXEeXdbndm5JVKutOaY5XVfeKV6sC9zJb0Mu7+dDdF1Y14uWj59+IRzIjzFX7R7ThaUstDXyezNaMcrVrFPXNiuXJiGO76QfDwUJ4BKx9QMhWVpMKR1YoIGXapkgHLGAKj4iB9HQy95Pj9BI2ApAvg4LfKsZMezvkXoe6RXBZ/GZ+lfgaAWlLz13F/JdD19O/xgjYKq+r575ojfLI9G4ALRgbxl3nxBHv2nOdCl8ncCF/doLhGGbzhwtchZo6tR0JVHmx7E7a8DJYmZZFm/tMQPPrEfXuGwaIXlbTRslWxTbmnS66r00Km8VXmzxw5ll3L19mb+THn85f197GtcBsaScPlCZdzZeKVhLg5JhYvrzaPF3a+wKrMVagkFZfFX8ZNw27C1zBIY4IEXcYhIkSW5T8c0U9/JKvchEGrwejs1GPXCNHWkm71w6Lz4HTXcLYXbifWMw5Vu/CbytCxRK19Fk19Fc3dqD49KWgSXx/+WoiQMwFzA/z2lCJAANyD+b08mTXZawClhsh3R7/D38UfJ5UTzdZmthVu48OUD3lg/ANoVBpUag3nxFxArHs0BbW5+Br8ifFOwrl99Wf/JLhh1TEffLXiW28M6mRAPUdeRT23fbSL8jolE3h5XRO3fLiTFXdNI8pXuCOAkhHwjXXpbM0oB6DJYuVfq1IZFuzOtLgB/uAgy0pq3vzd4BmuCBBQHub2fQYzH4D1/4azn4KZD544KYKrv5I4YfxNyqq0dyz4xnOkYAtZVVncOepOGi2NaFVavjvyHcN8hnU9XbXgpKw7XMrH27Jbj7/Znc/IUE+unRzRd4MCJQHHF9dAXalybCqDz6+Gm9eDT7vYz9ztsLFdfaecLbDtdTj3v+B0knS5CQuV/ioywMVPESBdSGwT7juU12b+hyPlh2i2WojyiuejI1+zrVDZ+WuWm/kw5UOGeA9xmAj5JfMXVmWuApTfkk8OfcII3xEsjHJMSQLBwMWhMSGSJMUCTwNJQGuRCVmWe24boYdJzqsiyscuY7BD0ddk4aluIqvaSpTH6cmQnUU7md6hOKFV60JtwFB8Dv1M4ajLj3OmPWP8xvDpoU8pMZWIFYvBTl0ppLWlczbHLWBd/ia7ZillKYQbwzlUfgiANdlruHXErXgfSz3ppDWQFDyBJCYc/1oeYcqrjyioqm8VIC00mK3kVdYLEXKMClMTvxwotLMfKqoe+CKkoRoOfKOkm87eYv9+cYoiTtJ/V8TFyTB4QcRUG1NeTR5bCrewpdC2/4K6AiFCHMjqg0V2th/25nP1xHBUfek6WJ3fJkBaMNdDVY6tCCk6YH/ukTVQnWtfT6QjaiclnXTA0G4Pz98zCn9P5bGssLaQP3Lt15GTS5M5N7rrCW2OR5OlqVWAtGd97nohQgQOD0x/F3gUeAGYhRLbMaD9G/blVhLu3cNbu2VHCdN7kFp+eiKkpL6EysYKgjtZvagMn0jgnk8pHHGpsgLdBXQaHaP9R/PD0R+4ftj1pzwuQf+lqK6IYlMxHhoXQiNnwhHFV9gpbwdJSdPYW7LXpn24MZzk0uTW46HeQ3Gpr4ayTHAPBrcAxcWgplCpI9JZfYVeoNFsIbPMRJPFQpiXwcaFyMtFi7OTigaztdWmksDHtXuFuqxWmcyyOqobmgnycMbPbfAU93TTOTEsxJ11abYPUqHH3FxqG8xklZlQqyQifAxYZcgqq0OWIdzHBRdtb+c86YTaEiUzkdZNeaBrue9pDUpV9NxtSvaggmNzPHq2UhsneIzimiXLUFfWVg+nuRHKj0JzE3hGKtnhOsEqW/HpJCbEy9kLT51nJ2cITpWxEZ780kGITIzypqbBTHa5CZ2TmghvA1qNmuLqBvKrGnDXa4jwdulZ10uDt3IvTLoAdK7K3Nn3ubJj0R7PcCX7Wtx8xU2r7KgSl6fWKSIYSami3pU4kVPEQ+dBvFc8ubW5NvYo9yjK6ssoqCvA1cmVMGMYKqn7VR2cVE6M8R/DgTJbwTXMd9hpjVswOHD0L4VeluU1kiRJsixnAY9JkrQeRZgMSPbmVHJWgt/JG54OpYcJNk4kpczCgqhTd/vaVbSbGI8YG1esFho8w7A46XHP3kZVxKQu9zkpcBKfp37OdUOvE/7yg4wdhTv4yx9/oayhDFcnV56Y+CBnVeeiLj4I2Vs4d85DrMvbQF5tHgDRHtGEGcOobKwEwF3nzq3xl+P86mQwm8AYDOf9D364E6pylVoKF7wC8ed0Wfg6gvK6Rl5fl86b69KxyjA23JNnLxlO9LFdjghvF/55wTDu+3Iv1mPpNB45N4lo367veDaaLXy7O49HfzhAg9lKiKeeV64czfAQjx74RL2PXqvmL/Pi2ZtTRVW9UlDyrAQ/RoZ6kl1Wx2PfH2BtagmSBP84fyjbMsr5fq8S53PO0AAeWphISF/65RfuV/zlS9OUonFzHofR1ygPhGonmHgbfLhaecAzBkPiIig7DH88q5yfsFAJ8t3xDpz1CLj5wYYXFd992Qphk+G8l8DHNplIY3MjP6b/yOGKw1yRcAUfH/oYAI1Kw31j7yPBO6G3/xKDmjmJ/ny1M5fUoloAIrwNzE3y47r3trMruxK1SmLZ9CgWDAng1o92kVdZj95JzRPnD+G8EUHoeqD2F6BkW1vwL/jpz8qOiLOH4t7n1WF3I3C0Egey4d9KVrbAEcp5K+6FtGMFgxMXwbS/KKnMewBnJ2euSbqGPcV7KGsoA2CE7wjiveK5asVV5NbmolPr+Ou4v3Je9Hk4a7q32CJJEhfGXMia7DWtvyUJXglMC552kjMFZwKSLB83qVX3O5OkjcA0lFofa4E84BlZlk+zYIEtY8eOlXfs2HHyhqeJ1Soz/PFfeP7SERj1PRcTwmdXsznsJg7WGHhr/qn/cD+17WmG+wwjxqPzLFvGnB24lKSStui5Lvdpla08vOFhXpz1IkN8hpz8hMFHl5VXb81LR1BYV8jlP17e+qMDyoPSl+OfIDpvr/KgVnSIozPu4XBtDipJRZyzH+5b3uBoUCL1yETU1xFamQdF+6Hw2O6IV5RS2G3PR8qxWqv4Lfv13sPX6oNF3Pi+7f+HayeH8/dzh7Rmd2pqtnKkuIb8ygb8jTpi/d26VYx0b04l57+80caWGOjGJzdNxMPQK4Hb3VoRONW5mVVaR3ppHQatmlh/N7xctLy89jDP/ZIGgKtOw1UTw3jtj3Sb8x5dlMR1UyI767LnaayBT6+EjA4uJtethPB2CzCV2YpI0blDxjpY+4Rt+6l/UoKGp/5J2TH58ELb9yfeDvP+YSOw95fuZ8lPSwBYHLuYMQFjqDXXEuUexVCvoThrB89u2Qno1XtmUXUDh4tqscoycf6u/HfNEZs4EYCHz0ngqZ8P0f5x54c7pjCspxYNKrLhzRlgKm+zaZzhlvXg0y7N8+Ff4aN2iQ88I2DkFUp8XnvmPA5T7+mZsR4jtTyVo5VH0al1RLtHc/+G+zlYZlst4aNzPmK47/Dj9HBiCuoKSK9MRy2pifaI7gsXb7GK2g9x9E7IPYABuAv4B3AWcK2Dr9FrZJWb0GvVPStAGqqguZ4wb1e+zjKfcjc1TTXkVGezKGrR8dsEjcT30AqcK7Jo8OxaTRKVpGJS4CS+PvL1mSpCBiUlphIbAQLQbG0mvzyV6HVtIjU6ZhbRo69RDtb8A/Z9xth97U5y9VNcCVpESHk6DL2o7X1Lk7Ir0osiJDmvys7264Ei7jorFu9jLldajYqkIHeSgrqeqKE9ORUmO1tKQQ0lNY29JUJ6hXAfF8LbxcQ1mC383C5WJNrXhYP51Xbn/by/kKWTI/pm99RUbi9AQAngbS9CWmKTrBb49W/27QuTlcrXR9cqhTo7cuhHmH6vTcX19i4tnx/+nM8Pfw7At+d/e6YIkF7H3+iMv1H525bWNLI6xT5OJKeiHjedhuqGZhtbj4mQmgJbAQLQ3KDcC9uLkOIOJdFi50F6J3M3Y12Pi5B4r3jivZT14syqTDsBAsr8PlUREugSSKCLyA4nsMWhIkSW5e0AkiSpgLtkWa5xZP+9TXJeVbdcNE6J8qNgDCLAVU2JqYk6s4yLU/d/uPeVJhNhjMRJdfz/pbJaQ2XYRPz3fkXWzD93ue/JwZN5csuT3D/ufpHbe5DgofPA1cmVWnNtq01CwrdjfjbvWMjbDSoVeEfTEDKO7MT5NCATWpqOZ00JlB5ua+8WoAjr1k5VSgahXiTW3z64fGykF27Ojrvd+XcS/xHsocfD0IMLFv0AnUbFpChv9ucpwiOnop7R4Z6sO2wbOzIl2rvv3Ded3RU/+8JkW7veU4nn0By7h5kqlPuv1hUiptsHqfvEQd5OGH0tqJyUOJLoWYo7VnkGSGpoV/fDbDXjrfNm2fBlVDVW8d2R72iwNBDoEoi79tTErqB7uOk1jA73ZOV+26QK/kZnahubbWx+xu7FgHULF29wMihuqi2o1EpMSEka1FcoWde8OuTsydmqzMUs213W46bsrcpVYvAMXoqrl6r7MRudYdQaifGIYaz/WIw6IxISv2T+gp++h13TBWccjpmxx5AkaawkScnAPiBZkqS9kiT1QLnQ3mFvTiXhXj0sQsrSwS0ItUoi1E1Farnl5Od0wq6inUR6nNz9oTJiEl7pf6Cpt18tPh4+eh9C3UL5Lee3UxqboP8RagzliXEPojkmWiUk7ht1F5Ep7YpYLfovrHsO3pwJr0+nwknHSwmTueTI+1x55H2WyYUcnf4nyN6stNc4w7ynlDogoARanvX3Xg9OHxPmaRPH5eum45bp0Wg1jvP/Tghw47aZbf7deic1z14yHN9BFJzeGZIksXhsKJHHdkfK65oI9dQzJKjtYTzO35Vzh/du2mUb9B5wzvNKTFILQy6C3R/C+ueVwN/SI/DxZfDWbHhlAoSMUwR3C/5DQKNT4kISFio7Jl5RSszIH/9SaouMvxE0iug0mU18nPIxy1Yv4419b7Audx13jb4LF40LT0x+Ah+DfaC6wPHoNGrunBWDb7skE3OT/Bgb7olW0/a4c+dZMST492DhSK9oJWaoZVFQUsH8Z6HkELw+Fd6ZB2/OUhZtEtp5L1TnQ8I5trslfklKfZGOZG2CN2Yqfb0+DfZ9qohsRwxf78X94+7nt5zfeGPfG7yz/x0WRC4g0r2PXCwFgxZHx4TsA26XZXn9seOpwCuyLJ/a/t1x6C3f+0tf28ScRP+eDTb9/WlwC4Tg0byxp5F5kU4sSezebkOT1cw9v93NDcNuxEVz8piSgH1fUucTS/64rnvKbc7fzP7S/bwx741ujW0QMChjQqjMwfL5VWQMWUSBCnxQE3XoV3TznlTcCAyeSqG2NY8p7SWJP875B3cctP3/f0HYXP7uNgSn6nxlpXjzKxA2AazNSjzIoZ9gwXOKrRepqGviSHEt9c0Won1cCfZ0fEV0U2Mzh4trqahrIszbQKRPD2fcsaVXYkKOR2F1PUeKatGoVcT6uWKVZY4U1yHLMjF+rvgZ+4EYK0lTfO7NtcoDW/rviv26nyF1BWx6STl28YGhlyr/9ktUCg46e0BdMVialRo63pHw8WLb/sctgwXPgErN7qLdXLPyGpu3h3oP5Z9T/0mke+SZltSjz++ZuRUm0kvq0DupifV3xV3vRHpJHdnlJrxdtcT4uWLo6QxulmYl5qgqTxEbshXemG7bxjMSrvkeqvOUXROfWNj7Fbh4gvrY+JqboKECpt3bdl5NIbx5lnJeC5IEy9ZB4Ok/blU1VnHjqhs5VHHIxv7Bgg8Y6TfytPvvI86oL+FAwdHfwpoWAQIgy/IGSZIGpEuW1SpzsKCaG6f1cImT8nQlJSQQ4qbiQGn3d0JSyw/ha/DrkgABKI+cTujm1ygcuRirU9cezkb7j+aTQ59QWFdIgEtAt8co6GfUFqHO30NM/h5s0hiYyiB2ruInv/KBNrvOyOGmSrtu1hfvorrOgveO9+CCVyH9N+XVnqocOFHdkB7A00XLuEivHr2GQadhRKhHj16jvxJg1BNgtL139LtdIK1BCTZvbrC1N1RBaltNHHwToWA3WMxQmqrEgLQnYioM6yBAAA6vglkPgMG7NetPe/aX7Uej0pxpAqRfEOJpsMvOFu3nSrRfL9YBUmuU4qz+Scrxwe/t21RkQFONbaxS+q/27ljRs21FSG2xrQABJaV0VY5DREhFQ4WdAAHIr8tnJCNPu3+BoAVHi5BtkiS9DnwCyMBlwO+SJI0GkGV5l4Ov12NkltXhquvZSumY65X0fcdyh4cZVfyc0XySk+zZVbybKPeui6UmNz/qvSPxPbiCohEXd+kcnVrH+IDxfHPkG24dcWu3xyjoA5pMStpRcz14Rim+8oV7oLZUqVIeMU0RwGoNIMHB75S5mLVJ8Z+POgtylCq6NNYQ2Ylf+xjPBFxzUpQDSa24wDS2C1SWVA6piJ5VWkdhTQM+LjoifVx6pRBZRV0TGaV1qNUSUT4uuPXkvaCfU1bbSEZpHSpJQq1S3LKifVxxcWCcjcNxdlfqfmRuULK9jbxKSaTg5KK4CZakQOZGxfUlaITip19fYS9ComaBMRRm3A+VWUpVdVlWxMmxmBB/F/u4p1iPWIzaHnT5EQBQVF1PWlEtVhli/VwI8ujD1NAdKUtXgtRd/cA9VJlrQy4E2aLUDjn8q5KdrWCvcp/2ilFcAzuKkJCxtscGb8VVsK7E1u7mGDdIo9ZIhDGCzOpMG7u/oXfj+wSDH0f/gow89t+OdUEmo4iSsxx8vR4jOa+q56snlx8FY2BrMFmYUUVauQVZlru8eiYjs6d4D5fEXnLyxu0oizmL4O3vUTxkEbKma+5fU4On8vq+11k2bBnqXqz7IDgFaktg3b9g2zH3qXE3gUcorP2HsuLrGQlzHoPv71REg8YZFr8Pn12prKZJElz8NvgPg6JkkK0MN5k4J2I+KzKV/PUBhgCWxVyMbvMxV5Ztrys57n+8W/mBValhzhMQMOK0Pspvh4q585Pd1DY2o9OoePbi4Zw7PBCN2qEhbTakl9Ry7xd72Z1dCcCCoQH8bWFSj7h19XfSimq44+NdpB2rxXDOsAA0KhUqlcQD8+MJcO+nfxOdG8x7Ej66FCbfBTvfVXaeeRaGL1Ye+oZdoth3vKWcs+BfSjre/GPrZUEjFWH+0bH0vP5DFTGy5xOYdHtrTEi8Vzw3DL2Bt/e/DSgPcY9MfAQPZ49e/chnGin5VTy5IoWNR5RMf2PCPXj8vCEMDfbo24EBpK2CL6+Hplrl/nref5X78KoHFXdVgxdc8h5sfAG2H5t/3rFKuyNrlPsuQNAoiO7w6OQeDBe+Bp9drbhxSSqY+w/wdUw1BC+9F49Nfow719xJjbkGCYllw5cR7+nQagsCgcOzY81yZH99yb7cKsK9erpS+hGblQujTkKnkcitlQl165oIya7ORi2p8dJ3z/Wk0T2YRvdgfFN+onjYhSc/AYhwj8DFyYVN+ZuYFiIKDfVr8na2CRBQtvu/bFf1Pn4B/PSntl2L8Cmw8cVjrlMoK71f3QhLf1ZW7SQJX584/uak44qkq2hobiDcGE6A1kPxQzaVHkt5Gq74NVdmK3M7cBhoTz25Q065ibs/292a2aax2cp9X+4lMdCN+ICeW2X+ZndeqwABJeXsWYl+XDomtMeu2R8xW6y8syGjVYAArEgu5E9z4/jvmsOcFe/LeSOD+3CEJyFoFNz0m/LgV96ulsm+zxXBkb8L8ne32X/+Kyz+EJyNyg6huQE+ardbXLQfIqfBDb8ofv7HMGqN3DziZuaGz6W6qZoQtxBC3c6sudIX/J5W0ipAAHZmVbJyf1Hfi5DyTPj6JkWAgOIS+N0dSs0Z6zFvh/oKKNjTJkBA2bne8rpyf05cqNgqMpXdvLCJtteInq3UYKrKVnZFvOPAyXEZv8b4j+Gzcz8jtzYXd507Ue5R3S5UKBCcDIeKEEmS/IGngCBZlhdIkpQETJJl+W1HXqc32JdbyZzEHt56LEmzc1WJMKo4WGoh1K1rq7y7i/cQ7RF9ShFXpbFzCNmxnNKEBVidunZzmRY8jU9TPxUipL9Tmmp73DFnvdZga/MfAltfs20jW6EsTak0fQw3lGq6NnT0QQ4Za+8+cIoUVzdQXW/romi2yBRVNxLfQ6FJDWYLaw8V29m3ppefcSKkut7MurQSO3tRVQPueif25FT1bxECiitW5gZ7u0oDeZ14CB/8Bi55R/n3T3+Bjslbjv4Gsx62O02v0YtaSr3M1oxyO9uW9DIsFivqHtwpPSm1hbapykGpmSS3i/nUutrHdQBkbwS9O+xa3maLnm3fTpLAJ0Z59RChxlBCjWfWPU/Quzj6W/oesApoebJOQylgOKCwWmVSCmqI8Onp9LyHwWj7Ax7qJpFS1vXg9N3Fu4j2OLXg+UaPEOo9w/Db/22Xz5kYOJHdRbspqC04pWsKeon2KR5BifFoj7nB1lZ8sPNc9MaQ7l1XlpX0p+l/QHGKkiGmm9TWm9mWUcaK5AI0Kgk3ne1aiUYltRYna6GstpHtGeXsyqqgymSfprK23szWdKXPA/knTk/t7KRmZpx9Nd/xET0b6N4fMeqdmBprn17W36ijqt5MrJ8rBZX15FWa+O1QMWtSisgtr+uDkZ4AZw8In2pvt5gVd6uOtBfQoePs34+cblv/QdBnjA33tLONj/DsVIDszq7g+715bDpSSmVdY88OzNVfcQdsj9qpLWUvKLskbp0U7wudoMQrtSdskn07gLKjyr226AA0n3qxY4Ggr3C0CPGRZflzwAogy3IzcGqFL/qQ7HITBq26Z4PSm+qUoPQOhdzC3FUkl1i71EV5Qzml9WUEu576SmRp3DwC9nyOurH25I0BnUbHpKBJfHro01O+pqAXCB4Do5e2HWdvhbMeUeI0QEmdu/Dfba5Smeth6r22P4oTb+/8Ie1EpK1Ucta/f57y372fdCt3fUVdI29uyODyN7Zw20e7uOfzPfzzwqHonZRxa9VKTEhUuyKi6SW1LH1nO5e+vpmLXt3EXZ/uIbddRfPy2kbeWJ/OkjeVPpe8uYXfDtlXVW7PxWNCGNaumvrsRD+mxHif4IzBiZNaxeXjwgj3bnNNnZvkT1a5iakxPuzJreQvX+7ju935XPfedm5YvoNbP9pFcl5l3w26I07OMPMBxVWwhSEXQc4W5YHPf1ibPWoWRM5sOw6fYlvHwTdeSen7zgJFZAv6lMnR3oyLaBMiw4PdOasTD4bVB4u49p1t3PXJHq56eytvb8yksKq+5wbmFQkXvq4ULAQlXfmil8A1qO0erHOH0Ek2O814RMCkO5TshC2EToC4s+2vcfQ3eGNG27125ztKnJNAMIBwdGB6nSRJ3ihB6EiSNBHoelW8fsL+/KrWYlw9RtlhJbisQ4XTCKOKLw91bUVjb8k+ojwiUUunHiTe5OZPXUASgbs/IXfiTV06Z1boLJ7d/iy3jLwFvaafBqWe6bj6wdn/hDHXKj9M3tFK5qrwKUp6R69Ipap04Aglj72rrxIUeeMapRq0zlXZTdF2Iy6qIhO+ubltldhiVoLUg0cr7l5dYH9eNS+uaavAnlFq4u0NGXx280RqG5rxdVOyY7UPSv9mdx7J7XY3/kgrYf3hUpaMDwOUJBP/XXuk9f3q+mYe+e4AH/u6Eubd+fc8yteV964fR3ppHRqVRJSvUmvgTMPcbOWz7dlMifbh/JFaIrxc0GtVpBbVUmky89l2JYZoRIg7Bq0aU5OF5LxqVu0vYlhf++W3J2AoXL9KiQtRaZT7rqRS5nzENEVQqJ2UOiHtXWTdQ+CCVyBziZLBqDoffn9GcVXc/Aqc+2/lPEGfsDm9jLMS/LhifBhWGSpNTaxJKWJsu13Lw8U1PPbDAaoblF1ZqwwvrT3C6DCPnk2qEH+OErNRnQ9u/uAdo4iL0HFKDJ17GHhFKHNzzHVt92m3ALh0+bHdEElJIe3RYUe6Ol+51zYeq4BgtSjxTKHjlTgogWCA4GgR8mfgeyBakqSNgC/QvbRN/YDk3CrCvHs4KL00TfmB64C/i0RFo0xVo4y77sSRHjuLdhLtEX3CNl0aSuwcItb9h6KhF2B2tXdDsR+jP1HuUfxw9AcWx3eSP1/QP9C52rtYhXfY1veOVl4tuAcrr1OhtsTeD9pqgeqCLouQvEr7lby9uVU0NVuZHGPvFtRotvB7qn3MwraMslYRkl/VYPd+bkU9JTWNxxUhAN6uOrxdHRfoORCpbjCz/nBp699wZrwvJTWNHMivtml3tKSOIA89R4qVHdVtmeVYrVZUqj70y++IMVB5dcTZCJ7h9vb27+ftVKqttyfjDyWxg+HM2yHrL2zPrLD7/o8N97SZe6U1jeRW2N9X8ivt7wsOpbOYDZW6rW5IC53dpz1CldfxqCuF2k52c6vzhQgRDCgcLUKigQVAKHAxSoWyfpxIvnOS86qYEm3/wONQilPAyz6WQyVJRLorRQsnBx//T9dgaeRo5RHmhM857aE06z2oDBtP8Pb3yJx1X5fOmRs+l3f3v8vFsReLdL0CBTd/Jc6kvqLNptKAe9dz14d0kgI3zMuAn1vnYkDnpGZukh9Dg434uTkjSZBeUsekqLbvb2d9Rngb7OJKBPYY9U7MiPflk23KjkdaYQ1nJfgxIsQDXzdd6987xFNvE8A+McqrfwmQ0yVwpL0tdq7iUiPoMyZGeePloiXMy4AsQ2F1A/5uOpu552/UEeZlILvcNo5nQKfbdvVVduyq89tsktTpwqZA0J9x9K/EI7IsVwOewBzgDeBVB1+jR5FlmYP51T0clC5DSaqtj3I7wo0q9p+kcvr+0mSC3YJxVjtmpbY8eiaemZtwrsjqUvs4zzj0Gj2rs1c75PqCQYBHmFJbRHcsda7GWami7h134vPaMTTEyP3zE3BSK7uAXi5a/nH+kBPuWMyI82NbRjkvrjnMf1YfJrfCxPCQtofDYUFG7psX19qnt4uWJ84fQkhPp+AeBDipVVw/JZKEACXINr+qgTlJ/mxJL2v9e+dV1DMkyEi9WblnjYvw5OykHkpd1leETrD13fcfAuNvOlboU9BXTIz04khRDf9ZfZgX1xxmT3YFM+Ntd/OjfN14/PwkvFyUelhOaon75sUzJNCtsy4HBm6BcNGbbclF1Fo49z/gk9CnwxIIuouj76AtT84LgddkWf5OkqTHHHyNHqWwWtmi9TT0oJ9vbREgKxV9OyHcXcXe4hOLkF1Fu4hyP31XrBasWgPlUdMJ3vYuR89+7KTtJUliQeQCXtv7GnPD56KSBtGqp+DUiZkNN69TqgS7+IJXtF3c04nw0OtYOjmc8ZFelNc1EublQnzAiR8WVh0o5GhJW0amXdmV7MyqICFQEUMeLjqunxrJpGhvyuqaCPdyIe4kfQraiPV346MbJ5BZVoebVsNXu/NIL237e+/MruCCuiA+vmE8zbJMnL9b/y1geKq4+cP8Z2DcjUrNB69oJUBd0Kfsyq5kX16ba2BqUS3rD5cyOtw2k92seH8+uH482eUmvFy0DAlyw9W5a0V6+y0RU5V7bVWu4hLoFS1EsWDA4egnxzxJkl4HFgMrJEnS9cA1epSD+dVE+rh0uWL5KVGUolSsPs41It1PvBNikS3sLd1HjIdj84NXREzBrSAZQ+nhkzdGqRdhsVpYm73WoeMQDHC8IiF8slK08BRccvRaDWPCPZmbFHBSAdLUbGHDkVI7+44s2/oBeq2G0eFezE0KEALkFPB21TEm3IswHxc2HrX/e+/NrWJyrC/T4/wGnwBpQeuiJHIInSAESD9hS3qZnW394VKsVtnOPiTYnQXDApkQ5T3wBUgLHmHKvdY3XggQwYDE0QJhMUqdkPmyLFcCXkDXggz6CQfyqwn16uEf0aJkcD9+0Fmwq0SxSaa60f5GCpBWcRgPrTtGrWMfpmSNlvKYWQRve7dL7SVJ4ryY83hx14s0W7tfD0IwAKguUPLQZ6yDGvsCfj2BqbGZvTmV/HaomCPFNZibLRwqrOa3Q8UcyK+i0dwm0LUaNfOS7FNyTukkiP1kZJbW8XtqMbuyKqhuEDn3O6PS1MTMOD87++ToARicXZULR9dC5kYl0FfQ76kymdmRWc4fqcXklNfZuV4BzB8agErVg4uIfUV5JhxZDdlboL6yr0cjEDgEh0pnWZZNwNftjguAAVXVbn9eFXH+PbxSWpis5Kk/DmqVRMSxuJDOgtN3Fu0kygFZsTqjMmwCUb89i6H0MCaf2JO2H+4znF8yf+Gbw99wafylPTImQR9RkgqfXqmkkwYIHKVUkvY+teKYXaG2oZnX1x3lpWMpdXUaFc9fOoJHvttPhcmMJMFji4awZHwoWo2SEGHRiCC2ZpSz/rDyIHnhqOBuJ5bYkVnO0ne3U9uoiOkl40O57+x4vFzO7OxY7TlUUM31y7fzt3OSGBfuyfYsJQHB/CEBxPi59vHouknRAfhoMVTnKscR0+GCl5WVZUG/pKSmgSd/TOG7vUowtofBiTeuHsNZCb6sPaQkRZgc7c3oMI8+HGUPkbcLPryoLenHkIsU90A3+wUYgWAgMaBcpXqDlIJqm8JcDqe+Qnl1Vim1HZEeKvaW2LtkycjsLt5FnOfJBcKpIKudKI+aTuDOj7rUXpIkLo27lP/t+R81TTU9MiZBH7Hv8zYBAlCwWylG2IOkFtW0ChCAxmYrT/x4kIXDlO+LLMPjPxzgSHFbTEK4twuvXDGa7++Ywk93TuWfFw4l0KPru5lVpib+/t2BVgEC8Mm2HLs0tGcyzRYryzdnolWrWHOoCC9XHXfPjuWeObFUNZjZ2IlLXL/F0gxbXmsTIACZ65QdEUG/JTm3qlWAAFSazPzfqjTi/N24e3Ysd8+ORa9VsyK5sA9H2QM01cGaJ2yzDh74GvJ39d2YBAIHIZwI21Hb2ExxTSOBPenTXLhPqctwEl/5KHcVuwrtRUhWdTYSKnz0J6/ncapUhk0geu0z6KryaOxCzYgI9wiG+w7nxV0v8reJf+uxcQl6EatFeTDrSPYWmHRbj122qNo+d39xTSMeLm0+3FYZSmsbbdq46Z0YHuJxStesbmjmYIG94Ciqbuyk9ZlJfZOFbRkVRPi4kFpUw/68alYdaHvY83YZQD72TXWQvcneXpgMLOn14Qi6Rmf1fg7kVzEk2Mhrf6S32jrWCRnwNFR1Ljgqc3p/LAKBgxEipB2phdWEeRlQ96Q/ad5u8Ig4abMYTxWfdVI5fWfRTmI8Y+hJj1dZo6MyfCIBe78ka/rdXTrnopiLeGzzYyyMWsgoP1EsaUBgMSsuV5XZSpVe33gl+BaUolqJ50PONttz4uY5fBhltY2kFdVQ32TBx1XLpChvJsd409hsxUklsfloKfntihjqNCqCPGxrfORV1HOkuAaVSiLO342aejOpRTU0mK3E+LkyItTjuNf3ctEyLcaH9R1W88N6OjZsAOHqrGH+0AC+2JHDwuGBTIj0xuisIcrXhcp6MwYnDTuyyjA1Kn9vJ7VEWlEtZotyHOLpoN3l5iYoOaTEc7gFgl8COHXz/5OzEZLOty8+GDbBMWMU9AiRnaTNnx7vw9hwTxICjICMWiVRXN3AkeI6DhZUo3dSkxToRqC7nr25lWSW1eHjqiMp0Iib3onDRbUUVtcT5KEn1s+11cWzx2isgeJDUFcCnhHKPfdkdbYM3hB7NiR/bmvvgru0QNDfESKkHSkFNYT2aO0AGfJ3w+irT9rSzyBhtsrk11oJcm1b0dlZtJPZYWf14BgVKsInEfnH8+ROuAGL7uT+3q5aV5YkLOHB9Q/y1Xlf4eLUk3VWBKeNLMPBb+HrZSBbFdvsx2DiLW0PdYnnKSIk5Tslk9uIKyB6lkOHkVdRzwNf7WsVANdMDCPO35Xnf0kDlJz+Lyweyf+OuWgZ9RoePifJpnhhamEN1723rbUC8n8uH8EHm7PYmVUJKOm2X75idKcV1wFcdBoeXpjInZ/s5nBxLTqNivvnxzMkSBSia0GSJGbF+7Ijs5wxYZ78c0UKl48P49mVqa3VqKN8XDhneCC7sir4Pa2EPTmVAPi66Xj/+vEkHkuZfMpYrbD/S/juNmX+guIXP+Z6cOpG7I4kwcgrlQWh9LUgqWD8LRA26fTGJ+hRhgW785d5cby45jBmi8zQICPXTY7kga+SW1NGh3jq+b9LR7D4jc1UmpRFvIXDApg/JIA/f7EXs0WZN1dOCGNchCf3fLYXUKbEvy4ezsWjQ3ouqL2hGtb/H2x8UTlWO8HiDyF+/onP0+hg2r1QdkTZEVE7wfT7RWV0waBAiJB2HMivIrQnq6hW5oBsUeonnARJkojzVLOryNIqQgrqCqg11xLo2vUK1KeKxdlInV8CPodWUjTiki6dM8Z/DPtL9/Poxkd5bsZzPZvmWHB6lGfAD/e0CRCAtY8rIiNopHLsGQYXvgoz7gNUSupdrWNF+q7sCpsdCB83Z/79a1rrsdki8/gPB7lvfjxZZSYamy08/8shwr0NTIzyRpZlvtiR0ypAnDUqKk3mVgECUGEy89aGDJKC3PAwdP6wmhBo5NNlE8mrrMdVpyHc26Vnd0QHGI3mZt7fnMXcRF82p5chAQWV9a0CBCC9tI7ahmZ8XLWtAgSgpKaR9zZl8M8LhqFRn4aLTPlR+PFPbQIEYNVDEDENAoZ2ry/vaFi8HCoylIc6r2jlYU/QbzHqnbhlRjTzhwZS39RMuJeBN9Zn2NSsya2oZ+X+QqJ8XNmVrcRQTIvz5YmfUloFCMBHW7MJMLbtpsoy/O3b/YwO8yS6p5IsFB9oEyCg7ER/f4dS68N4kt90vwS46muozAQnA3hFKfNWIBjgDBKnSceQkl9DWE/uhORsB9+E49YH6Ui0p4rtBW3BsjuLdhLnGYuqR52x2qgMn4Tf/m9tH1RPwpKEJaRWpPLO/nd6bmCC06e+HJpqbW2yrLgJtEfrAgHDIGCIwwUIKGlx29NksZ9rJbWNZJebePm3I7y1PoPimiZKapR4DbPFyrbMtpogge7O5JSb7Po4VFBNWV3TCcfi7apjeIgHUb6uQoB0oLq+mQP51bg6a9mbW0mol4GjJbV27TJK62g02/8/3JlV2VpR/ZQxlSmFAtsjW+3nbFdxNip1P/yShAAZIGjUKmL8XBkW4oHRoOVAfpVdm/15VYwIadt10zupW+8X7WnscK9pbLZSfpJ7xGlR28k8rSuxDTg/EQZPZffDN14IEMGgod/shEiSlAnUoFRdb5ZleWxvXt9qlUkrriHMy7EFAG3I3tQtv+N4LxWfpbTFhWwv3M7koCk9MbJOqfcMR1ZpcMvbQ03I6C6do1VruWPUHTy99Wn8Df6cG31uD4/yDKG5CYoPKvEbrv7gnwS6k6SSri1WUpGaTeATDz7t5rYxSPGpr2mXQVutBY/j16/pCo1mC2lFteRWmvA3OhPv74aLzvY2k1NuIq2oBrVKYlykF5eNDSHIQ49FlkkIMGLUa6iubxPf10wMY3iwO4+fNwRPgxNb08sIcHdm1YECvFy0LBgawL5c5WEkq8LUaYrtGXG+hLr3pKvl4CS9pJas0jr0Og23zYzCzdmJaydFUFjVQKC7MzuyKmw2JoYHu6PX2fu4LxwWiJvzaT44GYMV/3hTuwJ1Whel5pKlGUpSlB0+Fx9FWNQUKC4szh7KscsArGUiOCHTYn2I8HHBXe+krKE0NeNl0KKS4K7ZMaglCSe1RLy/K6lFbaJZksDgZDtPvVy0+Lhq2ZJeRpWpiQgfV+L8XU99R7++WskoWJmt3G+NQYrrX/tFPd/Ek2bKFAgGM/1GhBxjlizLfZLrMbeiHhetBlfnHvqT1FdAZZbii9xFotxVZFZbqWmSabCUUtZQRqhbSM+MrzMkiarQcfgd+KHLIgTAy9mLe8bcw7+2/wsZmUXRi3pwkGcAsgwHvoFvb25zRZl+P0y9uy2QvCNVufD1LZC1XjnWucHV30LIMW1vDIJLl8NXN0BVjvJwd/7L4B13ysO0WmW+35vPX7/a1zrMe+fGcdP0SJydlO/VoYJqrn13W2vmqbvOiuFIcR2f7VDSpRqdNTy/eAT3fr6X6oZmzhseQLi3C8s+2Nl6ndtmRvPj3jyWb84G4LFFSZw3IpDv9xYgIWHQqlg2LYp3N2VgtshMivJi8dhQtNoeDjodZOzOruDqt7fx57lx/GdNGneeFcuTP6VQcczXPjHQjSfOG8Lfvz+ABJw7PJApsd4k51axbFok72zMpNkqc3aSPxeNPnmWvZPiEQqLP4Cvb4TqfMWt9cLXFNeq1J/h86uUrG4AY5ZCTRGk/awcD7kQFjwHrj2XVVDQ+wwLdue9TZlklytugQFGZ/5z+UhuWr6DmmMpt8dHePL3RUk88u0B0kvrMDpr+NPcOIYFG/Fx1VJa20SA0Zn/XTGKF9cc5ts9ShpgrVrFO0vHMjX2FOZMcxPs+RBWPdhmm/tPuPBNWHEvNFSCd6zi7mrwOt0/g0AwYOlvIqTPSCns4fogWRvBLxHUXf+TO6klYjxV7Chspt6yg1jPOFRS73rQVQePInrtM6gbqrA4dz1QN9g1mD+P/TPP73ieIlMRNwy9QcSInCrlGfDTn2194dc9qwQ0Bh9HHObuaBMgoGRl+e0puOyDNuESNgFuXAO1haD3Ou1dkKxyE498t99mmP9encasBD+GBitz58udua0CRKOSkCSJndlt7gjVDc0s35TJn+fGUVrXxOgwD2790DY95at/HOW/l49qEyE/HOTzmydy+6wYVCqJcC8DsxP8mTfEj6ZmmUgfA4EeYhekO5iamnluVSqJgW78nlpMmJeBHZnlrQIElEQe5XVN/GlOLM1WmQ2HS/kjtZR75sSikiQWjwuj2Wol1MuAi9ZBPzURU+Cmtcoun8EH3IMVQfLDXW0CBGDnezDr4TYRcuAbGHU1xMx2zDgE/YLfUktaBQhAYXUDP+zNx93g1CpCtmVWsCe7ijHhnpwzPJBGs5VXfz/K/64Yxfd3TKW8rglfNx1phTWtAgQU19CHv93PN7dOxsu1m+56hcmw5jFb2+q/wfWrlBiQhkplZ8+le0VVBYLBRn8SITLwiyRJMvC6LMtvtH9TkqRlwDKAsDDHV7U9VFBNcE8GpR9dA6ETu31avKeaTXnNmNnGhIDxPTCwE2PVGqj1T8Q7bQ3Fw49f5b0zgl2DeXDCg7y852UOlh3kiclP4KodYJWVT0JPz0tA+cHqGL8BUHeCTcPKbHtb4T5orLXdPXHzd1jV3UpTEw0d4gFkWUnBC0r8xs6sNsHhotN0GqdxpLiOQPdqvtiZy/9dOpzGZvs+axps01dnl5u4ZEybiNJq1IyNOLPdb05nbtY2NJNSUM3MeD+2ZZQzLMSdw0X2czCr3MTW9HLyjqVQdtc7oTvm5tJjVdTdAm1dWBqqOo8LsXSIA6gt6pnxCLqFI++ZKZ3U90krqiHEU2+TNKG4tpFVBwqpbmhz8yytbWJ8pDdBxwqbbjpqfz/NKjNR09DcfRFiKoXmDvNPlqEqD0InAOHd608gGKT0p8D0KbIsjwYWALdLkjS9/ZuyLL8hy/JYWZbH+vo6fkv9QH51zwWl1+RDdQH4dN/VZYiPij9yGimtLyHc2Dc3rqqQMfimnlqlbC9nLx4Y9wAWq4WLv7+Y3cW7HTy6vqWn5yWgrJh5dPix1ujA8wTzIWCYvS3xfEWc7P8a8nfT0FjD/tL9rMxYyc6indR2JnS6QaC7M/5G2x/rUE9nnJ3UfLotm98OFbFweNvDY1W92a49wJQY71axIsvYpOMFJdA0xNPAnWfF8Ke5cZw/MogIb5ESuiOnMze9XLScMyyQ3dkVTI7xZm9OJZOi7UVdhLcLBVVtD3vTTsV15XRxC4TAkbY2SQXqDnPL+/Ti/Yrqilifu57VWavJqMo4rb7OZE5nXqaX1PLj3nw+3ZbNrqxyZsTZnz8t1peD+bbiJNzLYCNAVBJ2ng+d3UOmx/ng08k96qR4hCuxe+3RuigZBnuZMlMZm/M280vmLxyuOIzcfqtaIOhj+o0IkWU5/9h/i4FvgF5d9k8p6EERkvarkvb0ZEWJOiHGU0VmtUyo27Bed8VqweQTg5OpAufyzFM630ntxFVJV3Fx3MXcvfZuXtj5AmaLfSFGwXFw84dL3mt7iHL1h8s+UnyKj0fwGDj7qbaaH3FnQ+h4eHsOfHkd1i+W8tORb1ny0xLuW3cfS1cu5e3ktzGZ7TNLdRU/N2eevGBo6497iIeevy1M4uq3t/HA18ks+2AXTc1WFo8NQSUp7ljuzk7cPz8enUaZ2/OS/Fk0IogKk7JD8tXOXP51yfDW76a/Uce/F4/g6RUHeWntEV74NY2KuiYC3Z07H5TglNCoVdw4LZIoHxd8XHTE+rmi06iYk+iHJCn+8sumRaHTKC6WGpXEkvGhTIruA/92vQfMeUwJPgfFx/68l6DooHKsM8L5r3QuzLtIbk0ud6y9g9vW3Maffv8TS35awv7S/ac9dEHXOVxUw1++2Msdn+zmga+TWfLmVuID3FgyPhSNSkIlwYWjgpkS48WESEUwOzupePCcBCZGepF0rE6Np8GJ/10x2i6BRVKgkX8vHoHxWFzo6DAP/nZO0qm5EvrEKnPQM0I5NgbBBa8q2TF7kWJTMY9sfIRlq5dx7x/3ctmPl7GtcNvJTxQIegmpP6hiSZJcAJUsyzXH/v0r8IQsy50uv48dO1besWOHw65f19jMmCd/5a1rxjk+NafFDF8uhTHXgavfKXVx1+rDXBhXx0VxfefK5JOyArOLD7mTlp1WP9WN1Sw/uJyG5gaen/k8oW6nF4fQC3R5Qjh6XtpRV3osfsMbjF3IqCLLSh2E5kYw18ObbYUGM2f9lUtzvqXBYpvy9JOFnzDUp5s1F46RXlLLBS9v5OwhAfgZnRkebOS5X9I4Umy7w/L2tWMJ93ZBJUGolwG1JJFTbqLJYiXE04BeqyatqJpKk5kQTz1BHgayy+oorG7Aw6Dl798msyXDNq3lO0vHcVbCqX2/BijdulGd6tysa2omr6IeZ43EhiNlNFtkTGYL1fVmVh0o4qoJYVQ2mIn3d2NajA9u+j5IHVqVp8ztiKnKSnNjrbLbt+QTJa20k8uJdw27wHdHv+NvG/5mY5sdNptnpz2LTqT37UiP3DO/+n/2zju+rer8w8/V3sPy3jOJs5w9SICwCbOUTWnLaNltaaG7/XW3UGgLlLJaRillltJCKWUnYWXv6Qzb8d62JEvWvL8/5MhWpCTeIznPB32Ijs4995V8dHXfc973+26o4a5XtsS0zcyycO70dLKTjEjAyvIm9Col3z+/lJp2L1qlgpwkAwqFRKfHT31nNxa9OhqClYjqNg8ef5BMq37w87m5HJ65AJZ9J+IEB7yw6rdw5fOQWTa4MQfByuqV3PHBHTFtJbYSnj7naawDyPE8ThBJqeOQ8ZITkga81pO4rAKeP5IDMhLsaXSRbTeMTG2Aqk8iKi6DdEDavG0YNNVUds4A4jXRRwtX1myy1j1DzaKvREIdBolFa+GOWXfwbtW7XPPmNdx/6v0szOi/bPEJjTF5YImMkhQpagWw6z8xL7mU6jgHBKCju2PQ5nV6Azi7g7yyIaJ09cerZlHV2hXX72CbhzNKY0MV8pJjQyEmpcVW1851GMl1GKlp97C2Ml5Xv60rvg6AYOgYNSompZlpdnbz1CeVcQ7ltrpO1hxoY06ujfNmjJHUqM8ZyffY/mpse2ctTLt4WE5R7ayOa9vTtgdv0CuckFGixR3/HT/Q4qHZ7ee3b/cWOJ2fb0erVMTtdFgNGqwGzTHPkzMcERHeduhqhDfvOqy9LXH/EaKtO/58FZ0VdAW7sHLCOSGCcci4cEJkWT4AjN7ywGGMXCiWHPlhzFs66BF2tu2i1BFmfb0OWe7sb53DYcdnySCk1mOu34ZriCs5kiRxdv7Z5JhzuHvl3fxw0Q85N//cYbJUkJBDFXZ7wuAynA1kmbKodddGu+hVerKHIAGdZdNzw0l5lOXaaXH5kBQSty4r4qH398X0K0g+ev5GdVsX22qdtHX5yXcYmJNrw6CNrEimmLQsn57Om9saYo4pTD6+BA/GGykWHReXZRIMy8jIKCQJpzeAw6TlX5tqOam4mB21nUzrUUGrafewq96JPygzOd1EceoxatoMBXMmZM2D2j4r6golOAqH7RSzUmbFtV1QeAFWrbiRGy2KU+K/42dPS2NtReyN9udmZbGvuYvyRhd6jZJpGRYyjrLzMSLYcuLrMGnNQ96RGyj51vy4trPzz8ahO7FFOwTjh3GTEzKW7Kh1kj0Sylh1myOF4lInD3IAmZ2tO5jhcBCWodo1tj6jK7MMR/m7wzZeqaOUb879Jr9e/WveqXxn2MYVJCBlMlz1fFRVKLlhN79b/HMm2yNzM9OYyUOnPTQk8QObQUOyWcc3XtzML97cxR3Pb8LlDfLFRZGkeqtezffOnUzRUZyQ2g4Pv3pzN7f9fSM/+td2rn1yLf/e0vtDrlUr+dZZk1k2OaXnnGr+cEUZUzMtRxpSMEzMybPz5McVPPT+Ph54by/v72rCplfzhYV5rCxv5rpn1rGhso0DzW6u/csavvrsBm5/fiOf+9OnbKnpGDnD9Fa46EHI7kkjNKXBFc9FCsENEzNTZ/Kded9Br9KjkBRcWHghFxdfLGTHR5HCVCN3nT0pmrNxckky1yzIoSzbikapQK2UuHxuNtl2PRc9/DFfe2ETX/nrem7863qq2+J3ZEcUSyZc2WcO2vPh6hd7d6ZHidKkUn619FdYNJHr48lZJ3NL2S1i904wbhgXOyFjzc46JxeWjUAowZYXIP/kQYcvNbgbCYVDJBscTErys65BS64leOwDRwhn1mzyVz1A1clfR1Yee1u7P+SYc/jGnG/w889+TpIuiXnp84ZlXMFhKJRQcjZ8dQX4OsGUzjS9lSfPfpLW7lYsGgvJhqFp1u+s6+SB9/bGtD39aSW/uHgaXzu9mC5fkCc/rqQ4zUzOEdSsdtQ6+d+O2F2Oe/+3m7m5dialR1bTi1JN/OkLc2jo6EavUR41vlswPHh9QZ7+pAK3r/f6U9XmocMbYGNVOzt6pFLf3tHIpHQTla29AgduX5AnP6rgd5eXoVaN0LpX2nS49tXIyrPW0r+cqQFg0Vi4duq1nJZ7GsFwkAxjhriRG2X2NLj522dVXD4vB4NGSZOzm7d3NLK2sp2vnBxRnWr3+PnTiv0xst47651sqOogJ2mUFfSy58H1/43IR+vtgw7JHgo6lY6Lii5iftp8ukPdpBvS0avF9VIwfjjhnZBwWKa8yUXuEOUb42jYGolTLrtm0ENsa91OriWyijzJHmB1nY5LJ43yik4fgnobPksG1ur1dOSfNGzj5lpyuXHGjdy18i5ePP9FMkxjFFt+ImBJB9KjT60667AlKHZ2B/CHwnHtTS4ff/ygNySrPUFtkEN0eOJf6/AEcB5WF8SoUVE0UnUoBHG4/UGqWuOV0w40u+nw9v5t9je7SU0gabq7wYkvGBo5JwRAZ4k8RghJkoYUrigYGm1dPppcPp78OCKPfPGsTFqau9jX5I7mKl0+L5uDCeZpXxnpUcWQNC4qoovfVMF45YQPx6pq82DSqjBph9Mfk2HDs1B4GigG9xGH5BC7WndRYI2s8BTb/extV9MVGNvtf1fGDBx7hi8k6xDTk6dzRu4ZfGvFtwiEhXzvRCQvyRgX1mjSqgiFYxX40iw6nl9TxUvrDrLtsDCdghQTamXsHC/Lto6cfLagX7i6gyyfnh7XXphioq7PDd4ZpakJixRePi8bk24MlLMExw0lhyWaf7C7idMOU8RbW9HGeTPi52lZjm0kTRMIBIPkhHdCdtR1HjNRdsDUboyoYBxeQGsAHOg4gEVjwqSO/KBrlZBvCbKpcWxDAJyZZVhr1qPwD76exJE4J/8cJEniiS1PDPvYgpEnP9nI7y4vY3pPfkZhspGHr5lNs7sbSYJkk4b7L5vJg++V84PXtvPdV7dxwzPr2VDZm1g6O9vGQ1fNJqsnxGpBvp2fXDiNVIuoAzJWrK9sY/mDH5Fh1XHFvGzUSgmTVsX3l09BrZDQKBXo1AquOymP6ZkWZufa+MmFUzFpVaiVEtedlM/5MzLH+m0IJjgzsiz84YoykowaFBKcNjmV0nQz15+Uj06tQKtSsKQ4mfNmZHDlvGyUCgmrXs09n59BWbZtrM0XCAQJOOHDsbbXdg6PJF8UGTY8A8VnDHoXBGBL8xbyLbHVVScl+fmsVsfS7Hhp1dEirDHicRRhr/iY1slnD+vYCknBddOu4+ef/ZzTc0+n1DF8iaWC0WFhoYMnvzyPJpcPu0FNdpKRRYVJ3L6sBK1KwSMr9rHhYEe0f7Pbx3u7GpmbHwlZUKkULJ+RQWmmBZc3QKZVj8MsYu/HCq8/xIPv78UXDPP917Zz/ox0/nDFLDKsOlbtbeE/W+u5YUkBYVnm7R0NmHVq7jp7MtcvKeDsqWkEwzKZNj1q5Qm/3iUYIjq1ikvmZLOoyIEvECbDpuO+/+3hgz1NfHlxPgpJ4p2djYRCYX7xuencuqwYjUohcsYEgnHMCe+EbKvpZHHR0BJyY6j6FEJ+SJs26CG6Al3UuGqYnTonpr00yc+jm62EZRiJkib9xZlZhqP8vWF3QgDsOjuXTrqUH3/yY1664CWUg6gyLxhb0qx60qy9P/w6tYr8ZBW+QIgdda64/pUJYrjzj5C4LhhdvIEQFS29eWhvbmvgzW0N3HfpDNZUtLK/2c2jK3trh+xt7P37ZtlFCJ1g+Mnoc22paO2iqtXD46sORNscJg0KJPKHO8JBIBAMOye0EyLLMjvqnFyzcJi0u+UQbHw2sgsyhIJ+25q3kWPOQa2I/fMk6cMY1TJ72tSUOsYub8KdNo20ba+h7molYBx+vfElmUtYXb+aF3e/yBemfmHYxxeMHoFQmB21nextcmM3qLlsbhanTk4hHJaRJAiFZQpTYm8WGp3dbK/tpNXtpyDZyPQsC3pN73fBHwyzsy4yplWvZnqWVax2DgP+YIgddU72Hfa5Xjkvh9+9W86kNBN3nllCg9NHIAxfWVrIxqqOGDGCC8tE2JVg9Dh/RjrTMi0oJAm5Z3Eu1aJjd5OLPfWROiHTM63kOoRDLBCMR05oJ6S2w4tSIZFkHB65WQ6sihSESx5sXRCQkdnUtJlFR6giPiXJz+o63Zg6IbJKgzt9Okn7PqCx7PJhH1+SJK6Zcg33rbuPcwrOIVk/jDtVglFlVXkzX3l2PXJPbvrDV8/mV2/uossfAiDJqOGpL/fKMre6ffzwtW28t6sp2nbv52dw5YLcmDG/+rfeMcuyrTx67VzhiAyRFXuaufm5DdHPdXaujUe+MIdL52bT4fUzPz+Jb7y4OSp/mmbR8rsryvjuq1tRSBLfOKOEk4ZzV1kgOAaZNgM//88uOjyR30OzVsWj187hkj99QiAUmcj5DgPPXL9A7IwIBOOQEzpQd1tNJ0Upw3RhCgdh09+g6EyGUta8oqMCtVKFQ594h2GKI5IXMtY4s2eTvPvtERs/05TJ4szFPLDhgRE7h2BkaXX7+Pl/dkZvaienmXlre0PUAQFo6/Kzam9L9PnuBleMAwLwyzd3UdPuiY750zd2RMcE2FLTyY66zpF7IycALS4fP3099nPddLCDHbWdZNr0fPPMSby4rjqm/kKj00dVaxc3n1LI/ZeX8dVTCrEP14KOQNAP3t7eEHVAAFy+IP/aVMvS4pRoW2Wrhw1V7WNhnkAgOAYntBOyqbqDvOFaHdn/QaRIlmNoFVHXNa6nxHbkmiW5liDtPiUNXWObK+FxFKHyOdG37Dt250FyQeEFrKxZyY7WHSN2DsHI0R0I0dDZK6LgMGmo74wXVeibc+Dqjt/hc/mCeHocF28gRKMzfgynd+yKeB4PdAdDNLp8ce3O7sjn2h0IUdcRX2uhrqObFXua+HBP44jbKBAcTnV7/JysbveSm6RH2SdxstkdP7cFAsHYc0I7IRur2ilOGYaCZ+EgbHkeik4f0jAt3lYauxrJteQfsY9CgtIkH6vrxng3RFLQmT2XlN3/G7FTGNQGLiq6iHvX3ossy8c+QBBDVWsXb2yp44W1B9lc3U4wQSHBkSTVouOyub3F3TZXd7CkOH6Hr6+uf1GKCe1hBe2WFDvItEbme5pZx6VzYgvGKSQS1qYQ9J9Us5ZL52TFtCkVEsWpJkJhmUaXj4sS5HvMzbOzqbqTs6fG12YQCEaas6bGVyE/f2YG2XY9t5xaxJ1nlnDrqUXMEXVCBIJxyQnrhARDYXbWOykcDidk33ugt0NS/pCGWVu/hmJbMcpjJLVPcQT4uGYchGTlzMOx932k4JErYA+VU7JPoa27jfcOvjdi5zgeqWzp4tq/rOFrL2zi+//cxqWPfsbqA62jaoNaqeDmUwr54qJctCoFqRYtiwsdfH/5FCx6FQ6jhl9dMp0FBb0VhYtTTTx7wwKmZVpQKyUunJnBzy+aHi10p1YpuHVZEdcsjIxZkGzgyevmMy1z5CplnwhoVEpuP62YaxZEPteiFCNPfnkeUzMsrKto4+KHP6GipYsvLsrDpFWRatbyfxdOZVd9J7/5/Azm5499VWjBicfCAjvfPXcySUYNVr2aO88soTjFyD3/28OfPtzHA+/t5fUttdhNIkxQIBiPnLCJ6bvqXaSYtUOvlB4KwJYXYPplQxrG5XdR3l7OBYXnH7Nvid3PK3tMOH0SFu3Y7RAEDA66rVnYKz6ireSMETmHQlJw+aTLuX/d/ZyafSoapfgx6Q8bD7bHhCqEwjL3vb2Hshwb5lGsXJ3rMPJ/F07jlmXF6NVKkowaTipO5uJZWVElm75IksTCQgfPf3Uh7u4gyWYtWlVs6GGew8jPLprG7af1jikYOnkOIz+7eBq3n16MQa3EbtTg8Qf5w3vlBMMyr26sJTfJwJXzczip0MH0HAsSEqnmsV8QEZyY5CebuXWZmdOnpCLLkJtk4Non1xAK9/4u1nZ0s6W6g5JU81FGEggEY8EJuxOyrrKNSWnDtAticIB9aDK/n9Z9RqGtCI3y2IXZNEoosQdYXT/2P/6dOQtI3f7vET3HVMdU0o3p/G3n30b0PMcTfZM1D1Hf2U13YHRDsiCyI5Jl08c4C+lW3VGroFv1GrLshjgH5GhjCobOoc/1UIK5LximrjPizOrUCuo6vDz5cQU7G5ykmfXCARGMCyanW5iSYcF7WB7aIVrdI7dbLxAIBs8JuxPy2YHWoa+MhPyRXZCZVwxpmA5fB7vbdrG84Lx+HzPV4eejaj1n58cn5o0mrvRppO58A33LfrzJRSN2nssnXc5v1v6Gi4ouIsWQcuwDTnBmZluRJGLUjq5dlEfKMFcfr+vwsqm6g9p2D6UZFopTjOxpdFPe6CLfYaQsx0ZaH2fjUG2ezQc7UCpgdq6dKRkilGq8YjdouPXUIjq9Ado9ATQqBRIwKdXI3kYXJWlidVkwtny2v5WtNR3IMpTlWPnqyYX87D87Y/rMybWPkXUCgeBonJBOSDgss7aijYuHWlhrz1tgSgNb7rH7HoUV1SspsU1C149dkENMcfj51z4jXQEJo3oMk7YVStrzFpO+9R9UnP7dETtNmjGNpVlL+d3633HPKfeM2HmOF2ZmW3nii/P4zVu7aHX7+fJJ+Vw+L/vYBw6AFpePu1/Zwqf7I7km0zItLCxI4qlPKqN9LpyZwS8/NwOrIRICtrm6g6ueWB2VejVrVbxw0yKmZ1mH1TbB8JFi1vGjf23nUIRLiknLrz8/nSse/4wXb1rE5HThRArGho/3NnPz3zZEZb91agV//uI87jyjhGc+q8RuUPO95aXMzBbXF4FgPHJChmPtrHdi1qlwmIawKhzwwraXofjMIdlS5ayi1l1LqWNgBQ71KpliW2Bc1AzpyFuIrfJT1F0tx+48BM4vPJ/V9avZ0LhhRM9zPKBRKTlrahqv3noS73zzFL55ZgkZ1uEt5ren0RV1QADOKE3lr59VxfR5Y2s9+5pdQGQX5NnPqmJqTbh8Qd7e0TCsdgmGj3aPj0c+3EefEHua3T72NbqRkfl438h+5wWCo/H2jsaYukPdgTD/2FjDN84s4e07T+G125ZwzrR0tOqxlbQXCASJOSGdkJXlTcwY6srrjtfAXgCWjEEPEQgF+F/F/5iTOhulNPBNqZkpPt6rMgz6/MNFWGOkM3su6ZtfHtHz6FV6rpx8JT/99Kf4QyLGtz/YDRrSLDqkIRTQPBIef3xtjr4JoYfw9twkhMIydR2euNfrE9SfEIwPvP4QbZ7471qHN4BZq6Y5QW0RgWC0aEpQM6jJ6SMcDpNm0WEziJwxgWA8c0I6Ie/tbGJmtm3wA3haYee/hrwL8v7B90jSJZFlyjp25wSUOvyUt6lp8Y79n7G96FSS97yNumtkZWDnps0lSZfE41seH9HzCI5NUYopRl2uqtXD1IzYHIEUk5aCHhlslVLBtYviBRwuGGpYpGBY6Q6EWHOglT99sI8t1R1cNic+jG96lpXqdi+nThL5WYLR40Czm5fWHeRPH+5jTUUr586Ir09z8axMlEqx8yEQTATG/u51lGl2+Shvcg2trsC6JyF7PhgGr42/pXkLlZ1VzEmbO+gxNEqYmeLnvcqx3w0J6qx05swnc91fR/Q8kiTxhdIv8HL5y2xv2T6i5xIcncIUE3+7cQFLix04jBompxm5bVkx50xLI8moYWlxMt8/bwpGTe8NwcklKfzm89PJtuvJdxh46KpZzBM1JsYVH+xu4sonVnPfO3u49e+bsBvU3HlGCekWHZPSTPzu8jLWVrTy2LVzmZ1rG2tzBScIlS1dXPvkGr776jbue3sPVz6+mnSLjl98bjp5DgPZdj0/Pr+UxYXxBVEFAsH45IRLTH9rez1zc+2olYP0v+o3Q8NWWPKNQduwp20Pq6pXcXru6agVQ/sTzM/o5sVdJi6f4kY5/BE3A6K1+HQKV9xH0/SLR1Qpy66zc/WUq7l75d28cuErmDVCoWesmJ1r54kvzcPdHaS1y8/5D33E9Cwr505L50CLm2+9vIV/3LI46mjYDBquXpDH2VPTUSgk7CJcYlzR6vbx6//uimn70b938Nfr53PJnCx0KgUqpYIzS1Oxir+dYBTZWtNJXUds+NX3X9vGa7cu4eTiZGRZju66CgSCicEJtxPy0rpqFhcNcqUk4IVPHoLSi0A18KR2GZm19Wt4p+odTsk5dVhunrPNQYxqeVwkqIc1Bponn0P+yt9BOHTsA4bA/PT5TE6azPc/+j5hefRrXwh6MWhUpFp0BEJhwnLkZuH5tQdZfaANiIT3HI7DpBUOyDgkEJJxeuNrzDS5fOQ5jKRZ9ThMWuGACEYdb4IctA5PAH8oTH6yUTggAsEE5IRyQrbVdNLs8jEzyzaIo2VY/aeIHG/qlAEfW+uu4e87n2d7y07OzDsTu3YwNiTm5GwvL+wyxdSEGCs6cxcgARmbXhjxc105+UoaPY3cv/7+ET+X4NjkJhmYnWOLaUu3aikUNwcThjSLluuWFMS0qRQSU9LFbqNgbCnNtKBSxG7337Akn9Rhrn0kEAhGjxMqHOuRFfs4e1oaCsUg4pZ2/QeadsPCW47ZNRgK0OF30uptoc5dx77O/QRDAaYkTaHQVojE8MZNTU3282G1no9rdZycHa8WMqpICurLriDv4z/SlToFZ868ETuVWqHmtrLbuG/9fehVeu6YdceIqEAJ+ofNoOG+y8v466cVvLerifkFSdx6ahGZtuGVBhaMHJIkcc2CXPRqBX9fc5Asm55vnjmJaZmizoJgbJmWaeVvNy7gD+/upa7TyxcX5XHxrExxzRcIJjCSPB6WzwfIvHnz5PXr1w/omM3VHdz4zDruv7wM3UA1ww98CGv/DAtuiklGd/ld1LsbaPI20uJtpcPXjtPnwh/2Y1IZsWgt2LR20o1pOPSOYXc++rK/Q82re0w8cW7T2BYv7EHfeoDMDc+x97xf0pU2dUTP1enr5IENDzAvfR4/XPhD1Er1cA7f7z/aYObl8UgwFKbTG8CkU6FVCZWaEWJAF5PBzM22Lj86tQKD5oRaqxIMnRG9Znr8QboDYZKMIiRQMCCEtzoOOSF+XTz+IHe9vJkr5+cM0AGRYds/Yec/Ye51eNQ6Klt3UdF5gIPOg/jDfpL1yVi1VpJ0SeSZczGoDehUuhF1OBJRZAswOcnP/Wtt/Pikdgaz2TOceB2FNJRdTsl/f0TVqXfSXnjKiJ3LqrXynQXf4cltT/KF/36BXy79JZPsk0bsfIKjo1IqhlYIVDAuEDd5gvGIQaNCpCQJBMcHx70T0uULcvPfNpCbZGBpcXL/D2zbT3jN4/g9LWzKmcmeqrdo93WQZkgjzZDG0qylWLXjK0ThvKIuntlm4b61Nr45rwPNGC9Cd6WVUrvgOnI/eQT7/lXULLwR/xCKOx4NvUrP7bNuZ2XNSm743w2ckn0KX572ZSYnDawSvUAgEAgEAoFg5DlunZC2Lj/v7mzgoff3UZph5rqTCo4QOyrjCXrodDfibtlFuGE7toYdmLydrNFrqbZmkUyYGckzcOiTUUjjN5dfrYAvT3fyarmJm95O5copbhZmdpOkGzv1qG5bLhWnfBPH/hVM+8ctdKVOoT3/JLrSptJtyyGsHj5VL0mSWJazjPnp8/ng4Afc/O7NWDQWlmYtpSy1jGJbMRnGDAzqsa+rIhAIBAKBQHAiMyFzQiRJagaqEr2WdvVvinW5M6JbFHIoIPsbD/g16Wql0thblEMth5nhi5eiPESXJCHLEPlv/COB1NfW/XKBFCQ2N+Kv2ltDZqlr1G07hBZZmkboiF7cDzB1vyzp43UYe5DDslpSSEf+ox2OhKRJ0+iVuqMXhWn/uL2p9i+11Ud4uUWW5XP7dbqjzMthJhloGYXzDBVh5/DS185+z0sY1bl5JCbCZyxsHB50sixP70/Hfs7LifCej8VEfw/Hg/27B3LNFIwOE9IJGSiSJK2XZXnkZJrGAeI9njhMlM9B2Dm8TBQ7EzERbBc2Dg/DbeNEeM/HYqK/B2G/YKQYv7FFAoFAIBAIBAKB4LhEOCECgUAgEAgEAoFgVDlRnJAnxtqAUUC8xxOHifI5CDuHl4liZyImgu3CxuFhuG2cCO/5WEz09yDsF4wIJ0ROiEAgEAgEAoFAIBg/nCg7IQKBQCAQCAQCgWCcIJwQgUAgEAgEAoFAMKoIJ0QgEAgEAoFAIBCMKsIJEQgEAoFAIBAIBKPKqDghkiQpJUnaJEnSfxK8tkySpE5Jkjb3PP5vNGwSCAQCgUAgEAgEY4NqlM7zDWAXYDnC6x/JsnzBKNkiEAgEAoFAIBAIxpAR3wmRJCkbOB/4y3CNee6558qAeIjHaDz6jZiX4jGKjwEh5qZ4jOKj34h5KR6j+BCMQ0ZjJ+QB4DuA+Sh9FkuStAWoA+6WZXnH4R0kSboJuAkgNzd3BMwUCAaOmJeC8YqYm4LxiJiXAoHgECO6EyJJ0gVAkyzLG47SbSOQJ8tyGfBH4F+JOsmy/IQsy/NkWZ6XkpIy/MYKBINAzEvBeEXMTcF4RMxLgUBwiJEOx1oCXCRJUiXwInC6JEnP9e0gy7JTlmV3z7//C6glSUoeYbsmDL5AiLoOL67uwFibIhAIBFEanF6aXd1jbYZA0C98wchvaadX/JYKBOOFEQ3HkmX5+8D3IaKCRSTU6tq+fSRJSgcaZVmWJUlaQMQxah1JuyYKextd/P7dcj7Y3cT0TCs/Or+U2Xn2sTZLIBCcwLS4fby6oYZHV+5Ho1Rw99mTWT49HbNePdamCQQJ2d/s5uEP9vLW9gaKU0z8+MKpLCxwjLVZAsEJz5jUCZEk6RZJkm7peXoZsL0nJ+Qh4CpZlk/4JKJOj5+7X9nCW9sb8AXDbDjYzpeeWktlS9dYmyYQCE5g3t/VyG/e2k2HJ0CTy8d3Xt3Kuqr2sTZLIEhIly/Iz17fyWub6ugOhNle5+RLT65lb6NrrE0TCE54Rs0JkWV5xSEZXlmWH5Nl+bGefz8sy/I0WZbLZFleJMvyp6Nl03imut3LlprOmDaXL8gB4YQIBIIxwh8M8fyag3Ht7+xoGANrBIJjU9fhZdXe5pg2XzDMvmb3GFkkEAgOISqmj1MMGiVaVfyfx6wdrdIuAsHA8QQ8/OCjH3DJvy/ho5qPxtocwTCjVCjITzbGtefY9WNgjUBwbHRqJaYEv5tmrQgfFAjGGuGEjFPyHEbuPntyTNuFZZmUpJnGyCKB4Nj8YvUvaPI2cUHhBXzvo+9x0Bm/ai6YuCgVEteflI9erYy2JRk1nDk1bQytEgiOTE6SgR+dXxrTtmxSCqUZR6saIBAIRgOxrD5OUSokrl6Qy/QsC5WtHtItOqZnWbAZNGNtmkCQkK3NW/ms7jN+ueSXaFVazsg9g0c2P8I9p9wz1qYJhpFZuXZeu+0kdtY7USkkpmVZKUoRiyOC8ctFszIpTDGxv9lNilnLjCwLDpN2rM0SCE54hBMyjjHpVCwuSmZx0VhbIhAcm79s+wvn5p+LVhX5cT8j9wy++9F3ae9ux64Tqm7HE1MyLEzJsIy1GQJBvzBoVCwoSGJBQdJYmyIQCPogwrEEAsHQ2Poy4XvyuGLDqyxNmxNtNqgNzEyeyduVb4+hcQKBQCAQCMYjwgkRCASDp2k3vPUd1pSeQ4rKQNHGl2Nenp06m/cPvj9GxgkEAoFAIBivCCdEIBAMng9+CdMu4X1PFdVTlpOy+02U3b3S0tOSp7G5aTPeoHcMjRQIBAKBQDDeEE6IQCAYHJ21ULGSzvwl1HXVkZ4yla7UKSTtWxHtolfpybPksalp09jZKRAIBAKBYNwhnJBxQiAYprKli+o2D6JgvGBCsO0VyFvCto595FvyUUlKXBllOPZ9GNNtkn0S6xrWjZGRguHEHwxRIa5TgnFEKCxT1dpFVWsXwVB4rM0RCAQDQKhjjQPqOrw8vnI/f19zELVSwTfOLOHK+TnYhRyvYDyz/VWYeSXbmj4lz5IPQFdyMRmbXkDpcxPSRmRbi23FrKxZOYaGCoaD2nYPj6zYz4vrqtGqFHzzzElcMS8Hq0EUfROMDS1uH899VsWjK/cjy3D90nxuWFJAmkU31qYJBIJ+IHZCxgH/3VbPXz+rIhiW8QZC3PPWbtZVtI21WQLBkXHWQUcV4bRp7GzdRYE1HwBZpcVrz8NUvy3atchWxM7WnQTDwTEyVjAcvL6ljr+vOUgoLOPxh/jVf3exvkpcpwRjx8d7W3jg/b34gmH8oTCPrzzAh7ubxtosgUDQT4QTMsZ4/EFe3VgT176yvHkMrBEI+snedyFzDjVd9WiVWiya3poR3qQCLHWbo88NagMOvYP9HfvHwFDBcODqDvDqxtq49k/3t46BNQJBhP9tr49r++emGsJhESooEEwEhBMyxmhVSqZlWuPaJ6WZx8AagaCf7HsXMsrY07abHEtOzEvepHxM9dtj2vIt+exo3TGaFgqGEZ1KydQExQkLk41jYI1AECHRb2dZtg2FQhoDawQCwUARTsgYo1RIfHlxPhZ9b3pOQbKRk0uSx9AqgeAohMNQ+TFklLGrbTfZpuyYl7tt2ejbKpFCgWhbjjmH7S3bDx9JMEFQqxR85eQCLLre61RRipGTih1jaJXgROec6elkWHvzP5JNGj4/J/soRwgEgvGESEwfJeo7vHR4A6SatThM2pjXZmRb+dftSyhvcKFWKpiSbiHLrh8jSwWCY9C8G9RGZGMye9v3sihjYczLYZWOgCkZfVslnpQSAHItubxV8dZYWCsYJmZm2yLXqUYXKoVEhk2PLEMgFEatFOtZgpFHlmUOtnnoDoTJsumYlGbm5ZsXs7vBSViGKelm8hxid04gmCgIJ2SECYdlVpQ38Z1/bKXF7acoxcjvr5hFWY4tpl9hsonCZNPYGCkQDISqTyBtGo2eJpSSIiYf5BDdlkwMLfuiTkiOOYd9HfsIy2EUkrhhnagUppjQqhQ88N5e/rGxBpVC4isnF3Dj0kKSD1tcEQiGE7cvyD831nDPW7vx+EMsKXbw84umU5RqIifJMNbmCQSCQSDuBkaY/c1ubvnbRlrc/p7nXXzthY20uHxjbJlAMEgqP4aUKexr30eWOXHog8+cgbF5T/S5UW3EqDZS64pPbhZMLP67rYFXNtT07ILIPLriAKsPiAR1wciyraaD//v3Djz+EACf7Gvl0ZX78QdDY2yZQCAYLMIJGWEOtnnwH1ZA6WCbl/pO7xhZJBAMkeo1kDqVvR3lZBgzEnbxWTLQtx6Iacsx51DeUT4aFgpGiO5AiH9viXckV+wRan6CkWV/c1dc2/+2N9Das8AnEAgmHsIJGWEcxviCg2atCqteFPgSTEA6ayHgBUsm+zsOkGnMTNjNZ0lH314FfapqZxgz2Nu+d7QsFYwAGqWCObn2uPZpmfEheQLBcJJqiQ/3m5JuxqwTUeUCwURFOCEjTEmamTtOK44+lyT45SXTyRXJc4KJSM06SC2lO+yn2dNEqjE1YbeQ1owsKVF3tUTbMk2ZwgmZ4CgUEtcsyCWlT/7HpDQTyyYnngcCwXBRlmXltMkp0ed6tZLvLZ+CSScW9ASCiYpYQhhhjFoVt5xaxGlTUmhy+sh1GChJHVwNkOo2Dx0eP6lmHWl9ZAkFglGjZh04iqlyVpFqSEMlKY/Y1W9JR99+kIApcuOQaczkw4MfjpalgmGg0xugpt2DTqUkz2FApVQwJcPCP287qUclS8HkdBPpVqHmJxhZ0qx67r+8jD0NLty+IIUpJopTTXQHglS2ekCGPIcRvebI1ySBQDC+GBUnRJIkJbAeqJVl+YLDXpOAB4HzAA9wnSzLG0fDrtHCpFMxNy9p0MeHwzLv727i7le20OkNkGbR8ser57CgYPBjCgSDonotlF5ERWcFaca0o3b1G1PQdRzEmTMXiIRjVbuqCYaDqBRi/WO8s7/JxXdf3cb6qnbUSomvnV7ClxfnYzWoyUkyCEUiwajjMGk5qbh3F66+08sD75bzco9QwkWzMvnOOZPJtou5KRBMBEYrHOsbwK4jvLYcKOl53AQ8Oko2TRj2N7u5/e8b6fRGir81On3c/vxGkdwuGF1CQWjcDsnF7O/YT7rhGE6IKQV9W2X0uValxaa1UeeuG2FDBUMlEAzz+KoDrK9qjzwPyfz+3XK21HSMrWECQR8+Km/hpfU10dSz1zfX8e7OxrE1SiAQ9JsRd0IkScoGzgf+coQuFwPPyhFWAzZJkhJL7pyg1HZ44xS2ml0+Gju7x8giwQlJyx4wpoDGRKWzgnRj+lG7+4wp6NsPxrRlmDKodFaOoJGC4aDd6094M7en0TkG1ggEiXlvV/wcfXNrPeGwnKC3QCAYb4zGTsgDwHeA8BFezwKq+zyv6WmLQZKkmyRJWi9J0vrm5hNLDjLZpEWSYtuMGiX2BMpbgtHlhJqXtRvAUUJX0IPL7yZJ7zhqd78pBa0zVs41zZBGRWfFSFop6GEoc9OsVTMz2xbXnivCXARDZDivmfPy40OSFxc5UCikBL0FAsF4Y0SdEEmSLgCaZFnecLRuCdriljFkWX5CluV5sizPS0lJSXDI8UtxqokfnFcafa5USNxz6UzyhMLWmHNCzcua9eAopMpZRZoxDUXCr24vQb0Nlc+NItAbNphmSGN/x/6RtlTA0OamXqPkrrMnYTP0Kg+dVZrKrBzbMFspONEYzmvmWVPTKE3vFXopTDZy8azEsuECgWD8MdLZoUuAiyRJOg/QARZJkp6TZfnaPn1qgJw+z7OBEyJovL3LT3mjC38oTEnqkRVmdGol1y7KZVFBEs0uH5l2PUUpplG2VnDCU7sR5nyJg51VpOr7IckqKSK7IZ21eJMjMtXpxnTerXq3X6fzBUPIcmT+C0afmdk2Xr99CQeau7Ab1fhDMu2eADaDBu1hf5Ou7iAVrV3IQIHDIGRTBaNCQbKRv96wgL1NbsKyfNTf0f1NLqraPCQZtUzNsKBRiQoFAsFYM6JOiCzL3we+DyBJ0jLg7sMcEIDXgTskSXoRWAh0yrJcP5J2jQf2N7l44L29vLE18lbn5tn46YXTmJEgBAJAr1Yd8TWBYMQJ+qB1LyQVUFG3glRD/1Yw/QYHus66qBOSZkyjyll19FOFwvzmrd38fU0VEhI3Li3grrMnIR0ekygYcXIdRvyhMHe9vIUtNZ1IEly3OJ/bTy8muadWSG27h1++uYu3tjcAcMaUVH560VRyksROrWDkSbXoSLUcXbL+473N3PXKFhqdPrQqBXefPZkr5+dgEUWDBYIxZUyWAiRJukWSpFt6nv4XOADsA/4M3DYWNo02qw+0RR0QgA1VHfxrcy3h8JFSZwSCMaRxO1izQaWjylVF2jGS0g8RMDjQddZEn9u1drxBLy6/K2F/WZa565UtbKhq58GrZvP7K8p4Z2cDD74nihyOBcFQmL9+WsmWmk4AZBme/rSSjQfbo30+3NMcdUAA3t/dxDs7hEKRYHxQ3dbFj/61nUanDwBfMMyv/ruLbT1zWiAQjB2j5oTIsrziUI0QWZYfk2X5sZ5/y7Is3y7LcpEsyzNkWV4/WjaNJX1/xA/xyb5WOjyBMbBGIDgGdZsgqYjukI/27nYcuv7VqAkYktD2cUIkSSLdmM5B58GE/V9cV83Wmk7uPLMEi06NzaDhzjMn8cynlexuEMpMo42zO8D7u5ri2nfU9t7ArdgT//rbOxuRZaFQJBh7mpy+SDHDw6huj28TCASjiwiKHCOmZ1rj2ubk2rCIWGrBeKRmAyQVUeOuwaFPRnmUSul98Rsj4Vh9STWkJgzJanb5uPet3dx6ahFaVe/4doOGi2Zlcu9bu4f2HgQDxqRVsagoXgVtcpol+u/FhfGvn1KSLMLnBOOCJKOGTGt8uFZ6gjaBQDC6CCdkjFhU5GBhn4rn+Q4Dl8/LQSWS5QTjkbqNkFxMtbO63/kgAAGjA60zNsUrRZ+S0Am5/509LC1JTliJ+4wpaWyu7mBfU+IwLsHIoFEpuenkQrJsvTdsy6enMyfPFn1+Zmkas/uoZk3PtHDeDFHqSTA+KEgx8bOLp2HURBY2JAluObUw4UKgQCAYXUZaHeuEZlNVO3WdXlLMWmZm2dBpeld3SzMs/P7KMvbUuwiEwkxKM1OQQPGqqrWL+k4vDqOWgmQjKuXx5aQEQgEqnZV0+DrIMGaQbc4GwOlzUumsJCyHybfkY9PZxtbQExm/B9orwV5AVeOnJOsH4ITobKi6O5GCfmRVpK5NqjGVCmdsrZCq1i7e2l7P7y6blXAcjUrB6VNSeeaTSn55yYzBvhPBIJiSYeEft55ERXMXWrWS4lQToXCYDZVtaNVKPL4g3zl3MkpJwu0LMinNjNWgZkt1B4FQmIJkI46eJHbByNDmbaPSWYlGqaHAUoBRExEF6PR1UtlZCUCeJe+4vI52ev0caO4iLMsUppiwGzRUtrjZ19SFQaNkSoaZs6am8/evLqS6zYvDqGFqpgWbQdTZOhb17npq3bVYtBbyLflolPGfWSAUoMJZgdPnJNOUSaZJSCQL+o9wQkaIN7bU8b1Xt9LlD6FRKvjB+aVcMisTa58LX5bNQJbtyMW/Pt7bzK3PbcTlC6JWSvz84ul8fnZWnDzmRKU72M2re1/l/nX3E5SDWDQWHjztQTJMGfxq9a/4qPYjAGanzuYXS35BniVvjC0+QWnYBrY8UKo56Kxmceai/h+rUEbyQtyNdNsiStxphjTW1a+L6fbH9/dxVmkaJt2RL0mnTkrhx//ewY8vnBoTriUYeTKsejJ6pE8PNLv55ktbWFyUxOoDbWyu7gBgQUES0zMt7KjrZFeDi/9uiySrT80w89DVcyhOFbLiI8GBjgN8e+W3Ke8oB+D8gvP55txvEggH+NlnP2N1/WoAFqQv4KeLf0qOJedow00oqts8/PC1baza2wLA/Hw73zt3Cne9siWaB3LF3GwumpXJHS9sosMTQKmQ+MF5U7h6QS4GjbgFOhKbmzbzjQ+/QVt3GwpJwddmf42rp1yNUd2reucJeHhh9wv8cdMfCckh7Fo7D53+ELNSZ42d4YIJxfG1rD5O2FbTwY//vZ0ufwgAfyjML/6zk531/U+srevwcudLm3H5ggAEQjI/fG0b+5rcI2LzWLCvYx/3rL2HoBx5j06/k1+v/jWrqldFHRCATU2beLvy7bEyU1C3ERxFhJGp66ojZQDhWBBJTtf0CclKM6RR4+5NVm/o7ObtnQ2cM+3oilspZh25SQZW7DnOK9OPc17bVEtdhxdvIBx1QADWVrShUihQKKSoAwKws97Fi2sPEg6LRPXhJhQO8eKeF6MOCMCbFW+yqWkTq6pXRR0QgLUNa/mg+oOxMHPEWLGnKeqAAKyrbOednY10+UK9nSSJH7y2LSr6EgrL/OI/u9jTIEI7j0RHdwc/++xntHW3ARCWwzy48UHK28pj+u1p38MDGx8gJEc+73ZfOz/59Cd0dHeMtsmCCYpwQkaAJqcvTuUqFJap7+zu9xitbh8tbn9MW1iGBmf/xxjv1HfFl4NRKVUxP5yHWFWzilA4FNcuGAVq1oOjmBZPMzqVDp1yYAmdAUNSTF6IRWOhO9gdlel9+pMKlhYnY+6HKMP8fDtvbDkhapmOS7oDIT7Y3URRqjFGIesQexpdeP3x39MV5c10+YOjYeIJRVewi09qP4lr396ynW0t2+LaV9WsGg2zRo1V5S1xbRuq2ilK7V2tT7VoOdjmjes3kN/jE412Xzv7OvbFtdd7Yn+zG7oa4voc6DxAuy9e/VMgSIRwQkaAFIsWmyH2hkqpkMgYgBqHw6Ql2RQbf6mQji9Fj3RD/Mp3MBRkUUZ8uM8p2aegVIgQnDGhbiM4Sqh21ZBm6Eel9MMI6GwxTkhUptd1EI8/yEvrqo+5C3KI+flJrNjTjC8oHNKxQKdWcvqUVPY3dTEtKz6xd3KaGb0m/nu6bFIKRhH6MuwYVUaWZC2Ja5+WPI0ZyfG5UydnnzwaZo0aJ5ckx7XNzbOzv6kr+rzJ6SM3Kb6KeiLFLEEEu9ZOsa04rj3DECs4kWGMF6AotBZi19pHzDbB8YVwQkaAmdk2fnHx9Kgah0ap4EfnlzI1w3KMI3vJtOl54MpZmLWRH261UuJXl8ygOEHy+kSlxF7Cd+d/F5UUeY8WjYUfLPoBp+ScwtKspdF+s1Nnc07+OWNl5omNtwNc9WDLpdpVjUMf/6N/LAKGJHSHKWSlGlKpdlXz7811TEozk3aMiseHsBk0ZNv1rDnQNmA7BMPDJbOzyLTpMKiVlGX3OiLz8+2EZJlQWOa8Gb1O5dQMM1ctyEWhEJK9w41SoeSqyVcxyTYp2nZewXnMSZ3DKTmnsDBjYbR9ftp8zsg9YyzMHDFOm5IS44jMz7dz9tQ0DNpeR1iWZX59yYzowqBSIfHjC0qZlG4edXsnCjadjZ8s/knUmVBICr4+++tMSpoU06/EXsKdc+5EIUVuJe1aOz876WfHpQCCYGSQJmJBqXnz5snr14/vmobhsMymg+3UdXaTYtYyLdOMWafB7Quyv9mNyxsk3arD6fXjC4YpSjGRmuBGrKq1i7oOL8mm418dK9OUSZYpCxhX6lj9vnOaCPNywOz/AN79CZzzax7c9BC55hxKk0oHNISuvYqUXf9l5+WPR9te2fMKJfZJ/OP9SXx+ThYzs239Hu/fm2tRKxX84nPTB2THccaA7uiHe27uqu/kQI9alk2nIgzoNUoCQZnCFCNKhcSB5i6hjjVKHE0dq8pZhSzL5FvzsWpHRZZ2VK+ZB5pd7G3qQg7LlKSZKEo1R9Wx9BolpRlmkoxadtR1crDVQ7JJQ2mGBZOoyXVM6tx11LnrsGgs5FuPoo7VWYHTP+7VscQqyDhE7I+PEO/tauRrL2zCFwyjVEj87KKpnD01nYc/3Mezn0VqJNgNar5+Rgm/fHMX+Q4Dj107l5K02NWZPIeRPIcx0SmOC9RKNSX2krh2i9bCzJSZY2CRIIaaDZAc+fvUumqYmzpnwEMEDEloXY0xbSmGFNZXteDyFTA9QVjP0ZiVY+PhD+PjlQWjw/rKNr7zj60caImEvMzNs/F/F0xlRpYtpl9Zji3+YMGIkKRPIkmfFNdu1VqP6+vo9toOfvDadrbWRPKTJqeZ+O1lZZTl2MhP7o0a+HRfC199dj1d/hCSBN86cxLXLy3ApBW3QEejP06FWqmO2yERCPrL8bWsPk442Obh7le24AuGgUhS+v/9ewebqjuiDghAuyfAa5tqIzHWzV28tK5aKMgIxhfVa8BRQnfIR6evE7tu4LG+IY0JRciPwu+JtqUaUtm0z8Rpk1NRDLCydm6SAa8/REVL17E7C4aVUCjEvzfXRR0QgA1VHXwmwuMEY8AHu5ujDgjAnkY3b22LDf1scnZz9ytbomqVsgy/e7eccqGOJRCMOcIJGQHa3D6c3bFKMGEZGhOoceyoc0bzPD7e14I3IBJuBeMEWYba9ZAyhXp3PUl6B0ppEOIAkoTf6EDr7t0NMatSaG7O5OSSgcn9RoaTmJFt5eN98co4gpHF6QuyqTpe+WZ7TbxSlkAw0mw6GD8X11e1EwqFo887PAHqEvz2Hk9KkwLBREU4ISNAqkWHwxgbO6lSSGTZ4xU65ubZ2VEX+QE/a2oahgTKMgLBmNBeAQo1GJOpcVeTMoik9EME9HY0fUKydh80otTVYtAObudvaoaFlaJeyKhjN2g5qdAR1z43T6jhCEafRUXxc3FJcTLKPrmTDpOGopT4kObsBL/HAoFgdBFOyAiQadPz0NWzsfeocRg0Sv5w5Szm5Nq56+xJqHpUYvIcBs6emsZH+1pYkJ/E5+dkIw0wNEUgGDGq10JqJAm9xlVLki7+B7+/BPU2tK5eTfkPtndjs9XT4hncbsb0LCtrKloJifDFUWf59Azm5/c6HedOT2N+QXw+gkAw0pw6KYXTp/TKhi8pcnDOtLSYPg6TlvsuLyPVHBFH0KoU/OqS6UxKE+pYAsFYI7KyjoHHH2Rfo5sWt4/sJAPFKaY4qcnadi/7m12olUocJjU17d0kGdW8eutJtHsCJBnV5DuMSJLELacUcfbUdLp8QdKtWjo8Af512xLykw1Y9fHKExOF9u529nfspzvUTb4ln2xz9libJBgqBz8DRyQpvcZVzdTkqYMeKqCzoXFGnJD6jiANnSHySnw0eZvIGISait2gwW7QsLPOyYzsUVH8OSGoaHZT2erBoldRkmrGoo9VECpvcFHb4eFbZ03GHwqhlCRKUk2kWcWq8mhw0HmQKmcVRrWRYlsxFm3/Zd+PBzo8fvY2uenqDlKQYmRKuoUfnjeFLyzMRZZl8pINlKTGfyZzcu38+/Yl1HV2Y9OryU+OKLgJxpYqZxUHnQcxqo0U2YpGS71NMI4YkBMiSdJJQH7f42RZfnaYbRo3dPmCPLHqAA++vxeI1Pt45AtzOHNq70rLrnon1z+zloZOHxBR7inLsfHXTyu5ekEO3z5nMknGXnlKtUrB5D765Jm20XkvI0ljVyO/+OwXrKxdCUS0wh876zGmOgZ/0yoYB1R9BgtuAqDWXcspOacMeqiAwY6+PSLKsGpXN9Oy1ah0Fpq9g8/rKM0w88n+FuGEDBPrKtq47um10QTeK+Zl873lU6LXr/WVbdz+/EYanYeudVZ+c8kM4YCMEluatnDLe7fgDrgBOL/gfO6efzfJQwiTnEg0ubr5+Rs7+c/WSOK5Ra/isS/M5edv7GB3Y+QzyXMYePDK2czKtcUdn2HTk2ETc3W8sLlpM7e+d2t0Pl9QeAF3z7sbh37wO+6CiUe/w7EkSfobcD+wFJjf85g3QnaNC8obXVEHBMAfCvOdV7dS1+EFIBAK89THFVEHBGBzdQcmrQqtSsELa6vZWeccdbtHm63NW6MOCEC7r53HtjxGd1Ak/k1YvO3QWQ2OItyBLrpDPiyawd/sB/R2tK4GZFnm4z0+pmdrsGqsNHY1HPvgI1CaYeGz/a2DPl7QS4fHz/+9vj3qgAC8vL6G7bWR65cvEORvn1VFHRCAzdWdrK4Qqlijgdvv5rfrfhu9YQN4s+JNdrXuGkOrRpdtNZ1RBwTA6Q3yh/fKSe/jWFS1enhja+1YmCcYAC6fi3vX3Rszn/9z4D8n1HwWRBhITsg8YIksy7fJsvy1nsfXR8qw8UCzyxfX1tblp8PjByKhWhuq4tU56ju90cT0xgRjHG9Uuari2rY2b8XtdyfoLZgQHFwDKVNAoaLWXUuKPmVIlZ6CBjsadzNVLUH8AZnsJCU2rY1GT9OgxyxNt7Chqp1gHyUcweBwdgfZVR8vWdroiiwkdHgDbE+woLJHyJyOCi6/i91tu+Pam4bw/Zlo1Hd649p21jkpSI5NOt9S3RmjjiUYf7gCR5jP3hNnPgsiDMQJ2Q6kj5Qh45Esu57Dw0bzHIZoZXOLTs3y6fEfSV6SIep85CUZRtzOsWZK0pS4ttNzT8eqE2EyE5bKj6NJ6XXuOpKHuEUe1JpR+j18tqeL0mw1kiRh19loGUI4lkWvxmHSsLP++N9tHGkcJg2nlMSH9eQlRW7wUkxaTpkU//ocoYo1Kth1dk7OPjmuPdeSOwbWjA0FfYoPHuKUkhS2VMfKQ586OSVGHUsw/kjSJXFyVvx8zjHnjIE1grHkmN9USZLekCTpdSAZ2ClJ0tuSJL1+6DHyJo4dJalmHrxqNuaeqqrZdj0PXDmLZFMkRlqSJC6fl8OyyZFaB0qFxJXzcihvdKNWSvz84mmUZhz/iYMzHDO4texWVIrI5zQndQ5fnPpF1Ar1MY4UjFsqV0HaDCCSlD4UZSwAJAUBg5015d2UZkbmhVVjpdXbiszgVy2npJtZIwrlDRmjRsUPzi+lNCOSr6ZVKfjpRVOZlhm5fikUCj4/O5ulPZKoSoXEFxbmsjBfqGKNBjqVjjtm3cHUpEienUah4a65d1GaVDrGlo0eM7KsfG/5FDQ9DkZZjpWbTi0kx67nkKjkOdPSOKs07SijCMYDOpWOr8/+esx8/va8b59Q81kQoT+J6fcPdnBJknTAKkDbc65/yLL8k8P6LAP+DVT0NP1TluWfD/acw4lGpeDCskzKsq10eANkWHWkmHUxffKTjTx89WwOtnnQqxW0dgXY3+zmwrIM0i1a3txWT16SHlmOhDTk2A2UpJnRqGL9v4OtXextcqNSKpiSZibNGnue8YxVZ+WrM7/Kufnn4gv5yDZlY9YK+cMJS3cntJRDymQAqt01zEmZPeRh96qKcDtlMu2RWjgapQatUkunrxObdnAr6pPTzHy6v4WvnlI4ZPtOdKakW3j+K4uobfdi1KnISzJElQC313RQ3ujmmoV5fOPMEgIhmWAoRKOrm90NTrRqJZPTzCLxdwQpthfzxFlPUNtVi16lJ9eci1Jx4tSVsujVfGVpAWdNTcPrD5Fj12M1aNAoFSybkoosy0xKMzElw8LW6g72NrnRq5VMy7SQlxxfJyQRHR4/uxtcdHr9FCSbKEk1Cdn8EaLvfDaoDOSYc06o+SyIcEwnRJbllQCSJN0ry/J3+74mSdK9wMqEB0bwAafLsuyWJEkNfCxJ0luyLK8+rN9HsixfMEDbR41ch5GjbXqbdGqmZlp5b2cDtz+/CV8wsrJ7ZmkqZ5am8tqmOl5cVw2AQoI/XDmLi2dlRY/fWefkS0+tocUdyTUpTbfw2LVz+n3hHA+oFWoKbeJG8Lig8hNInQpKNTIyde5azso9a8jDvhecxTSrE4XUu6ti19lo8jQN2gmZkmHhmU8rCYflOOlswcCxGzXYDyu0unp/Czc9twGnNwjAzGwr1y/Jp6bdy/NrDlLfU40632HgyS/Ppyg1PmxGMDxYddYTOsxVpVRQlNI7v9ZXtvGtl7dwsM0DQKZVx32Xl3Hrcxtwdkfm66wcK/deWhajSpmIVrePX765k9c21QERNcynrpvP0gRhioLh4USfz4KB5YQkugtZfrQD5AiHspPVPY/jsrpYTbuHX/13d9QBAXhvVxM6tTLqgACEZfjRa9s52NoFQCgs8+xnlVEHBGBXg5OP9g0+Vl4gGBL7P4C06QA4/U7CchiTZug3liu8JczQN8a0WbU2mgdZsBAi9ULMOjXlTSJBeiRw+wI8vupA1AEB2FrTSTAkU9vujTogAJWtHt7eMXi1M4FgoLy/uynqgADkJRt5dMX+qAMCERW3jQfjBWQOZ2edM+qAQEQN84f/2kar+/gXlxEIxor+5ITcKknSNmCyJElb+zwqgK39OF4pSdJmoAl4V5blNQm6LZYkaYskSW9JkjTtCOPcJEnSekmS1jc3Nx/rtKOOyxugoqUrrr2tKxDf1xek0xtp9wVDbK7uiOuzSyTbTgjG+7wcFPveg8w5ANS660gxpA5JGQugKyCx25vMVCpj2i0a85AVUUReSGKGY252dPkpb4xXufP4I2Gnh5PoWiYQ9GU4r5m7D/udzLbrKW+MX5Co6eOoHImWrnhno6rVg7uPQyMQCIaX/uyEPA9cCLze8/9Dj7myLF97rINlWQ7JsjwLyAYWSJI0/bAuG4E8WZbLgD8C/zrCOE/IsjxPluV5KSkp/TB7dEm36llaFL9tm23XRxPpDpGbpCejp8CXQaPiorL4itFLi8UW8ERgvM/LAdNeGckJSSoAIkUKHUNNSgc2N2kpNHkw+2JvOmxaO41djUc4qn+UpJlZfUDUCzmc4Zib6RY9p5emxrVb9Rrm5MaH0J0zTSQFC47OcF4zT5kUe/zGqg7OSDBfp2YeWyAm3xEf/nxKSTLJFm2C3gKBYDjojxOiBJzA7YCrzwNJkvotjSLLcgewAjj3sHbnoZAtWZb/C6glSZpwd+B2o4a7z5lEWU/1ZrNWxY8vKGXVnia+u3wyyaZInHVRipE/Xj2HZHPvhe2iWZlcMjsTSQK1UuKO04pYUCBUZwRjwN53IXsuSJFLQ62rBodu6HNxfb2WYpsflbcjpt3WkxMyFErTzayrbEOWj8tIzzFFpVJw1bwclvXc7GlVCm5bVoTHH8LZHeDCmRkopIha1g1L8llachw44oIJw6LCJK5ekINSIaGQYEaWhcvn5nByTx6HVqXgG2eUMLcfUtKlGRZ+d3kZFl2PymOujR+dPxWjpj/6PQKBYDD059u1gUgehwTkAu09/7YBB4GCIx0oSVIKEJBluUOSJD1wJnDvYX3SgUZZlmVJkhYQcYzGzbJmh8fPrnonLW4/eQ4Dk9PMaNVKdtU72VXvJByWmZJuZnq2jamZVn59yQxa3D4MGiVqpQKzVkWaRcefrplDdbuHPIeRKT0JcnsanOysdxIMydx0SiG3nVaMUpLITTKg6q/OeWcNNGyHkC9S1yF5ErIss7djLxWdFRhUBuw6O9Wuahw6B5Ptk0UimODI7P4v5MyPPq111zI3bd6Qh93UpOXKyd2oGp0gh6NOjk1jpXUItUIAUnoc+spWT1zhMsHQmZZl5cGrZrGv2Y0sQ3cwiEqhRKmQsBs0XLsol+5AGINGyZaaDianmVEpJXbXuwgEw0xKN1OYchwkq3fWQuN2CHRD6pSoetxA6Qp0Ud5eTkNXAxnGDPLMeVS7q6NFQScnTcasEeqC/aE0w8pV83OYn5+ELMsUpZiYlWvnpxdOpb6zG41KQX6yAaNGzaf7Wqho7cJh1DIj00LWYTW8dGoll87NZkFBEl2+IJk2PRb9BJOZ9zqhcRu4G8CaC+nTQT36inUNXQ2Ut5fjC/koshZRaCukylnFvvZ9KBVKSmwlZJmzjj2Q4LinP+pYBQCSJD0GvN6zW4EkScuJOBVHIwP4qyRJSiLOxcuyLP9HkqRbesZ+DLgMuFWSpCDgBa6Sx8mSptPr5/639/DcmoPRtgeunEV+soHb/76J2o5IBVe7Qc2fvzSXZrefrz2/iUybngvLMvnTh/uix10+L5uK5i7WV7Vz32UzmZJu5vbnN0WT6ix6FU98cR6LCgcQ+tJ6AF68Bpp3RZ5rLfCl19mgDHHzuzfjD0eS3Wckz2BK0hReKX+FKyZdwZ1z7xQ/coJ4fG6oWQMLbwaIKGN11XOufmgbk80eBW6/gnSTTFhtQNXdSVAfWZk0aox0h3z4Qt1olYOTpZYkidIMC+sq2oQTMkJYDRoCwTBffXYD919Rxndf3UyHJ5LXlm3X873lU/juq9u4emEuu+qcvL6ljv3NkRw5i07F37+ykBnZtjF8B0OkrQJeujbihABoTPClf0P2wBx0f8jP87ue56FND0Xbbiu7jXer3mVvx14Abph+AzfPvBmD+vgvdDtUVh9o5c4XN9PgjAgkJJs0PHT1bG58Zj3eQAiAc6elcUZpGt95dSuH7izOm57ODy8oJcsW/xnnTNQCwz43fPw7+OSB3rYLHoA5XwbF6BVvrHZWc+eKOylvLwfAoDLwx9P/yF0r76LD1wFAlimLR854RChqCgakjjX/kAMCIMvyW8CpRztAluWtsizPlmV5pizL0w/V/5Bl+bEeBwRZlh+WZXmaLMtlsiwvkmX508G8kZFgT6M7xgEBePLjA3y4uznqgAC0ewLsqHPx6//uIhiWuWBmBn/56EDMca+sr+HknpCG+97ewyf7W2NUPZzeIM+trsIXGEASXOWqXgcEwOfEVbmS+9bdF3VAALa1bCPVEImTfbn8Zfa27+3/OQQnDvvehZRS0ERu5J3+SNKnQT20G/stzVqKbAEUEgS1FtTeXqUaBQrsOhvN3qElqJakmvnsgFCUGym8viBPf1rJosIk3tpWH3VAAGravexpcKFWSjS7ulEqpKgDAuDsDvLkxxUEQ4MvSjnmVH3a64AA+N3w0e8hODDlpIrOCh7e/HBM2+NbH+eMvDOiz5/a/hQHOg8cfqggAR/sboo6IAAtbj9vbqnne8t7d6nOnJrGr/+7i75Lm//d3sDOuuNM/KV5T6wDAvD296FtdOfSxqaNUQcEwBP08PSOpymyFUXbat21rKpdNap2CcYnA3FCWiRJ+pEkSfmSJOVJkvRDxlHY1EjQ3uWPa8uw6tjfFK8KEwyFqWmPOCYKhRQj1du3D4Beo6QigbLM/mZ3dPWmX7Tui2vqCgeodFbGtftCPhQ9ITCHViMEghh2/AtyFkafHgoPGaoy1tYmDXnWyE1rUGtC7YmVy7RphyEvJEMoZI0kbn+Q/c1dTEozxzgYh6ho6aI41UxNmxd/gmvfjjon3QO5to032ivj25p2gD/+szgaTl9E8rovITkUl8/U0d0xQANPTBL9Fpc3uZiTa4s+1ygVtHviVSrbEvy+T2i8Ca5/AW9EaGQUqXZVx7VVdlaSbkiPaStvK4/rJzjxGIgTcjWQArxGRMEqtaftuCXPYYxTtmp2+eMUOQCsejWnTY60t7n9ZNtj4zANGiXhnt8ZjVLBSQmUtM6dlo7NMAAljvyT45ochlSWF8SXbzGoDITlMGqFmlzz0UovCk5IAt5IfZDcxdGmWncdDv3Qk9K3NWspOOSEaEyoDnNCrBrrkGqFAGTZ9HT5Q9R3eo/dWTBgUsw6zp2Wzn+21XNmAvWhxYUOPtvfwswcK/oEibyXzc3GpJtg8fV9yV0U3zbzKjAM7PuRacrEprXFtDl0DjzB3l1xvUpPtjl7MFaecCybHP9bfNbUNO57e0/0+cF2DzOzYvMglQrp+AvdtBdEd7F72/LBmjOqZsxOnR3XdmbemWxq2hTTtixn2ShZJBjP9NsJkWW5TZblb/SEV83u+fdxvfRYkmriz1+eR6Y1Eqs+J9fGrz4/g8VFSdx6ahE6tQK1UuKaBTnMyrVx55mTOKnIwasba7j5lEKmZkTyLnKT9Hx/+RReXHuQsmwrf7hyFnPz7Xz99GL0aiUqhcTlc7M5d3rGwAzMWQhn/ypy4VEoYc51qItO4/rp13Nm7plISFg0Fr4x5xt8UP0BaYY0Hjr9IRGHKYhn77uQXAx6W7Qpoow1NHnejm4FnT4F6cbIKnhIa0Ljid1AtWgtNHqGVuQukhdiZm3FcX1JGlMumJnB3Dw7DpOGK+floFJI6NQKbjm1kHaPn0vnZnOw1YNRq+S7507BoIkkr1+zMJcLZsbLkE8osubDufeC1hwRVZj1BZh1zcCHMWfx0GkPUWCN6LkU24r5zcm/YUfzDgCyTdk8fPrD5Fvzh9P645ZZOTa+cnIBWpUCjVLBtQtzWVCQhMOkRSFFVCrtOjX/d+FUZufYAEizaHngylnMyjm2YtaEIrkYrn4x4ngApM+Ey58Bc/yiwUgyM2Um31vwPQwqAwpJweeKP8dFRRdxeu7pqBQqdEodd8y6g/lp8489mOC4RzpWDrgkSQ/IsnynJElvkKDauSzLF42UcUdi3rx58vr160ftfE3OblzdQVLNWsw9ahnBYJjyJhdhWaYo1YRerSIQCrO1poO9jW4sehXZNgOtXT5seg3JZg3+oEyyWYNVH5HrDYfD7G5wE5LDFCeb0GsHIQUoy9BxEMKBiBqGKjJ2d7Cbhq4GlEh0dXfQ5GvFpNBRYM7Gbj3yTsj2lu3saduDJElMtk9mWnLC2pEnEv2ORhrteTmsvPiFyI/XpF4F7V+u+SXz0xaQZxn8ztlntTpe3mPiuumR+Gt9exWGlnJqFt8a7bOvcz87W3by7fnfHvR5AP67rZ5AKMw9l84c0jgThAFFyQ3X3NxV18n2OidalYJsuwGVEgxqJW5fiGaXD7c/xIwsC0UpJmravQTDMlk2HRqVcsjnHhd0HIRQAKzZ0NUCDVvB54ooZaXN6HcCcHt3Ox2+DuxaOzadjU5fJ02eJpq6mjjoOohD72Ba0jSyLFkEwgHK28o50HkAq9ZKaVIpKYZxLYU8qtfM8kYn22qdyLLMtEwLpRlWfMEQte1eND3zFKDZ2U1thxeLXk1hiokOj5+d9U7qO7vJtumZlmmZ2Lt1AJ42aNkbCcEyOCLzUjt8ynQuv4vdbbup76onw5jBlKQpRxS5qXXVEpSDZBgz0Cg1BMIB6t31KCQFmaZMgqEgm1s2c6DjACa1iVJHaUzeyAgw1MhiwQjQn7vev/X8//6RNGQ8k2rRkXpYrSOVSsHUzNgt3pXlzdz07Ppo2NWcXBvFqWZeXl/Nlxfn8e1zpmDS9X7kCoWiX0WUjookgT0vrlmn0pFvzeefO/7GT9b/Ntp+Qc4ZfG/ed7Ba4lcmNzRu4OsffD2akJykS+KBZQ8wOy1+e1VwHNHdCQdWwud7a4/KyNS7G0jOH5oy1o5WNdnm3njsoNaM2tMR08euGXpiOkR0/p9YtX/I4wgSs/lgO1f/eU00by3brufZGxbgD4a58a/rae2Jsbfq1Tz/1YVMyzwOpcBtPQ55RzW8/CWo2xh5rlDBta9C4bJ+DWPX2bHrelfizWoz/677N/etvy/adnbe2Xx7/rfZ07aHr3/49WguyYL0Bdxz8j3j3REZFXY3OPnCn9fEzL2/f3Uh0zOtcbLQKRYdKZZIVIPHH+TRFft5fFVv0va3z5nMTScXolaNnpLUsNLthA9/A+ue6G079zew4OZIpMQQ8QV9PLvjWR7b+li07ZaZt3DjjBvRqeKVDQ+X4FUr1OT2WdBaWbOSb6/6NiE5cj2ZmjSVXy/9NUX2EXVEBOOMY37bZFne0PNPJbBOluWVfR8ja97EocXl4//+tT3qgABsPNhBVk9uyF8/q2Jvk2tUbapu3sm9hymx/Kf6ffa2707Y//X9r0cdEIC27jbeO/jeiNooGAfs/DdklMWsmHX6OpEkMA5RJnRni4Zcc6/iW1BrRt3dSd9NVavWSoevPfpjNFjykgy0uP00uwamWCQ4Nv5giMdXHogRzqhp9/LJvhbe3dEYvQkE6PQGeHVDzViYOXrUbex1QADCQXj7h3BYMc7+srt9d5xq1jtV77C7bTe/XPPLmGT2tQ1r2dW26/AhTkje2lYfN/f+se7Yc29/U1eMAwLw+3fLOdAyMKGBcUXLnlgHBOC9nw6bOlals5IntsWO//jWx6lyVg14rHp3PQ9uejDmmr+zbSc72nYM2U7BxGIgLv91wGZJkj6TJOm3kiRdKEnScRZUOXg8gVCMVOAh+spSOrsHIL87DHgCXTEJj1E7fPFqGcFwkIPOg3HtidoExxkb/waFsWrbh5SxhkIoDAc61GT3cUJkpZqwQoXS36tqo1KoMKiNtHUPLZ9DoZCYki7yQkYCXzDMvgSKflWtHmoTiAHsqnce3xXsPQnmWEfVgNWyDtHl78IbjP8cD4VpJWoXQHlj/Jzc1RApInw0nN3xalmhsIwrQfuEwZtgTgR9kR2SYcDld8Upu8nIMQuX/aUr0EW9uz7hOQQnFgNJTP+SLMuTgEuBGuBPwNBjKI4T0izauORLhQTanlhos1ZF3igXQcqw5DDdXhrTplVqybPEF7lXKVScnXd2XLtQsDjOaTsArXshK7boWq27lqQhKmNVOVVYtWEM6tgbgpDWgrorViErSWuneYgyvQCT0818tl/UCxluzDo1V86PV9lZWpLMkuL4kL3L5uYgScdxCHZqaXzbzKvBlDao4XLMOUyyT4pp0yl15FvyOSfvnJh2haSIJraf6FwwM17M5fJ52SgUR597eQ4DdkNs/kemVUfuRC1UCJBUEClY3BdHSW8I4RDJNmeTfFjhWofOMSgltyxTFmfmxda6lpDIt+QPxUTBBKTfTogkSddKkvQ48A8ildIfBuI1Yk9QtCol3zyzhIvKMlFIkQvaTy6cxj831lCaYebp6+eTP8qSgBZTOj9f+H2W9KhQFJjzeeTk31KYmjhx96Ssk7hx+o3oVXqMaiO3lt3KoowE0pSC44dNf4eCU0EZ+4Nc46odsjJWebsmZhfkEEGdCdVhK8lWrXXItUIgkhfy2YHjunzRmHH+zAxuPqUQrUqBVa/mV5dMZ26unSXFDr6/fAomrQqDRsndZ0/i1ATSqccVGbN6lIfSI/H2s78Ii28D5SDERYB0Uzo/XvRj5qf3XKstBdx/6v2UpZZx26zbWJ6/HIWkIN2YzgOnPcDkpMnHGPHEYHGRgx+cV4pJq0KvVvKtsyaxbNKx1aCy7Qaeum4+M7MjN+3z8uw88aV5pFricxsmDI4i+MIrkDY98jz/ZLj8aTANz3cx3ZjOH0//IzOTI/cPM5Nn8vAZD5NhHKCqJ6BX67lu2nWcnXc2CklBqiGVXy75ZUJ5X8HxzTHVsaIdJakF2A88Bnwoy3LlCNp1VEZChag7EGJHbSf7mtzYjRpmZFvJsOppcnazrbaTJpePdIsOXzBEfWc3Jakm5ubZYzTxfYEQe5tctLr9aJQKMu06QMKmV2M1aIbP2M4aqNsE3nZImQLpZaA+cn0Rb3cHLe56FAolFR37aexqItWchUqlp97TSIGtgNKkUnQqHeFwmAOdB5AkiWA4yK7WXehUOtKMaVR0VJCktTBVYSS1qRxsOZAxGwx2qp3V7GzbiTfgpcRewpSkKSiHIRluHHD8qmOFQ/CHabDs+5AUK9v8889+waLMhUOqKfPgeitKhczJ2bFhiraqT/FZc2grPi3a9ln9ZxhURq6YfMWgzweRkIqb/7aeVd85DYdpADV3Jh4jro4VCsvsqO2ksrULo1ZFm9tPpk2HPySjVkrkJhkj1826SP5QUYoJh0lLhlV3fO6CtB6A+s2Rmjrp00GfDO37AQW46iHYHbkeZ5SBSkOzp5mdrTtp8baQZ8kjx5zD3va9NHoayTJnMdUxFYumd+W6K9DFQedBPAEPaoWaNEMadV11HOg8gE6lQ6/SEwgHmJk8kwzTwG/8RpFRvWZuOtgeLTxo06uYm9//xZNOr59OTwC7UYN5PCtjhYJQvwWadkVy9zJnR2rU1G+B1v2RHbjM2WBOA087+DpB7wBdYuWqiqat7GrdRTAcZHLSZCZnzIvr0x3sZlfrLio6K7Dr7Ex1TCXNmIbL56LD34FNY8OsTTz+lqYtlLeX4wv5KLIVsSBtAUpl/P1AV6CLGlcNepU+Jml9hDgOL0oTn34v28iynCxJ0jTgFOBXkiSVAHtkWf7iiFk3iryzo4Gvv7g5+nxBfhL3XT6T37y1i/9tb4y233pqEf/ZVkdtu5eHr57NeX1CsD7Y08Stz/UmK87KsfHotXOG2QGphZevg9p1vW1X/A2mHlkpWa+zkRQO8YcNv+OlA29E2y+fdDnbWraxu203955yL+cVnIdCoaDYXsxndZ9x63u3RhPHcsw5nJF7Bj/Z8Qwnp8zhFz4NjjdehpO+wcEF13PrB3dw0BXJH1FJKh476zEWZixMaI9gnFCxMlL34DAHREamwVOPQz80ZazydjVn5cfnJIU0JtSH7YTYtPbo/BkKSoVEaYaFtRVtLJ8xrm/Uxj2f7W/lhr+u4/vLp3D3P7bw/eWl3PDX9fh6KqKnmbV8cXEe978TqXxs1at54asLybTpjzbsxKRlLzz7OXD2JD0r1bD8t9C4Ew5+Co09CbWSBFf+nY78Jfxy9S/5oPoDABZlLCLNkMa/9/87OuRts27jK9O/glqpJiyH+de+f3HP2nuAiDLhjdNvjFHLmpk8k0JbIc/ueJbfLfsd6cbYCtQnIp/ua+HWv2+k0xvJ5TBpVTx67RxOLunf6r9V3yuZP66pWAXPXxZZOAIoOA0mnQ1vf7+3z9SL4YIHIs6J4cjpunsbNnLjijtp90VCYvUqPU8ue5AZWYtj+r1X9R7f/7h3/AVpC7jnlIgq25GcD4BNjZv49qpv0+iJ3DepFCoeWPYAp+acGtfXqDaKXb0TnIGEY1mAXCAPyAesQPhox0wUGjq9/OyNnTFtayvb2FXvjHFAAJ75tJLzZ2QQluF37+6loTNyk9Xs6uanr8cqO2yu7mBH7fAkhfUauzXWAQF46zvgbkzcv4eKtj0xDgjAP/f+M5rzce/ae2nsiozh8rt4YMMDMcoV1a5qdCodCknBR80b2ZvZUz9kzSNsbtwQcwMZlIM8tOkhugITWGnkRGDjs1B4Wlxze3c7SkmJUTX4+OhgGKqdajJNCcKxtBbUXbEhU3atjaauoYdjQSQv5JN9Ii9kKLi6A/z2f7tZVJDEm1vrKcu28cHupqgDAtDo8tHpDWLuqW/U6Q3w5tb4ZNPjgqpPex0QiNQK2fZKJA6/sc91X5bhre9S3rIz6oAAzE2bG+OAADy+pVdZqNpVzQMbHoi+trxgOX/e9ueY/ltbtpJlymJry1Z2tyVWODzReGdnQ9QBAXD7gvxrU+0YWjQCeDvg3R/3OiAAWbPgg5/H9tv578hOyTFYUbMq6oAAeINent/zMqFg7+fY0NXAvevujTlubeNaytvLjzn+luYtUQcEIqI3z+x4hjavEAwRxDMQdayPgQuBrcCVsixPlmX5yyNj1ujSHQjT5vHHtbsSqFl5AyHUysjH1uTspssXjo7R4k40xjCrbfgSqEd0NUEgXpmrL+4EqhMhORRVsGnvbscXikibdoe6aUhQwbo72I1aEdmydh9SyVBqaU+gatTQ1YAvKKRSxy3eDtj7XiQf5DBq3XVDVsY66FRh14XQJojIC+nMqL2xiek2nY0WbwsJ6qEOGJEXMnS6AyHqOr0kGbU0uroj/0+g/tfu8WPuU/toQkucHg1nXXybqyHijByOuwF3IPZ6GwzH/5aE5FBUvdAb9NId6v18jWpjQgWsQ+O4/fGqUCciNe3xc7Km3UswOLpKlCNKwAvOwxwrhSrSfji+Yy961nTFz+UqTwOhcO9c7g52J5x//VGvSlTzqdHTmFCpUyAYiDrWTFmWb5Nl+XlZluOEuCVJ+uPwmjZ6ZFh1nDc9dmtbrZQoSjFi0MTeRc3OsVHeGPkiXjQrM6p4lWbR8vnZscV5lAqJkrQjb1sOiuRJ8YWHZl4F5qOHnuRa8+MSjXPMOdELxtn5Z5NmiCi7JOuSuWzSZXFjWLVWfCEfWqWWgmDPqozezvSUGXF9L590+ZDVlQQjyM5/QeYs0MUXyxwOZaz9HYl3QQCCGhMqbzt9HQ6dUodaqaJzEHKPh5PvMNLg7KbFLZzgwZJs0nLNglw+3d/CmaVprK1oZdnk+ITfohQjdZ29N4IXz8qK63NckL8kvm3SuSApIo++zLqWfFsxelVvWJo36MWujQ2RKbAUkG2KKAtlGjOjCb8AGxs3clLmSTH91Qo1KoUKpaSk0BYbQnmictbU+Dl5/swMVKrBCQSMS0xpMPe62LbmPZC9ILZNYwJH8TGHOz3rlLi2y/OXo9H07nynG9M5I/eMmD5qhZpC67HnXaLk8vMLzx+Uipbg+Gc4S4MmuEpPDLRqJd8+ZwpXzs9Gp1YwJd3MM9cvYFaOnWdvWEBZjhWtSsG509O5aFYmn+xr4ZoFOVy7KA9VT3VVjUrJHacXc83CXHRqBSWpJp6+bj6lGUOsiH446TPgmlciCZBqPcy9AU65G1RHj2vNdEzmTyf/loXJs7FqrCzJXMIN027g3cp3uaT4Er42+2toVZFEXkmSuKzkMq6fdj0GlYFsUzY/WvQj1tSuYXrSNB6b812K1v0Vis6Aq15geuocfn/q78k0ZmJUG7lx+o18rvhzw/u+BcPLpuegYFnCl2pdNUPOB9nXribdmLj4YFilRVYoUR5WU8E+TDK9SoXE1AwLq8VuyKCRJImrFuRyyZwsgsEwF8zMxOUNcP1J+Vh0KtItOu6/fCYZVh2pZg0ZVi2//Nw0FhcOTVFt3JI1Dy7/K1izIzKop3wn4oTsex/OvScihao2wPyvwpI7KbQX8diZjzEjeQYWjQWn38nvl/2eeWnz0Cg0nJp9Kr879XdRZ9+itfCLJb/gnLxz0Cg0+EN+bim7hc8Vfw6dUkeJrYS75t7F2vq1PHLGI0y2izh6gNnZNr6/fArJJg12g5pvnTWJeXm2sTZreFEoYN4NsPhrYEiGpGIouwoufBCmXQKWTMhaANf+E5JLjjnc3PQF/Gzed0g3ppOsS+ZbM27mlOzYHXGdSsedc+6Mzr9J9kk8euajlNiPPf6s5Fn8ZPFPSDemY1Kb+OLUL3JGzhnHPE5wYtJvdaxjDiRJG2VZnjMsgx2DkVIhCgTDNLt9GDXKaDJ5faeXA81uPL4QDpOWJKOGsBzGF5DZUtOBWimRYtays86FVqVgfoEdh1GLXqPENpwJ6YfjaYdAV2SVRNk/VY8WTwtbmjdT5ayiyFrEpKTJSJKEQ+dA3TPG7ppP2dq6E4WkYE7qLIzmLALBbvZ27GN3ezmphhTK7FMo1thAbwdNr+xwe3c7/pCfFEMKisNXBycux586VnsVPH4yXPZMwrnzs89+xklZS8gxDX7l6q4PHSzK6GZSUuJwxPSt/6R+9lV023sVUd6s+C8L0xeyJGvo6xn/3VZPIBTmnksTy1EfB4y4OhZAOCzT6OxGq1LQ7vGjUytQSBJ1nd1srYmEa2TZ9LR7/JRl25gy3Isu44Gm3VCzDkI+SJsB1lywpENbBVSvjqgUps8EUyq0V0bUitJn0uDIY0vrTmq7aplsn0xZShmSJNHoaaSqs4oKZwVphjRMahOeoIeGrgZyzDkUWAsi7RoTgVCA1u5WtEotvpAPvVKPVWcd60/kWIzYNbOqpYuN1R10ePzMyLIyM9tKeYMTfyhyH6NRKZieZRuwweOeoB/qNkLthsjvbs7CiNNbvSYyP63ZkDMfUvrnnO5t38vmxo0E5SBlKbMpdZQmVLQLhoK0dLdgUBuwaCy0elvZ3rKdis4KCqwFTE+ejkMfv/BQ1VlFlbOKoBwkw5hBia2EvR172dayDaWkZGbKzH45NMOMUMcahxxHe5ZDR61SxCi7tLp9fO8fW1m5tzfJ9QfLp7C0JJmrnliN2xfkR+dP5buvbiPYU6E1yajhz1+ay9y8EQ5FMtiB/hesd/vd/GHjH3h9/+vRtuumXccds+6IOiDbqj/ihpXfisYmG1QG/nb6o6xq3sCDmx6KHleWXMavF/+EXE3sTapd1397BGPItn9A/tKEDoiMTENXAylD2AmRZajsVHNJyZHj1qO1Qvo4IVaNhSbP0QUW+su0TAuPrNg/LGOdyCgUEhk918SkHsnjFXuauOnZDfhDkbwwi17FzacUcemjn/LiTYuYkW0bK3OHn8ad8Mx5EUcDIt+ZL70OoW547lJoPxBplyQ45x54/2cQ8NA660p+ogvxaePa6FB3z7uby0ou47kdz/HK3lcAmGyfzPz0+Ty367lov7PzzuYni38CgFqpFipYPVS1dvGlp9dS1RrJLZAk+Ov1C7j1uQ10+SO7rjq1gie+OJdT+lErZEJx4EN44crIxRUg/5RIiOCK3/T2yT8ZLv4T2POOOtSetj1c/7/rcfXkLWkUGp4850lmpc6K66tSqqLzzxPw8OiWR3lpz0vR16+cfCXfmvstDOreUK4DHQe44e0baO2O7EQrJSUPnvYg3175bbyhSB6LWW3mqXOfYkrSlAF/FILji+Fcrj7uvMw9Da4YBwTgb6ur+O/2BpzdQRYWOnhnZ0PUAQFo6/Lzyb7xFwZyoPNAjAMC8OzOZ6PqLACvHngjJjnSE/RQ7qnlicNUWra0bGF3x96RNVgwcmx7GfIS1xlt9bahUWrQKQdftKvFq0ApyZg1R95lDWrNaA5TS7Hr7DR0xQsiDIacJAMdHj/1nQmSNwWDxusL8PfVB6MOCIDTG6S+sxuDRsV/jjd1rP3v9zogEElE/+QhqN3Y64BA5OZw3RNQegEA+zKmxjggAA9veph9HfuiDgjAspxlvLD7hZh+71S9w/5O4UAfztaazqgDAjA31847OxuiDghEBGJe3XicqWN52uHd/+t1QCCy6/Hx72P7VX4EjduPOdwHBz+IOiAA/rCfv+/6O6Fw4vDZ6PDOyhgHBOClPS9R6ayMaVvXuC7qgEBEgOGp7U8xJ603UMYVcPHhwQ+Paavg+Gc4nZAHh3GscYE3EP+l1KiUNPYkYlr16miRpL4kahtruoPxKiJhORxdmZBDIeq6452n7mA33mD8jVxXgjbBBKC5HDytkDY14cu17lpSDENTxjrQqSbTdPQftKDGjNodO99sWjuNw5ATAqCQJKZnWfl0HC4ITGQCYTlhwn9Hj0pWbftxdl1wJXCKXXVHUClsBZ0NAK8cr17fHeqOKhAeQkKKkUI/RKJr7omO2xcrdJFu0dHkjJ+LTU4fodDRrz8TipAPug5TnFIoIZH6pO/YqmlNCa6x9e76hPOwL0eak4e3d3R3xPVp7W7Foo0N1RyuBSfBxOaYTogkSW9IkvT6kR6H+smy/MyIWjoGFKaYohr4h8iy6qJF0D7b38qZpWlxx51UNP6SM3MtuaQaYreoS2wl5JhyAJCUSi7LOzf+OEM6SzOXxrTpVXqKrQUjZ6xg5NjxGuSeFK/o00OtuxaHdmjzt7JTTZrh6BKZIZ0ZjSd2lzFJZ6fJ28RwyPQCTEk38/G+eLlIweCx6DV8bna8Ata0TAsVrV0JX5vQlJwd3zb/K5AxI16lcNrnYO+7ABT4/ZjUppiXl2QuIcecQ5ax9zM66DoYF5KSpEsiz3z0kJoTkdIMM4o+8Rbv7Grk7Gnxv78XlWUmrM49YTGlRQQP+tKwHfJif5fRWfuVE3Jm3plxbVdNuQqN8ug5rLmWXHLNsVXNs03ZcW3z0uOrr3+u+HOsrlsd03ZW3lnHtFVw/NOfnJD7R9yKcUpBspG/fWUBv3u7nO11nSyfnsFXTi4g1aLjoatm8djK/fgCIb51VgnPr6nGqFVy+7JiFhaOv9yIdGM6fzrjTzy6+VE2Nm1kSeYSvjrjqzFSrAvTFvDTOXfx9wOvI0kS1xVfylRrIV8ru5VkvYOVNavIt+Rz68ybmZE2KhoEguFm579g9peO+HK16yBJCRINB8L+DtURlbEOEdRaIzkhfdCr9EhIuPwuzJqhJzhPy7Ry7/92I8tywqRLweA4tSSJH19QypMfVaBRKbhyfg7bajr5/eVlLCw4zmS5s+fDFc/Cqt9ByA+LboVJ54PeCl/8F7z9I3DXw/yboOj0SFK6SkNeUObx0//IY9ueotpdzUmZJ/GlaV8iw5TBQ6c/xGNbH2Ndwzq6g93cPut23tj/Bmsb1jIzeSa3z76dLPNx5swNA9Mzrfz1+gU8snIfvkCYU0pSmJlt5ecXT+P5NZFiuZfNzWZx0fj7/R0SkgRzvhRxeve9Bwp1xBHWJ8HqR2H/u5AyFZZ9NyK7fgxmp87mt6f8lud3PY+MzIVFF7I0a+kxj0vRp/CH0/7A41seZ23DWhakL+DmmTfH7ZxPd0znodMe4vEtj9Md6uZzxZ/jjNwzsGgs/GXbX1Ar1Nwx+w5mp8VL+QpOPI7phMiyvHKwg0uSpANWAdqec/1DluWfHNZHIhLKdR7gAa6TZXnjYM85EPzBMFtrOlhzoI0chx69Wsn22k6y7QYWFCSR5zAyK8fO41+ai7s7iN2oiRYqTLfqOH9mJsFQmDm59ujuh9Mb5KmPq8iy6VlQkER+svHIBjRsh8qPIeiNrGpkzQFvJ1R/BgdXRxRXFMpIFdSUyRFFDFsOB5t3sKFxPfWeJqamzcYT6KbO08DUpMnUtB/AH/QyL20OUzJjdcSnJE3h3lPuxeV30djVyKd1n/LPvf9kRsoMZijMZDbvZ3J6CRfkn4NCUpJqzeef1e+jU+m4acbN3Dj1S1g0VpJMkdWnGlcNG5s2Uu+qZ1baLCo6K3D6ncxNm8uM5BlHXFlp8bSwuXkzu9p2MTd1Lk3eJmpdtcxMmcnMlJlYteNe/WVi0l4JrnpILT1il1p3LSW2SUM6TWWHmlkpR6/REdSZUHd3ghyO2ZVJ0iXR6GkaFickw6ojLMtUtHRRmGI69gECALoDQTZVd7D2QBupFi2LChy0dvnZUdtJilnHnkYnGpWCB66ahVGjoKajmzyHkXyHAbO+f0p94w5ZhrpNEfUhUxq0lEcqVOctBsckmH1tRP3KWQeVK8FZH1EnPOfXVJkdbGjbRV3zZ5Scegcd3W3kqq1kdLWxPPd09rtrKLQWsuLgCmw6G2UpZfxm6W+odlbT0t1CfVc9l5Zcys0zbybXkkunr5P/VfyPrS1byTZlk2fJo8XbwuyU2TR4GtjQuIFUQypz0+aSb82PeythOczOlp2sb1yPQlIwP30+pY4jf+cnCiqlAotezWmTUmnt8jM9y0K6RUtxqomLyjIJyTKl6RbSLDrWVbSyuqINm0HNogLH8NfrGk6a90TuAzxtkWTzzDnQvCvShiLSZs+PyPP73GBMjux6aCyR3beCUyI1QrRmGroa2NS0if0d+5nmmEZZShlJnjao+jQyZ/MWY8iaS5I2iSVZSwiEAmQZs9Cp4nMA3X43W1u2sqlpE9mmbOakzgEZlucvZ2nWUkxqEzIy1a5qNjZtpMZVw6yUWZSllGHX2Tm34Fzcfjcl9hKSdclcMfkKzsw9E4WkwNYTtigQ9FsdS5KkEuA3wFQgOmNlWT5a9RofcLosy25JktTAx5IkvSXLct99ueVASc9jIfBoz/9HnNUHWvny02tJNWu5dE52jJrOpDQTz1y/gEybHoNGhUHT+1F9tr+FG/+6Hk9PQpxKIfHwNbPZVe/iwfd7E7YLko08e8MCcpJ6lSOi1G+NqK4cii1WKOG6/0Ycjv/cCWnTI9VPNzzTe0zBMmrP+zW3rbqbKndPvchdz3LLzFt4pfwV2n3t3DX3Ln6/7TE0OzU8fdofmZYZ+1HqVDoOdB7gBx//gApnRc8Y8M2532Rh2iS+9OHXCPRUTtUpddw26zZ+sfoXJOuTeeqcp6IOSGNXI99a8S12te3ilrJb+M6q79DWp3L6n07/E6fkxBdF8ga8PLz5YV7d+yqfL/k8f9j4B3a37Y6+fuecO7l++vXHk8Tv+GHPW5ECV4eHkfQQksM0djWSPISdkGAY6rtUpBqOvhMiK1SE1QZU3Z0E9b0rl3adncauRoptxy66dSwkSWJ6ppVP9rcKJ2QAvL+riduf3wREirb+4LxSfvnmTn5wXil3vLCRQzocFp2KW04t4rdv7wEiykQv3bSYshzbGFk+BGrWwjMXwBn/B//8KhzKoVNq4Myfg98JK34NC74aSQjuidGvOfmb3Nqxlmp3dXSo22fdzt7OA+xq3cXWlq3R9mumXMNLe15iceZibppxE0/veJrXD/SKhSzLXsaPF/2Yf+z9B49teSzaPsU+hWtKr+H96vf5/YbeZORMUyZ/Oesv5FhyYt7K1uatXP/29dHq6jqljqfPfZrpydOH7/MaA7bWdHDT39bT2JMH8vgqeOb6+dzy3Aa6A5EcHJNWxT2fn8HXXtwUzeN2GDW8eNOi8emINO+BZ86Pzfm4/Bl4/eu91c/1SbD8HvjnTb19zOlw9q/h1RuiTR1L7+QXchOr6j6Otl1X+kW+tm8DmvL/Rds+u+ktvvHhndFcDpWk4oHTHuDUnNhaIW8ceINfr/l19Pkk2yQunXQpv1nbq8h1dt7ZTE2aygObHoi2PXHmE3z7o29HK65L2yR+v+z3nJl3pihgLIhjIHd6TxNxEILAacCzwN+OdoAc4VCmlLrncXjA98XAsz19VwM2SZKOXv57GOjyBXngvXJkGS6Ymclzq6tiXi9vdLOzLnH15nd2NkYdEIBgWOafG2vZUBUbXlLR0nXEMdj7bmxyYzgE1Wth5b2R55PPjRSUixlwBbvby3sdkB5e3PMi5+SfQ1gO897B91iQvgBv0MsHBz9IfOr2vb0OSA9/2foXdnrqow4IRBIp93XsI9uUTYu3hW3N26KvlbeXs6ttF2qFmlA4FOOAADy06SFc/vjkzUpnJa/ufRWANENajAMC8OiWR6lx1cQdJxgGdv0HsuPjdQ/R7G3GqDYeMzb4aNS4VCTpQqj7EZId0FlQd8Umjls1Vho9w5ewWJph4aNykRfSX9rcPn7zVu938pRJKby2qZaFBQ7e2dFIHyFAnN1BWtw+rD27H92BMK9vqRttk4eHdU9Fai00bO11QCASglW9OlKTwe+GcDjmhnGX2R7jgAC8uPtFJtknxTggAP8o/wdn5J3BS3teiqgV9nFAAFbUrKDSWckz25+Jad/dvptkfTLP734+pr3OXcfOtp0xbbIs8+KeF6MOCESu429Xvt3vj2K8sr22M+qAACwosPP2joaoAwKwpDiZR1bsjxGSau3ys6GqnXFJ9dr4pPOV90HRab3PS87svS84hKshslvXJ8x0v8kW44AAPLv77xzMndvbMP1yPqr5KCaZPCgHeXnPy3T1KR5b567jwY2xWkPlHeVRx+IQ71S9Q4ap93YtSZfE1patMf1kZJ7e/nTChHWBYCBOiF6W5feJFDiskmX5p8DpxzpIkiSlJEmbgSbgXVmW1xzWJQvoexWv6Wk7fJybJElaL0nS+ubmod9UBENh2j2RG26tShEj83eI7mDi1dwOT7z6VXuXH0WCuPNECltARKHocOQwdPd8eSUFhOOTe30JFDG6Al3oVREtf7ffHdXsbvV3xvUF4hRaICLHG0xwPpffFR2vK9h7kTo0hkqhSjie0+8kEIovVNe3b6JCmb6QL8YRGu8M97wcMbqdkWJXGbOO2KXWVTNkZayDThVpx8gHOURQZ0Fz2PcgSW+nfhhVU6ZnWVl9oJVQeHiS3ScSg5mb/pCM09v7/TNqVDi9AYxaFc7u+O9llz+ETt37M9LsilfhG/eEw+BuBK259/rbF58zEq6lUEWUivrQnUBEwR1wE06gjuUP+1FJKkJyCF84cbhiMBxMeD0Ny+GEizqHqx7KyLQm+G1p8bbEtY0Vg71m9nU2AJJNWtoPU6I0apUJ5+nhylrjBn8CNStfZyS86hAaU+J5GQ6A1Lva40sw58JyGF/f+xJrNh2++LE6/Z0xczYQChxRUTPuLYR7/wZGtZGuQFdcH5ffFdNPIDjEQJyQbkmSFMBeSZLukCTpEuCYFYFkWQ7JsjwLyAYWSJJ0+J5woozRuCu7LMtPyLI8T5bleSkpQ7tRArAaNNy4NKLwtGpvM8unxxaE0quVTDrC9u3ZU+OLR10yJ4sMa2xcpValYErGEbaAJ8crUeEojiSgATRsg9zFsa8bUyi2FaJVamOaz80/l1U1qwA4Lfc01tRH/Lxzcs5IeOpCa2HUaTnEeQXnkaeP/3POSpnFvo59KCUl0x29f7oiaxFGtRFv0EuSLikufOqLU7+YcOs115zLpJ6cg6AcxKyO/XzOyj2LTFNmQrvHI8M9L0eMAysgbRqo9UfsUuOqwaEbujJWyjFCsQ4R0ppRu2NvjuxaO43D6IQkGTVY9eoj70gexwxmbqZZtNywpFf57qO9zSyfnnFEJcCCZGPM/50nPgABAABJREFU6vQls7Pj+ox7FAqYf2PkmpuzKP71/KWRFedgNxgcMTlMJSEZjSJ25/C8gvPoCnRhOSyvaXHmYra0bGFOyhxyTDlMssfmXmWZssgwZcSFxZjVZmRkzi84P6ZdrVDHjaGQFFw55cq4t3BB4QVHfv+jzGCvmZPTzaj6yGO9s6OBcw/73V5V3szVC2LVmhQSzMkbp8nqWfPilQrn3gD73u19vvedSFtfFCqw5sYsVBb4vHEKmHNSZ5PTsKe34ZM/sCxnWZwZFxddjFnb+1ucYcrg4qKLY/roVXqM6tgc13xLfkx9kWpXNTNTZiIddlv3+ZLPx9kmEMDAKqbfCRiArwO/ILIL8uX+HizLcockSSuAc4G+FXVqgL5BrdnAqOzpL5+ejgQ8+XEF0zIt5DkMvL6ljpJUE187veSITsjiwiT+cOUs/vLRAfzBMNcuyqPd4yfbbuDrpxfz2uZaCpNNfO2MYqakHyHBNns+XP1SZJvV74Yld0LeEnCURFbktv0DFt0GGWWREAFbHiy6jUkZM/nzsgd4YsfTVLrrOL9gOWqllu0t2/nOvLupclWTa8rm5tIvMjt9QcJTz0ufxx+W/YFndjxDjauGM3LPYHn6IvIOfMK9C37EX/a8iFKh4KrJV/NJ3afMSZ3DLWW3MNXRW1uiwFbAn8/6M3/e9mc+rvmYXy/9NS/veZnW7la+MOULnJ2XQNoSSNIn8dtTI8ocKw6u4EeLfsTblW+zp30PywuW8/mSz8c5SIJhoPzto+6CABx0HyTTGLcJOSAOdKootPZvJyuotaBxx2rW23V2mjzNRNYhhkfRalqWlY/3NTMjWwgeHAtJkrhqQS4GrZK/rzlIlk3P6aUpZNn17Kzt5FtnlfDvzXUYNSpuOrUQjVLB5HQTSknia6eXTFx1rIJT4fN/jnxPzv5VJFxWDsPcL4M5E9Y8Buf+FipWwfL7YNsr0NXEZI2DP5/5CI9ve4qD7oOclXtW5AbM28nDC37Mc5Vvsr29nKVZS0kzplHvrueySZeRZ83jp4t/ykt7XmJdwzpmpszkC6VfoMBawO1lt5NlymJF9QoKrYVcOflK3q18lyumXEG2OZuXy18my5jFLWW3JKw4vTBjIfecfA9PbnsSlULFTTNvYnbqxFciWpifxBNfnMujK/fT5PJxyewspmZYuO+ymTz1SQWhsMyXF+ezoMCOSavimU8rSTZp+MYZk5iZNU6/+5mzIyprK+4BdwMsvAUmnQtJ+bDjjcglcNolkDIFlGrY8gIYU2HpN8GUDvNujDgsqdPIyF/GIzMv55kdz7CxcSOn557OlZOvwNJRH6lh014Bc6+jzFbCr5b+ir/t/Bv+kJ+rJl/FvLTYMF2NUsNNZTeRZkzjjf1vUGQr4qaZNyHLEWd4U9MmZqXO4srJV6JSqFiWvYy9HXu5sPBCSpNK+d2pv+OpHU/h9ru5tORSzshNvCAqEEiJQmKOeoAkWYikeySo1hTXNwUI9DggeuAd4F5Zlv/Tp8/5wB1E1LEWAg/Jspz47rmHefPmyevXrx+Q3Uej0+MnEApT3uCiss2DRadmaqblmMmsrW4fwXCYNIueTq8flUKBUaui3eNHr1ai609gvM8NciiidgGRPJHGHZEqqVpzpDDWwTWQMRMKT42oZADdPifdfjc2Tyeexm0EQwEstlxchFEoVBi9nVD5EW2589mo1bCmeQuTrIUs0qWRs/MtyF1IZ94SOmQ/eSGgZk1kpS+1FJc1B4VShdGQTKevE41Cg/4IK+i+oA9v0ItVa8Ub9OIP+al117KiegUAJ2efzPTk6XE7JcFwELffjVFjJBwOR8cYh1Kq/TZouOflsCHL8PupcMaPwZpzxG7f++h7nFd4Pqn6we/o3PBWKldOcR1TohdA42rCdvAzqk69K6b9T5sf4acn/ZQk3fDc0K6vbOPT/a28cFOCVe6Jy4C+KIOZmx0eP1qVEr0mch1rdXfT6PTR4PQiIZFm1jE1y4rLG0CSwKQbh8pYPlck7n7vu2DLhqIzjqoOh7cTWnZDxSdgz4tUoA54I/VCDA5o3h25TiYVRFawG7ZCezXd0y+hOykfndZCd7Abm1IHAQ9+jRFP0ItGoaHT14lD70Cj6t058QV91HfV0+xp5p2qd5jqmMqCjAVkGDJo7GrErDETlIPo1froDnhHdwdalRYJia3NW/mo9iPsWjtLspYwOam3ToTL70KBAqPmKAqNI8OIXjM7PX66/EEybQZkWWZ7XQctrgAg4zBqmJZlQ6mQ6PT4UasUMaIy4xZ/FwT9YLCD1w01n8K+DyJzrOh0yJ4bKTTrbe/ZBckCQzLUbYaOg2B0ROR57fkEQgG6Al2YNWaUh0RI/N6ICqchiXA4zKbGTWhVWmRZJiAHKHWUHnHxr6O7I2b+dQW6aPG0kGxIju6M9L0POPQb3t7djj/kJ80Yv4M6Roy7mwvBwNSx5hFJTjf3PO8EbpBlecNRDssA/ipJkpJI6NfLsiz/R5KkWwBkWX4M+C8RB2QfEYne6wfzRoaC1aDhqY8P8PP/7Iq25TsMPPeVhWTbEyhb9eAw9YZFWfW9Pyx2wwASe7WHOTo7X4d/3xZZIUmZEln5OET2QrjqOTClotNa0LVVwtPLMRyKK5UkzOf+NhI/+uEvCaRN4zmjmj8feC06xFRrCQ9r8kh59Uass76AdfHX4Kmze5U4APM1L0VWY+CYcrlalRatKvI5GNQGytvLY5RZ/rLtLzx17lNxK3EqhapXpk9BdAzBCNC6D+QgWI4cKuMPB2jrbsMxhBt/fwiaPUqS9f3MCdFb0XS1cfiuh0OfRIOnYdickKmZFh5ZuZ/uQKh/CwMCAGyHXcd21rv40lNro0m/Bo2SV25ZzLTMcbrKDLD7TXjt5t7npgfhurcg+Qjqay09akWn/zhyHT4UF7/2cTjnN/D294h+AOf8Bt77CYT86NY8gu7zf4GZl/fKnap1aADNoeujJvFvyd93/Z0X97wYfb4gfQH3n3o/GebE+iyHrpsrqlfwtQ++Fm3/y7a/8MzyZ6IhWmbNOFSDGgasBg3Wnrm5ubqDKx9fjT8UyVVQKiRe+OoiFhQkRftMCDTGyAOg+mN48Qu9oVbrnoArn4fnL+/tn7cEsubCpw/1tmXNhateQG1Ow6a0HTa+PvIA1jWu4/b3b4/mHikkBQ+e9mDCMC0gTk7XqDZitMY6tn3vAw5h143TEDjBuGIgOSFPAbfJspwvy3I+cDsRp+SIyLK8VZbl2bIsz5Rlebosyz/vaX+sxwE5pKB1uyzLRbIsz5BledSXkmvbPfzunfKYtspWz+jHkbsa4f2fRv5dfCZsfSn29Zo1kZW4Qxz4MDaxTZYjCe8b/xrpPu1Cnq58I2aInZ172efoqca7+e/QujfGAQHgw3siOzSD4F/7/hWT4B6Ug/yz/J+DGkswTOz/ADJmxyipHE5DVz12XRJKafA36bVuFQ59CFU/ryphlRZZAqU/NpHRrkuiwT18eSEGjYq8JMP4VciZAHQHQjzyYazqkMcfYlX5+El4jsPdBO//LL6tfsuRj9nyQm+dkL6JuXIY9r0TieE/xLaXI6vUh3j/Z9A1sM+jylnFS3tir/NrG9ayv2P/EY6I4Pa7+dPmP8W0uQIuNjaOSomtccO/N9VFHRCAUFjmudWVY2fQcLDlhVhRmlAAdvwTTu6zY5y3GFY/Entc7QZoilVLS8SHBz+MET8Iy2Fe3P1iQtEbgWCkGYgT4pJl+aNDT2RZ/hg4ZkjWRCAYlmMuZH3bR5VwMLL1D5EbxgRKFPRVnPLFq1AgSRDwRLoqlAkVrwJ98/5DCRQrAu6Eylz9wR2Id15cgeNimkxc9r8fKXR1FGpcNaQMIQwLoKpTRVo/k9IPEdTZULtj1XzsWjv1XcObFjYt08JHe8exetk4JyzLuHzxuT4e/zhVHYLY62lfEqhPRel2gkqX+LiAN/Ja9LknVugh4BnwdTMkh5ATKGwlum4ffpyn5zrfl0TKWsczzgRz0tkdTKi8OGFI9Lvuc0fCrw5xBPXM/sy/viqXh/AEPQmVrwSCkWYgTshaSZIelyRpmSRJp0qS9AiwQpKkOZIkzRkpA0eDTJueLy7Ki2kza1VMShvlAmeWTFjcs71euxEKl8W+bs6E5D5qKMWnxytraE0wM6KOkrX/Y87JWBrzskPnoKirxynIXghJRfHF6066E/S2Qb2FS4oviWu7tOTSQY0lGAbCIaj6LCJwcBSqXdVDDn+qcvZfGesQQZ0VzWE6+Un6JOrc9UOy5XCmZ1pZJeqFDBqDRsVXlsbWpZUkOHXSOFaEM2fASV/7f/bOOjyu4+rD713SipmZLLMMMmOMiQMOg8PYcNM0baD5GmyatmkbThp04jCzKeSYmUmWxcxMq935/rjSSqtdWbLF8rzPo8d7Z+fOnWuN5t4zc87v2JbpjCc2yMctU90XHYk4xC2ArDYK8yPPV3cZW5jxezWJ3EkQ7h7O9JDpNmVhbmFEe0Z3cIaKp5Mn1426zqZMq2iHRAD6yXDheHshjaunRg7E2MKuk2ivbsboC2HN/7UeZ++E4efa1nELBL8EOsNRkPhF8Rd1GPcpkfQmJxOxNa7530falU9HderuNGfIQEWv1XDTrBhCvJz5dEc2w4PduXFmNHEBfexTqyiqGouzD6Svg4QlED5FDVT3ilDle73aBBaHTlSVNTY+C7WlkHQdmOpVqd/Ff8c5cxP3Bs1muP8Y9pcfJdg5gIsDJhN6bB3MexhGXqAGul/9tdpGTTFMvRXiF5/yLUwMnMgL817g7f1vIxBcP/p6JgVN6t7/i+TUydurBtQ6n9g/N7Mqy6HSzsmQXqEjuovKWC00Gd3tjBBfoy/5PZiwECAuwI2MklrKahrxdh1EvuIDiDOG+/Pc5aoqoIezgdvmxjI2zKu/u9UxigLjrgKjF+x4C7yjVaPkREZIxHS45hvY8wEs+Tcc+FzdOZl0I3jHQNRsqC2G0RepgesJS1SX2FEXQ+zck+6im8GNh6Y8xJqMNZTWleKsc+as6LO6FMy7IHIBBq2B9w6/R4BzANeNvo5RvqNOug+DmYlR3rx93SReWZdCk1nwuzmxTI3pnsx4vxMyCc5/FZJXAhoYvgQCx8I5/4GUH1XBmglXq0Z26ATVDcsjDCZcBd4RnTY/KWgS/57zb9akr8EszMwOm21nCEskfUWXjRAhxBmd1xq8hHg5c9OsGK6YHIGTToNOezKbRD1HpcGFncFxrG1MJUKUMj9yMvElqWRFz2BD4TZ2H3mb6SHTmRY8TX1QxcxR84k01kDODjjwGdX+I9kZHM+apmwmu7jgI5xwqkzH3zWIdK3CS4YaJvgOY1pNLnHrnobh58D5/wODi/oDqqpMxmY49BV4hMKIc1WFrk4w6ozMDZ/L1OCp1JvrOVh8kL9t+Rt+Ln4sjFxoI/MLkF6RzrrsdRwqOcScsDlMCZqCr8sgf4gMJNI3QFD71Dz25FTnMDtsVrculVGpZ0rwySWrazJ6Yaiylen1dPKgurGKRnMDBm3PCBbotBpGBHuw8Xgx54wdPHloBhKezgaWjgtl0aggtAoYdIMgyN89UDUgxl4GWifQtVPwMjVA9jZI/U0NVs/crO6WTLwOghJh7KWAUNULc3erL4SNtRAwShV78InhWOQkfi7aRdq2TSQFTaK0voxor2iCXIJYn7Oe5LJkpgVPY2rwVCI9I+262GRpwkXrwsGag4z0HdmhK1ZlYyU783eyNmMt4e7hzI+Yz9K4pSyKXIRWo8WgNdi1u79oP6vSVyEQnBl1JmP9x6LTDAK1qC7irNdxxvAApsf6ImBwCk/k7VUFaaryVDne4PGqSlbLc9DopXomuAepz2ePUNC7UYRgq18IvzVlMcY7mtlaBfvRZY+zzpkg1yACXAKob6onzC0MZ60zm3I3sTptNV5GLxZFLsLH6MPmvM2sz15PjGcMc8Ln4Ofsx6bcTWzN28rk4MnMCJ5BvaWeXzN/5WjZUeZFzGNy4GS82y16mcwm9hbtZWXaSpy0TiyOXswYvzF2qpmS048uS/QqihIIPAWECCHOUhRlJDBNCPFmb3bQEQNWCrUH+OToJzyx5QnrsbeTN6+PuYPHj3/KvrLWpENLY5fy8NSHW5VYjnwPH18JRi++nPcH/nroDUb4jCDeO55vjn9jPS/KI4opwVP4+OjHzA2by6PCG98Nz8GCR9VcJS3b2Ps+hS9uau2YkwfcsBoCbY2IE7EmfQ1/XNcaTOeic+Hds961ykjm1+Rzy5pbSKtMs9a5YfQN3Dn+TvSaASP3ObgleldcqOakiZrZYZVqUw33rbuP30/4/SlrGJoscOGXwTwyowT9STxXDNWFeKdvIn3ufTblyw8u57bE24jw6MpjtWusOpBHbaOZf11yYte0QUKvS/SeFhz/Bd67ABY9CWseblW+0mjhuh8golnWOW8fvLXYGm/HnPth22ukL32ea/f+m9L6UmuTN46+ESEEv2T9YjO3XTrsUu5Lus/G7aWyoZIntzzJyvSV1rKWPAvhHrZy2p8nf86jmx+1Hns5efHuWe926Lq1q2AXN6y+AbNQXSQ1ioY3F71JUlCSw/o9yOCeM/uSgoPquGpoEzd56bvw6XWtMaEaLVy8HD652lrFFDWLfw+bzPvHPrWWxXtE8+oZzxLgZes22Z59Rfu4dtW1VmPXSePE4zMe5/7191vrOOuceWz6Y/z5tz9by5bGLqW0vpT1OdbQYB6Y9ADvHn6X3OrWGL47xt3BLWNvsTEwtuRu4Za1t1jjn3QaHcvPXE6if5/OxYPYR2/ocjJm6HJgNdCyjJiMmsBQ0kMU1Rbx4u4XbcrKGso4pDTZGCAAXx//mozKDPWgqQG2vwFCUDJqKS81K2LNCpvF96nf25yXXplu9f3/NftXjkc2u0qt+yeUZ6mfa0vhl7/Zdq6hUt1p6SKVjZW8svcVm7Laplp2F+62Hh8rO2bzkAZ499C75FTldPk6khNgMaurvIEn3gnJrsoiwMW/WzN0TpUOH6P5pAwQUGNC9DXF0C4418foS25Nz8aFjAnzYv2x4sEdtCrpOZpMsOkFNf4j7TdspL8sZtj3Setx+vpWA0RRAAF1ZRwxV9kYIACfJn9KqHuo3dz2xbEvSClPsSk7VnbMxgABOFx6mGPlx2zKiuqKeGH3CzZl5Q3lHC45TEd8lfKV1QABVQXps+TPOqwv6QeyttsaIEFjVVXMtkHiFjMc/BL8W+M9MmNn8WHK5zZNHatM43ip7XuCI37M+NFmt21a6DSWH1xuU6euqY79xftx17e6pIe4hdgYIAAVjRU2BgioUtFty5osTaw4tMJGgKHJ0sSPGT922lfJ0OdkXhn8hBCfABYAIUQTcHJRqJITYhEWh1vxHalWWMsFYFbPs2j11jY0aDpVvDC3PHiFmeZfrToBWhz49lu6/usWQmBy0Ebb+3PUN4uwSJWOniJ/f3M8iNcJq2VVZ+PXTWWsrCodAV1IUNgei84JoTWgrbOVifYxepNX3bMKWSGeRsxCcLzIgfqM5DREqPEeGp11/rShrWRp+++b501Hc1WTxbE6kwX7ua2juc7cbq4VQtAk7PvY1shoT6MD5cPTTT1rwNP+ea/V2SpgtmA2QRvvAKEoDseY2dL5s7P9uNAqWofjyGwxo9G0viI6UnFzVGYWZrtx3WCxH3dyLErg5IyQGkVRfGleslQUZSpQ0Su9Ok0JdA3kprE32ZS56FwYrnUlxt024GxO2BwiPJrL9E6qDzPgf+hbboo8C1D15udF2OoFBLoEUmNSX8ImBkwktrB5xW3K7a3ZtF39YJateww6oxoE10U8nTy5aYztveg1ehv1ljjvODtZ2AvjLiTMveOkepKTIGMTBHTuPpdVmYWfs1+n9U54qQod/l1MUtgek7M3hhrbuBBfZz+yqrO71af2KIrC2FBPKdUrUdEZYNqdamBveyVCgMTLWz9HzwRt80ugEKBzAr0Lwwze1qzRLZwfdz6l9aUEutgGly+OWkysZ6xNWax3LDNCZtiURbhHEO8db1MW4BLATaNt51NnnfMJxSQuiLdXKrw04dIO60v6gfAkdSy1kLsHxlxiX2/U+VBwwHoYlr6ZcyJtBWSCnQOJbTduHLEwaiFKm33vzbmbWTZ8mU0dnaJjjN8YKhpaX/GKa4sZ62cbF+qh98DbyTb+Y9nwZYS4tcbd6TQ6rh5xtU0dBYVFkYs67atk6HMyMSETgBeA0cABwB+4WAixr/e655ih7EdaUlfC+uz1fH7sc2I8IrkkaAajN79GatI1/FSfT3ZdPvFe8cwNn2v7sl5XoSpn7HqHssjpbAiM4tO0Hzgn9hyqTdX8mPEjY/3GMi5gHB8c+YCJARNZ5JfIiLVPwrgr1QzpHm0y9NaWqvKT299UFbkm3QzhJ6dyVdFQwebczXx09CMCnQO5fMTljPMfZyOfmFyWzFcpX7G3cC9LYpYwL3wewW6OMwX3E4PXv/mDyyFwlOMXrDY8uvkxZoTOINzt1I2/Jzd5E+rexITAk1/d8kn9jWr/BCqiW1/GiuqK+D71e/4+6+lT7pMjtqSWsDuzjHdvnNKj7fYDMiakJ2isVeXQD3ymylgf/ga0Bphyq6qUpW9+QbRY1GSxW19TEx6OuUSVQ8/ewcERi/g0YzXHa3JYELEArUaHu8GdCPcI1mWvo6y+jEiPSGaFzbIzLgCOlBzhx8wf2ZS7ibF+Yzk75mzG+NsreJXUlbAhZwOfJX9GlEcUlw2/jNF+HbtaNjQ1sKtwF+8deg+LsHDVyKuYGDixNY6w9xi8c2ZfIwRkb4dDX6u5QKJnQ1iSOiZ3vatK8E+8BoInQNbmZpW3SJh0M7nO7vyU+TMrc9cz0Xs4S2PPJS6wc4lmk9nE7sLdvHf4Peqa6rhqxFWM8h3FnqI9bMrZhLPemfkR8/Ex+vBr1q/8mPkj0Z7RnB93Pn5GP1amreS3nN+YFTqLs6PPptZcyxfJX3Cw5CDnxZ3H3LC5duputaZaduTv4P0j7+OkdeLKEVcyIWACem2fxn7KmJAByMnIZMQCZwHhwEXAlJM8//Sl+Jg6yWRsVFWm4heBp+MXPl+hcL5J4RxDHFq8UNwj4LL3qS09SkNuNrlVuUS6h1NXVwKuIeoq3u4VUFcK46+BS9/FW+/KuTo9Zw27mPKGcjbnbiYpMAl/Z398jb6cF30ergZXPHzi4fqVrSt8bXHxgTEXw8iloGhBc/IqFp5OnpwZfSYLIhegUTQOlTCGeQ/jz5P+jMls6usJaWgjhJrTwNGqWhvMwkJedV63ExVmVuqYEHhyylgtmIyeOFUX2JR5G70pqS+hyWJC14MiBaNDPHl9fSr1JvPgVNKR9Aw1JZC2TvW/N3qqCzFOHqpalm8U7H5f/Zl4DYRPVXdNIqapuZWERX05FBYYfRGjLE2MjJhLRlUG36f+wP6S/Zwbcy4aBAhBbk0ucV6xmJrqeevAW2zN3crc8LnMDp9NqFsow32HM9x3ODeOvvGEuRp8nX1ZGreUs6PPRqvRdpoLw0nnxLSQaUwOmoxADClVrEFBWQYkr1J/oueoz35f250wFEV1B2xqgOoCdVfE4AauvhA2WfVVcfFVVbH0ruoYdPIAjZYQ3wSu9k3g8tHXoW8ZN8UpcPhbSP8NEs6GYYtUeX+bSyroNDpG+ozEZDFh0BpoaGqgoamBwrpCPC2e1DbVkuiWyHWjr+OKhCvQa/VW16xbx93KjWNutHlePzjlQZosTR0+w130LswOn8300OkoKGjb5yaTnLaczKz0f0KITxVF8QYWAP8GXkE1RiQdUZkHH10Jxc0BY8d/hsRlqua3owfOvo9g1YOtv5gN/yHzhu/5v62PW4Mat+RvYXfYXB4f8zu8ly9pzXp++Fu47D11skP1QX5578t8mtyqoBHqFsrc8Lm8f/h95oTN4elZT+N2opf/HjAMuvLwkwZID1OSoq7ougWcsFpRbSGueheM3ZDCNVsgr0Z30okKW2hy9sK1yDagUqfo8HLyJr82nzC38A7OPHncjDoifFzYkV7GzPjuuaBJBjEpa+HL37UeH/wC5v2falx8eHlrkPrBz9Q8SjFz1GONhlYv5uZ/tXoyKzO4dtV11iD1KI8oXtz9ItnNLoVb8rZwTsw5pFemc6D4AJvyVJnTv836m9Wdq6vJ4nTakzMm5AtfP1BfBasegKM/qMfHf1Z32ZZ9DK5tFnzy98Hys1tFD46tUpWwPr22tY7yD7j4Hfj0mtay9W5w4xoIHNVqgFQVqOe1uG0d/xkyLoSlL4Kh1WXwQPEBG9W0dw+9y1+m/IX/29SaDHFV2ipemPcC00On46S3fza0f14ritKlZ7g0hCXtOZnl7ZY3jLOBV4UQXwMy61dnFB1pNUBa2PchlKba163MVVWq2lJfTnJ1pp2qyq/Zv5JSV9RqgLSw/t9qzhDULNifH7NV0MipzsHD4AHAuux1rQpbkqFF5uYuySlnVmUR0M53/WTJrdHi6WTBcIrvOiYXbwzV9nEa/s5+vaKUNjrUk1+OFnZeUTI0qS2Drf+zLTOb1Lk0a7utSpYQqgtMJySXJtuoZLkb3K0GSAs/pP1gE//xU9ZPcv4dqpSmtBogLeTshOJk27Ks7a0GCKhKbXs/tK0jBBz8HAJGtJY1Vqt5a9pSdNQmbgRQjesS23eNtRlrbQLRp4dM573D79nUabQ0srNgZ0d3J5H0GCdjhOQoivI/4FLgB0VRnE7yfIlE0lekbwT/zjOgZ1Vl4efcveSQmZV6Al0cJ1jrCk0Gd7SmOpQmW3cuH6MvWVU9G5wOkBjmxS9HpBEikUgkHeFI+Uoi6WlOxoi4FDVPyJlCiHLAB/hTb3RqSOE/HPwSbMvGXg4+DhIKeYTAnD/blhm9GOYWQbxXnE3x3LC5xDn727tLzfqjdes13D2ci+Mvtvk61C2UykZVDnVO2BwiezAZnGQAkbm5S8pYGZUZBLic2GWr0zYqTt0VCwBFweTsg1OVbVyIv4s/2VVZ3eqbI2L8XSmpaSS7rLbzypKhh4s3TPmdbZlWr7ovhk9qTdjaQtINnTY5zGeYNf8SQFVjFWHthB6WRC1hY+5G6/H88Ply/h2q+MRBwhLbspCJ4DfMtix8EuhdWo/z9tiqsoE6HkddCIVtcsIY3CCkXRC6f4J9TqhRF4Kv7bvGwsiFaJXWbetNuZu4csSVNnUMGgNJgb2e1FIi6XpMiBCiFviizXEe0LPZxIYiHsFw+ftw6BvI2AAjzoP4hY7jQcxNMPoScAtSt2T9hsPYS4jwHcbjU/6PX3I3sK9oP1ODJzM7aDLefiPhupWw5z2oLYHx19IUOQ3FYkar0WLQGrhl7C2M9B3JmvQ1jPUfy3Cf4XyW/BkPTn6QOeFzcDO49f3/iQNkYHoPUl2oChW0C0h0RFZVFtNDpnfrcukVOoJOIUdIWxpdvHGqyqfeu/WlzN/Zn3XZ67rVriM0ikJiuBe/Hi3iqqnyJXBIYzapgb/tDYu4hXDx22pgurMPTLpRFeDY9yksfVn1pxe0BqZbzKpbTAfxGJEekby+8HVWpq/kcOlhxviN4azIRfyY+TNHSo8yK3QGSYET2VqwAw+9hzUwva28b1/NgWaLWQaq9zZGdzjzadUQKUkB7yhV+cq1nQBI0Fi47ns1c7qlSV2IDJ0E134LO99VY5AmXAP+I+CyD2jK2YnGyQNN7FxV+bAt7oFwyTutgenDz1ZFcAy2EtKj/Ubz1uK3+PLYl9Q21XLxsIuJcIvg6ZlP80P6D3g5eXFW9FlMCepeuG9Lzi85ziQnQo6OvsAvHmb/Efij4+8bqtSMvVv/B07uMO12uPxDVS3j4Bfw/b2MnnIbo+u14Dwc6jWg81QnqPBJED6JuqY6tuVt4711f8BZ52yVwAt0DeSiYRdx0bCLrJebHzm/b+67CySXJfPlsS/ZV7RvoEr0Dj4yt6i7IA7UyNpS1VhFg7keTyfPbl0uvVJPYkD3Ek81OXthqMy3KfMyelLTWENtUw0uOtcOzjw1EsM8+fFQgTRChipVBaoq0e4V6t9C0g0QMq71e1dfGH2h+pKWvgF+flJdkZ56G0RMhXHNeRPMTZC1RZ2b6ytg8u8gZrY6T7djmM8whvnYrnQnBtrmVhrpP4brR19vU5Zdlc2ajDX8mPEjk4Mmc17secR4Odgp7yZNlib2FO7hvcPvUd1YzbIRy5gcNHnALEQNOYRFXRBKX6/utDlK9muxQH05JK+B2kJ1F8RUqxos0bOt1crqy9hoEHzSmEKYMYzL9RrG2rcGfnEw6w/qTwfoNDomBE5gQruxGeoRytmxZ5/avba9JWFhT+EePjzyISV1JVw+/HKmhky1xqJKJG2RRshAIHUdfNxmO/ToD+rqyLbXVSMk6Ub49W9Qcry1zrAz4cI31BUXYHvedu78+U7r179m/crbZ77NxMCJfXQTJ09OdQ63rr2Vojo1KHlf8T5SylJ4cMqDGLRS8+CUydjUpXiQzKpMAlwCuyWebrZAfrWOgO64YwEmFx9ci2yDNjVoCHQNIKsymwSfhA7OPDXGhnnx5oY0KdU7FBECdi6HX59Sj7O3w8Ev4aYfVZeVtqSvV9WwWkj+Qd1djpymHufugnfPa32BTFsHl66Akef1SFdrTDX8c/s/+SXrFwD2F+/n58yfeWPxG912k2zPgeID3LjmRms26635W3l27rMDalFqyFBXAd/dC6k/q8c5O+HID3DNV7aKhRkb1fHX1LyIk7kFFv9dXYhsw6r0VTy1VR3Pu4t2szZ9Le8tea/H58We4FDJIW5cfSNNQo0T3F6wnadnPc3ZMd03cCRDDxlY3t+Y6mHTC7ZlwgJHvofsbeqxq5+tAQLqKl+ZqnrRZGlixeEVtk0gWJ22urd63SOklKVYDZAWvkj5guxeCEY+rcjcpG7fd0JGZSYB3cwPoipjmU9ZGauFRhcfnKry7cr9nf3Jqu75uBA3Jx0x/q5sTCnu8bYl/UxFDmx81rasoRLy2ykHNTXC5hdty4SAI9+2Hievtl/B3vicraJRN8iszLQaIC2kVaaRWu5APbGbrMteZzVAWnj74NvUtxOEkPQApcdbDZAWCg+qOcPakrOj1QBpYdv/oDzTelhSV8Ib+9+wqVJvrudgycGe7HGPsS1vm9UAaeHN/W9S1VjVTz2SDGSkEdLfKBo1QVF7dE6tD7+OklK1CS4zaOx3Dgb6boKj5IUdJTWUdJHGGlWq0c8+M3N70ivSeiAoXU9gN+NBAMwGNxRzE9rGaptyfxd/0ivSut2+I8aFe7H6YEHnFSWDC43iOL+RXb4MBRxlD2+bM8fRHKpzoqeSL3c01/VGbg+HzwiNodOkh5JToKPfX/vft6N4CY3O5tmuoKBT7Ou1DS4fSDiKAdFr9fK5LnGIHBX9jc4AM+62LdMaYNhZ6g+oqyLBibZ1EpeBj5p9VafRcfWoq1HaPBh1Gh0Loxb2Zs+7Tbx3PNEe0TZl14y8hlD30H7q0RAge4ealdeRYduOjKpMAly7lyMkvaL7rlgAKAqNrr4YKm21LgJdAkmv6J1cChMjfPjpcAEWi5SiHFJ4hMLch2zL3AIgaIxtmU4P0+60LdPq1YDeFuIX2f8tzfyDY2GRUyDSI5Lz4863KRvrN5YYz56PCZkVNsvOELlh9A04dSNRqaQDfGJh9EW2ZZEzwb+dOlZYkn180fS7wbP1Gejj7MMd4++wqeJh8GCUX7vA9AHCpOBJOOts/z5+N/Z3NiIMEkkLMiakh6hvqkejaGx3H4RQkwrpXTpeGQGInAXXfgf7P1MnpFHnq8pYs++D2DOoKUvHOOZStIWHVd/S2HkQOxcMrX/oEwIm8Nbit1iVtgonnROLIhcxxq/1oVtTW4KT3g2dg+ynju4FwOholbAHCXIN4vl5z7Muex2HSg4xN2wuk4Mmo9dIlaxTJnNzl1yx6prqKK8vw8/YvRwhqeV6Ij1N3WqjBZOLD8aKXOra7OL4O/tTVFdEo7mxx3f2gjyNuBl17M4qZ2Kkd4+2LelFrPOqa3MGcweMvUx9kTv8nborOPxs1ThvT+gEuOZbNfbO4AIjL4DQNnF0IePguh/g0NdQX0XjxKsx+8XToQliboKmehq0empMNfg4+3RUE1Dn2DvH3UlSYBIbczcyzn8cs0Jn4evsS42pBietU4+pC43yHcXyM5ezJmMN1Y3VnBl9JuP8x/VI25J2OLnBwsch5gxI/RUipkH8AnDxBVMDNFaqSlkR0+CKj1T366oCGHEORDUHpJua3eT0RuaFz+Ol+S+xJn0NwW7BzI+YT1yLbH9DVafvGE3mJhotjbi0kQNuMDcghLB5zteZ6qzKmi2c7Dgc4TOCtxe/zY+ZP1JaV8ri6MVMCJjQ+YmS05JeNUIURQkH3gWCAAvwmhDiuXZ15gJfAy0+F18IIR7vzX71JBUNFWzI2cC7B9/F08mTG8bcwMTAiejLsmDvB6pcXtRMmHSTbcbTtjQ1QE0R1JVBYxWUpcP6f5M14ky+MZeztvgXJmjKuTzhcoa1C1hrwaA1kBSURFKQrbZ3dvFhvk/7gZW560n0jOeKhMsYHuxY/7vWVMvmvM28feBtdIqO60dfz+SgyTj30KqfI6I8o4jyjOq19k870jdAzNxOq2VWqkHp3d0iT6/UMyWkZ3zKTS6+OFXYxgPpNDr8nH3Jqs4k1jOugzNPnYkR3qw6kC+NkMFCSQrsWqHGxMXMhYnXQ4ADEQYXbxhxrvrjiLpyOLZGDUz3G67OvQ1VauxIUyO0LNYoCoQl0RQyjl0Fu3jrwOuU1Zdx5cgrmR02Gy8nr9Y2c3bB7hXsGHMeH6R9S1pFGvPC53Fm9JnEe3fsHhnoGsjSuKUsjVuqNlOdwxv73uC7tO8Y7TuaK0dcyQjfzhcWOkNRFMb4j2GM/5jOK0u6j2cYTLha/WkhYxNsf0OV5E1You6WRM1Uf1poqFGNkg3Pqa6FM/6AW/RsZoepP1bK0mHvx6oBHTZZzX0T1C5PCLC3aC/LDywnsyqTi+MvZl7EPFLKU3hz/5vUm+u5btR1JPonsi1/G+8deg8voxc3jr6RcLdwVmes5uvjX5Pgk8DVI67u8u7LKL9RA3anRjKw6O2dkCbgj0KIXYqiuAM7FUVZK4Q41K7eeiHEOb3cl15hffZ6HtzwoPV4a/5Wli96k/Grn4C0X9XCoiNwbC3csErVAW/P8Z/gszayjQe/oPbCN/hnzkp+LVCD04+XH+e37N9YcdaKLkvY1tWV8+yel1md86u1jXUF23l//quE+tk/uLfnb+eeX+6xHu/8eSevLXyNaSHTunQ9ST9jblLVfKY6NlTbkl6ZQWA3XbEazFBUq8XPuQfcsYBGV1982ibkaibINYi0ivReMUKSonx46ZcUHloyXPrGD3Rqy+DL2yF7q3pcdARSfobrvlNzJJwMx9bAN3fC7D/DmjauWwc+U5UJ274UAgeLD3LL2lswC3Ws/2XDX3hixhOtrlRFR+Hd8zh40Sv8ftPD1oSwKeUp5Nbk8vDUh7vkjtLQ1MDLu1/mm9RvgOY5O3sdHyz5gHCP8JO7R8nAIm8ffHyVmtML1PFbehzOexGMbeRrMzbCR8tajzMvg6u+gLg2KmaNNbDmr3D469a2jq2GG38E79b8UMmlydy0+ibqzepC0VPbnsLDyYMH1j9grfPIpke4e/zdPLXtKWvZlrwt/G3G3/j3zn8D6jj+Les33j/7faI9bV2oJZLu0KsxIUKIPCHErubPVcBhYMg4/NeYanjn4Ds2ZRZhYVPORihq9zJVngHFthKkgLrluuUl2zIhyFKarAZICwW1BaRWdF01Jaci1WqAtFBSX8LxsmN2dYUQfHz0Y7vyb45/0+XrSfqZ/L3gFugwh0F7UsuPE9jNoPTMSj3+LmZ0PTSLmFx80NeWqgnm2hDoEsTxspSeuUg7onxdEEJwMLeyV9qX9CClqa0GSAslyVBiP5+dkIZqVZEwYrpqjLTn8Ld2RdsLtlsNkBbePvB2q+JP4SFoqCLFXGM1QFpYmbaStC6KK+TW5PJtqu31yxvKSSnvnfEv6UMKD7UaIC0c/kY1YNuy4y37c/d8YHtcltFqgLRQXQDFtm0dLTtqNUAAItwjWJ+93qbOtJBpfJxs++y3CAt7i/ba7PRVmarkOJT0OH0WmK4oShQwHtjq4OtpiqLsVRRlpaIoDvfwFEW5RVGUHYqi7CgqKnJUpc/RKlpcDfarWy46ZzA3OjjBkWKLBpzsk/joFK1D9YuT8Q/WKtoOlSraoyiKw2RCMsHQiRlQ4zJjEwR0bQs8rTKdINegbl0urUJHkGtT5xW7iNDoMDl7YayyDU4PcQvmeMXxDs7qHoqiMDnah2/35vZK+/3JgBqbPUEH2codzqsnQtGqc25TnepL3x4HRnz7QFsAN71b6xzdHMemczBn6zV6h+pGjtAoGocxcX2RSb2vGHLjsqs4fP7r7cuNDpLHGts9hzW6jpW12tA+jq7B3GAX69lgbsBFZ/93YNAaaLLYzu8yXlPS0/SJEaIoihvwOXCPEKL9kuMuIFIIkQi8AHzlqA0hxGtCiCQhRJK/f/dyG/QURp2Rm8fcbKNK5aJzYWroDHtljKjZqu9xe7TN6lhtXUH0LkQ0NnBl5Jk2Vcf5j2sNRusCYT7DuD7+MpuykV7DiPNxnMju0oRLbQwfvUYvEwx1woAal2nrOo47akO1SV2t9XX269bljpfpCewJZaw2NLr64VRuGxfi6+zb3OeKHr1WC1NjfPl2by5CDC2VrAE1NnsC3zgYd6VtWfyZ4DfMcf2OMDjDrHvVJIbxC21lU3VGSLCf8yYFTsJNb5tZ/HeJv2sN9A0eC97RDDdbiPSItKl39cirifPu2rwd5hbGTWNusikb5jWMeK/OJbcHC0NuXHaVwDH2oiGTfwcBI23Lkq63NSa0eki8wraOd7S9slvoRLu2RviMINCl1VWxoLaAueFzbRTRtuZt5bpR19mc56p3ZXzAeKpNrZLpke6RDPM+yb81iaQTlN5+8CqKoge+A1YLIf7ThfrpQJIQosMsYklJSWLHjh0918luYDKb2Fu0l9+y1+Gud2dm2Cw1iLAqX12ZztikKqxEzwavCMeNNDWqqlfJK9WVufApkL6B4pCx7DJo2V60lxG+I5gcNJkw97CT6l9pRQa7CnaytWAnCV6xTAmaQri/49Vys8XMgZID/Jb9G1pFy6zQWYz2G326+8p3+eb7dVxazPCPKFj6EjifOMh6f/EBPj/2OZcnXHbCep1x3y++TA6uJ8GnZ9SxANzyD6Btqid/3OU25Z8d+5yzos5kQuDEDs48dYQQPPDFfv57WSITI0+sZjSAOKk/yoE0Z3aLyjzVZz5zi6psFTULvJpjJYSA2lJVmagjieraMvW7xlqoyILU38A7HHJ3qzsg8QshZLzDU4+UHGFT7ibKGsqYHTabsX5jcWp7neJjcHwdB4Pi2Vp5jPTKTCYFTWJi4ERC3BzEAnZAWX0Zuwt3syVvC/Fe8UwJnkKERwfPjoHJ4Jgz+wJTA9QUgIu/avzm7lXFQ4qPQuR0iJgK3lG251jMqsjBsdXqrl38QgiZYK8EV12kqiGm/abKT8fMsW8LSC1PZVPuJnKqc5gZOpNEv0QyqjLYkLOBenM9s8Nmk+CdwKGSQ6zLXoenkyczQ2cS7BrM7sLdbM7dTLRnNFODpw52EZnT+kVmoNKrRoiivr2+A5QKIe7poE4QUCCEEIqiTAY+Q90Z6bBjA2riqimBI9/B/k/UJFdTboXoOa3qKl2hPBuOfg+HvlFl9iZcA3ELwNmr17ot6TKD44Gat1cNelz6cqdVv075mryafOaGzznlywkBl3wdxO8nluHh1HNziKGqEO/0DaSf8Web8s15W3DSOnHF8Cs6OLN7fLUnB40Cf79wbK+03wucnkZIR5Smw6534MDn6gvZrD+qRkoLVQWqitC219ScIWMugdR16qpz1KyTd+mSnIjBMWf2Ntk7VSWsjA3qLsXU21XPh80vQUU2RE6D8VeDjwz07iOkETIA6W11rBnA1cB+RVH2NJc9BEQACCFeBS4GblMUpQmoAy4/kQEy4Di6Er5tk2zw+E+qrnzUjK63cWw1rGzz0pW2Di7/EIYv6bl+SoY2aevtk7F1QHL5MRK8E7p1ueI6DRpF9KgBAmBy9UVfW4pibkC0cRkIdw/jt+zfevRabZkR68fDX+3nkXNHYdQPzEzEkg4w1cFPj6lGBqgiIOnr4aafwa/ZDWrfR7D2r+rn0lTVFeuMh+G9i+D6VRAxpX/6LhmalGfBd/dA/r7m40w1kezI89UFS4DMTVCcAhe8quaokUhOQ3pbHWuDEEIRQowVQoxr/vlBCPFqswGCEOJFIcQoIUSiEGKqEGJTb/apR2mogq0OVp6P/9z1NuorYfd79uXJq0+9X5LTj9RfINBeI749FgTpFemEnoR7iCNSyvWEuvdsPAiA0GgxufhiLM+xKQ92DaawtpDqxuoOzuwe/u5ORPu5suZQQa+0L+lFyrPg0Je2ZfUVqmwpQHUhbGk3T1vMah2tXn0ZlEh6kuLkVgOkhYosmwTDgKpwVZHZd/2SSAYYfaaONSTR6MDZQcbpTnzybdvQg9HLvtxFJk+TdBGzSfWRD+rclSivOhejzqlLOQtOxPEyPcE9qIzVlkb3AJzLMmzKtIqWCPcIDpW2TzHUc8we5s/7WzI6rygZWGj1akB5e1qSrGoN4ORAcUirB0uT4+8kku6gM9qKzbTQXj1NZwSNwb6eRHKaII2Q7qB3htn32aqrGD27lLHaisEZpv5OjQVpwckd4hb2WDclQ5ycneAe7FjasR3Hyo8R6tb9VD1HSw0Eu/WOEdLgFohzqX0+nEiPSPYX7e+VawJMivIhuaCK1KLe2W2R9BJekTD3IduykAmtSkHOXrDgEdvv3QIBof7NRMpkrJIeJnAUJLZTcks4C+raKfzNfcBhMLlEcrrQ2zEhg5aGJjMVtSY8nHUY9Sf4b4qcDjeshvSNYHBVDRCjp+qq1YWkcQDEzIMrP1dVX3RGtc3I6T1yH4C6Ul5TAkZ3tY+SoUXKzxCc2KWqh0uOEOp2cgprDi9ZpmdeZG2323FEg3sQ3umbAEHbWMIYr1g+PPwBAgtKL6yf6LUa5gwL4J1N6Ty2tHPXttONoqoGDDoFT+cBtnKr0ahiHiEToCpPnX/9E8AjuLVO7Hy4fqU6Tzu5g0eIOide94Mqa11dpO5sd7QDXVum7pq4nUaSsoOc4qoGDDoNHs79IDrg7KXKQCecDfXl6rPXbxjonCF0vBoLEj4JwibZq161UJYFiuhYVVMiGQJII8QByQVVvPhLCuuTi5gU6cM9C+MZGdLBKrNWD+GT1Z+yDNj+Jux9H7yi1dW3qJmOt2Xb0lCpZv1NXafW9Y2DxpqeMRiKU2Dzi6rvaVAizHsYwpK6365k4JCyBkZd1Gk1geBo2VEuG3Zpty5XUqfBZFHwdrJ0q52OMDu5ITRaDNVFNLq1ZnX3dvLCRe/C8fLUk8qXczIsGBHAg1/u54+LE/AwSsUkgMLKer7cncObG9LwctHz58XDmRXvh9NACuCvLYFDX6nB6QEjYP4j4N0mX4e+g8WdmmLY9gZs/K/qtjXvYTX3iFPz3NtYCylr4acnwFQL0+9Wc0BJY2TAUlBZx+c7c3h7Uzo+Lnr+fKY6Xg26Ph6vZpM6HlN/gvBp6q6HfwJ4d2JUVOSomdS3vKK+D0y7E4afCx7dSy4rkQxEpDtWO0qrG7jrw918syeXsloTaw4XcP3y7eSV1534RLMJNj4Hm55TH2w52+G9CyH/QOcXTV4FP/wJsrdB1lb49FrI2t79m6mvUtvd+baqn5/6C6y4AEpSut+2ZGBQWwpFyer2fycU1BYCAi9j9+KNksv0hHs0dWpbd4d6j2CcS+xdsuK84tmWt7XXruvr5kRimJeMDWnDd/vz+PvKIxRWNZBcUM1N7+5gb3Z5f3erlcZaVflq++uqMZK+AVacr/5ddEbKj/DDH1XJ1NJU+OwGdQ5uIXs7fHKNukhUmQOr7lfzOUkGLF/tyeWfq49SVNXA0ebxui+7dxKddkhNsTqWDnyqztFHv4cPLlUNjM5I/QVWPaCqvJWlww/3qYqZEskQRBoh7cgoreVofpVNWUFlA2klNSc+sTJX1alvi7kRig6f+DxTHWx73b68Jx50FZmQ2k6pq6FSTaolGRqk/AghiV3Kc3C45DAR7pHdFks/XGwgtJfiQVpodA/GpdjeWB7hO5xt+dswi967/jljg3lzQxr1pp5X/xpslNc2snxjul359rSyvu9MR1Rkqbma2tJYoyaEOxGmesdzb9u2jq2x/37ba9Ag44YGIiXVDby7yXYBQQjYndnH47U0DQoP2pZV5XVtAXD/p/ZlLfLTEskQQxoh7XDWa9E4eEtzMXSylatzAhcH2ZYNbic+T9GBh4NAYfce2HrVGR2rxsi4kKHDke9UX/gusK94H5EekZ1X7ITDJQbC3XsuS7oj6j1Dmo0Q2zwkvkZfPJ282Fu0t9euHenrSrSfKx9sldKZBp2GQA/7OcTHdQC5qumcHM9pnc1zGh14OoiP8mgjX+1oHvYIU123JAMOJ70GPzf7342nSx//vgwutoI11vIuPHvdHI25YPsyiWQIII2QdkT7u3LTrBibsosmhBHr34kx4R4Ei/9uWxY4GoI7SSCn08OMu2xXsp29IW7RSfS6A7yj1YRcbYld0KoaIxncNDXC8V8gvPNEa02iiaOlR4jqphFitsCxctUdqzdpcvIARcFQXWT33Tj/RNakr+3V618wPoyXf02htrF373Og42LQcc+CeLRtVmb83Z2YFO1gwaW/8IqEBY/alkXOhIBOXBS1Oph2u61BYfSCYWe2HsfOt5Vc1+phxt2gk0bIQMTNSc99ixNsFhKDPJ1IiuxjyXvfWJh2l21Z4hVqcHpnjFvWKi8N6kLmqAt7tn8SyQBBBqa3w0mn5dY5MUyP9SWlsJpIXxfGhXvh3pUg1eFnq2oreXtVCciwJPAM7/y88Klw44+q1KrWoCpmBAzvcp9LKjJpspgI8IxGaVHasJihKh9GXQBBo6HgoKqyEToRXP263LZkAJP2m/o77UJemmNlKfg4+XQ7P0hqhR5vJwuu+p7NlG6HolDvGYpLUbJNcDpAgk8C63PWk1J+jDiv+F65fLSfKwlB7rz+Wyq/X9CFF4chzJRoHz67dRr7sitwc9IxPsKLmM4WZfoSRWl+wUtQY/A8Q9W51z2w83PDJsMtv0B5tqpS5BWpBg+3EDhSzaieswOa6iFwDHhGqD4+JwiKqmyspMZUg5/RD30XXCUlPce0GF8+u206+7IrcO+v8aozwozfq0IIRUdVoyRsEhg9Oj83Zg5c9Tnk7FLHWMjEDmWkGxqqKa3Jw83JE3fXAId1JJKBjDRCHODj6sTchADmJpzkH7XeGaJmqD8ng6JAyDj15ySorS3ll4y1/PfA69Saarkm/iIujLuAAHSw7VXYuVw1hhY/BZNvkat3Q42DX3RpFwRgd+Euoj2ju3/JYgORnr3ritVCvWcoroVHKI+eaVOuVbRMD5nBB4c/5OGpf0HTPgFYD3HpxHD++s1BLp0UTrCnc+cnDFF0Wg3jI7wZHzGAE6g6uasvbzFzTu68miI49iNsfLZZHeuvzTl32rwsBgxXjf1ja+DzG6C+EqbeBhOvs3XdAoQQ7CjYwT+3/ZO0yjQWRS7ilrG3EOUZ1d07lHQRnVbDhAhvJvT3eK3Ogx1vquIGAaNhcWjXDGOAyBnqzwlILdzHy/te45e8zSR4xvKn8XczPnzmCc+RSAYa0h1rELO3YAcPbHuSgtoCqkxVvHRoOWszf4LdK2DzS2pwZmkqfHQF5O3p7+5KepKmRjjyfacPKlCleXcW7CLep/sr+nsKDUT2sitWC/Ve4biUpILF3ugZ5TcSgYWVab2nVBTgYWTBiAAe+fpg55Ulg5PkVfDjI1BXBtUF8M0dkLXFvl7ODlW1sCJbFfdY9w848LldtZTyFG5deytHyo7QYG7g29RveWbHM9SZOlFXlAwtqgvhk2tVw7WuDDLWw/sXQ3lWjzRfWV3AX7c+xeqcdTRaGtlfdphbf/sj6YX7eqR9iaSvkEbIIGZL/ja7so/TvqWqst1EJwQUdqLSJRlcHP9JXZ1163y3Lq0iDQUFf+fu5TawCDhQ5ESsV9/shFh0RkwuPriUpNl9p0HDkuglrM34kXXZvSdfeV5iKAdzK1l9ML/XriHpJ0z1sONt+/IjP9iXpW+0L9vxlprEsA1pFWk0WhptytZlryO/Vo6f04qydHslrJpiKD3eI83nVWawt9R2caS2qZb0Cvu5UiIZyEgjZBAT5GL/AhruEoxBOPDXN3aQbFEyONm9AqJmdanq5tzNjPAZ3m1p3vQKHS56C569lKTQEfVeEbh1kGvHw+DBpQmX8P3x73hu13McLT2KRfSsrK5Bp+GmWdH85cv9FFc39Gjbkn5Go1N99dvjHWVf1s7tClDjR9qpD7rr3e1PNXhg1DpQKZQMXQxuoHHgJmqwHx+ngrPe1eGYcnMw/iSSgYw0QgYxU4KmENhmddugMXDTyKtxGn2xrTyg/wgIGd8PPZT0CjXFkPobRHduhDRZmtiSt5WRfp0nM+yMnflOxHn3zS5IC7U+Ubjn7ae9VG8LvkZfrhl1Db5GX5YfWs7dP9/Nc7ueZUPOehrM9T3Sh+FBHsyI8+OPn+zFYunlgHxJ36HVwZRbQe/SWubqB/EOlAkjp9uKjGgNMOdPYLCNFRrmM4zpIbZZ2f806U8Eu0mJ1dMK3ziY9SfbsqQbwb9nRC7CfBK4Z8zNNmULQ2YS55vQwRkSycBEBqYPYmICE3lz7vMcLj1Mg7mRBO94EoKSQJjhph+h4DAY3SF4PHhH9Hd3JT3Fng8gYmrnOWiAHQU78Xf2w9vJq9uX3ZZnZEJg3+4GmJy9ERodxrIs6jsYw3qNnklBSUwKSqLaVENmZQYbcjbyydFPuWjYRcwJmw3d3Ae6eGIYT353mFfWHeeOM+K61ZZkABGWBDeuhYL9oNFDcCL4OVBc84uHa75WlQ+b6iFwFASNtavm6+zL49Mf51DJIcrqy4jyjGKkr5REP+3QGVTxgohpauZzz1AIHqcKKPQAGq2O8+MvZJhXLJmV2fg5+zDKbzRe7g5yjkkkAxhphAxyIgNGExkwul2pRpXiDZ3YL32S9CIWs5qxecY9nVYVCFalr2JCQPd3wWpMCsfK9VwyvKrbbZ0UikKtbwzuubs7NELa4qZ3ZaTvSEb6jqSgtpCV6Ss5VpbM9aNvQNsNFS2dRsNd8+J45JuDjAz24IzhUg5zyBA0Wv3pDN9Yx+5b7Qh0DSTQtYsqSJKhi7MXxM7tteZdXfyYFDmfSb12BYmk95HuWBLJYOLI9+pqmn/n2+6HS49Q3VhNnHf3c2lsyzMS42nCqXfUcE9IrW8sHjl7QJxcLEqgSwDLEpZRUFvAa/teQ9C9WBZfNyfunh/PHz7Zw6Hcym61JZFIJBLJ6Y40QiSSwYIQsP7fMHJp51URfJ78OVNDpqLpdkg6/JZlZIRvY+cVewGTiw8WnRGX4pTOK7fDoNWzNHYp+TX5fJH8Zbf7MizQnWumRnHd29vIKq3tdnsSiUQikZyuSCNEIhkspPwE9eWqn3EnbM3bRm1TbY/4o9eYFPYUOjHar3+MEIAa/2F4ZTjI39AF9Bo9S2PPY0PuBvYU7el2X6bF+nL22GCueH0LBZU9E/wukUgkEsnphjRCJJLBgMWiJlUbe7mt8pkDqhqr+PDIByyImN8juyDrspyJ9zbhou8/Zaga/2G4FB5F23BqMSmuelfOiTmbt/e/RXlDWecndMKikUHMjvfjsv9tplAaIhKJRCKRnDTSCOlpGmug+BhU5vZ3TyRDiX0fq0HpnWRItyB4Y/+bjPAZSahb95VShIBvU1xJCurfF22Lzok6v1i80jedchthbmGM9U/kzf1v0pHk78lwbmIoU2N8ueR/m8mvkIbIgKNlLq7I6e+eSE5XasugKFmVVZdIJHb0qhGiKEq4oii/KIpyWFGUg4qi/N5BHUVRlOcVRUlRFGWfoigTerNPvUpRMnxyLbyYBK/OhANfgEkmOJN0k7pyWPtXmHQjKCfe2fg65StK60uZFTazRy69r8hAjUkhvo/zgziiKmgM3mkbUcyn7hY2LWQqZfVl/Jr1a4/0aem4UGbE+nHxq5tkjMhAou1c/L9ZsP9zORdL+pacnbD8bHhpEry5ELqxgCKRDFV6eyekCfijEGIEMBW4Q1GU9k7qZwHxzT+3AK/0cp96B1Md/PwEpKxVj2tL4PMbVP15iaQ7rHlYzWfgP/yE1dZlr2N9znrOj1vaLTnaFoSAFQfdmRVWh6b7Xl3dxuTiTYNHEF5pp/4w1ypazow+i8+PfU5hbUGP9OvcxBAWjQzkolc2cSRfqmb1O6Y6+PlJORdL+o/KPPj4Kig8qB6XpsKHl6n/SiQSK71qhAgh8oQQu5o/VwGHgfY+IkuBd4XKFsBLUZTBl162ugCOfGtbJgSUnLyij0Ri5egq9WVqwnUnrLYhZwNfHPuCS+IvwVXv2iOX3pJrpKhOy8SggbOCXBE2Ed+Un9GY6k65DX9nP6YGT+XVvf/DLJp6pF8LRwZx2aRwrnhtC5uPl/RIm5JTpLoQjnxjX158rO/7Ijk9qci0d8luqISyjP7pj0QyQOmzmBBFUaKA8cDWdl+FAlltjrOxN1RQFOUWRVF2KIqyo6ioqNf6ecoY3MAr0r7cxbfv+yLpM3p1XJZlwNd3wIw/gMGlw2prM37ks+TPuHTYZXgbvXvk0uX1Gl7Y5cnSuBq0A2AXpAWTiy91PlH4HVnZrXYmBE5Aq9HyZQ/I9rYwPdaP2+fGcdt7O/lsR1bnJ/QyA37O7C0MruAVZV8u5+IBwWkxLo1eoDXYlikKOPfM/CyRDBX6xAhRFMUN+By4RwjR3l/B0SuOXdSoEOI1IUSSECLJ39+/N7rZPVz94Oz/gKZNEvphZ0LQ2P7rk6TX6bVxWVcO718Coy+EwFEOq5iFhY+OfsSa9NVcMeIKfJ19msvhYLGBDw658dRmL+7/1ZeHfvPhv9s9+TbFhYxKHeIEcdnVjQr/t8GHCYENxHr1fyxIe8ojJuORswfnklN3bdCg4azoM9mYt4ldBTt7rG+jQz35y9kj+PfaZB795iAmc/cSJHaHAT9n9haufnBO+7l4MQQn9l+fJFZOi3HpEwuLnrQtm/XnLiWZlUh6AkVRflAUxau/+9EZus6rdA9FUfSoBsj7QogvHFTJBsLbHIcBg1NaKmYu3PwrlKaA0RMCR4NbQH/3SjLYqK+E9y5SY0CGn+uwSrWphtf2vUZlYyXLRizDWedMcZ2Gb1NcWZPugotOEOfVSLCbmThvE2aLQkWDhu15Tnx42B2NAtNC6kgKbiDBx4SnwUK9WWFbnhNv7vNguK+JBZEDM9DaojNSGjuHkJ0rSJ/9B8xGj1Nqx1XnytLY83j74HK8jF7EeMb2SP/CvF14fOloXv01hYtf2cQLV0wgwrfjnSxJLxA9V87Fkv5Dq4PxV0HIeKjIAvcQdTFJ79zfPZOcJgghlvR3H7qCIk60JNrdxhVFAd4BSoUQ93RQ52zgTmAJMAV4Xggx+UTtJiUliR07dvRwbyUSh3TZGalHxmVFDnxwKXhHweRbHOYEOVqWzGv7XiPGM4a54XPIrHTikyNubMszMi6ggcnB9QS5mju8hBCQX6PlSKmB4+V6sqt0NJoVNApEe5qYGVZHgs/A2wFpj0f2LpzLM8icfjsWw6nHwaRUHGd12mrunnA3cV5xPdY/ixCsPpDPN3tzuWteHNdOj0Kn7bHN55NykpNzpqQP6ds5UyLpGgPIsVhFURRX4BPUxXct8ATwD+Bj4IzmasuEECmKovgDrwIRzeX3CCE2NnsavQAkoXoRPSaE+FxRlHQgSQhRrCjKVcDdgAE1JOL25jbebHPeW0KI//bqDTugt3dCZgBXA/sVRdnTXPYQzf+JQohXgR9QDZAUoBa4vpf7JJEMPISAg1/CD3+CEefCqAvt5HgrGiv44tgX7C7cw7zwhZTXj+Ivv7mRVqFjekg9900q61JCQUWBYDczwW51nBGhBnibLKBVGBAqWF2lMnQ8iqWJyPXPkTPpeho9Tk3PIs4zFk30mTy361kuir+IueFz6YnnlUZROGtMMInhXryzOZ33tmbyh4XDWDI6qCeNEYlEIpEMTs4EcoUQZwMoiuKJaoRUCiEmK4pyDfAscA7wHPBfIcQGRVEigNXACOD/gAohxJjmNmwCjxRFGQFcBswQQpgURXkZuBI4CIQKIUY31/Pq7Zt1RK/uhPQWcvVE0of07qqeqQ6SV8GmF6CuDKbcBgEjrF9bEKRWpLIhZwObcnbjqZ9DjSmJTTlueDlZmBxcT2JAA7rT+J3WtSgZr4zNVIZOoCxmNibXUwtALqkr4Ye0HzDqjJwbey6j/cb0iNQxgBCCvdkVfLs3l+LqBi6aEMbi0UGMDvE4VYNE7oRIBipyJ0QyEBlwS2yKogxDNSY+Ab4TQqxv3sGYJ4RIbQ5nyBdC+CqKUohtqII/MBz4FbhcCHGsXdvpqLscl6Mu/hc2f+UMfIhq1OxA3Qj4HlgjhOjzIMZejwmRSCSoBsbej6GuVJUQLUuHggNQUwTO3tTHzGWN9xg27Sqipimf8gYLpQ2C8kZnqs2+VDYtRXABRm0Tce6VLApKx8+pHgTk9Ey6i0GMJ7qgM/AuTMc19XX0KFS7+dPg7InJ4IJJ70Kpfzxmnb7Tlib6nklaRSovbPuQJssKvI3eBLkG4eXkxXj/cQS7hZxyL31dDVw3PYqM0lo2HS/mlXXHAfAw6oj1dyPMxwU/NwOeznpcDTrCfZxZPCoIpZMElRKJRCIZfAghkhVFmYjqDfR3RVHWtHzVtlrzvxpgmhDCRp++OezhRLsJCvCOEOJBuy8UJRFYDNwBXArccEo30g0G5U6IoihFwMkIbvsBxb3UnYGCvMfeoVgIcWZXKp5oXF6bqPdafr6zXeRzUY3FVNWIGWeN7gPD+bo3Gi/tsP0gpQg9Az9Woz9RAL2D+ThP0Yo6B/E1oO5SOHzR16C0XTuz1ApzU7Xo0V+AxslFp3X26HAxKOuFq/ZYastbAnzajv8uj0s4pTmzpxkM85PsY89gbHHx6IwujsvBcM+dMdjvYSj0/8jJzJl9gaIoIagx0/WKopwPXAeMA14VQjzdHMtxmRDiXEVRPgB2CyH+1XzuOCHEHkVRnkb9m7unudxbCFHWZickAPga1R2rUFEUH8AdqAEahRCViqKMA5YLIcb11b23MCiNkJNFUZQdQoik/u5HbyLv8fRhsPw/yH72LIOln44YDH2XfewZerqPg+GeO2Ow34Psf++gKMpi4F+ABTABtwGfAW+j7o5ogCuaA9P9gJdQ40B0wG9CiFubA9NfAiYCZtTA9C/aBaZfBjzY3J4Jdeejrvk6LatzDwohupeA6xSQ7lgSiUQikUgkEkkfIoRYjRoTYqV5V/4lIcRj7eoWowaYt2+jGrjWQXlUm88foyputWfCqfS7JzmNw1klEolEIpFIJBJJf3C67IS81t8d6APkPZ4+DJb/B9nPnmWw9NMRg6Hvso89Q0/3cTDcc2cM9nuQ/e8j2u5gnA6cFjEhEolEIpFIJBKJZOAg3bEkEolEIpFIJBJJnyKNEIlEIpFIJBKJRNKnSCNEIpFIJBKJRCKR9CnSCJFIJBKJRCKRSAYpiqJc15z8cFAhjRCJRCKRSCQSiWTwch0w6IyQQamOdeaZZ4pVq1b1dzckpwdKVyvKcSnpQ7o8LkGOTUmfIudMyUDkpObMkyXqge+XAU8BEUAm8FD602d/0J02FUVxBT4BwgAt8ASQAvwHcAOKUY2PGcByIAc1E/o0YDrwDGoqju3AbUKIBkVRngbOA5qANUKI+xRFORd4GDAAJcCVQoiC7vS9qwzKnZDi4uL+7oJEYoccl5KBihybkoGIHJeSoUCzAfI6EIlq7EQCrzeXd4czgVwhRKIQYjSwCngBuFgIMRF4C/ibEOIzYAeq8TAOEKhGyWVCiDGohshtiqL4ABcAo4QQY4Enm6+zAZgqhBgPfAT8uZv97jIDwghRFCVBUZQ9bX4qFUW5p7/7JZFIJBKJRCKRnICnAJd2ZS7N5d1hP7BAUZR/KIoyCwgHRgNrFUXZg7p7EebgvAQgTQiR3Hz8DjAbqATqgTcURbkQqG3+PgxYrSjKfuBPwKhu9rvLDIiM6UKIo8A4AEVRtKhbSl/2Z58kEolEIpFIJJJOiDjJ8i4hhEhWFGUisAT4O7AWOCiEmNbJqQ5dz4QQTYqiTAbmA5cDdwLzUHdX/iOE+EZRlLnAo93p98kwIIyQdswHjgshMvq7I5Lep7y+nCNlRyitLyXCPYIE7wT0Wn1/d+u0xCIsHCs7RmpFKu56dxJ8EvB38e/vbkkkEolkEJFXk0dyaTIN5gbivOKI8Yrp7y71NpmoLliOyk+ZZrWrUiHEe4qiVAO3AP6KokwTQmxWFEUPDBNCHASqAPfmU48AUYqixAkhUoCrgXWKorgBLkKIHxRF2YIaXwLgibr4D3Btd/p8sgxEI+Ry4MP2hYqi3IL6CyAiolvGpWSAUNFQwTM7nuHr418DoKDw9OynWRK9pJ971nWG0rjcnr+dW3+8lSZLEwCTAyfz1KynCHQN7OeeSU6FoTQ2JUMHOS6HNlmVWdz9y92klKvvt846Z95Y9AZj/cf2c896lYdQY0LaumTVNpd3hzHAvxRFsQAm4DbUgPLnFUXxRH2HfxY4iBoD8qqiKC2B6dcDnyqK0hKY/irgA3ytKIoRdbfkD83XebS5bg6wBYjuZr+7zIBSx1IUxQDkogbNdBiZn5SUJHbs2NF3HZP0Cjvyd3D96uttyjwMHnx67qeEuA0YpbkuK2oM5nFZ0VDBDatuILk82ab8+TOe54yIM/qpV5ITcFJKL4N5bEoGHafFnClxzFcpX/F/G//Ppmxu2FyemfMMTjqnfuoVMAjVsU4HBtpOyFnArr6SBpP0LxUNFXZllY2V1Jhq+qE3pze1TbVkVNl7QJY3lPd9ZyQDHrNFsDe7nAkR3v3dFYlEMoDIrsq2K0upSKGuqa6/jZBepdngkEbHSTIg1LHacAUOXLEkQ5MIjwh0Gh06RYeHwQOAMX5jCHSR7j99jZ/Rj7Oiz7Irj/KM6vvOSAY865ILufDlTRwvqu7vrkgkkgHE+IDxdmXnxZyHl9Gr7zsjGfAMmJ0QRVFcgIXA7/q7L5K+IdYrllcXvMqewj0U1xUT5RnFxICJeDh59HfXTjv0Wj03jb6JmsYafsz8ES8nL+6ffD8jfEbY1EstT2V34W4qGioYHzie0b6jB6SQQGp5KrsKd1HVWMX4gPGM8huFXjPw+jlY2Z9dYf031t+tn3sjkUh6murGavYX72d/8X5C3EIY5z+OMHd7Ndicqhx2F+0mtzqXMX5jSPBO4KEpD/H8ruepa6rj/LjzOS/uvH64A8lgYMAYIUKIWsC3v/sh6TsyKzN5dtezHCg+YC27LfE24rzj0GkGzNA8bYj0jOSpWU/x+9rfY9Qa7QLS08rTuGH1DZTUlwCqkMBL819iVtis/uhuhxwvP871q66nrKEMAI2i4ZUFrzA9ZHo/92zokFpcg6eznqzS2s4rSySSQcf3ad/z5JYnrcfDfYbz4rwXbZ4LBTUF3PvrvRwqPWQt+8uUv3DF8CuYGzYXk8VEsGvwgFyokgwMBpo7luQ0Ia86j8Olh20MEIC3D7zNsbJj/dQriVFnJNIj0qEi1u7C3VYDBEAgeHH3i1Q32rrk5Nfks79ov0Pf4L5gZ8FOqwECqvTwy3teptYkX5h7ivyKeuID3Mguq+vvrkgkkh4mtzqXZ3c+a1N2pPQIR0uPkludy/6i/eRW53K07KiNAQLw7K5nya3OJdgtmAiPCGmASE6INEIkfc6m3E1c9t1lVDZU2n1Xb66n0dzYD72SdEaVqcqurKyhDJPFZD3enr+dy7+7nGU/LOPSby/lp4yfMFvMfdlNKhvtx1VpfSkms8lBbcmpUFzdQKSvK4VV9f3dFYlE0sOYzCZqm+wXbUrqS7jsu8tY9sMyLvvuMptFqRbqmupsngkSyYmQRoikT8muyua+X++jrKEMDycP3PS2/uQzQ2cS6eEo54+kv0n0T0Sj2E4ZV424Cm+jqpCUV5PHfevusz6YqkxV/Om3P5Femd6n/ZwYMBGlnRrjVSOuwtPo2af9GMqU1ZoI93amtEYuGEgkQ41gt2DOjTnXpsxZ50xhbaFVMbG8oZyCmgKcdc429c6OPpsgl6C+6qrkJFEU5XFFURacwnlzFUX5rqf7I40QSZ9SUFtgXVH/747/8reZf2N6yHQCXQK5LOEy7h5/t1TRGKCM8hvFKwteYazfWMLcwvjzpD+zJKY1sWRRbRGl9aU255gsJvJq8vq0n6P9RvPygpcZ4zuGMLcwHpz8IIuiFvVpH4YyQggq6kwEeRqlESKRDEEMWgO3Jd7GzWNuJsg1iBkhM3h27rO8d/g9m3rvH36fZ+c+y8zQmQS6BHLTmJu4fdztQ1qKdzCgqDh8vxdC/FUI8WMf9KFLgb0y+lfSp/gYfXDSOtFgbiCvNo/f//J7rhx+JfdOuJdY71gZkD6A0Wv0TA+ZTqJ/Iiazyc5Y9HLywkXnYrONr1E0+Dn79W0/tXpmhs5kfMB4h/2UdI/qhiYMWg1eLgYq65v6uzsSiaQXCHUP5a7xd3HViKtw0buQW51rl8OrxlRDoGsg/537X2pNtXgbvVGUXs0JOHB51NMuWSGPVnQrb4iiKP8AMoQQLzcfPwpUoW4gXAo4AV8KIR5RFCUKWAn8gpox/XxFUR4DkgABvCWE+K+iKMuB74QQnymKMgl4DnAFGoD5qJnZX2k+rwm4VwjxS7t++QBvATGomeFvEULsa+5fCBAFFAPLOrtHuRMi6VMiPSL567S/olW0gPqSGu8dT4x3jI0BUlxbzNa8rWzJ3UJBrcxdOZBw1bs6fLEPdw/n8RmPo2teAFFQuH/S/cR4xvRxD6G8vpzDJYc5WHKQnKqcPr/+UKaizoSbUYerk5aqehNCiP7ukkQi6QUyKjM4WHKQ5LJk/J39bZ7dWkXL/039PyI9IjHqjPg4+5zuBsjrQCRqZvZI4PXm8u7wEXBZm+NLgSIgHpgMjAMmKooyu/n7BOBdIcR4wA8IFUKMFkKMAd5u27CiKAbgY+D3QohEYAFQB9wB0HzOFcA7iqIY2/XrMWC3EGIs8BDwbpvvJgJLhRBdune57CzpUzSKhrOiz2K4z3AKagoIcAkgxjPGJodDZmUm9627j8OlhwGI9ojm2TOeJcar719mJV1HURTmR8zn03M/Ja8mD39nf6I9ozFoDX3aj/yafB7f/Djrc9YD4Gv05dWFrzLcZ3if9mOoUlnXhJuTDp1Gg5NOQ02jGTcn+SiRSIYSW/O2ctfPd1HXpCrgXTPyGm4acxMfn/MxhbWFBLoEEu0ZLb0XVJ4CXNqVuTSXn/JuiBBit6IoAYqihAD+QBkwFlgE7G6u5oZqlGSi7ppsaS5PBWIURXkB+B5Y0675BCBPCLG9+VqVAIqizAReaC47oihKBjCs3bkzgYua6/ysKIqvoigtQZffCCG6LJsod0IkvUJlQyUVDRUOv9Nr9AzzHsassFkk+CTYSfity15nNUAA0irT+D7t+17tr+TUqW+qp6SuBLPFjE6jI847jllhsxjuO7xffIP3FO6xGiCgKrq8uf9NqbrWQ1TVm3AxqKuhrk46KuqkEo5EMtiobKykvL7c4XeldaU8uulRqwEC8O6hd0kpTyHBJ4FZYbMY5jNMyu+2EnGS5SfDZ8DFqDsiH6HutPxdCDGu+SdOCPFmc12rv5wQogxIBH5F3d14o127CqqbVnu6sp3lqE5LWzUOvusQaYRIepTqxmq+T/2eq364iqt+uIrvjn9nl0eiM3YX7rYr25q3tc+lXiWds79oP/f+ei+XfHsJz+x4hozKjP7uEqkVqXZle4r2UG06uXEocUxVfRPO+mYjxKCjWsaFSCSDhrqmOtamr+Xaldey7IdlfJH8BRX1tguGlY2VZFfb53kqqivqq24ONjJPsvxk+Ai4HNUQ+QxYDdygKIobgKIooYqiBLQ/SVEUP0AjhPgc+D9gQrsqR4CQ5rgQFEVxbw4m/w24srlsGKohdbTduW3rzAWKW3ZSThZphEh6lB0FO3hg/QOkVaaRXpnOgxseZFv+tpNqY3bobLuyRZGL0Gq0PdVNSQ+QUZnBLWtvYX3Oeorqinjv8Hv8e8e/qTP1bwK7Ub6j7MrmR8zH0yAlenuC6oYmjM1GiLNBjQuRSCSDg92Fu7l33b2klKeQVZXFI5sfYWPuRps6PkYfh/NomFtYX3VzsPEQaoB2W2qby7uFEOIg4A7kCCHyhBBrUF28NiuKsh/VMHF3cGoo8KuiKHuA5cCD7dptRN1deUFRlL3AWsAIvAxom9v+GLhOCNHQru1HgSRFUfYBTwPXnur9SSNE0qN8lfKVXdkXx744qTamhUzjgrgLrLkeFkUuYn7k/J7onqQHSS1Ptdtd+CXrF3JrcvupRypj/cdy4+gbrQGUSYFJXJ5wuTRiewjVCFEfHS4GLVUNcidEIhks/Jhur8764ZEPbdxVPZw8eGTaI0S6qzm7nHXOPDLtEeK94vusn4MKVQXrZiAD1S0pA7i5u+pYLQghxgghzmhz/Fxz2RghxDQhxHEhRLoQYnSbOnuFEBPauG2tbC6/TgjxWfPn7UKIqUKIxOZ/q4UQ9c11xgghxrcoYwkhfhVCnNP8uVQIsVQIMbb5vH3N5Y8KIZ45mXuTEUWSHiXA2W5XkECXwJNqI9A1kIemPMRVI65CIAh3D8dF3z7mS9LfGHXtBTPAqDXaiAz0B95Gb+4Ydwfnxp5Lg7mBcLdw3J0cLRRJToWatjshei010giRSAYNfi72kukBLgHWRZsWRviO4N2z3iW3Jhd3gzsR7hGnr/pVV1ANjh4xOk4n5E6IpMfIrc5lScwSJgdOtpYlBSZxbuy55FZ3vDpeVFdEWkWaTeyIUWdkmM8wEnwSpAEywMitziWjMoN4r3gmBk60+e7O8XfiYfAgrSKN0rrSDlroPnWmOtIr0imocSzfrNfqifWKZaTvSGmA9DDVDU046dQXFie9VsaESCSDiDPCz8BV72o91ml0XDXiKszCTEZFho2kuY+zD6P9RhPpEXnSBkhOVQ4ZFRknFASpa1Ln8fya/JO/EcmQQO6ESLpNjamG71O/5787/0ttUy2LIxfz/BnPA7A6fTXXrroWF50L90y8h7Ojz8bN4AaA2WJmU+4mHtv8GAW1BUwImMBfpvyFYT7t1eAkA4H2v+cl0Ut4cPKDpFWkkVWVxWi/0bjqXbllzS0cLjtMuHs4j017jEnBk3q0H+kV6Tyz4xnWZa/D28mbB6c8yLzweTJLbx9R08Ydy6hXJXolEsngYITvCN498132FO2h0dzI+IDxeDl58bctf+Or419h1Bq5e8LdnBd7Hu6Gk1/AqWqs4tvj3/LcrueoN9ezNHYpvxv7O0LdQ23qpVek85+d/+GXrF/wcvLi/kn3syBygcMddsnQRe6ESLrNgeIDPLHlCRQU/Jz9WJm+kuPlx9lTtIfv077HIixUm6p5csuTHCg5YD3veMVx7v75bmsywl2Fu3hk8yNUNpySyIKkl9lfvJ8ntjxBtakai7DwXep3fJ/6PYuiFnHz2JuJ845T87uUqfLKWVVZ3PnznWRU9JxiVkNTAy/teYl12esAKGso48+//ZkjZUd67BqSE1PdYLa6YznppDuWRDLYGOYzjEsTLuWqkVcxym8U36Z+yxcpX2ARFmqbanl629PsK9p3Sm3vK9rH37f9ndqmWizCwpcpX/L18a9t6jSaG3lt32v8kqUm4i5vKOfBDQ9ypFTO46cbA2InRFEUL1QN49GoQT03CCE292unhghl9WXsLtzNzvydxHrHMjloMmHuPatwkVyWzJ3j7qSisYLqxmqiPKJosjTxfap9bo/9RfuZGjwVUJMSNgnbF5gDxQcoqC3Aw8mjR/so6T6Hig/ZlX2X+h3XjroWX2df8qrzyKvJs/m+tqmW7OpsIj3VAEezxcyB4gNsyt2ETqNjesh0nLRObMrdRFlDGdNDpjPWb2yHuxol9SWszVhrV55ekU6if2IP3KWkM2oamvB3V38/Rp1GumNJJIOMQyWH2JS7iUZzI3PC5vDN8W/s6uws2MmM0Bkn3bYjif1vj3/LsuHL8DJ6AVBSV8Kq9FV29dIq0hgXMO6krykZvAwIIwR4DlglhLi4OZW8DALoAZosTXxw+ANe3feqtWyM3xieO+M5/F38e+w60R7RPLDhAZvkhM/MfoZYz1jrLkcLIW4h1s9eTl52bXk6edr4q0oGDkGuQXZlsZ6xuOjUP1d3gzsGjYFGi60PcNvf856iPdy4+kbMQnXh+d++/3H3hLv5145/AfDG/jd4cd6LzAmf47APLnoXItwjSKtMsyn3Nnqf8n1JTo7axiacdC3uWFpqGqURIpEMFg4WH+S6VddRb64HYFveNmI9Y8mqyrKpF+4efkrtO1rkjPeOx1nnbD120anz+PGK4zb15LP/9KPf3bEURfEAZgNvgqpdLIQo79dODRGyqrJ444Btksz9xftJKU/p0vmldaXsLdzL0dKj1DfV231vspg4Xn6crKosu+zor+97nd8l/s5m4hnpM5Jx/uOsx8O8h3FB3AXWYwWFv0z5i42hIhk4JAYkMtJnpPXYqDVyx/g7cNarv+MI9wj+PPnPNufcOPpGoj2jAbAICx8c/oB5EfO4NfFWbku8jUlBkzhWdowQ19bf+Ut7XuowwaWXkxcPTnkQnaZ1/WRGyAyG+wzvsfuUnJiaRrPVCHHSa6mW7lgSyaDhp8yfrAYIwM7CnSyMWmhdTAKI94onKTDJ7lwhBJmVmewq2EVmZSZC2CfcnhgwkfNizuO2xNu4deytXBh3ITePudlmd9skTFyWcJnNPJ7on4ib3q2nbnPIoihKiKIon53CeT80ex2dqM7jiqIsOOXOnQIDYSckBigC3lYUJRHYCfxeCGGT+l1RlFuAWwAiIiL6vJODEbPFTJPF/gXhRGoVLaSUpXDvuntJq0hDQeHqkVdz05ibrCvO9U31fH7sc17c8yIXxV9kd36VqYoYzxg+WPIBqRWpqtqV9zCb1XQPJw/unXgvZ8ecTWl9KRHuEcR7Dy4d8tNpXIa6hfL8vOdJLkumrqmOGM8Y4rzjrN9rNVpiPGL4w4Q/UNNUg1Gr/s4NWgOgGiETAiawMn2l1aVqRsgMhnsPZ2/RXms7VaYqh+O2hSnBU/jo7I9Ir0jH3eDOMJ9h+Dnby06e7vTW2KxrbI0JMeo1MiZEclKcTnPmQKSy0T7mcnXaat5f8j5plWk4aZwY5jPMbudbCMGvWb/ywPoHqG2qxUXnwt9n/Z0zws+wUc5y1jmj1+p5Ze8rACR4J3CtwTaXXZOliQ+OfMAtY27BLMzoNDqyqrIori/u+RseYgghclGzp9ugKIpOCNHhZCyEWNKFtv/aze6dNAPBCNGhppO/SwixVVGU54AHUNPMWxFCvAa8BpCUlGRvfkvsCHUPZWHEQtZmtvrQ+xh9iPWKBdRJpcnShF5rm9ehrqmO1/a9RlqF6vIiELx76F2mBk9lVtgsQI0DeXrb0wB4O3mjU3QM8x6Gu8GdPUV7uG7UdXgZvfAyetm8qLbHy+jFlOApPXrffclQGJcms8luDHREoGsgga6O877kVOfwh3V/INAlkFmhs9iQv4GX977Mp+d+SpxXHDqNjrKGMhuDY2PuRqYGT7WR2r1+1PVW32FHaBQNCT4JJPgkdO0GT1N6a2zWtd0J0WmplepYkpNgKMyZA50TzemLIhfx8dGPbcqWxi0lzjvuhM/qzMpM7l9/P3VNdYAa7/fA+gf45JxPiPSItL5L7Cnaw+fHPreed7TsKB8e/pD7J99v3fkIdAlkSfQSXt77srWek9aJq0defcr33N+MeWfMMuApIALIBB7af+3+buUNURTlH0CGEOLl5uNHgSrgeiHEaEVRrgPORs107qooyjmo2dGHA4eBKOAOIcQORVHSgSTADVgJbACmAznAUiFEnaIoy4HvhBCfKYoyCTVUwhVoAOYDvsCK5jKAO4UQm7pzjwPBCMkGsoUQW5uPP0M1QiTdxFnnzB8m/oFYr1hWpa9irN9Yrh55NWHuYRwuOcynyZ9ypPQIS+OWckb4GXgYPNiev53j5cfZmLvRrr20ijSrEdI278ePGT/yzzn/5Lvj31FaX8qfJ/2ZGSEnH9Am6Vuyq7JZnb6aHzN/ZHLQZJbGLiXGK+aU2yuuLebBSQ9yrPwYW/O3Mtp3NFeNuIr8mnzivOIwmU1syrWfrw4UH2BJ9BL2Fu3lqpFXcUbYGQ5alwwU6kxma54Qo04jjRCJZICQWp7KN8e/YWv+VhZELGBx1GK7GI2RviN5Zs4zrDi4ggZLA1ckXMGEgAmdtl1YV2g1QNpSUFvA+4ff52DJQS4ddinplel2ddbnrOeOxjusi0uKonDRsItwN7jzafKnRLhHcMOYGwatW22zAfI6rfHMkcDrY94ZQzcNkY+AZ4EWa+1S4Fbg+jZ1pgFjhRCliqLcB5QJIcYqijIa2NNBu/HAFUKImxVF+QS4CHiv5cvm2OyPgcuEENubwybqgEJgoRCiXlGUeOBDVMPmlOl3I0QIka8oSpaiKAlCiKOo1pa9DI/klAj3COeO8XdwzchrMOrVbNbpFenctOYm67bs/uL95FXnkRSUxO0/3U5SYBKj/EaxOddWoCzSI9L6ue1W7fzI+dz/2/2YLCZADT5+bNpjXOh+YR/coeRUqDHV8I9t/+DX7F8B1RD4OfNn3lz8JgEu9lnvu4KXkxcv7H6BrflbrW1uztvMv2arQed6rZ6ZoTPZX7zf5rxJwZM4P+58mixNMjBxEFBvMuOkb40JqZWB6RJJv1NYW8g9v9xjFe04UHyAPYV7eHr20zbz6tHSozy4/kEmB03GW+vN09ufxsfZh7kuc0/Yvp+zH05aJxrMDdaya0Zew33r7qO8oRyAwyWHuW/SfXbnTg6ajKvBdm4PcAngqpFXcX7c+Ri0Bqvb7iDlKewFlVyay0/ZCBFC7FYUJUBRlBDAHyhD3WVpy1ohREtm4JmouxcIIQ4oitKRznKaEGJP8+edqDsmbUkA8oQQ25vbqgRQFMUVeFFRlHGAGeh2Urd+N0KauQt4v9n6SsXWypP0AG2zRh8rO2bnF9oSaPbUzKdoMDfgrHNmpM9Ilh9cjlmYWRq7FIPWwK6CXcR7xxPvHc9d4+7ijf1vUNlQaTVAWnj9wOvMi5znUAFL0v9kVmZaDZAW0ivTSS1PPWUjpKC2wGqAtJBRmUFOdQ4jfEcAsCR6Cb9k/mLN6zE5cDLj/MfxW9Zv1JvrrVnOJQMXdSekxR1LQ53cCZFI+p3U8lQ71cBfs38lszLTOv8CrM1Yi8lisvF2WHFoBTNDZqLTdvxKGOkRyTOznyG5PJkGcwNOWiei3KOsBghAk2giuSyZBREL+DHzRwDC3cK5euTV6DX27mGp5alkVGbgZnAjzituMKscdhTc1BNBT5+hxoAEoe6MtKdt/HRX09o3tPlsBpzbfa+gpstozx+AAiARVdjKXrHoJBkQRkizRdatLR1J19FoHIiiKXBB/AU8vuVx8mvyAYh0j+Sl+S9ZpX5vWXsLAFcOv1LdXRl1DXPC57Atf5tdcwaNAU3/i69JOkCjaFBQEO3mGa1G2602HaFVWts0WUwkBSUxN2IuCgqjfEfxxJYnrHEiHgYPnp37bI9nWZf0DEIIGkwWqzuWk05DnUkaIRJJf+No7lZQ7OZlRzsORq2x09dXszCTV5vHC7tfsJbdO/FeYjxjSK1ItZa56d1w1blye+LtWISFGlON3SIlqAuft/54q9XFa2HkQh6a/BB+LoNSZCQT1QXLUXl3+QjV1csPmAM4TqKlsgHVZesXRVFGAmNO8ZpHgBBFUSY1u2O5o7pjeaKGT1gURbkWOPUXhmbkW+IQo7iumNK6UpuyOlMdqeWplNaXUtFQQahrKDeNusmmziXDLmFDzgarAQKQUZXBzoKdvH3gbTbltfryv3/kfZLLkjHqjCT4JDAleIqdG83tibfLhIMDmEiPSJbGLbUpG+s/lljPWAprCx0qqLSQX51PekU6FosFUF27CmoKiPGMYXHkYpu6o3xHkeCTYG3zu+Pf8d7h93h176u8vf9tcqpzbALVKxsrefPAm5TUllBQU4DJbP/wkvQfJrNAowGtRn1jcdJrpREikfQBFmGhsLbQTg6/hRjPGMb6j7UpWxq31MaNGmBB5AIbadwW9cu2ZY7IqMjgn9v+yaSgSSwbvoxJQZN4ftfznB97PvPC57Fs+DJG+owk2DWYFYdX8PLel3l136usOLyCtw68RaO5kczKTHKqcqhsqOQf2/5hE2OyNmMth0oHrSf+Q0Btu7La5vJuIYQ4CLgDOUKIvE6qvwz4N7th3Q/sAxwPmBNfsxG4DHhBUZS9wFrU4PeXgWsVRdmC6opV03ErXWNA7IRIuk9ZfRk/pP7A6/tfR6/Vc9f4u5gXPo/0ynSWH1jOhtwNxHvHc2Hchbyy9xXivOJ4feHrrExbycywmUwNmspnyfbS08mlyQ6T1LU1dIZ5D+PtxW/zU+ZPFNUWsShqEeMDxvfq/Uq6h1Fn5M5xd5IUmMSm3E2MCxjHBP8JvH3wbb449gVBLkHcm3QvU4KnWB9ONaYafs36lVf2vkJ5QzkXxF3AwoiFPLND3aJfELGA60ddz/jA8ezI38Fov9FMDprMh0c+VNt0DeLSYZcS5h5GdlU2vi5qlvX2HCs/xkfJH7Hi0AoWRS7ixjE32j1IJf1DXaMZg6517cqo01DfaOnHHkkkQ5/86nw+Tv6YT45+gr+LP/dOvJdpwdNsFLB8nX15eubTbMjdwJ7CPUwPmc7U4KkYdUabtqI9ovnv3P/yc+bPNJgbmBc+jzivjlWxWihvKOeeifewIWcDX6V8xRi/MTw4+UECXQNZlbGKbfnbWBi5EH9n+0TIY/3G8s7Bd3j/8PvotXr+b8r/kVyebFevuG5wSvTuv3b/B2PeGQM9rI7VghBiTJvP6cDo5s/LUdWwWqgHrmoOHI8FfgIymutGNdcpbjm/ufyZNp+va/N5OzC1XVeOAW0t3QdP6YbaII2QIcL6nPU8vf1p6/FfNvyFtxa/xYu7XmRX0S4A9hTu4VjZMa4ccSWv7XuNrKosXlnwilU9Y07YHHYV7rJpd3rodH7J/MWmTKNo7LKpjvAdYeN3Khn4BLoGsjRuKUvjlmK2mPnPzv/w7qF3AXVH4o6f7uC9Je8x2k+dr3bm7+SB9a3CdcsPLkejaGi0NFJjquHr419TVFfEf+b+hytHXEmTpYl/bf8XHxz5wNrm37f9ndvH3c4Lu18gpzrHoRrX1KCprE5bTY2phi9TvqSoroh/z/k3Lvr2cX+SvqbOZMaoa92B12k1oEBjk8XGOJFIJD2DEIJPj33KG/vVxMOVjZXc+dOdrDhrBYkBiTZ1wz3CucLjCq4YfkWH7e0t2stdP99FqFsoBo2BH9J+4MkZT9rtjLfH2+jNB4c/ILdGVcbcmr+VGaEzuPfXe2m0qLnHvkz5ksrGSpICk9hRsEM9z8kbraLl+d3PW9t66+BbzA6bzc+ZP9tcI8ojqmv/KQOQZoOjR4yObuCC6oqlR3Wwu615V2PAIp8aQwCT2cSnRz+1K8+qyrIaIKD6XN4w+gZcda7cPf5uwt3DOVp6lN2Fu2loasAiLCyOXIxG0aBVtJwTcw6N5kbuGH+HdaXEw+DBP2f/05prRDI0KKor4tNk2zFkFmZSylKsxwdKDtid933q9zYPr2Hew9iUs4nlB5ezI3+HjV58S5sGjQEFBa2ixagzcvOYmzFoVD/lGSEzCHILsgmw3JCzgbyaznahJX1BnclsZ2wYZVyIRNJrFNUV8cnRT2zKBIKjZUdPqb1NuZt4ZvYzXD3yai4edjH/nvNvNmZv7DSJcXlDudUAaaHWVGs1QFr4OfNnlg1fZg1E/8OEP7AyfaVNnZ0FO1kQscAqDeysc+bhqQ8PWonegYIQokoIkSSESBRCjBVCrOz8rP5F7oQMAbQaLeHu4ewp2mNT7qJzwag1Um+uZ3LQZDRobILKLo6/GJ1GxzUrr+HFeS+SU51Dfm0+N4+5GYFgQ84G9Bo9nyR/wtywufx16l8JdA0kxC2kj+9Q0ts4aZ3wc/YjqyrLptzN4Gb97OnkaXeer7MvZfVlACyIWADAvevuBdQ4I1+jr92DK8g1iC+XfolG0RDmFsb88PnMj5hPo7kRgeDaVbbZdV10LjhpTxSLJ+kr6k2t2dJbMOq11DWa8XTuWsJLiUTSdYxaI/7O/jYqVKAuCJ4KM0Jn8MD6B6ztGbVG/jXnXzYCIh31oz2OxEjcDe6M8hvFl+d9icliItQtlPW56+3qHSs7xovzXySvOg9nvTNhbmE2mdclpwdyJ2QIoFE0XD78cuskoaCwOHIxga6B/G3m3whxDSEpMInVGattzvsi5QtK6koA+L+N/8e5seeSXJbM//b9j9f2vUZmZSZRHlHk1eRRUl9CZWMlSpcV4CSDCW+jN39K+pPN7zfOK87GxW6c/zib+CCtouWG0Tfw9sG3AVgUtYj3DlnzHaFRNFw54kqbNqM9o/EyehHrFUu0ZzR6rR6DzsAov1GMDxxPpEckiyIXcdWIq7hl7C0siV7CfUn32SXckvQPdSYzBq3tY0MqZEkkvYeHkwd/mPgHmxf+SPdIRvmOOqX2tuVvszFo6s31fHP8G6vQSEfoNXoujLuQi+Mv5uYxN3Nx/MX4GH3s4j//lPQn9TmhqEkJUdQFqbZGjIfBg7nhc3E3uDPMZxjh7uHSADlNkTshQ4Sx/mNZsWQFh0sOE+ASwPKDy7lm5TW46Fy4fdzthLqG2p1jERarm0tFYwUBLgGsOGsFB4oPUFhbCMDbB97m3on38lXKV9z58514OXnx16l/ZW7EXIe635LBy8zQmbx71rsklyXjafBklN8oQt1ax80ov1E8N/c5DpYepMZUQ4J3AjHuMfxj1j8orC3ERedCk2hNXOesc8ZZ58yDkx+koLYAZ50zYe5hVDdUd9gHDycPFkYu5KmtT1HWUEaCdwLXjLymV+9b0nXqTWYMOtuXBafmnRCJRNI7TA2ZyoqzVnC09Ki60+A7inCP8M5PdEBBTYFdWX5NPiZhQk/Hz/TaplrGB4znlb2vkFuTS7BrMIkBidyXdB+FtYWU1JUQ6xVLpEckbx14i1f3vkqDuYGFEQv5Q9IfeHXBqxwuPYxW0TLSbySJ/okdXkty+iCNkCHEcJ/hxHrG8uimR9mStwVQJ45ndjzDqwtexdfoS0l9ibV+hHsEhXWqsbE4cjH+zv6EuYcxzHsYr+x5hVf2vcLiqMV8lfIVyWWqkkV5Qzn3/XYfH5/9McN9pf/mUEKv1TMuYBzjAsZ1WGek30hG+tkmEwx0DwRQA83baMaX1JWQXpHOr9m/olN0VgPllfmvdNj+8bLj3L/+fixCXZU7WnaUxzY9xuuLX3foDibpW1QjxNZtQ90JkVnTJZLeQq/RM9Z/rJ0E76kwJ3wO36d9b1N2dvTZnQp/uOpd+deOf1nl2/Nq8vjX9n+x/MzlLIhcYK33W/ZvPLfrOevx2sy1RHpGcvf4u5kYNLHb/ZcMLaQ71hCjpL6EtZlr7cpzqnN4Zs4zTAqahLPOmdmhs7l+1PX8mPEjlwy7hDvH34mTTvW7VxSFC+Mv5KbRNxHrGWs1QFqwCItd7IBk6GGymNhVsIt/bvsn/9nxH/YV7bMaB44IdQvl8emPMyt0Fs46Z0b4jGBDzgYAmx2SnOoc/rHtHw7bzKrOsrvG4bLD1p05Sf9Sb7LYuWMZdBrqpEyvRDIoSApMUqV1XQLxdvLmjsQ7mBk6k615W3lyy5O8tPslDhXb5+uoaKiwyx9V2VhpjQlsoW3epxZWpa3qML+J5PRG7oQMMdz0bsR7xbOveJ9NuZeTFy/ufhGjzsjFwy4muTSZsoYy3l/yPqHuoXauVUFuQdw14S7SK9L5+OjHNjsoAD7OPr1+L5L+ZU/hHm5ac5PVKFhxeAVvL377hDsliQGJqntWneqe9c3xbzhSdsSmTnlDOe8dfs/a5vIzl1u35n2M9uPKx+hzykGYkp6lrtGMXtvOHUvGhEgkgwZ/F3+WjVjGrNBZmIWZKM8ofs36lbt+vsta551D7/DOme/YxAR6Onna7GgD6BSd3Zwd4movXJPgkyAl1iUOkTshQww3gxv3Jd2Hs87ZWjYrdBZeTl7sLNzJxtyNrDi0gipTFU2WJlLKUyisaV1lLqsvY3fhbvYU7qGyoZIYrxgemfaIjXLG5QmXE+8V36f3JelbhBB8ePhDm12JJksTK9NOrPhnsVjIqMogtSKVgtoCHpn6iI2y1YyQGaRXptu0uSZ9jfU43iveRuNeq2h5ZNojBLoG9sBdSbpLfZO9RK+TTmZNl0gGG+Ee4UR5RlFrquW1fa/ZfFfXVMfuwt3kVOewLW8bR0qPEOIawp8m/cmm3h+T/miXSNbLyYuRPq0uux4GD2aHzsZkMfXezUgGLXInZAgyPnA8H539EemV6bjqXYn3jmdP4R7r95OCJhHtGc0re19BIPBy8uKFeS/gbfTmLxv+Yt1OnRw0mcemP8assFl8fM7HZFVl4WP0Id47HneDez/dnaQvEAhqm2rtyuub6k943ur01Tyy+RHqmurQaXTcl3Qfn57zKWmVabjqXNlRsINX971qc06dqc762cPJg7vG38WZUWdSWl9KuHu4zEkzgKg3WdA7dMeSMSESyWDEIix283qLZPtl311GRUMFGkXD7Ym3c8mwSxjrP5b8mnyCXIOI84qzydoO0GBu4MzoM5kbPheLsOCkc6JJNJ3QlVdy+iKNkEFEg6mB8sZy/Ix+CAQNlgZc9a7Q1AAWMxhatztjvGJsslHHesZyRvgZ/JL1C1ODp9rkCylvKOeJzU9w45gbbfw5t+VvY332eq4YcQUJPgmEuYXhpHNCp5HDZqijUTQsG7GMHQU7mBw0GbMwsy1/G2fHnK0mqDI34mX0sjnnSMkRntjyBL5GXxJ8EkivTOdf2//FW4vfYkrwFJw0TtSbbR92CgpnxZxlU+ZucGdC4ITevkXJKVDvQKLXoFWoN8kXDImkP6hprLF9LlvMYKoFgxucQPa2xfBwM7hxw+gbeGLLE0wKmkRdUx0hriG8uPtFaxyHRVh4cc+LTAqaxITACYz2G91hu02WJv6z8z82ZefFnMcF8RdYr2nU2ecckZyeyLfJQcLO/J18mfIlGZUZLBuxjLXpa0mvTOfC6LNZWFVJ4IGvYNodEL8InL2s52VXZfN96vesTF/JKN9R/HP2P8muyrZrP7k82S7ADGBz3mbmR87nm+Pf8H3q94z0GclVI6+y8RWVDE2GecTwf1P/j4+OfoRO0fH0zL8jEPz+l99TVl/G+XHnMzdsLmEeag6PoroiLh9+OaX1pewp2kOCdwLnxJxDdlU2f9v6NyLcI7hqxFX8Z85/+ODIB+gUHZcNv0xmyR1E1JvM6NoZIXqtjAmRSPqa7Kpsvkv9jlXpq0j0S2TZiGUkmCyw4w1I3wDDz4FxV4JvjM15DU0N7CjYwRv736DB3MC1o65llO8o7plwD1+mfIm73p0lMUv46vhXdtfMr83vtF9plWl2ZTsLd7IzfyfP734eg9bATaNvYlLQJKsYjuT0RRohg4CjpUd5aMND5Nbkcnvi7TyySXV3AfjH7mcpjjmfu0y1aL+4GS74HyReDqh+nc/uepbV6WqSwuPlx9mYs5G/zfyb3TWGeQ9zGBQ8PXg6r+19jY+TPwYgpTyFdTnr+GDJB0R4RPTWLUsGADsKd/Hwxoetx3uK9vDHiX+0yj//Y/s/aDQ3csOYGwAIdA1kW/42627a8fLjhBaF8ui0R0kuSya5LJkNORu4eezNaBQNjZZG/rjuj7y28DWmBE/p+xuUnDR1JvuYENUdSxohEklfUWeq4987/s2PmT8C6ly7Lnsd74eeS+j2N9RKRUcgZxdc+g4YW4U99hXv49Yfb7Ue37fuPh6b9hj/2vEva9yGf4o/8V7xHCs/ZnNdbyfvTvsW4xljVzYpaBIv7n6R/cX7AdhZsJM3Fr0h533JwAlMVxQlXVGU/Yqi7FEUZUd/92cg0Ghu5EDxAY6XHye3JhcACxarAdLCivQf2HnWY6TPfxB2vA3NyeByqnI4VnaMu8bfxS1jb+HOcXcy0nckDeYGrhxxpTXY3M/ZjwvjLyTKM4rJgZOs7c4OnUViQCKfHvvU5noVDRUcLz/em7cuOQWyqrL4OfNnfs36lZyqnE7rVzVUsSlnE58d/Yx1Wesori22ftfUZOLr49/anbOveB9xXnHW40+SPyGvSk142WRuspNnzKnOsZF4rjfXY7KY2Ja/jV2Fu7AIS6fB7pKBQ32jA3csnZYaGRMikfQZ2dXZVgOkhZL6ElLbLRCQ+rNqjBz/GQ5+BcUprE23l/D/6vhXPDzlYW4deyu3J96Op5Mnt4y9BV+jL6CqYN00+ibMovPFBo2iYWHkQutxrFcsCd4Jahb1NrQVJJGcvvTKToiiKNOBqLbtCyHe7cKpZwghijuvNvQRQrAqbRV/2fgXnpzxpLVc48BuNOqM/Fyyj2+yvuH1KXczqtm4MGgNnB1zNi/ufhGBAODMqDPRK3q252/n5rE3I4Sg2lTNG/vf4P25L/AfkysZw65DIyCyOJ1SswmdoqNRNNpcs30wmqR/OVZ2jJvX3GyVUg52DeaVBa90GNTdZGniq+Nf8c/t/7SWLRu+jFsTb8Xb6I1G0eCid7Y7z6g12gQxOuucrb7IWkWLgmIday1Um2wzpLcfw1LkYPBQZzLj42r72HDSaaiXOyESSZ+h0+js5HIBNG1csQE1JiR/P3x/r3rsFYnrjKvt2nPTu7EybSVb8tVd7livWCYFTuK82PMwaA0oikJJXUmX4kHL6ssobyjn9sTbsWAhvyafH9J+sPO0cDO4df2GJUOWHt8JURRlBfAMMBOY1PyT1NPXGcqYzCaOlR1jT9EeXHQulDWUMd5/PKBmQG+/onBpwqWsTl+Nh5MHB3UK+Y1qMJmCwvIDy21eClelr0Kr0VLfVM+re1/lf/v+x/uH3+eGUTcQcngVnjvfZezqxxm95nHcd71LWPo2bh57s831hnkNkxK9A4xvUr6xyeWSV5PHT5k/dVj/SMkRnt/1vE3ZB0c+4GjpUQA0Wi0XxV1oI82s1+gZ4TuC7OrWmKIbRt+Av6s/AJHouDhigU2bkwKTSKto9REOcA6g0dxq0Bo0BhZFLjqZW5X0I/Umi0N3rFoZEyKR9BkGjYHzYs+zKUvwTsDDPdS24vhrYO+HrcflGcw3BNjIpmsUDQsiF7A1f6u17Hj5cfJq8thfvJ8mSxPZVdl8e/xbm7m7IyYHTeZwyWFe3vsyr+59la9SvuLaUdda3XhBVd9a0O5ZITk96Y2dkCRgpBBCdFrTFgGsURRFAP8TQtgIVyuKcgtwC0BExNCNRciqyuLN/W/y9fGvCXQJ5NbEW/ki+QuuH3098yPmk1aZxsNTHiajUs3FEOoWyrb8bUwKmoS3kzf/2fVfnt/zAneNv4tRPqOoMlXZXaPeXM9L819iS94W0ivTmRY8jfH+42DbFXZ1tam/cvmiR0nQuLC5ZD/xrqFMCZlOoEtAH/xvDHwGwri0CAsHSg7YlR8qsc9620JFY4WdUhVAaX2p9fMI35H8Y9bTbMnbilajZVrwVNwNHlwz8hoqGiqYFDSJRL9Ea31jXTmXhJ5BuN9ojpQdJdojmhk+I6lsKMcfLaFGX6aGzqRa74xGo8GgMTAjdAajfEd1839A4ojeGJv1TfbJCo06DbVyJ0TSRQbCnDnYqWqsotpUzR3j7iC9Ip0g1yBMFhPFigWWvgx5eyFyGmidYNc7NucGVhby9Ky/sy1/OyaziZmhM3nv8Ht2O9i5NbmEuIXwzsF3CHMP4+4Jd2Myd57rY5jPMJafuZyNuRspry9ndthsRvqO5I1Fb7A+Zz0GjYGZoTMZ6Tuy07YkQ5/eMEIOAEFA3kmeN0MIkasoSgCwVlGUI0KI31q+bDZKXgNISko6WQNnUGCymHj7wNt8fuxzQPWn/+/O/3LX+Lv466a/4m/0Z8WSFYQ2r3Zsyd3CLWtvwdPJkysSruCVfa9Y23pyy5O8ufAN4rziSClPsZbrNDp8DB5EeUYR5Rll24Gxl0HGRtuyEefgtephzkhZwxkeYVBbDJYmuPlXCJSTyEAYlxpFw9kxZ7OjwDaUqq1fbnvCXAIJdQslp7o1dsRZ50y4a7D1eFPeZh7e+DD+zv5YhIWPj37MnePuZFXaKlz0Lnx9/GtuHXsrd4y/A4BSNz/u3/ZXsmpyifKI4pfMX1ih1fPR+D8zY/f3UF8BDX+DG38kcfxddn2S9Cy9MTYdSvTqtDIwXdJlBsKcOdgJ0jqTWpbCz5k/E+gaSGlWKU2WJi6YPxfGnwnjr1QrZm6xPVGjY2tQHA/+ei8BLgEYNAY25m5kcdRiu+dHmHsY/9j2DwSC9Mp0/rPjP7y2yDapYUck+CSQ4JNgUzYuYBzjAsad4h1Lhio9ZoQoivIt6m6GO3BIUZRtQEPL90KI8zo6t/n73OZ/CxVF+RKYDPx2onOGGsW1xXyd8rVNmUDQYG4gyDWIx6Y/RohbCJSmQ/Y2Rmh0/HfOvzlemUZ9Uz33TLiHT45+Yg1i/zLlK+6ZcA8v732ZQyWHCHQJ5OqRV1PdJkO6DfGLYNqdsO1/oGhg8q2g0UHQKAgcBZueh5bt2JIUaYQMIGaHzeaakdfwwZEP0KDh2lHXMjV4aof1I2ureCLpzzy15wVSylMIcQ3h/gm/Z1SdmqDQbDHz5bEvAVV6F1QXAG+jN5ckXEJVYxXnG8/nt+zfuKLuCnycfcgxVRLlFcs5cUsprS/FK8qLrKosMivSCS/PVC/sFgg1RbDtDdBoIXyyOrYkg4IGB+5YTjop0SuR9CpNjZC7C3J2grMPXl5RPBV5Lo9lr+Jg2VECXQJ5NO5yYspyIKRVXIbgRLjgNVh1P9SVwew/sb1wD3eOu5O6pjoswoKHkwdOWieWxi7l29RvcdI6cWvirfyW/ZvN7kiTaKK4TobsSnqWntwJeeZUT1QUxRXQCCGqmj8vAh7vsZ4NEow6I4GugWRVZdmUx3nF8eGSD/Fz8YPyLPjoCig8RNGiR3nswJeUNaj5PXSKjnuT7uWZHc9gERbcndx5fPPjzAmbw9UjrmZX4S7+t/d/PD/9Cccd8AiGBY9C0g1QmQs//BE2Pdf8XShMvwvW/7u5s5699L8gORUCXAK4Z+I9XJpwKRo0hLiFoNVoOz7B4MKkd8/nlXn3UzDierxryoj44h64/H0AtBotMV4x7CzcaT3lutHX8b99/6OwVjViNYqGv0x5yJp4yk3vhrfR2yYR5szQmXj5jGu97ozfw6fXqgk2AZzc4brv1YelZMDjeCdEBqZLJL1K6s/w4eXQ4uXuFcmIsZfxWoMbxTFX4l5dhP+qx+DCdjsVemdIvAwip4OpDjxDmZG7kUc3PWp11dZr9Dw6/VEemvIQN425Cb1Gj0FjYPmB5Xbd8DB42JVJJN2hxwLThRDrhBDrgCUtn9uWdXJ6ILBBUZS9wDbgeyHEqp7q22DB2+jNA5MeQKO0/lrG+I1hnP841QABVemi8BA4ebCFeqsBAupKxc+ZPzMpcBK+Rl/8nP0orCvk02OfklWVxafJnzIjYAJxvidIDmc2QUOV6lPq3EYTvDJHXbnWaGHYmeDkARWdy8BK+g69Rk+kRyThHuEnNkAAfGJh9h8JWvkgiR9cTcTXd8Ows8CvdQv9oviLcNW7WttWUKwGCKixKF8kf4GoKoDc3ZhMNXyV8pXNZTbkbKBeq4fZf4JFT0JJaqsBAupYO/QNlByHvH1QX9nt/wdJ71Hf5HgnRAamSySniNkERUfV+a+uwv772jJY89dWAwSgPAM8QvAwehFjMuGvdYYR50LQWCjLhNzdUNUmsaBXOPgPA4Mrh0oO2cSKmiwmfsn8BT1aojyjCHUPxd/VnwemPGDTjekh0+1crCSS7tIbMSELgfvblZ3loMyKECIVkEuhwLTQaby/5H2Olx/H3eDOSN+RtmpYjTXqvwYXSsw1dueXNZRx0+ibSK1I5fV9r1vL3XQuvDzlEUa6hODVUVB5eSb89Djs/1SV9huxFCZcA7ua1ZX1LnDhm5D+G7w+F1z94aI3IGZuz9y8pO/Q6iDpegidCGVp4B4CwWNtklqN8hvF+0ve52jZUfSKnqw2KlctlDSU0pDxG65f303jkqewCItdncbqfPjtX6Azqu5+kdMhY1NrhbJ0+ORqKDgIUbPgnGfBL86uHUn/09hkQe9gJ6RBGiESyclTWwbbX4ff/qkaIxHT4bznwa+N+qS5QY3FbIveGdwC4PhP6nPb6AlLnoGiw/D5TarrlUcIXPSWGqDehsLaArtuFNYWYrI0oqdVNWt++HzeW/Ie6RXpeDl5MdJ3JH7Ofj16+xJJj+2EKIpym6Io+4EERVH2tflJA/b11HWGOnqNntF+o1kat5R5EfPs5HgJGA5aA1TlM905zO78ZWELyS0+xOv7X7eqH2kVLeNqKpn10Y34vn22uuriiKMrVQME1FWXQ1+BawAYXNUYkdCJ8O1dsOMttU5NEXxyjRqjIhl8OLlD1AwYfxXEzQNX+wdMrFcsS6KXsDBqIRM841GwVUZaFn0OPsd+ASAsZw8jvYbZfO9r9CWqrHnHrKke1j8Dce2kGYNGQ+Fh9XP6etj2GljkS+1ApN5BxnQnnZZ6k73xKZFIOiF3J/zyN9UAAcjcBJtfaj0GMLjB2MvV+MzgceAVCWMugdUPqQYIqKIfX90KuXtUAwRUl+rPrlP/bcPcsDl23Tgv5hxcnGzzNTnpnEj0T2Rp3FLmhM/B38W/Z+5ZImlDT+6EfACsBP4OtN3HqxJClDo+RXLSBI6Gq7+Cn55gzKGVPDflr7x49EOqTFVcF3cxC6praDR6I0Zdz8ep3xHo7M/vwxYx8rdmP31hUVeeFY1qZJRmwJgLVTeZw1/bXy9vLyScDYmXq8ZPQzvJ3/oKqMwGn6jevW9JvzOqsoiXpj3B84ffpayxgmXR53C24glG9eHlte8z/n7Zct4q2Mj6/K2M9x3N76LOJfjj620b0hjUB6lWB5NuUcdh2x2Uw9/A7PvUlT7JgKKhyeIwJkQGpkskp0DBQfuyI9/BuGWwc7n6nB5/lbqrcdY/IXm1umM94jw41O55bTFDU51tWVW+aoR4hFiLkvzH89i0R3n74HIazY1cMfxyZgXb7pZIJH1FjxkhQogKoEJRlDvaf6coil4I0bnAtKRzFEVdvb7qU4yNdcxz8ycpZjFNWdvx+eJ36u4E8DvvSC5e+hLGoz/g+t39tisrRk9YcQFU58P8R9TdDFc/iFsImZttrxc9CybeCEY3dbVaq7dtS2tQ3bIkQx69EMz6/E7GzboXk7MnPjuWg7NPq2Ja9Bxidn3AI1X5VIRPwD3rKE7HnoTRF8Lu91obsphUFwGLBUw19mMubJIUPhigOHLHctJpaGiSRohEctJ4R9uXhYxX3aLT16vHDdUQNAbW/KW1zsEvYdYf4cdHbc9tFgmx4uQOLr42RT5ugVw47CJmBE3GbGkixMtBHySSPqI3YkJ2AeFAGaAAXkCeoiiFwM1CiJ0nOHdQUlBTQNr/s3fW4XEdVx9+7/KKmZlsy4xJbMdJHOaGm7SBNgxt0mDThpO2gaZf0obTpG2YmdF2nBhiZluWxcywpIX7/THSSqtdS7It9rzPo8e6s3PnzpVn594zc87vtBRh0BrICs8iwhQxsBMtDVC/U7zUx+QJdSoQ7k2Ne8QEYgyFlnKxKhyTB/rOSabrs+YywppL4acnvQYIAE0lRG/7CCacBPW7oeArUX74TSL4t71aBJdb64WbTEs5hCaISbGp0/c/Lh8mniwMEIDoHDjx7/DpDcJdS9HAyf8QQc6SkaetBup3AYoIQuxnJ8HtcVPcWky1pZpoczRZ4VkYtIa9n2AIhqQZhHY9+IKi4MjboXqTMCpiJ8G7l6IHYqo2dJ+X30Ode8rZ4qEYkS4M6tAkyD5a+DaD+GzRrUJ8wdIAkeli3Cm+bmCS4UdVVRwuf3csnUbB7VFxuT3otIPm4SuRjH+S50DuCVDQqcMTFAVTzoH3L++uYwyBtS/6nudoEzGaOmO30MeCP0BEppiTPU5QtJA4g/aQWPbUbaK9o520sDRSQoUbd3xY6jDcoETSN0NhhHwBvK+q6pcAiqIcB5wAvAU8BRwyBNccMQqaCrju2+u8uTnmJ83n7sPuFvk8+qK5FD64VgR5g3j5P/91EXj+6tndfp35vwDVLbZoj30A5l4qgtIAarbBZ7cAHuEv2ht7C3x6o1hZvvBDcLQKf1OtvrtOTzeYZQ/D7N9AeKrw04+bAmE9YlK0eph+PiTPhNYqscUbO1G41UhGlvoCsaNV25klPWm2EA2IztrrKUvKlnDLsltwepxoFA23zb2Ns/PO3rshorpF4GT6AvF7ylwo/B5WPiU+P+bewOclTIML3hZB76ZwePsSqNshPkuZC6c/CZZ6ISEZlQmb34ElfxWf64Pgl69B9lH7/CeRDC5Ot4qiKGg1vgahoigiLsTlIUQaIRLJwAlPgjOegtod4LSKBZfv/+JbR1F8n9PdH8Dht4DbLjKjh6dCew0sfUjU1xpo+tXb/HPNo7xT8A4gJHafPuZppsVOG/p7k0gGwFA8MeZ0GSAAqqp+BSxSVXUl9JBeGAe4PC5e2/6a1wAB+KnyJ9bWDGCzZ8/SbgMEwNYospvuWSomoy62fSByKKiq2I7tenkDkd28ZDmUrRKuVD1RNGILt3EPlP8sJrKVT0HZSnC7hPuVo1Ukj9MHQ97xwuDZ9aW4XsohvgZIF3qj+HzCCcI3VdfHyrlk+NjyXrcBAiLgseArYdRam/yql7WWccePd+D0CNc6j+rhwdUPsqd5D1gbocPqdw4uByx9EJb8DZY+LOp1GSAgduayF/ueEztB7G6kzIGE6bD5Xd8xXP4z7FkmXAxzjxHGSJcBAuK78OE10FqNZGRxuNwYdYEfGSa9BmuHa5h7JJGMA4KiIWmG2BWJyhRJgw0hkH+6iP3Y871QFeyJIVjEf3z/ACz7uzBcWkrh6z93GyzuDrY1bvUaIACtHa08tPoh2jp6xXZKJCPEUCxhNyqKchvwRufxeUCToihaYFxJqFhdVtbUrPEr39G4g1OzT+375Ip13b/nHS9Wi1c+CbogOOrPsOVdERQO4LR31+2p/V3bGdTmcYv6x94PRcvEBJU6F35+QbhftVXDh9cKF53j/wLL/w8OvRYaCqClEn7xFPz4ONgLYN7lQiXrqzvgiFsh+xgwBu/nX0gyLHg84kHVk8hMMQ5eOUusjs27AiafCaHxADQ7mml3tvucoqJSV7ORiV//FSLS4Ig/CjndLleo3nlhGgp8j9sqhctg3CShUx+XL3LNNOyG9y4TLlhTzoTQRGir6j6vdCUc0ul+0B7A2GitFEZ6IKNYMmzYnZ69GiFGnRZ7x7ia3iWSocftEguJ3/9VuFPPuwJMkXDsfUK6FwUW3iR2SE56VIh2hCSIBITvXtqrrQ7fXCJArcdBb7Y2bKWto41QQ6jfZxLJcDMUOyEXACnAB8CHQFpnmRY4dwiuN2KE6EM4MvVIv/LpsQNIeZKxUPxrCBaBaMseES411Rvh67uE73wXhiDxr0Yrtly7SJrd/XvVBvjmbpFnIWMRfPlnsapSsQ42vAotZbD7W7FqMvMi+PZeocyRf6qQ8atcJ3ZNvr5LXK+1Qrj3lPUKGpaMPjQakaiqJ7MvgU+uF0HfjXvgiz92yy8DsUGxRJt8AxZ1Gh2JTWVCPa1oGbx8uoj36CI+3/caOrNvrEaHRVxj4+vieMcnwrgNju1sc6lwH5x7mW87OT12T8LT/O8vOlcqZY0C7E63X1B6F0apkCWR7DtVG4RITNmq7nm6pUy4VNVuF7vbn9wg5s+v/ixyhlStFzGchhDftjR6X1drIEUb5HfJQxMPJdIY6VcukYwEg26EqKpar6rq71RVnamq6gxVVa9TVbVOVdUOVVV3D/b1RhKNouGs3LOYHS+MAQWFX074JbPiZvV/cvp88aKYPl+4QPWmditEZ8Oh18CeJWLCOeNZ4d7SRdp8mPHr7hfB5DmQdQRkLoQTHhIuWmmHwpzfdp9jaxLZU4+9F058BMp+9ls9YftH3W41G14f8N9DMoJMPEVIKYOIGXJa/XNtrHwK2oV4QUJwAo8seoQoUxQAwfpgHppyFRlrXu6u73b6Skgmz4EFNwhXP4DqLXDOS7D4TiGpG54Gpz8FKCIZYYcFjvqT2AnxttnhG7807Ze+yS7jJsFpT3THPYUlwRnPBMxhIhleHK6974RImV6JZD8o/9k/3mPzW3D0XXDEbXDkH4U3Q8HX4tlfulKIj3x3v0hOGCJ2tjEEiwXKM54VbrEAwTFMipvFDbNuQNc552aGZ3LjnBsxd82vEskIM+juWIqi5AE3Axk921dVdfHezhnLZIRn8M+j/klZWxl6jZ70sHSMugGEvoQlwvF/EysaPaX3uojIEEFnerNwRwmKgqgs35XnmGw44W9CR9zd0a2wtWcpfH1Ht5RuwjSx+vzzv8Vxe63w6z/+bz4Zsr2YwqGj01Wn031HMsqJTIcznxWraWiher1/HXOkkFTuZG7iXN445Q1qLbVE6sykvXOFWHHria7Hwyo4Go78k3AFcNrBGC4kInd81F1n8Z1irKluMf5WPSPEDnoSkQZXLBM7OFHZ3Tt9INTfZvxKqG3ZmiE8Rai2SUacQIkKu5AxIRLJfmAM4BI17wr4+k4RcwdiJ/nY+4VwTBeWOjE/XvCW8FowR0HSHNDrhWeFpQHCEgkJT+Gi5JkcmXokVqeV5JBkosxRw3JrEslAGIqYkLeBZ4B/AwfF0liYMYzJxsn7fqIhSMRpLLheSJR2rVxnHy2C04whQmZPqxdbrT0NkLYasdIcmihe2LqwtYhMqj1zeVRvgkmniN+TZkFzifj96zvhks+EgdM14SkKTDlLvFzqzb5uYZLRjTFUiAaAEBAIiRMGZxeL7wSzb/6NxOBEEoM7paHn/x7e6WEwRKQLJbSmEjEuwlNFu3Gdblk7PvM1QAB++icsvkvEfLRVi92TnrspEeliDPaV3FKjET7QklGFw+X2S1TYhUGnxS53QiSSfSNlntj9zTxC7GbU7RSy/V3PYxAGR+32bileEAszsROEt4QxVCwc6jtdsaKyxE8neo2e7Agpoy8ZnQyFEeJSVfXpIWh3/JJ2GPz2Syj+UUjebngN/ncqnP2iWP2oWCsmleP/KgyUgi/h05vAUitccI65B2JyRVsdlm4joydag8i/YG+G1c+JMo9LuNZc8plQ2rK1CJWOlnI45j7hKpY0Y3j+BpLBJSYXLv5E/L9aGzv/L2f3fU7eCXDxx1CyQjzkkufAupdhxb+EMbzoFph1UbdrlM1fdQt7i9iV++HvIpbjhAeFsR0/RRjMGfP7NkAkoxa704O+L3csGZgukewbYckw70oRo+lohSP/DEVL/OvV74SzXhT5RMzRYuFRZ4TXfikC2yMz4dTHIXORzKkkGVMMhRHysaIo1wDvA17TXVXVxr2fcpCj0Yp8CQnT4ePrYfuHcOJDYqeiYbfw+2wpF6vUv34f3r64e9dkxyfCx/6MZ4UrS0ic8LP/+XnfayTNhHcvF4ZLF+GpIj4kNEGsxkjGF7ETfGOI+sMQJB5imYvE8dr/CWOii2/vFQ+7KWeI48hMYdx2ZUwHscvhsonfGwqE6MHFn8CRtx3QrUhGHruzj50QrXTHkkj2mcp1IvC8i5VPisWeomVgigBUsbCTexykHyp+QMiuv3QqVG8Wx01F8No5ws01buIw34REsv8MhRFycee/t/QoU4G9Z02TCNprYEungpEpQsR4TDtXuMOEJYoV7YbdImCtdjtsfV/U3f6hSBQXlSESBx52rdgR2fSGWLU+/kFIPRR++Qp8ciPUbBFGz0mPSH97SWA8bqGq1hN9kIgVWv28GIsJU+Hk/xOGSlORSGKYdwL01KB3tEFjodxRGwf0tRNi1GmkO5ZE0pP2GihbLRQqE6YIj4ewXkmMK3vF7sXkgdMBZz4vzlMUsbDTWx69pbzbAOnC5YCmPdIIkYwpBt0IUVU1c7DbPGgwBIuA9IYCYYQERcF3D3R/njIX8k6Ej66D6b+E5FliogpPE+d2EZUJpz4m8nzozd2GRuohYlXa1iQSJPWKD5BIvGi0woWqbFV32fzfCRloa0N32XEPiJ2TqWdBxXr44R8w81e+bQX5SgFLxiZ97oRIdSyJpJsOq0jo2iUGA0LB8PQnwRzRXdbbKGmrFguOH17bvcOsM8JpT/rWM4YKxcwuAZkuzFJ6VzK2GHSJXkVRghRFuUNRlOc6j3MVRTllAOdpFUVZryjKJ4PdpzFBa5WQPD3yNuFe1VTkvxJd/rNYZT7sWtj1FeQcI2R6T3lMZEttrRIrK1WbwOMUxkjvnY6gSIjOkgbIeMTRBpUboHIjONrFyljNVihfI9RSAtFcBqWroaFQSDW31wnZ5trtIudM10NNZxSfW3u1s/FNYdQu+7sQVzjyNtjSnaGX6eeDXia7HA84XB702sD+5jImRCLpQeMeWPOCb9mOT4S8bk9S5gr1yi5MEVD4na+Lq8shJM97EpUhXLZ7MutiiO2Vy0kiGeUMhTvWf4C1wPzO43KEYlZ/xsX1wHYggGbsOKdyA3x+G5StFPKlJ/9DSOf2zvMAInnRxtdFXobYfGirhVfPFMpG5WtFkBrA1PPgmLshPHlYb0UyQjQVizG06wtxnP8L4Rr14TVChz5hKpz5b9+t+j1LRZyRtUHspJ33Knx+q3hQanRw2HVw1J+FOovOIDKz98bRIupNOlVISW54BeZeLuJCdCaha++0DMdfQDLE9JWs0KDVYJExIRKJwGX3z78FQtq8J4YQkQusuUTImsdOEsI0vbHW+ZdNOUsI2TTuEbGgCdPk4qJkzDEUGdOzVVV9GHACqKpqA/qUa1AUJQU4GSHrO34JZFQAbHpTGCAAzaXw8e9FTEf6fN96IXFiErM2wvJ/iED0df8VgetOa7cBArD5TZHkUHJwsP2TbgMEYNsHQlGly02vejP8+Bi4OlfYWsrh3d9272wkz4Hl/9e9Uudxifr2FrEyt+NTIZur0fped8YFwmd52rlC/KCpTCTSWvZ34UpYu0OoZEnGPHaXe687IUadFqtDGiESCSB2NHrucIBYYAzqzNHRtaBTuRY+uErk7Vr6MLx3OeQd799eVyLangtBejOkzBFzb9aR3W1LJGOIodgJ6VAUxYwIRkdRlGx6qGTthceAW4EAmXvGAXU7YdPbUPID5J8BE08SExIIg6Joqf85hd+LpG0J02HX5yI3Q/p8+P4v4nNLvQj4BYibLHZBerNnib9/vmT84fGIrf7eVG8ShkNX8OPur4XrVGi88D221HfXTZwuEgv2Rh8MxjCRq0ZrgBMfFkazrUk8GFurwN4kDGRzBPziSfj5BTFm0+bD/Ovkbtw4we707HUnxKjTUG9xBvxMIjnosDaI3FxxE0VweuJ0SJ4rnvdf3QXlq2D6r8Ba73uexyXcWk98GNa9JCT0J58hvCVicuGbe4Wb9eyLIbkfyXWJZAwwFDshdwNfAKmKorwKfIswMALSGS9Sq6pqgLdon3pXKIqyRlGUNXV1AbYmRyutlfD6+fDDI8I15YvbxETSYRWfG8PEKnRv4iaJ1eziH+GsF8RL41d3gNPWfV5Euvi9YbdQ3+hN2qFDckuSbkbFuNRoIHuxf3nsRN8M6KmHiaRWIP419di6r98Fib1W7gCc7eKhuOsLeOvXYifOEArxU2Hd/0TemZ7txOTC8X+By7+HU/8J8fuRxFMyKAz22LR37N0dy6jXYO2QgemS/hkVc+ZQExwDPz4OVRvFbkVjkZDHf/9K+Olx8S7wye/F4k1vVBV2fgaRGUJCf9nDws3q/SugeJmYd/97ioghlUjGOINuhKiq+jVwJnAJ8DowR1XVJX2csgA4TVGUYuANYLGiKK8EaPc5VVXnqKo6JzY2drC7PXTU7ezesehiyzsi8ByEpO7MC0Xm0y7S5wt5v4KvoWaTCBbOOlKsioAIEj78JrFKnXu88CcNS+5OWAhCLjX76CG9NckoGpeTzxSGQRcpcyA6rzuhYGiCkHau2SIyndtaxLHOKD7f/Y2IK+qpZDX1HPEQ7UJVxXFLGWx9T8R8LLqlu40uNFrhGqDTD829SgbEYI9Nm9ONYa8SvVpphEgGxKiZM4eSqCw4/SlhfGx+B2q3dmY4z4LFd4iYzqPuEHVzj+s+LzRBJIS11Ivd7R2fink8dqIQD+nCafWX95VIxiCD5o6lKMqsXkVVnf+mKYqSpqrqukDnqap6O3B7ZxtHAjerqvrrwerXiBMoe6mi4BMmYwiCCaeIGA9FI5SNep7msgv3liNuE6pXikYkI8w5WiQprN8pfP2nnA1tVeIlMCavO7O1ZPwTkwMXvid2NBRF/P9rDRCfLx5Y4emw4WX44VFRX6sX2cwX3SLGl0YvVu7Oe00ElRtDYftHoqwnepPYmbM1Clev8JThv1fJiGBzuokwBzYsjToNNhmYLpEIFEWIdVz5A7RWCOPC0iC8F7pk9w0hQkZfUeCoPwlXLEcbfPdXOOvf0LALUERM3Wvn+F+jd3yeRDIGGcyYkEf7+EwFAviLHATEThQxG7Vbu8tmXiRWSkD48//8gnjhyzteyPHt/BzmXiYmKa1etKELEsFrXUw9D6KyhQHT0+0qJmd47ksy+giJ89/eT50n/i1bLQLPs4+GyHQh9/z9X2Hq2bDqWVEncaZYqetqo71GPCC7VF40Wph0emC3Lcm4x+50Ywg1BvzMpNdgkzshEkk3Gq2I3zBHCJdVS72v7H5Xjo/iH2HXl93lZ/0b4ieJny6OvF0oHXZhDIPEGUPZe4lkWBg0I0RV1aMGUk9RlGM7XbYCtbEEWDJYfRoVhCbAeS/Bzi+EH+iEEyBrsVhRBrHqrNWJIPTNb4vyw28UMSNH/QkyjxCT0Vn/hoIvoPgnsX2bs1gYIBLJQLA2wfF/hW0filijzCNh4snChaulUrgA5p3ga8RkHgm/fAO2vCvG6JSzIP3wEem+ZOTpK1mhUaeVyQolkp7UbhcqgXu+E/F4cy8TilZdcZ0gFoYueEsYIa0VQumqtyomwMRThYvr5neEqM3kM8Qut0QyxhkKdaz+eAgIaISMW6JzhErQ/Ov8PzMEi4znX/25u+zb++Cc/4qJxttGFkRfIzTFJZJ9JSgK3rtUbPeDiOlIXwizLhEqLoEwBgujecIJw9ZNyejF5nSj30tMiEEnA9MlEi+Wenj7t1C3TRzv/FTI8c6+BFY+3V0vJEGI0GQs6Ls9cxhMOFH8SCTjiJEwQvrMGXLQ4bSJHZDe7Fkmtlxj8oRChkRyIFjqug2QLkqWi9iOsMT9b7etRgRIWuqEuELi9O7cJJJxhcPp6WMnRINd7oRIJIKm4m4DpIu2aqGEaQoX+Zeic+AXTwfO71G7Q+R2UhSRaDZ2wrB0WyIZbkbCCAmQRvQgRtEJZauqDb7lWh28d5kIKD7vFYiQAcCSAyCQYaA3g868/21aG+CTP4hVvi5OfVys9knGHXanG+NedkJMeumOJZF40ZmFgIzq8S2PzBDB6rZmCEuCkADqYJUb4X+ngKNVHJsj4eKPhTEikYwzhiJPyMGNvQ3qdkBz2cDq6/Sw4HdCyagLc6TIgu5og5hsoX7VVj00/ZWMHayNws94f8ZCfL6IRerJkX8WD8WeONqFrHRTaf9t1mz1NUBA5LLpmZtEMm6wuzx7leg16DQ4nB48HrnGJJEQkw2H/c63bPr5wrMhMh2Spgc2QEAEr3cZICBk1re8O3R9lUhGkJHYCSkegWsOD3U74bNbRAZ0c6TIejrptO4g9L2Reihc+rVQMLLUgkYHK5+EY+8TWVNfOVOsmpz2BGQdJZLTSQ4uKtbBh9cJlbWwZDEWso8KLAEdiOBYkc28fI0wkBMmQ9Is37FUXwBf3C4yq5vCRSD75DP3LoBgb/Uvc7R1J+KUjCscfQSmaxQFg06D3eUmyDASjxWJZBShMwm1y+BYaKuE0HihPmgK6//c+l0BygoGv48SyShgMPOEnNnX56qqvtf5b5/1xiwdNvj6HmGAgFi9eO9yuDQTUuf2fa6iQNIMkV36iz/Cz/+Gmb+G1c9D4x5Rp7US3jgfrlgGcROH8k4ko422WnjnN907DK0VYixc+QPE5g28nbAkyD8t8GcuByx9RBggIHyWP7xWyECnHxb4nJhcf7WXjIUyhmmc4uhjJwTArNdicUgjRCKhbhe8+1uxa901RxpD4eJPxLO+L2b8CvZ871s2NUCeEIlkHDCYS+qn9vGzF/mdcUR7DRR87l/esHvgbWj1Ygt3zmVitbvLAOnC5ejOtC45eGgt93dxctkH1+2pvQ62f+Bf3tDHClzsBPjVeyIYXasXam4n/0M8bCXjDnsfGdOhMy5EKmRJJOI53eU227VI42jzf6YHIvsoOP5vwpsiKApOekRI9Usk45DBzBPym8Fqa0xiCoXITP9JJngvfp97IyoDTnxQqGOseLI7oZG3PZkF/aDDFC4CyzssvuXB0YN3DWMIxEyA6k29rtHP+M2YDxd9JB6wIXGgC5zMTjL26SsmBMCo12B1yqzpEglB0WIudDm6yxRl73EgPQmOgcOuEYs6iiJyjUkk45Qh2TdXFOVkYDLgDYZQVfW+objWqKC9Tqx8HP8gFC0RL4warQjyTdwPRQutXpx30t/hw6u7M1bP/z3ETur7XMn4IyoLTnzEN2PuwhuF0dAXDovYyXDaRBtBUeLY2gjhqSJAsgtzBJzwNxF/1PXgzDl2YFl5zRHiRzJu8XhUnC4P+r3EhACYdMIdSyI56EmYBsc+AG1V3XF32iBRPlAORDpdIhkjDLoRoijKM0AQcBTwb+BsYPVgX2fUULcT3vkt1G0XL4pb3xPbsIoGDr8ZtAcggTr5TBH/0VQiAtviJosVa8nBhaLAlLMhLh+aBzgW2utgyYOw5t/iOCpbGBlvXAAel9jqP/dlyOyRAT19AVyxVARBGkNFjFLPDOqSgxaHy4Nep0HThxCCUa+R7lgSCYDOIHY9vr1H7GDrTOL9QNuPSI1EcpAxFDJL81VVvQhoUlX1XuAwYHxGqnrcsOZFqNkCeSfC+pe7/UBVDyx72N+9ZV/QGyFpJkz+BaQdNjBlDcn4RG+E5H0YCxVruw0QgMZCWPOCGE8ghBPev9JX7ldRRPbe/NOEX7I0QCSd2JxuTH24YgGYdBqsHdIdSyKhajN89PtuF1qXHT67Eao3jmy/JJJRxlAYIV1SOVZFUZIAJ5A5BNcZeRxt3WpCsRNF5ujetAwwX4hEMpjU7/Qvq1grdje6aK0Qmc4lkn7oLygdwKjXYpU7IRKJmFsdvSTM3U5oKR+Z/kgko5ShMEI+URQlAngEWIfIC/LGEFxn5DGGQvYx4vf6XYH958NlpnPJCBATQLo3aRbUbus+Dkvad+EEyUGJzenGpNf2Wceo00gjRCIBMbcae+1Wa/XyfUAi6cVQGCEPq6rarKrqu0A6MBF4YAiuM/JotDD3UuGfv/MzmP7LbhcWRYFFt0DiPgSiSSSDRfJsmN1DsC4yA+ZcKpIeglDcOuNZqbwiGRC2DjfG/nZCdFrpjiWRgHjun/wo6DsTveqMcMJDkDB9ZPslkYwyhkIdawUwC0BVVQfgUBRlXVfZuCN2Alz0ocgHojfBb74UGVJN4RCd23+2dIlkKAiJg+MfgNkXd6tjmaNEgkNrg1DHisoY6V5Kxgj2PrKld2HQaaQ6lkTSxZSzIToHWirEYk/idBGwLpFIvAxmxvQEIBkwK4oyE+iSUQlDqGWNX0JiffW/o7PEvx024QNqCpcJ3CTDjyGkOxC9i/h83+MOG9ga5BiV9InN6cbYjzuWSafBIndCJBKBRgPJs8RPT2wt0NEmXGFlXiXJQc5g7oQcD1wCpAD/6FHeCvxpbycpimIClgHGzv68o6rq3YPYr5GhZht89wAUfgOJM+H4v0LK7JHulUTSjd8Y/QukzBnpXklGIbaO/gPTTXotFoc0QiSSvVLyE3xxu5D0n3gqHPlHiMkd6V5JJCPGYGZM/x/wP0VRzuqMBxkoDmCxqqrtiqLogeWKonyuqurKwerbsGNpgHcuhbrOIOCylfDqWXD5EukCIxkdWBrg3cugdqs4LlsJr54tx6gkIDbnAGJC9BoaLR3D1COJZIxRu0Mkg3V2CohueQcs9XDeK2CSu9CSg5OhCEz/UVGUFxRF+RxAUZR8RVEu3VtlVdDeeajv/FGHoF/DR3NxtwHSha1J5GqQSEYDzcXdBkgXcoxK9oKtw91ntnQQGdOtTrkTIpEEpKGg2wDpomgJtErZXsnBy1AYIf8BvgSSOo93ATf0dYKiKFpFUTYAtcDXqqquClDnCkVR1iiKsqaubpTnNjCECDm+3kif+3HHmBqXPZFjdNwzmGPTOhB1LL1WBqZL+mXMzpkHiincv8wY2q2gJZEchAyFERKjqupbgAdAVVUX0OeTSVVVt6qqMxDxJPMURZkSoM5zqqrOUVV1TmzsKM9tEJUFR/YKg5nxa5HQUDKuGFPjsidRWXDUn33LZvxKjtFxxGCOTdsAkhWaZUyIZACM2TnzQInLh7wTfMuOewAi00emPxLJKGAoJHotiqJE0+lSpSjKoUDLQE5UVbVZUZQlwAnAliHo2/Cg1cOcyyB5DjQVQ1iiSGRoCuvvTIlkeNDqRd6QpNnQVCSSa8kxKtkLFoerX4lek16DRSYrlEgCExwDpzwOVevBUifke2XeEMlBzlAYITcCHwFZiqL8CMQCZ++tsqIosYCz0wAxA8cADw1Bv4YXcxhkLQIWjXRPJJLAmOQYlQwMa4cLo64fiV69VmZMl0j6IiwBwk4c6V5IJKOGoTBCtgHvA1agDfgAEReyNxIRqlpahHvYW6qqfjIE/ZJIJBLJfmBxuAkzB4gh6oFJr8Uq3bEkEolEMkCGwgh5CZEb5K+dx+cDLwPnBKqsquomYGagzyQSiUQy8lg73MSG9p1YzazXYnWO452Qwu/gh/8D1Q1H3g6Zh490jyQSiWRMMxRGyARVVXs6On6vKMrGIbiORCKRSIYBa4cLUz/uWHqtgtut4nJ70PUTPzLm+OkJ+OlxmHUJKAq8dRH88jVIP2ykeyaRSCRjlqEwQtYrinJoV7JBRVEOAX4cgutIJBKJZBiwdrgxGfo2QhRFwWQQwenh5nFkhKz9H6x4Ek54CII71Zw0evjgarju58BS1xKJRCLpl6F4UhwC/KQoSrGiKMXACuAIRVE2K4qyaQiuJ5FIJJIhZCB5QmAcyvQWLYNv74Vj7u42QADSDgVzJGx8Y+T6JpFIJGOcodgJOaH/KhKJRCIZKwh1rAEYIQYt7ePFCGkqgbd/AwtvhLBk/8/zfwErnoCZvxYuWhKJRCLZJwbdCFFVtWSw25RIJBLJyGHtcGPW9+2OBWInZFwYIU4bvHEBTD4DEveSyyFpBqx+FirXQ/KsYe2eRCKRjAfGkeOuRCKRSIaCgcSEwDhyx/r8NgiKhkmn7b2OooHMRbDpreHrl0QikYwjpBEikUgkkj4ZiDoWCHesMW+E7PgMCr6GQ6/t380qfQFs+xBUdXj6JpFIJOMIaYRIJBKJZK90uDx4VCHB2x9GnZY2+xg2Quyt8MkNMP93YAjqv35EOmg0UC01VyQSiWRfkUaIRCKRSPaKxeHCrNeiDCD42qzXjO2dkGWPiBiQhKkDq68okDwXdn05tP2SSCSScchQqGNJJBKJZJzQ7nARNIB4EADjWA5Mb62Edf+DU/+5b+clzYTtH8IRt/ZZrcXRwvra9VS2V9LS0UKzvZl6Wz3NjmYUFDLCMzgt+zSmxU47gJuQSCSSsYM0QiQSiUSyV/bFCDHrtbSOVXesHx+H7MUiIH1fSJgCSx8EWzOYI/w+drqdPLbuMd4teJfsiGxizDEE6YII1geTHpbOZP1kVFTK2sq4/vvrOSr1KP50yJ/QaeTjWSKRjG/kLCeRSCSSvdLe6Y41EMwGLW125xD3aAiwt8CG1/Z9FwRAa4C4fCheDpNO8fnI5XHx++9/j8Vp4S8L/kKYMWyvzUyLncbitMU8s/EZ/rz8zzx4+IMDcoGTSCSSsYqMCZFIJBLJXmmzOwkyDGy9yqzX0mobgzshG16DpFkQHLN/5ydMgT1L/Iqf3vg0TfYmrp5+dZ8GSBdmnZlrZ1zLjsYdvLL9lf3ri0QikYwRpBEikUgkkr3SZndhHqg7lkFL21iLCVFVWPMi5B23/20kTIOipT5FxS3FvLHjDX475bf75Fpl0Bq4YtoVPLPxGUpbS/e/TxKJRDLKkUaIRCKRSPaKMEIG9qgIMuhos40xd6yKddBhhfgBKmIFIipbBLa313mL/rX+XxybfiyRpsh9bi4uKI7jM47nb6v+tv99kkgkklHOiBshiqKkKoryvaIo2xVF2aooyvUj3SeJRCKRCFrtToL0A1vJDx6LOyEbX4OsI/tPTNgXGq2Q9S1ZDkBZWxkrq1ayOG3xfjd5bPqxFDQXsLpq9f73SyKRSEYxI26EAC7gJlVVJwGHAtcqipI/wn2SSCQSCdBidWIaoDtWkEFH+1hSx3K7YOv7kHnEgbcVNwmKfgDgjR1vsCB5AWadeb+b02l0nJZ9Go+tewxVZmSXSCTjkBE3QlRVrVJVdV3n723AdiB5ZHvVP3VtDn4qrOeHgjqqWmx+n7vcHnZUt/Ld9hq2VLRgd7pHoJcSydjD4nCxoayJ77bXUFDThsez7y9gjZYOVu1pYOnOWsqbrEPQy4OHZquT4AEGpgcbtbSOJXWsoqUQEgdhiQfeVvwUKP4Bp9vJR4UfcUTKgRs2hyQeQoOtgdXVcjdkb9S22flpdz3LC+qobvV/FgOoqkpBTRvfba9hQ1nT2E6oKZGMI0aVRK+iKBnATGBVgM+uAK4ASEtLG96O9aKkwcLvX1/PxvIWANKizLxw8Vxy40O9db7YWs0Nb2zA5VFRFLjj5En8+pB0jAOUupSMDUbTuBwPtNudPLN0D098vxsAo07DsxfO5sgJcQNuo7LZxp/e28ySXcI/PzbEyP9+O5f8pPAh6fNoZbDGZovNSXyYcUB1TXotDqcHt0dFqxkD8rKb34H0BYPTVmdcyE+7PyUpOIm4oIGP2b2hUTSckHkCz216jkMSDxmETo48gzlnFtVbuO7VdWytagUgOzaYZy+cQ05ciE+9HwrqufylNThcHgCuOTKba47MJsSkP6DrSySSA2PEd0K6UBQlBHgXuEFV1dben6uq+pyqqnNUVZ0TGxs7/B3swdJddV4DBKC00cbba8u9xyUNFv747mZcnSu4qgoPfLqd3bXtw95XydAymsbleGBHTZvXAAFwuDzc+s4malrsA25jXUmT1wABqGt38PSSQhyug2s3crDGZpO1g2DjwNarNIoydnKFuDpg56eDZ4RotBA3iYKN/2Ve4rzBaRM4NPFQCpsL2dawbdDaHEkGc878dnuN1wABKKyz8NHGCp86Na12bnlno9cAAXhqSSE7qtsO6NoSieTAGRVGiKIoeoQB8qqqqu+NdH/6Y31pk1/Zyj0NdHS+5DRZOmjvtd2rquJlSCKR7J3aVv/vSG2bg+Z9UFwqCGDsry1pGluxCqOIZquTkAEaIQAhJh0tY0Eha88SCE+B4MFbPHDG5BJSsYHZ8bMHrU2dRsfitMX8Z8t/Bq3N8cLqoka/sp92N/jE0LRYndTsZV6RSCQjy4gbIYpICfsCsF1V1X+MdH8GwqJc/4fWSVMSMeiEq1V8uInYEF/3BYNWQ3LE/gcpSiQHA2lRQX4iRbnxIcSGDswdCGBair/b1fGTE4gIMhxo9w5Kmm0dhO6D20qoUUezdQwYIVvegbT5g9rkTr2B+R1ugvXBg9ruESlHsLxiOdWW6kFtd6xz9KR4v7KTpyX6ZJqPDTWSF+/rnqUokBoZNOT9k0gkfTPiRgiwALgQWKwoyobOn5NGulN9MT8nmgvmpXlflo7Pj+fkad2BjYnhZv51/gziOl+cwsw6Hv/lDLJifSfCLRUtvPlzGa+uKmFtsf+KjsXhYnVRI++sLWfZrjoaLHLlRjL+KGu08sWWKt5fX4FOAw+fNY3gTjWm1EgzD581jajggRsQM9MiuOqILG9MwryMKM6dk8KygjreWVvO2pJGKRQxQFRVpcnqJNS0DzshRt0+7VyNCC4H7Px88FyxOllmryShw4bWMbiut0H6IOYnzee17a8NartjnUW5MZw1K9n7LD5pSgLHTIpna2UL76+v4IstVbQ7XDx89jRSI8UiYJBBy0NnTSMxwsiPu+t5Z20ZKwrrx15+G4lkHDDigemqqi4HxkAEYzfxYWbuPjWfi+ano6oqaVHBPj7TQhmrjeMnJxAepMfudLOhrJnDc2O8gXAbSpu58pU13m3iIIOW5y+aw4KcGAA8HpV315Zz10dbve2eMyeFO07OJ9wsg+kk44PieguX/vdnCustgNgx/L9zp3HRYelotRrq2xwU11uZmTbwhG+tNhe7a9u55shsFAX21LaztaqVW9/ZRJfQ1j/Onc6Zs1KG4pbGFdYONwoi4HygBBt1NFk6hq5Tg8HubyAqE4JjBq3JDncHmxu3Y4vMIKR6Cy3phw5a2wCL0xbz11V/5arpVxGkl6v4IEQTmq1Ofrc4BwWFbZUtlDZa+c1/fqbDLWJAsmODueuUfBbkxBATasTl9lDbYuPpJYW8sLzY29ZNx+Vx5aIsr0eDRCIZekbDTsiYorLZxp66dlxuDx6PiscDmh5/xZpWO+tLm8mMCfauHrbaXLy0osTHV33ZrlofP1Vrh5uXVhRjdwq/9ZIGC3/5bLvPtd9eU86uGhlMJxndNFs7KKxtp6EzBsrW4WZPXTtVzUI+0+n2UNJgobTBwvaqVq8BAtDh9vDGmnIiO12nGiwd/OXTrRTVtfu02Rc/FzeyrbIVu9ODR4XKFjtvrSlnfnb3C+c9H2+loimwnKekm/p2B5H7sAsFIiakyTrKjZCNr0PG4YPa5LbGbcQHJ9ARk01Y+bpBbRtEFvW8yDw+2P3BoLc9Vvl0cxUTEoJZkB3D/OxopqeG8966clIiu12fC+ssrC9tprlzTLbbXWh1Wh8DBOCxbwoobbBS3SKe8ZYOGUMmkQw1I74TMlawdbj4dHM193+yjUOzokmNNPPyyhLcHpVzZqdw6eGZtNpc/P2rnawtaeLPJ09iyc5atlW1kRpl5pbjJ/i4gJQFeAEqb7Jhd3ow6cHS4fZR8+iiTQbXSkYxm8qb+eO7m9lW1UpalJlHz5nBs8sK+WZ7LRFBeu48OZ+6NhuPfl2ARlH4zYIMTpySwOdbhK97SqSZoybE8uyyPdS0OpiXEclfz5rGNa+tY3tVG+nRQTx01jQOzYreax/cHpXTZiTxyspSrB0ujs1PYFJiKCUN3flCWm0urPIlo1/q2hxE7OPOa4hRR/1oFuGwNUPh93Dm84Pa7Lqa9WSHZ2M1RBO7/bNBbbuLY9OP5aVtL3HehPPQauSK/aFZUXy/o46LXlyNR1U5b04qZ89OobzJxp7OxQ2tRiE3PoSlu+r4YmsN8WFGbj5uAimRZsp7PIezYoLZVNHCXz7dToOlg0W5Mdx16mQ/uV+JRDJ4yJ2QAbK5opWb396ItcNFflIY/15ehMPlweVRef3nMgpq2nni+wJ+KmzgrFkpPLdsD9uqxK5FWaONv3+1k7AeD/Pj8kVAXWSQ3ht0e8q0RG/wbHKkmfzEMJ8+BBu0ZETLbXjJ6KS21c7Vr6xjW6dkZkyIked+2MM322tJCjfhdqvc9PZGPKqC063icHl4ZukeJiaEYtCKqejcOan89bMdOF0qs9IimZgYxj0fbmV753eppMHKZf9bQ3GP3ZPehJv1PLN0D+0OFx4VvtxaTYvNSUlD9zkLcqJJCpdCEf1R0+ogImjfjJAwk566tlG8E7LlHUieBcbQ/usOEA8qG2o3kBOZgy0iFWNrFVq7n9L8AZMTkUOQLojvyr4b9LbHInvqLPx7eREhRh3hZj2vrCplc0ULLrebhDATYWYdx+bH8/wPRWwsbyY5wkyrzcUf39vMrw/xzVFy7txUbnp7Iw2droTLCup58PPt2Dpk/JhEMlTInZB+KG20srKwgfrOoPDMmGC2VXY/XHLiQjh7dgp2p5vvd4rcBNEhBp8VFhDuVutLmqhptVNUZ6Gq1c4T58+kotlGSYOFeZlRTEvuVvWJDDLw0FlTefjLnSzfXc/E+FDuOCXfL7hdIhktVDbbqGjuHvfzMqPYWNbMrcdPYE+9hcggA2aDho5eO3y7atqZnR7J2pImQk06HjlnGtUtDoobLMzLiOKlFSU+9dsdLsqarGTECAUiq72DlcVN/Li7AYNWIT8pnOhgg/dlAuCrrTWcNDWB9WXNHJcfzy3HTyS4R7B1u93J2pImlu+uJzUyiAW5MWT3810rqbfwY2E9hXUWDsuKZk5G5LhT4KputXtd4wZKhFlPUf0ozYmkqvDzCzDtl4Pa7J7mQsx6M5HGCACs0VmEVW6kKWtwXb4UReG4jON4ftPzHJN2jI8K1MHAus7vaF2bndOmJ7O+tIk/njCRimYbHlUlNSqIdSVNPHreDJ78vpBwk54jJ8Tyn5+K+cOxeRTVW4gPNeFRVeJCTcxMjWB9WTOHZEYRZtLRQ9kXgG+211LbZic9enDVziQSiUAaIX1Q22rnd6+tY2N5CzcemwcI94Su4HGdRuGXc1P5y2fbOXtWCimRZsoabbg9Kkadxs+dKjHCzJ/e20J1a3fitRuOyeXzLdW88XMZz144h6w4sTrX4XLz8aYqAK45MoeSBgtPfFfAxPhQovdBrlQiGS5CzXqfcd9idbIgJ5aHv9zprRMfZuSuUyb7nDc1OZyz5iTjcHqoabHzp/c3s7NGvMTGhhoxaDXeINMuegpB/LSniStfWYu7M+rcqNPwh2PzePDzHd46OXEhXLkom4sOyyA21IBJ7zv1fbqpitve2+w9Tokw8drlh5K2l5ePqmYbV7y8xtvPF5YX8ccTJ3Lloqxx9WJY2WzbZ8MqMlgfMC/DqKBsNdhbIGnGoDa7rmY92RHZ3mNbdDZhZWsG3QgBmBk3kw92f8DKqpUclnTYoLc/WtlY1syVL6/15tv6YmsNd5+Sz01vdyci1GkU/n7ONF76qZi314gEwhlRZlIjg3j0q13etnLiQlg8MY7//XYeLTYnkUF61pb45/9KiTQTbJCvSRLJUCG/XT2obrFR3mQj1KQnKyaYXTVtBBu1/Ov8mSgK/OnEiTyxZDdhJj1nzEhmZnoELreHP504CbvLxeE5E1hb2kSwUccjZ0/j6aWFXjeSc2anUNNq9zFAAF5dWcrJUxNptbsob7KysayZnLgQKpttvLC8CLdH5YeCem/9XbVtHCaNEMkoweX2UFRvodnWQXJ4EA/8YgoFte3otRqyYoL5z09FPvVrWh1oFLj+6FwUBUobLBybH09tqwOH04O1w8Xuum63qU83VXHpwkyeXlroLTt/bipaBb7bXkNihInXVpd6DRAQWdZLGy0khpuoarETZNBy0tQETAYNMQG+OzWtNh78YodPWXmznbJGK42WDrRaDVnRwT47Jzuq27wGSBePf1PASVMS9mq4jEXKGq1MTNg3t6WoYCM1rQPPcD+s/PgYTDoFlMH1RF5Xu5bj0o/3Hltic0la9+qgXqMLjaLhxMwTeWrDUxyaeOi4Mnr7YktlC0kRJi44JA2PqpIYbmLFngYW5sYwJUl4EeysaeOb7bX8YkYSwUY9Wo1CSlQw93/m+/3eXdtObaudQ7KivW7Sk5PCOC4/nq+21QAiluSBX0wJOGdIJJLBQRohnWwsa+aKl4Vkrk6jcMsJE5iTFsEReXHc9NZGOtweIoP0PHL2dMx6LTuqW7nrQyGfOzM1gvk50bQ6XHy1rYaqFjtajcJVR2RxwSFpNFudrNrTyKQAgeaWDheHZkXz7LI9fLSxEoDTZyRx6cJMnxerLnq7skgkI4Xd6ebdteXc+/E2OtwepqeEc9WR2byxupRWuwuTXsPvjsqhze7yBoVffUQ2L/5YxM/FYtXxpmPz+M9PRbyyshSAvPgQbjo2z7t7UtTp8vT8RbPZUNaCWa8hOdLENa+up6LZxvzsaFxu/++E06Xy+8U5VLXaUVB4bVUpJ0xOCHgfLreKtZff97VH5fCPb3axtqQZgFOnJ3L7iZNI6kw4Guh76HC5cQX4zo5lihssLMrbt4ziEWY9rXYndqd7n6R9h5yarVC2Cmb/dlCbrWyvwu6ykxDSPb4coYlonHaMLRU4wpMH9XoAhyQcwmd7PmNF5QrmJw9uwsXRSrhJR15CKP/8rgBVhV8fmkZefAjFDRYe/7YAgDnpkZw8NZGPNlby0cYqFAV+OTeVoyfF8dlm30SPNpfvdz4m1MTfzpzKRYel02xzkhUTzIQE37hMiUQyuMjAdKDF2sGf3t+MTqtw1aIsjsiL4cXlRdicHh78YofXFaTJ6uTej7Zi7XDz5dYa7/nry5qJCTby9poyqlrECqDbo/Lk94W0WF08+tUuiuotRAUZMOp8/+Rnz05hS2ULO6pbOSwrmllpEXy0sZLdNe0cnx/nUzc+zCiVOiT7hMej4gzwkj4YFNS08ecPtni/HxfPz+D29zbT2qngZnd6+L9vCjhjpngJiws1YnG4vAaIRgEPeA0QEPEhmytamJzU/fBPijDhcbvxeDy0WJ28sqLMG3uypriJIyb4fk8ADs+N4fb3t/DPb3fz+LcF/HJeGmFmPR0u/yDTxHAzly7M7L5euIkmS4fXAAH4eGMVKwq7dyTz4kMIM/uu4ZwzJ4XkyPET7O7xqJQ12kgMN+3TeRqNQnyYidJGa/+Vh5Ov74LJZ4B+3+6nP9bWriUnMgdNz3RXioIldgLhZT8P6rW60Gq0/CLnF/x9zd9xew6OwGlFUXh7Tbk3buP7HbU4XB5+3N3grbOmpIlmW4dXDl9V4fXVZRySGU3PDaNws57cOP8dvugQIwtzYzllWhL5SeHehKcSiWRokEYI0Gjp4NzZKfxqXjorixqJCjZy9ymT2VzR6heoVtliDyg/6VFVNpa3+JWrqspZs5L5w7G5vL66hIfOmsZRE2LJjQvhthMmMDkpjJoWB384Jg+PqhJq0nPHyZMorGvnrlMm87vFOWTHBnPe3BT++5t5JEdKdSxJ/6iqytqSJm54cz0XPL+SDzdUDHruht7iCx5Vpdnqm3XY5VGJDzORGxfCWbOS2VTR/R0JM+upC+C2s660iV/MSCI7NoTLD8/i4sMy2FDexo+FDXiARXkxdL0bdLg9LN9dz1/PmMKU5DBmpUXwz/NnkhppZmFODBMTQnnk7GlMSw7n3o+2cc4zK/jvT0VU9gig12gULjosgztOnkRuXAjnzU1lY3mzX79W7Gn0/p4ZG8Krlx7CadNFP285bgK/W5yLcRwlOitvshFi1BG0Hz7xyRHm0ZXTaMdnULcTJpw86E3/XL2a3Ig8v3JLXB4RxSsG/XpdzI6fjaIovL/7/SG7xmii93wzLzOalYUNfvV+3N3AoZlRPmVNlg5+d1QO2bEhnDAlnqd/NWufEqBKJJKhQbpjAWHBOnbXtfNy54rshrJmvtpWw32nT/arGxdqJCpA8i6dVmFKUhhbKn1lGfMSQvl0c5U3x8Hfv9pJXlwI/3feDC79788cOSGWWekR3Plhd2b0HwrqeOpXs0iOCuLGY/O4/PAsggxadFppM0oGxtbKVs5/bqV3l+Ln4ib+duYUzp+XPmjXSIzwXfWPNBsIM+m8OyEg/KqzYoJ56bdzCTFqURHfL4BWm9MrT92TqcnhtNicnDkriXCTgce+KWBVkTAANpW3dBrlqby+ugyAFYUN/GZ+Ov+5ZC5aBaJCxEr3CxfPweXx0GDp4MynfqK+XRhhG8tb2F3Tzl2n5nuzIyeEm7js8CzOm5vqDa7f2uu7PDfD98VmakoEj54zHbvTTeg+5tIYC2ytbCF9PyXBM6KDWVvSxCnTkga5V/uBpR4+uQEW3ADawf1/qrHW0mRvIjUs1f+ysRNI2PgOGqcNj37wd8gUReH8iefz+LrHOTL1SGLMg5f9fTSS1Gu+WVPcyLlzU/muU5WyiznpkSwr8C1Liw7i5RXFnDkriV017fz+jfW8d/X8cRW/JZGMReRbLVDT7ODNn8t9ylpsTlqsTi4/PMu7JRts0HLHKfm4PR7mZXSvokyIDyU62MA5c1J9DJRz5qTQanNy1IQ4dta08fmWahotHVw0P4NvttdQ0+agqsXOe+srfK7tUfEqdSiKQphZj8PlYX1pE19sqWZrRUtAtxKJpIv1pc1+ilJPfl9Io2XwVIsmxIfw55MmeXclypttXHtUDia9mFZ0GoVrjswGVBIjgjDotCRHmL2Bzh4VnB6VU6Z2+9KnRJo5e3YKTy0p5JEvdxFq1nkNkC4K6ywk93ghuWBeGlOSwokNNXkNEACjXkuwUc+u6javAdLF6z+XsaWilS+2VLOhtNmbuDDUpMeg03LWrBQmJXa7axyRF8uCHP8EiXqdZlwaIABrS5vIjN2/l7SZaRF8uqlq5BNCul3w9m8g8whImDroza+qWsWEqAm+rlidePRmbFEZhJetGfTrdpEels7C5IXcufxO1N7b9uOM6anhnDWrO77mkKwoJiaEMistwluWnxjGogmxPgshx+bHAyolDTYe+XIXH26opL69Y3Tt1EkkBylyJwThjqHTKvTOSdRo7WDZrjp+tziHrM6cBP/8Zhe76yzcenweFxySTrBBS1qUmSari798tp0zZyVj1mvRaRSW7qpnXkYUx0+O55RpiTRbO0iKDCIjOoh1pcLIcHpU9AF2OMyGbrcOW4eL//xYxN87JQYVBR49ZzpnzEw+aJRRJPuGLsDygkGrQTOI48Vs0HHRYekszI2hsd2BUa/lutfWc+nCLBQFtIrCxxsrWdgpaa1RNCzZWcvU5HCOn5yAogiVmhmpkVx2eBZ2l4fMmGCC9Vpev/xQGtodPgk+ezIxIYynfzWLcLOeSUmhRAbtXcFGo/H/Y2gVhW+21/DUEqG6dfuJE7lkfgbGzkDq7LgQXv7tIeypb0er0ZATG0z4OMsB0h8/7a7n7Nn+K/wDIT06mOmp4Vz63zW8etkhaEbCt15V4dM/gMsGM341+M2j8lPljxybfuxe67THTyJyz7Ihkert4rTs03jk50d4asNTXDvz2iG7zkiTFhXM7SdN4oyZybQ7XExNDuMfXxdw4pREfn1oOh5Vpd3u4pWfijlvTipOjwetorC2pImqZjsuj++ijDbAvCCRSIaXg94IUVWVmCADly3M5J/f7faWJ4absHa42VnTRlSIgZOmJnDusyu9Pu8Pf7mLR86exrGTxcpMk7WDM2ameF9qQOQ4SI0MYkYA39NjJsbz7NI9rC5q5LYTJrK6x2qvUafh6Inx3uPdte1eA0T0Gf78/hZmpkWQGSMD1SX+zEqPJNSoo83RvSL4h2PzBj2ZnlGvZVKiCCK3dbhZmBPNk993f4/mpEd4xRT0Og0nT0viprc3emOt9FqFE6ck+n1HDskSuw6NFgcnTkng8y3dyjYz0yKYmBhKygDjoyYkhJARHURxQ3eg9NmzU/h6W7e4xENf7GBhbgyTk7oThsaEGg9aec7aVjuljTZy4/d/frnksEzu+XgrX22r4YQpgZXJhpRv7oXSVXDc/aAZ/FidopYiXB43SSF7V79qS5hK5tJHUVwdqLqhMWJ1Gh3XzLiGB1c/SLAhmEsmXzIk1xkNxIQYmZocjs3lJi7ExElTE7ny5bVeVTqNAk9cMJNrXl3vPSfEqOO3CzN9dkcyY4KZsI/S0xKJZPA5qI2QmlYbb60p58XlRVx9ZDYPnzWVZbvqyIkPZWpyOJ9truIvv5jCorwYUqOCef3yQ/l6Ww1lTVZOnJzg4yPeZnOxvaqNm47LY0tFKwnhJqKCDVS12gJee2pKOG9eeRifb6nC4nDx74vm8P3OWkJMOk6cksi0lO6XoZ6Zn7uwOd209AoClki6mJAQxhtXHsqXW6upabFz0tQk5mQMbSCm2aDlkgWZZMeFsL60mYkJoRw1MZboEPEi73R7+GZbDbefOImtlS3otRry4kNZuaeOk6clBmwzKtjIjcfmMS8zitVFjUxPjeDw3JgBGyAAyRFBvHjJXL7bUcvWylYW5ETz/Y46r4IOCNewxgDfs4OVL7fVMDMtAt0BrBZrNApHTYjjg/UVw2+ELHkYtr0Px/0F9EMj5rGkbCmTY/IDOGJ14zaFYQ9PJqJ0JU1Zi4akHwDhxnBunnMzj617jMLmQm6bexshhvG1QOV0e1heUM9fP9tObZuDB34xmcKaNp69cDbfbK/B7VE5Nj8ee4eTp341k6+21hAdYuDY/ATy4kJ44vyZfLujlilJYRw1Mc4vxkQikQw/B7UR8vHGKm8W1b9+tgOTTsOH1y3waoMfPSnep/6kxDDvqm9vYkINgMpj3xSQFRPMmuJGGiwdvHd1YA13RVGYkRrBjNQIb9kx+fEB66ZEBvllYE8IM/kFBkskPZmcFO6zsj/UNFoc3Pz2RoobLKRFBbGisIFXVpXy0XULSIkMQq/VMDczins/3kZGdBAuj8o7a8t57LwZfbabGx9Kbnwov1mQ2We9vsiKDSErVryUVTbbfLKpAwQZtPtk2Ix3PlxfwRH7mB8kENNTI3jj51I8HnX4XLKWPw7rX4Lj/wqmoRn/FpeVNTVruHRK/zlH2pJmELPjqyE1QgCizdH86ZA/8dbOtzjl/VO4fOrlnJl3Jmbd+HhObKlo4dL//UxXKp47P9zC7xbncun/1nDy1AQMOg2Xv7SW206YwNVH5nDSVF9RhFOmJ3HK9FEglCCRSLyMCqdIRVFeVBSlVlGULcN1zWZrBy+vLPEps7s8Pvk/AGpa7XyzrYbXVpWwYk8D7Y7AgZZBBh23nzSJ6SnhFNS243B5eOisaUxKOvAt3+zYYJ69cDaxnSvK6dFBPPWrWcSHDa7evURyIJQ12thR3Ybd6WFXTTttDheNlg729MiAfvzkBM6dk0Jpo5XqFjuXH57J/AAB333R4XKztqSJ11eX8vnmKsqb9i0fRVKEmWd+PZvUKPFyFhdq5LkLZ5Oxn0pQ443aNjs7qtuYlhJxwG1FBRsIMep8dp2GlFXPwapn4Nj7wTx0O38/lC0jKzyLYH3/gfttSdMIqdqEztrYb90Dxawzc/Hki7l2xrV8U/oNx71zHE+uf5IWh798/FhjR3UbPXOBNltdmHRafn1IGl9sreHDDZWcPTuFYyb55w2SSCSjk9GyE/Jf4AngpeG6oFGnJTHc5M3k3EVsaLffbqOlgz+/v5lvttd6y+4+NZ9L5mcEDAjPiw/lP7+ZR1WzjSCjjrSowXmpURSFIyfE8dF1C2i2OYkNOXh91SWjlyCDEGTonTU8xNQ9zSRFmLn/9ClcfngWGkUhLSoIfaAo+j74bkctV7+6zhtXMjkxjOcumr1POXTmZETx3tXzqW/vIDJYT0LY+FgtHgy+2ipcsQz7+P+yN3LjQ9lQ1jT0PvjrXoIf/i5csIKHTq7W6XHxRcmXnJHziwHV9+hMtCVNJ3b7p1TNvnDI+tWTjPAMrplxDVWWKr4s+pKT3zuZa2dcy3kTz0OjjIq1x30mzOT/uuLyqBTUtnH1kdkoCNlea8fQJGeVSCSDz6iYjVRVXQYM/TJRD8wGLTccnYeuh4tAQriReZndq7I7q1t9DBAQAay9DZeehJv1TEwMGzQDpCeJEWYmJYZJA0QyKsmIDua6xTk+ZWfNSiYn1tc33ajXkhsfSnZcyD4bIA3tDu77eJtPEtGtVa1++XkGQmyoiUmJYdIA6cWXW6uZ2cNN9EDJiA5ifWnzoLUXkA2vwbf3wTH3QejQxp8sKfueOHMc8UGB3WcD0ZxxGHFbPkJxD2/cUWJwIpdMuYSb597MuwXv8psvfkOttbb/E0chU1MiyO4hGZ0cYaKs0cqqoiae+G43//puNyv2NPLmz2Uj2EuJRLIvjJadkH5RFOUK4AqAtLS0QWlzXmYU710zn62VrQQbtExNiSAzpnuSszj8c3HYnR5sTpmjQyIYinE5VtHrNFwyP4M56VEU1beTHGlmWnLEXmV29we7y01du3+uk725SR7M7M/YtHW4WVPSxMWHZQxaP7JiQ3h9demgtefH2v/Bd/fDsfdB+N6VqgaDdqeFjwo/5twJ5+zTeY6wJDpCE4je+TX1+YOftb0/kkOSuWXuLXy651PO/fhcHjvqMWbEzRj2fsD+z5lpUUH855J5bCpvptXuZGZaJE98V+BXr7jBgqqqUr5eIhkDjIqdkIGgqupzqqrOUVV1TmzsgQdMglBvmZYSwfnz0jhtRrKPAQKQFRtMsMFX2vGQzChSIuXKqUQwFONyLBMRZGBhbgwXHpbB4onxg75rFxdq4tw5vrkrtBqF3LjxpQQ0GOzP2Fyxp57s2GCCjYO3PpURHUxRvQX7YC/eqCosexSW/BWOewDC9y+nyb7w+o7XmRg1kVjzvn/X63OPJnntSyiuwUsYui9oFA2nZp/Kr/N/zXXfXceXxV+OSD8OZM5Miw7ilOlJXHBIOpMSwzhthr/R+cu5qdIAkUjGCGPGCBkJsmJDeOnSecxJjyTIoOWMGUn85YyphJrGZ4ZkiWS0o9dquOqIbH67IINQo46JCaH855K5w6oCNp75elsN0wchIL0nBp2GtKggNpUPYnC00w4fXA0bX4PjH4Swod0BAVhRtZIdjTs4PHnhfp1vj8rAHp5K4rrXBrln+8b02On8YdYf+Nuqv/GfLf8Z05nWD82K4sEzpxIfZiQ2xMi9p03m8Fy5GCSRjBXGjDvWSDE7PYr//mYubXYXUSEGjLrBT3olkUgGTmpUEH8+OZ/LF2URpNcedJnMhwq3R+XrbTX86cRJg952Xnwoq4oamJcZ1X/l/qgvgLcvgaAoOP5voB/6nekdjTt4bfurnDPhXAza/R9vtfmnkvHDYzRnzMcaN2EQe7hvpIWlcfu82/nn+n9S1FLEnYfeiV479hbXws0GfjkvjWMmxeNRVeKkYqREMqYYFTshiqK8DqwAJiiKUq4oyqUj3aeehJj0JEaYpQEikYwStBqFxHCzNEAGkVVFDYR1znWDzZTkML7bcYAB0W4n/PhP+PcxkLkIDr9lWAyQn6vX8MSGJzgl61Ti9sMNqycuczg1U84g98u7MbSPbIB4lDmK2+bdRmlbKb/+7NeUtJb0f9IoJSbUKA0QiWQMMiqMEFVVz1dVNVFVVb2qqimqqr4w0n2SSCSSg4n//ljMokFIUBiI/MRwCmvb9zmnCwAeN2z9AJ48BLZ9ACc+DBNOgiH2+6+3NfDspmd5fedrnJ17NulhgyM80ZY0jaaMBUz84AaC6v0Dq4cTs87MNdOvYXrcdC749AKe2vAU7R3DlNNFIpEc9Eh3LIlEIjnI+XZ7DetLmzh/3tAovBl0Go6cEMcjX+7ksfNm9B847LRB1UbY9RVsehNMYTDz15A8Z8iMD7fqoc5WR0HTLtbWrGVXUwEz4mZwSf4lB+SCFYimrMNxGUOZ8PGtNGUsoG7SSVjiJoBm+HfbFUXh2PRjmRk3kw92f8Bx7x7HMWnHsDhtMdNipxFlGgQXOolEIgmAMhaD0hRFqQP2Ze84Bqgfou6MFuQ9Dg31qqqeMJCK+zEu95ex8n8t+zm49OzngMcl7H1sKgazJuW6V6Zr9EaN29LsdDZW2Aaprz6oHpdeYwhyGxNzQ5xNVfbK5y7f2vXZZTP1kc+fZs7a27kVrZ6OPU0e+6B1xqDRKJlB/cup2d1u1TO0D8gwVGW6xh3Q8vitM9S6RDX4aE+rHlWvaBTnUPZJG6LVmZJNfSa6Kn2itKB1TevekvOYVFWdMpBrDXDOHCvfz74Y6/cwHvq/Y1/mTMnwMCaNkH1FUZQ1qqrOGel+DCXyHg8exsrfQfZzcBkr/QzEWOi77OPgMNh9HAv33B9j/R5k/yVDxaiICZFIJBKJRCKRSCQHD9IIkUgkEolEIpFIJMPKwWKEPDfSHRgG5D0ePIyVv4Ps5+AyVvoZiLHQd9nHwWGw+zgW7rk/xvo9yP5LhoSDIiZEIpFIJBKJRCKRjB4Olp0QiUQikUgkEolEMkqQRohEIpFIJBKJRCIZVqQRIpFIJBKJRCKRSIYVaYRIJBKJRCKRSCSSYUUaIRKJRCKRSCQSiWRYkUaIRCKRSCQSiUQiGVbGpBFywgknqID8kT/D8TNg5LiUP8P4s0/IsSl/hvFnwMhxKX+G8UcyChmTRkh9ff1Id0Ei8UOOS8loRY5NyWhEjkuJ5OBmTBohEolEIpFIJBKJZOwijZCDALfHTYOtAbvLPqD6LY4WWjta9/k6FqeFJnvTPp8nkTTaGqlsr9znc6xO6xD1SCIZfrrmaofL4VOuqiqNtkZsTpsc9xKJZNygG8rGFUVJBV4CEgAP8Jyqqo/3qnMk8CFQ1Fn0nqqq9w1lvw4mSlpLeH3H63xV/BWToiZx9YyrmRIzJWDd1o5WlpQt4blNz6FVtFw1/SoWpSwiWB/c5zWcHierq1bzxPonaLA38KtJv+KkzJOIDYodgjuSjCdsHTZ+qPyB5zc/T6ujlTNyz+DEjBNJD0/f6zlV7VV8sPsD3i14l5SQFK6beR2z42ejKMow9lwiGVyKW4p5bcdrfFPyDVNipnDVtKvIj8mnsr2S9wvex+624/a4+arkK5JCkrhuxnXMSZiDRpFriRKJZGwypEYI4AJuUlV1naIoocBaRVG+VlV1W696P6iqesoQ9+Wgw+q08tDqh/ih4gcA6irq2FC3gddPfp20sDS/+qurVvPn5X/2Ht+67FaeOvopDk85vM/rbGvYxjXfXoNH9QDw9zV/B+DiyRcP1q1Ixilr69Zy89KbUTvjBp/c8CQKCldOvzJgfbfHzSvbX+GlbS8BUGOt4Yqvr+C1k15jYvTEYeu3RDKYtHe087fVf+Onyp8A+L7se9bVruPVk17lte2v8WPlj8yJn8O7Be8CYtxf+fWVvHrSq+TH5I9k1yUSiWS/GdIlFFVVq1RVXdf5exuwHUgeymtKuqlor/AaIF20drRS1FLkV1dVVd7e+bZf+ceFH/d7nU11m7wGSBevbH+FRlvjPvZYcrCxoXaD1wDp4v3d71PVVhWwfq21ljd2vOFT5vQ4KWguGLI+SiRDTUV7hdcA6aLF0UJBUwFv7XqLRSmL+KL4C5/PXapLjnuJRDKmGbZ9XEVRMoCZwKoAHx+mKMpGRVE+VxRl8l7Ov0JRlDWKoqypq6sbyq6OGwwaAwaNwa/cpDP5lSmKQlxQnF95oLLehOhD/MqijFEYtP7XHm/IcXlghBpC/crCDeEYdcaA9fVaPWHGML9ys8486H0b68ixOXYwaA3oNXq/crPOTJghjLaONsIM/uM+0Fw+2hmKcel0e7jg+ZU0tDv6ryyRSEYNw2KEKIoSArwL3KCqau+I53VAuqqq04F/AR8EakNV1edUVZ2jquqc2FgZazAQUkJTuHrG1T5l8xLmkRORE7D+ORPO8TFazDozJ2ae2O91ZsTNINbc/X+ioPC7Wb8jxOBvnIw35Lg8MGbGzSTaFO09VlC4bOplRJmjAtaPMcdwy9xbfMoywjKYFDVpSPs5FpFjc+yQGprKldN8XRAPSzyMSdGTuHnOzXxT8g3nTjjX75z8qLHnijUU43JndRs/FTawYk/DoLQnkUiGh6GOCUFRFD3CAHlVVdX3en/e0yhRVfUzRVGeUhQlRlVVKSDeC6vTSltHGxHGiL2uFPdEq9FyTt45zIybSb2tnlB9KJnhmUSbowPWnxozlZdPfJm1NWvRarTMip/FxKj+/ewzwzN54fgXWF+7nlZHK9PjpjMlOnDwu2Ts02JvocPTQYw5ZkDB4B7VQ72tHpPO5LeaOy12Gv9c/E821m6k1dnK9JjpzE6YjcVpob2jnShTFHqt7wrx4tTFvHjci2yu30xMUAwzYmeQHCq9PCWjj77GcU/sTjuLUxczMWoiO5t2kh6WzvTY6USZojgm/Rjig+IpbSvlH0f+g+KWYuKC4pgRN4PUsNRhvJvRS0mD1edfiUQyNhhqdSwFeAHYrqrqP/ZSJwGoUVVVVRRlHmJ3Ri5n9GJr/VYeX/c4m+o3sTBpIVfNuGqvOxo9abQ38n7B+3xT+g0TIidw4+wbSQxJDFi3paOFzfWbeX3n6ygomHQmkkOSA7rM9CYzPJPM8Mx9vi/J2KHD3cGPlT/yjzX/oMnRxAUTL+Cs3LOID47f6zkV7RW8seMN3it4j4TgBG6acxOHJByCVqP11pkWO41psdO8x+tr1vPo2kfZ3byb49KP49Kpl5Ie1q2WZdKZmJs4l7mJc4fmRiWSQWBD7Qb+b+3/sbNpJ8ekHcOlUy8NOEduqtvEvzf/m9XVq5kYNZHfzfgdsxNmez8368zMS5zHvMR5w9n9MUVtm5Cfr24ZmAy9RCIZHQz1TsgC4EJgs6IoGzrL/gSkAaiq+gxwNnC1oiguwAb8UlVVNUBbBy0V7RVc/c3VNDlEDo4vS76kpLWE5497nghTxF7Pa+9o54GVD7C6ejUA62rXceU3V/LGyW+QEZ7hV39F5QoeWPWA9/jun+4m0hjJUWlHDer9SMYmW+q38Pvvfu89fnrj0+g1ei6fdnnA+i6Pi5e2vsRrO14DhCjCNd9cwysnvbJXmeg9zXu48psrsblsgAhSr7PV8egRjxKkDxrkO5JIhobilmKu/PpKrC6xMv9h4YfUWGp4bPFjPpLnVe1V3LviXnY17QJgbc1ablhyA88f9/yAdqElgro2BymRZq8xIpFIxgZDrY61XFVVRVXVaaqqzuj8+UxV1Wc6DRBUVX1CVdXJqqpOV1X1UFVVf+qv3YONktYSrwHSxY6mHZS3l/d5XpWlymuAdGFxWihuLfarq6oq7+5616/806JP973DknHJ5vrNfmVv7nxzrypoddY6r6RoF27VTWFz4V6vUdRa5DVAulhesZwqS2C1LIlkNFLUWuQ1QLpYWb3SLyFncWux1wDpotnRHFDBULJ3mqwdJISZaLY6R7orEolkH5BZjsYAQTr/FWCdoutXEcioNWLS+qunBGpPURRSQ/39i1NCUvahp5LxTIQxwq8sPih+r/FJRq3RJ+i8i74ECwKNzSBdEEZt/zFQEsloIdA4NuvMfvNxkC4IneLvkBBIcVCyd5qsTuLDTLTYpBEikYwlpBEyBsiOyOaULN9cjldMuyJgwsGepISm8PtZv/cpOyL5CHIjcwPWPyvvLB/DJkQfwgkZJ+xnryXjjRmxM0gKSfIeaxUtv5v5Ox/3kp5EmaO4de6tKHQHr+dG5PapZJUXmcf8pPk+ZTfOuZGUUGkMS8YOeZF5LEpe5FN2/azr/cZxXlQeF+Vf5FN2dOrRTIicMOR9HE+02ZzEhRqlESKRjDGUsRh+MWfOHHXNmjUj3Y1hpcHawJaGLVRaKkkPTWdyzGTCjeF7re/0OKmz1qGgUNFeQUFzAQlBCeRG5KLRaIgwRgT0sS9sLqSqvUrsjISkotfqMWgNGDVGqqxVhOpDSQhJGNR7q7HU0NrRSkJQAqHG/oPgh5n+5Z86GQ/j0ul2Umerw6QzEWXyl8ktbS1lS8MWLB0WJkZNZFL0JHQa35XcZnszdbY6wg3hRJoiKWgqoMHegF6jJy00jfigeHa37EZBIS8qz+8aNZYaStpKsLlsRBoiyY7M3quhcxAz4HEJ42NsjjVqrbUUtxRjd9uJMcUQpA8izBCG3W3HpDVhc9mIMEXQ3tHOprpNlLaVkhCcQE54DokhiYQZw3C4HDTYGwjSBxFhjPDO63v7fg6EOmsdbtVNfFD8gNTt9oNhnzNP+9dyjp0cz/PL9rDpnuMPuD3JuGRIBrvkwBhyiV7J4BAdFM0RQUcMqG55Wzn/3fpf3it4jxhzDLfNvY2zc89mR+MO/rj8j2yu38y8hHncNPsmJkZ3Bz822hpZVr6M5zY9h0bRcGH+hexo2MGWhi38ZvJv+KjwI2xuGzfOvpFFyYvQaA5sI83j8fBDxQ/837r/o7ilmAVJC7hq+lVMjZ16QO1K9o/ytnJe3PIi7+9+nzhzHH+c90cWJi/0kRZNC0vrcwdufc16/rXhX6ytWcvEyIn8YfYfWFK2hDd3vUl8UDx3HXoX7xS8w2s7XkOn0XFJ/iUcl3Gct01VVSlpLeHB1Q+yp2UPR6Uexe9m/o6siKyhvn2JZFApbS3lyQ1PclzGcfxr3b/Y1byLhckLOSv3LF7c/CKbGzYzK24Wt8y9hWMzjmV3024eX/c4yyqWMSFiArcfcjtv7HyDr4q/IjU0lZvn3sy6mnX8b9v/9vr97Iv2jna+LP6Sf67/JzaXjUsmX8LZeWcPKCHtaKfd4SI62IjF4UZV1aEyriQSySAj3bHGGW6Pm1e3v8qbO9/E6XFSZaniD0v+wLradVz77bVsrNuIR/Wwsmolf1jyB+qt3elYfqz8kX+s/QftznZaO1p5csOTTIqeRIO9gQd/fpBjM46lqKWIm5bcxMa6jQfc1031m7hxyY0UNhfiVt0sq1jGwz8/7NMnyfDg9Dj579b/8vaut3F5XFRaKrn+++vZ3rh9wG2Ut5Vz50938nP1z3hUD9sat3HT0psw6oy4PC6a7E2srV3L85ufx+K00OJo4fH1j7Oudp23jcKWQq7+5moKmgtwq26+Kf2Gv6z6CxanZShuWyIZEvY07+Hqb65mdvxs/rX+X+xo2oFH9ZAamsr9K+9nY72Yh9fUrOH33/2estYy7vjxDpaUL8Gjegg1hvL0pqf5rOgzXKqLotYirv/uesw6835/P9fXrueeFffQaG/E5rLx9Man+bb02yH8Kwwf7Q4XIUYdWq2Czeke6e5IJJIBIo2QcUa9rZ4Pdn/gU6aisrtpNy0dLT7l5e3lXoUtj+rxOw9gY91GciNEDEmLowWj1kiHpyOgwta+UtxSTIenw6dsQ90GytrLDrhtyb7RYGvgw90f+pSpqH0qWfWmpLWEktYSn7LWjlb0GrFSOzVmKquqVvmdt6x8mff3QGNidfVqqY4lGVMUtwo3LI2i8TGgQ/Qh1Nt8F1lqrDUUtRaxtWGrt2xG3AxWVK7wqedSXTg93TEP+/r9/LHyR7+yd3a9g9U59hP82ZxuzHotQXotFoc0QiSSsYI0QsYZZp2ZhGD/mI0wYxge1eNTplW0Xl97jaIhK9zf5SU+KJ5Gu5BgNelM3ofgQBIY9kegNkL0IQGVZSRDi0lr2uu4GSghhhC/+BDAW9ZgbyAhyP8aySHd2c73NibM2r6V4CSS0UTXOO79fdAqWh+hBhBzb6gh1EcUpCvLem96t7cv38+e37MuMsMyMWgMA25jNKKqKtYONya9BpNBi7XDNdJdkkgkA0QaIeOMMGMYN8+5Ga3SnZF6YtREpsVM49eTfu1T9+rpV5MRluE9PiP3DB9pyAhjBMmhydRYa8gIy8DqtOJRPcxPmj8oibQmRk5kQfICn7JrZ1zLhCipDDPcRJgiuHXurWiU7ikhPyqf/Oj8AbeRF5nHpZMv9Sk7I+cM1tasBWB3824OSTzEJ8g8yhTFopRFPm0sTl3s08atc28lOdT/BUoiGa3kRORwXPpxbKrb5DOel1cs59wJ5/rUvWzqZUyMEvFTXXxe9DmXT/VNAnpIwiGUt3XnhtrX7+eCpAXEB8V7j806MxdNvgiddmyHhna4PWgU0Gk1mPVa2h3SCJFIxgpSHWsc4vK42Nm4k8LmQkIMIUyKnkRicCLNjmaKW4pp62gj3BhOjDkGl8dFbFCsdxVuT/MedjTuQFEUEoMTqWivQK/RC5WjxgIiTBFMjplMelj6oPS1pKWEbQ3baLA3kB6WzrSYaYSb9q76NQIcNOpYLo+LHY07KGwuJNQQyqSoSSSGJPrVq7ZU4/Q4SQhK8AuKrbPWsbl+MxXtFcQFxTE5ejLNjmZvm5OjJ1PWVsbu5t1oFS25kbnMiJvh00a9rZ7tDdtpsDWQHp7OpKhJmHT++W76o8pShcvtIjE4ccy/aAVAqmONchqsDWxv3I7T7cSlumjtaCXKFIVBa8DustPiaCE5NJlJUZNQFIU6ax1Wp5XClkIijZEkhyTT5GiivK2cSFMkE6ImUG+r7/f72ROP6vG6MiYGJ1LeVs6Oxh04PU5yI3PJi/RXpxsEhnXObLJ0sOiR73nuwjnc98k27j1tMvMy9085TDKukWoFo5Bx92SWiC37yTGTmRwz2ae8qLmI+1bex+7m3eRH53Nm7pn8/ee/C6WsOTeRFZHl/emi5wvi3IS5g9pPj+qhvL2cx9c9ToWlgkMSDuG2ebeNNiPkoEGn0TElZgpTYqYE/NzqtPJF8Rc8uuZRLE4Lp2efzhXTrvDZpaiz1fHC5hfYVL+JzPBM7j7sbmbHz/ZpMz44njkJc/bajxhzDIenHL7f99He0c7nxZ/z2NrHsDgtnJFzBpdNuyygO4pEMlREB0WzMGhhv/W2N2zngZUPiO9MWCZ/nPdH3tn1Dl+Xfk1ycDJ3HnYnhyUdhkbRkBCcsNfvZ28abA28vettXtj8Aioqv53yW87LO4/jMo470FsbVVidbkw6sfNv0mlkYLpEMoaQ7lgHCeVt5Vz33XXsbt4NwLaGbTy/6XlOyzmNZRXLeHTNo9hctmHtU2FzIdd9dx0VlgoAVlWv4p6f7qHN0Tas/ZAMjC31W7j7p7tp7WjFrbp5b/d7vFPwDl27qfXWem5achOb6jcBUNRSxLXfXusXrD7UbK7fzH0r7vP2852Cd/ig4INh7YNEMhAabA3cvPTm7u9MaxF/WPIH0sPFTnOFpcJn3t4XVlWt4skNT2J323G4HTy98Wl+rPIPTh/r2DpcGPXiVcag02CTMSESyZhBGiEHCeVt5bR2tPqU1VhriDRGArCsYhm11tph7VNpaykuj+8DY1P9Jqqt1cPaD8nA2FK/xa/sw90feoULqixVXrW1LixOi48f+3CwsdZfPvqjwo9osjcNaz8kkv6oslRR2lbqU2Z1WX1is1weF6Wtpb1P7ZdP93zqV/Zx4cf73slRjq3Dg1En/l5GnQZrh9wJkUjGCtIIOUgIpKLSU2klLihu2FWpAvUpzBAWMJO7ZOSJD473K8sMz/SOmxBDiFeOtyfhxuF1r0sM9feTz4rI8lEfkkhGA8H6YIxao195b8WqMMPAVbC66JmI1ls2CIIiow1rhwtjlzuWXiuNEIlkDCGNkIOErPAsLpt6mU/ZBRMv4OuSr9EoGv58yJ+JDYod1j7lRuZyStYpPmV/OuRP0nd/lDI9djoTIruVy4xaI9fNuA6zXrzcp4WmcdOcm3zOuTj/4oDSz0PJrNhZ5ETkeI9NWhNXTrtyv4LbJZKhJNB35rwJ57GyaqX3+OTMk/crgPyEjBOINkV7j6NMUZyafer+d3aUYnO6ve5Yeq0Gu4wJkUjGDDIw/SDBpDPxmym/YW78XGqsNUIxSKNjcrRQusqLEg85p9tJRXsFCgoxQTHUWGow6oyE6kOps9URog/xWRGvsdTQ7mwnzhxHqHHguUMabY00Ohq5dsa1nJZ9Go32RtJC06Q87ygmJTSFJxY/web6zdjcNvIi83xWVrUaLWfmnsnMuJk025sJNYR6VdQKmwsx68wkhST5tauqKhXtFTg9ThKDEw/YWEgNS+WpY55iZ+NO7C47ORE55ETm9H+iRDJMdM1/Zq2ZefHz+Pdx/6ayvZJYcyxxQXE4PU7K28sJ1gcTZ47D7rbvU/tOtxODxsBTxzxFZXslIBZ9BkvVcDRhd7q97lgiJkQaIRLJWEEaIQcROxp2cN+K+6iwVJAZlsn9C+7npKyTvJ/XWGr4z5b/8ObON0GBM3POxOaykR+dz8d7PmZbwzaiTdHcddhdzE+az/KK5dy/8n4a7Y1Mi5nGPfPvITcyt99+rK9dz10/3kVxazEpISncv+B+Ts46eShvXTIItHe0823Ztzy+7nHsLjvHpB3DH2b/gdSwVG+dDbUb+Nuqv1HUWkRCcAL3z7+fF7e8yIqqFYQZwrhl7i2ckHGC19Bo62jjg90f8K/1/8LusnNcxnFcP/N6nzb3h8TgRBKD+5YvlUhGgrU1a7lj+R2Ut5eTEprCTbNv4oUtL7ClfgvxQfFcPPliPij4gGtmXMM7O97h2/JviTRGcsehd3BU6lF+sti9qbHU8OKWF3lr51soisJF+Rdx4aQLiQ6K7vO8sYrd6cGg7TZCpDuWRDJ2kO5YBwklrSX8/vvfe5WoilqLuGHJDdRYarx1lpUv49Udr+JSXbg8Lt7a9RaHJh7Kh4Ufsq1hGyCyXt+45EY212/mpqU3eYOSN9Vv4r4V99HW0beyVVV7FTd8fwPFrcUAlLeXc/331w978LJk39lcv5kHVz+IzWVDReXr0q95Y+cbeFQPALsad3Hnj3dS1FoEQEJQAi9vf5kVVSsAaO1o5c4f72R743Zvm5vqNvHwzw972/yy+Eve2vWWt02JZDxR3lbO77/7vVfAobytnPtW3MesuFmAEAv557p/clTaUdy87GZyo8WiTpOjiZuX3syupl39XmNJ+RJe2/EaLtWF0+PkhS0vsLJ6Zb/njVVsTjd6bc/AdKmOJZGMFaQRcpBQ2V6JxWnxKau31Xu36j2qh0+L/NVULC4LOxp3+JS5VTelraV+L4ob6jZQZ63rux+WSq/h0kVrRysV7RUDvhfJyNBliPbks6LPvKpTle2V1Fi7jdpZ8bP4qfInv3OKW4q9v29t2Or3+edFn9Nsbz7wDksko4zK9ko/lcImR5OPC6LdbUdFxeVx+cyxKiolbX3LXbs97oCqWN+WfHuAPR+92Drc6Hu4Y1nkTohEMmaQRshBQoQxAqVXwlC9Ru9VLtIoGqbFTPM7z6wzE2Xyzz4bqCzGHEOIIaTPfoQbwn1UubquHWGM6O8WJCNMUrB/PEdeZJ5XzSzcFO6j9FPZXhnQB73n2AkkQtCzTYlkPBFhikCraH3KdIoOTa9HcZc6Vm+VrEDzbk+0Gm3Aebx34trxhN3lxqAVzzajTisD0yWSMYQ0Qg4SMsMzuW7mdT5lt829zecl8dTsU4kzx3mPE4MTabI1cXH+xT669Wfnns3E6In8IucX3jKtouWuw+4iLqj7/ECkh6dz85ybfcqun3k9meGZ+3NbkmFketx0ZsTO8B4H6YK4dsa1XunbydGT+f3M33s//670Oy6bcpnPi9Si5EXkR+d7j2fEzfB5aQrWB3P19KulkpVkXJIZlskNs2/wKbti+hV8Xfq19/is3LP4oeIHfjnhl6ypXuMtPyXrFB91ur1xes7pxJq7lQ5TQlI4Ku2oA+/8KMXu9HjdsQxSHUsiGVMoXdmOxxJz5sxR16xZ03/FMUprRyuV7ZUE6YII0YdQY60h3BgeUFloX7A6rexq2kWttZa00DRUVNo72kkJTSExRATxlreVU9BUgEbREBcUR2V7JWGGMAw6AzWWGqJMUeRG5hJuDKfF0cKupl002ZtIC00jJzLHb5cjEHaXnV1Nu6i2VJMckkyIPgSry0pCcAKRJpE8scPdQVlbGaqqkhKaMpIvpUr/VQRjcVzWW+ups9URYYzwjoG+qG6vZkvDFqwuK3kReX65CBptjRS1FNHoaCTCEEFaSBptrjaKWooINYSSG5lLsD6Y8rZyFEUhNTTVO47sLjtZEVmDYpC6PC7K2spwup0khyYTrA8+4DZHGQMelzA2x+ZYQ1VVytvLsTgtmLVmrC4rZp0Zp9uJVqPF4XYQFxSHWWdmd/NuKtsrCTWEokWLqqg0O4SiHCqY9Wayw7OpsdZQ2lpKuCmcvIg8IkwRAa9tdVqpaK9Ap9GREppCjaWGgqYCgvXBBOmDMOvMpISkYNT55yQZAoZ1zvzrp9tpszs5bUYyG8qaWF5Qz6uXH3pAbUrGJfs0Z0qGhyFVx1IUJRV4CUgAPMBzqqo+3quOAjwOnARYgUtUVV03lP0azRQ2F3LXj3exqX4TZp2ZX0/6NT9X/0xxazH3zr+XI1KOQKvR9t9QAIL0QcyIm0Gbo41P9nzCY+sew+qykhuRy52H3snM+JmkhKaQEpriPWdS9KTuBnqlEQk3hjM3Ye4+98OkMzEtdhqToibxXdl33LfiPlo7WskMz+TBhQ8SExTDvzf9mzd3vYmqqpyadSrXzbxuQC/JkoGzoXYDf1z2RyosFUQaI7l/wf0cnnK4z65XT6ot1by16y3+u/W/OD1O5sTP4eY5N/u4epS0lnD78tupslQRZYri/gX3szB5oVcit7K9kkfXPMonez5Bo2g4b8J5XDb1MhYkLxi0+2qxt/D6ztd5btNzOD1OFiYv5I/z/jgu5UklowO7y85nRZ/x0OqHhIEemcdp2afxQ9kPnJpzKn9f83eaHc2khKTw4KIHmR47nWmx/m5TvYkwRfQrW17WVsYjPz/C92Xfo9Po+M3k33DhpAvJj87n2U3P8m7Bu6iqyhk5Z3D1jKtJCE4YrNseFdicbgzemBAtdpcUtZBIxgpD7Y7lAm5SVXUScChwraIo+b3qnAjkdv5cATw9xH0atdhddv61/l9sqt8EgM1l4/nNz7MoZRHNjmZuWnoTRS1FB3ydzfWb+evqv2J1WQEoaC7g0TWP0mBrOOC294XC5kJuXXarN1CzqKWI+1bex08VP/H6ztfxqB5UVD7a8xHflX03rH0b79RYa7hp6U1etbQmRxM3LrnRJ2i8NxtqN/D85udxepwArKlZwxs738Dhcog2LTXcuPRGqixVADTaG7lxyY2UtHYH035b8i0f7/kYFRW36ua1Ha+xqnrVoN7bxvqNPLnhSW8/l1cs562dUnFLMnTsatrF3T/d7Z1TdzXt4uuSrzk+83juWXEPzY5mQKgB3rz0ZupsfQt4DBRVVflg9wd8X/Y9IHYAn9/8POvr1rO8Yjlv73rbO01fCLQAAHjvSURBVI++t/s9fij/YVCuO5qwOXsEpmulOpZEMpYYUiNEVdWqrl0NVVXbgO1A70jU04GXVMFKIEJRlINyybvR3sjSsqV+5V2Jqlwel1fa8UAoayvzK9tYv5FqS/UBt70vlLeX+70YulU3S8v9/wafF32O2yN9fQeLWksttdZan7IOT0efKmWB5EGXVyz3tlNjraHeVu/zucPt8Cqwudwuvij+wq+NZWXL9rn/fbG13l9x66uSr7wvghLJYFPaVupXtrFuIx7Vg8vj+1Jcbamm1lLrV39/aHO28WXxl37l62rWsbZmrV95oO/fWMfhdHvzhBh1GhxOudggkYwVhi0wXVGUDGAm0HvZMxno+VZcjr+hgqIoVyiKskZRlDV1dYOzijTaCNGHkBeZ51feM7A32nzgCacCtZESkuJVyhouAvWjw9XBlJgpfuWz42fvtxvaUDJWx2W4MdwbUN6FgtLn+AqkZJUbkev1U99bm11xPjqtjlnxs/zamBo7dV+73yeB3K6mRE8hWDfu4kL6ZKyOzbFIjCnGrywlNCVgYsEQfQhhhrBBua5ZZw6ohpUTkUN2RLZf+ez42YNy3QNhsMel3dXTHUsj3bEkkjHEsBghiqKEAO8CN6iq2tr74wCn+EXLq6r6nKqqc1RVnRMbGxvglLFPmDGM2+bd5vMitzB5IYUthQBcM/0assP9Hyz7Sn50PqdkneI9NmgM3DL3Fp9YkOEgNyKXS/Iv8R7rNDr+MOcPHJ12tM8DNDkkmdOyTxvWvg2UsTouU0NTufuwu33iP34/6/dkhWft9ZzpsdN9XmLCDGFcPvVyEUwLpIWmceehd/q0ecOsG3zaPD37dB+BhdyIXBYlLxqUe+piZtxM5sZ3xypFGCO4fNrlwxWUO2oYq2NzLDIxaiJn5ZzlPTZqjVww8QI+2/MZv53yW2+5VtFy92F3kxqWOijX1Wv0XDz5YqJN3YsHM2JnMDdhLotTF5MZ1i3ykBaaxgkZJwzKdQ+EwR6XPdWx9FoNDqmOJZGMGYZcHUtRFD3wCfClqqr/CPD5s8ASVVVf7zzeCRypqmrV3toc70ovxS3FFLcWE6wPJswQRkV7BYnBwkOtwd5AYnBiwFWuvVFrraXaUk24MRy9oqfeXk+oIZTytnIa7Y1khGUwNWYqGs3g26StjlbK2sowao2kh6X7rQy2d7RT2FJIo62R1NBUMsMz0Wq01Fpq2d2yG4/qITsi23v/I8C4Vcdyup0UNBdQbakm2hxNXmSe305GjbWGPU170CgaciJzsLlslLSW4HA7SA5J9guadbqdFDYXUmmpJC4ojpyIHD9ls6r2KgqbC9FqtGSHZxMX3Les8/7QYGtgd/NuHG4HmeGZpIYOzkvfKEKqY40yWh2tFLYUYumwYNKZsDqtRBgjRJJYBWxOG9HmaHQaHVHmqP2a05rsTVS0VxCkCyI1LBW9RsynFW0VFLYUYtQayYnI8e5o1lhqKGwuREUlJyKH+OD4Qb3nvTCsc+Y5z/zEcfkJTEkOp93h4g9vbmDLvccfUJuScYlUxxqFDLU6lgK8AGwPZIB08hFwnaIobwCHAC19GSAHAxnhGWSEZ3iPM8My+bz4cx5c/SDtznaiTdFCKSv1iH7b2lC7gZuW3kSttRazzsylUy7l06JPabY38/Cihzk95/Qhu4+i5iLu+PEONtVvQqtouXjyxVwy+RKvew5AiCGE6bHT/c6NC44bkpdTSTcb6jZwy9JbaLA3EKwP5r7593F02tFet7fNdZt5asNTLK9cDsDx6cezMHkh96y4B7fqZmrMVB5Y+IDPTodeq2di9EQ/6d6eJIYkDrnSWbQ5elBcFyWSgRJmDGNS1CQ+3fMpD65+ELvbTmJwIhflX8Sr21/lj/P+yA3f30C9vZ4oUxQPL3qYQxIPGXD7BU0F3LbsNgqaC9BpdFw741p+OeGXhBhCSA5NJjnU310yPjh+uAyPEcPh9HjdsYw6mSdEIhlLDLU71gLgQmCxoigbOn9OUhTlKkVRruqs8xmwB9gNPA9cM8R9GnNsa9zGPSvuod3ZDojdkLt/upvC5sI+z2uwNXD7D7d7A4dtLhtPbXyKU7JOocnRJNSR2vYeiHwguDwuXtn+ilfpy626eXHLi2yu3zwk15PsG9WWaq8BAmBxWrjth9soau1WX1tWvsxrgAB8WfIlJW0lGLQiRmlz/WZe3vqyV4VKIjnY2d28m3tW3OMVE6myVPFuwbtMj53Ogz8/yOEphwNChOTmpTd7RRv6o0s5saC5ABDz6+PrHmdbw7ahuZExhMPV7Y6l0yi4PSpuz9jLfyaRHIwMtTrWclVVFVVVp6mqOqPz5zNVVZ9RVfWZzjqqqqrXqqqararqVFVVpc9ALyrbK/0UVhrsDV4p1L1RZ6vzU9PyqB4cbiGp2trR6qeQNFi0OlpZUr7Er3xH444huZ5k36iz1nkNkC5cHhdV7WJMdbg6WFG1wu+8nY07fQK/l5QvodXRO8xLIjk4CaReuLt5N8mhyZS3lRMb1B0D0exops46sMDsJnsTP1b86FceSOnwYMPu6lbHUhQFo17uhkgkY4VhU8eS7D9xQXEovdwZQ/QhARVZehJpjPQJWOzCqBUBumadmShT1OB1tAfB+uCAblY9AyUlI0eEMYIQfYhPmYJCrFm8JBl0BqbG+KtWZYZn+qzezoid4deORHKwEmf2dyFNCk6iwdZAtCma9o52b7lZZ/ZxTe2LUEMok6Mn+5XHB41vV6uB0OHyoNd2Px8N0iVLIhkzSCNkDDApehK/m/k7ryGi0+i4bd5tffrdg/AHvn/B/V6jA+D8ieezrHwZOkXHPfPvIS0sbUj6bNQZuWLaFcSYuw2lxamLB5QlWDL0pIalct+C+9BpRFiYgsKtc28lM7zbSDwu/TgywjK8x/lR+aSGpnqTS0aborli2hUHneqURLI38iLzuHzq5d5js87Mr/N/zXel33HznJv5rOgzQMzh982/b8CCCSGGEG6Ze4uPtO8vcn5BfnTv3L8HHw5Xd0wIgFErs6ZLJGOFIVfHGgoORqWXNkcbO5p2UGetIy00Db27A4u9hYTwNFo9ThxuB3FBcdTZ6tAqWqJMUVRbqwnRh2Bz2ShrKyPGHEOIPoRqSzUJwQmYtCZaOlpIDkn2Bi+2OlopaStBQSEjLIMQw8BWue0uO8WtxdhdduLMcTQ6GlFQCNGHUGmpxKg1kh2RPey5SAaBcauO5fa42dawjYr2CmKDYsmPyses91XH2tW4i6KWIjQaDVlhWYSbwtnZuBOry0p2eDbJIcnsaNxBk6OJlJAUciJz2Fi3kVpLLdHmaCZHT6a1o5Xy9nKC9cFkhGVgtzVS3FSAVtGSHplHSHDfO3qSgEh1rFGCxdbMzqadtLusRJqjsbnsKCi4PC50Gh1NjiYSghPIjcilpK2EOmsdiSGJZIRlUNAk1OkiTZEYFANmg5n0sHRqLbVUWioJN4aTHpZOo72RyvZKdBodzfZmQgwhZEdk43Q7KW0rxag1khGe4aduN0IM65w5+e4vePy8mQQbxYLKzW9v5KVL55EdK3doJT5IdaxRyJCqY0kGj1BjKHMT5tLeXsdrO17mqW0v4VbdxAfFc/Hki3l0zaPkRORwdNrRPLXxKRYmLSQpNIm3d77NGTln4FbdZIRl8Nzm57C5bATrg7l6+tW8uOVFtIqWxxc/ToQhgntX3suqKpFP8siUI7l93u0khSb12bcGWwPPbnyW13e+DgiXq9NzTuexdY8xP2k+dx5657DnIJH0z+rq1dy05CbanG0YtUbuOewejs883iv7WdpaykM/P8Tq6tUAXDfjOupsdby5800AssOzuX7W9dy49EZcHhfHph7L8VnHc+9P93rbvHXurfxc+TNflH6BRtHw28m/we608krnWDk6aSG3zrqBpOgJgTspkYxialpKeXnXm7y8/RU8qofE4EQuzL+QH8p+4Ii0I3h0zaM4PU4ijBE8dtRjzI6fzcQosYP9RdEX3LPiHixOC2admVvm3MLXRV9z/uTzueene2i0N2LUGnn0iEe5f+X91Fhr0Cparp5+Nb+a9CtqrDXcsvQWb7D6eXnncdWMq3x2nw8GOnoEpoN0x5JIxhLSHWuMsb1+E//a+h/cqphka6w1fLrnU45IOYKdTTspbSslMyyT5ZXLCTOEYdKZeG/3eyxKWcRTG5/C5rIBQg3p2Y3Pclr2adTZ6rj/p/vZ2rDVa4CACDr+oeKHfvu0pX6L1wABKGotYlPdJiZHT+anyp/4vuz7Qf4rSA6UyvZKbl12K23ONgAcbgd3/HgHRS3d6lhfFX/lNUC6XAG7DBCAwpZCPij8gLzIPADOzz+f+1fe79Pm31b9jWMyjgGEKMK/t7xAZFD3S9K3lctZUekfAC+RjAW2NG3nf9tewqMK958qSxVfFn/JMRnH8ODqB73Kcc2OZm7/4XZvIPr2hu3cu+JekUMEoVz44OoH+dXkX/Hwzw/TaG8EYEHSAp7Z9Aw11hpAqAw+seEJtjVu439b/+c1QADe3PUmm+o2Ddu9jwY8HhWnWw0QEyLdsSSSsYA0QsYYVZZqv7KtDVvJicwBhGxq10vhnuY9JIcI7fgWR4uflGqbs80rt7q9aTsNNl+1JIAfK/0VWXrT80HYxca6jd5EdkvLlvbbhmR4qbfV0+xo9ilzq25qLJ0vOx63j7pZiD7ET00LYGPtRu/KbqujlRZHi8/nLtXljSHpokudrYtVdev39zYkkhGl2uKvLri5frOfmiEIA6XLuKix1ngl17vo8HTQ0tFCeVu3wlZOZA5b6rf4tVXRVhFwbt7VuGuf72Es0+EW8SAiJZnAILOmSyRjBmmEjDESAiTwmxg10buCnR+dz+6W3YBIetgl4xtuDEen+HrfBemCvA/L3IjcgEotA0mmlR3un719csxkbx6TBckL+m1DMrxEm6J9glwBNIqGuCAxvrQaLQuTFno/a3e2B1RS6/n/HGYII1Qf6vO5VtH6XaenUALA7AAqXBLJWCCuh+RuF/nR+V6Xxp7EB8V759i4oDi/+A2dRkeEIcInk3pRS5HXyO9JUkgShyT4z81di1EHC3ZntzxvFwadBrtLGiESyVhAGiFjjInRU7k075de95hIYySnZ5/O96Xfkx6WTk5EDoXNhcyOm43dZcfitHBS5kmsqlrFFdOu8KohmbQmrpx2JR8Xfky4MZy7DruLydGTmRrd/UI4N34ui1IW9dunqTFTOT27O/N6UnAScxPmsrFuIzNiZ3B02tGD/FeQHCjJocn8deFfvS9COkXHXYfe5aOOdULmCV5ZUBUVt8fNqVmndrcRnMwZOWd4E1C+test/nTInzBpTaJNjY6b5tzEt6Xfes/51cQLqO+xenxY3CwWJkkjVTI2mRI5gXPzzvEeR5uiOTnzZL4p+YYbZt2AVtECQrL8gQUPeI38iZETueOQO7wGuV6j5+bZN/PWjre4Ze4tXmN+adlSrpp+lXcBQEHh0imXMilqEpdMvoSUkO5Yu1OyTgkoiz6e6a2MBWInxNYh3bEkkrGAVMcaBOpsdZS0lKDX6skMyyTMGNb/SQeA3dZMUeNOWh0tJISn06Y6sbvsxAfFU2ur9VHHCtYFo1N0lLSVkBCUgFFnpMnRRIwpBrfqptnRTEpICsmhwm2rsbWc4qYCNIpCRkQuEWHJA+qTpcPCntY93n402htRUckMyyTCFDGEf40hZ9yqY3k8HrY1bqOyvZI4cxwToif4rc422hopbi1Go2jICMtAr9F7/5/TwtII0Yewo3EHDbYGUkNTyQ3LYVPjJqos1cSZY5kQmYelU50t2BBMZlgmdlsDRY0FaDVaMiJziehH+EASEKmONcy0dbRR3FKMw+0gPSzdm3iw2VLHruZdtDktRJljaLY3k2yOIdPRwR6DliaPg6TgJD85dJfHxfaG7VRZqogyRaFX9AQZgsgIz6DaUk1FewWRxkgywzOpt9VT3lZOiCGErPAsTDph6NdaaylpLcGkNZEZnjlgNcMhZtjmzNIGK+c+t4L/O3eGt+zpJbs5fUYyZ82WYigSH6Q61ihEqmMdILubd3Pj9zdS1CrcoY5JO4bb5t1GQnDCkF3TZI5gUnJgN6nUsG7d+Z4PvQkDUR9q2E3Ue1cQVbFWHKcvhNOfhKiMfk8NNgT7JLcbqvwjksHjh4ofuGXZLdhcNnSKjjsOvYPTsk9Dr+12JYkyRxFl9nXD6p3EcHb87O6DnZ8z653fgNMGGh2c8hhh084jMaTbxSRIH0RU2MDyI0gko4Faay1///nvfF78OQBpoWk8dtRj5EbmEhEcy7zgTrcsRzusfha+ewBUDxNMEXD+a5DoPx/qNDqmxk5laqy/O2JqaKpPDpGkkCSSQvyN9bigOO/uysGIwyXdsSSSscyA3bEURTlTUZQCRVFaFEVpVRSlTVGU1v7PHL+4PW7e3PGm1wAB+Kb0G9bWrB3BXh0AWz+Eih59L1kOBV+OXH8kQ0ZFWwV/Wv4nr1qaS3Vx38r72NOyZ/8bbSqG968UBgiAxwWfXA8N/sIFEslYYn3teq8BAlDaVsor217xE/ugdit8ex90qmVhb4YProX2uuHr7EGEo1e2dAC9VqpjSSRjhX2JCXkYOE1V1XBVVcNUVQ1VVXVo/Y5GORaXhRVV/vKi2xq2jUBvDhCPB3Z/5V++RypbjUca7A1+qlUe1UOt1V/tZ8C014HdVx0Ljxtaq/a/TYlkFLCzcadf2arqVVg6LL6FLRX+JzcVgdVfWU5y4AQMTNfKPCESyVhhX4yQGlVVtw9ZT8YgIfoQFiX7B273dlcZE2g0kHeif3mODCofj8SYY4g0+qqh6RQd8cHx+99oSDyYeymsaXQQLmM+JGObSdGT/MoWJi30j8GICOBmGJMHwf4qWpIDx+HyoO8VmK6TRohEMmbo1wjpdMM6E1ijKMqbiqKc31XWWX7QolE0nDPhHK+CEMDp2aczK37WCPbqAMg/HTKP6j7OOxFyjh25/kiGjKSQJB5a9JBXPtekNXH/gvt91LH2mcg0OOsFMIWLY70ZfvEMROcNQo8lkpFjZuxMzs4923s8MXIiF0y6wKs26CVuMpzwIHTFVYXEibi64Ohh7O3Bw95iQmzSCJFIxgQDCUw/tcfvVuC4Hscq8N6g9miMkRmeyTPHPENJawkGrYH0sHSC9EHD14HmUqjZAi4HxE6CuF6a8h6P8MlvLoXgGIiZAIa99C8qE879HzTsBkWB6BwwDczjrsXRQmFzIXa3nYywjIBBlJLRxWFJh/HmKW9SY60hyhRFelg6GqXXukRrNdTvBI1WrOiG9B0E68o6guLffkJVWzmxQfFkxUzGoO1nmrE2Qd0OcNkgOheCoqBup3BhiUiHmFwxHiWSESImKIZbp17NuWnH0uGykxaeSaQpCkpXQUc7RGdDZIaYW+deBllHiiB11S1cFOt2irGt6d/5QFVViluLqWirINIUSVZElp9qnUTgcHrQB3DHsnVII0QiGQv0a4SoqvobAEVRFqiq6pOiVVEUKfAPRJgiRkaGtmYbfHoTlP4kjsNT4KwXIa2Hclbht/Dmr4SRArD4TjjkajAGB27THA4pswN/thdqrbX8bdXf+Kb0G0Bo5T99zNMBXRgko4uU0BRSQvciZVm3C966UBgIAEmz4ax/Q3TWXtv7rvQ7bvvhNlweFwoKf5z3R87OOxuD1hD4hJZK+Oxm2PmpOJ5wsjCkf3hUHOvNcN5rkLN4P+9QIhkEWiowf3IDkwo64+ZCk+CYe+H9y8VxUBT86l1IniV2QcLTYOVT8P0D4nOdCc57BXL731leUbWC67+7HrvbDsBV067i4skXjxb53VFFoMB0o05Dm8W5lzMkEsloYl9iQv41wDLJcFH8Y7cBAtBSDj8/D85Og6OlAj64utsAAfjufqgb3NCeTXWbvAYIiKDn5zY9h6PndSVjj81vdRsgAJVr+1RLK20t5c4f78TlcQEiweFDPz/Ut+JW+epuAwQgeWa3AQJCaeuja6Gten/vQiI5cEpXQkEP4Y62Stj+ASR1ut5aG+Hru8XuB0Ddtm4DBMBlhw+vgdbKPi9TZ63jzh/v9BogAM9seobdzbsH6UbGF3anG10giV7pjiWRjAn63QlRFOUwYD4QqyjKjT0+CgO0Q9UxyQCo2+pfVrkO7E2gTwBbI1gCSEMO8gtdSWuJX9n62vW0dbRh1BkH9VqSYcLjhqIAymglK+DQqwOe0uxoxuqy+jajemiw9aEMVN9Lvtdl96/TWile8kKHLveORNIngRZuqrdA6jwx54Iw0u0tYAwJPMe214pxHLZ3V9VmR3NAhbo6m5T4DUSgnRCDlOiVSMYMA9kJMQAhCIMltMdPK3B2H+dJhpqkOf5l2YshuNNvPyRe+Cn3RNFAxOAmEsyL9A88PiLlCMK7ApQlYw+NFiad5l+ee5x/WSex5liiTL6JDfUafd+JOxN6KcnpTP7xHzF5YixLJCNF0kz/srRDoWpj93HOMRDUGYAekeY/jiMz+x3HMeaYgOIQScEyxi4QDpfbPyZEJ2NCJJKxQr9GiKqqS1VVvRc4VFXVe3v8/ENVVZmFbCRJPwxmXigMC4DUQ2HGr7qDH0Pi4Mznu1feDMHwi6chdmLg9vaTqTFTuWzqZWgVsTE2JWYKF0+5GL1G38+ZklHNpNNg4indx9N+CdlH7rV6Ykgijyx6hGiTeBEL0Yfw8KKHyQjL2Ps1UubAghuE0QNQuwNO/j/oEncITxFjVqoLSUaS1Hlw2HU95trDYOKp0NjpapgwFY68HfQmcRw7SSjDGTpj78KS4MznIKRvqd5IUyR/WfAXr+Fu1pm5f/795EbmDsVdjXkCBqZLdSyJZMygqKradwVF+RihghUQVVUDLJd6z30ROAWoVVV1SoDPjwQ+BLpSjr+nqup9/XV6zpw56po1a/qrNvppq4HabSKzdOyE7h2K+gKhUGUMg7hJIuixJ7ZmcZ69mfroLArbSnG4HWSHZ5Mcm9/ZRiE07MIVHM8exUl5WxkxQbFkG2MJbioSgZMdbaKt6Gyx2qwoIq6kdof4PS4fwhKFwlbdDpF0KzhGPGB7qWY53U5K2kpwuBykhKYQbhw3uyADlmUa6XFZ3VjA7sZdaBQN2VETiI/cewA5AK4OoXzVXAohCSIg3NBLsMDRBo1F4uUrKotGWwO7G3dgc9nIisgmNSwNarcLt7/IDAhLobpxF3W2OiKMUaRG5UJzCdTvEuM5YSqgiPGk0YixFBQNjYXCFSsyU0j8Nu4BW5MwQqQbViD2SS5spMfmmKK1UoxpEAs24cni95pt0Fohxml4qnBZtNSB0yLGsTkKqjbSrnjYbQ7GptGhqCpWR/P/t3fe4XEVVx9+Z5t678Wy3LuNu43BmN47oTiEFiCEkpBKSEiAfCkESCMJEEJvpptuMN2Ae+9VVrMkq3dptWW+P2alXUkrS7J2tbvyvM+zj/fO3jv3rDx39p475/wOw2JzGJk0EaOhbxHMFc0VlDWVERsWS05MDiK01OEGbc588KPdVDRYuWSGW1zjQEUjL60uYNmd3Wt4aY5pQuoiOlboi0Tvw65/LwHSgRdd21cB+b0c+yzwb+D5I+zztZTyvCN8PjSpPgivXw+lm9R2TAZ89w110/fSpdBeiXfSJXD2X9zSqE2VsPwe2LKEQ5f9j1+tupfN1apCe1J4Eo8vfJjxdie8eAlEp7PijF/xszV/xC5VsvCNY6/g+8ZUore+CjvfUX2awmDxa+pG9OXL1U0jKDnfK19WN4ivfhccLsWRebfBol91ckTMRjOj40f79U+m6ZkDZZu5/Zu7KG5Sia8jY4bzzxP+TG5qD4UzpYSdb8PSH4B0xU+feq/K9zB7yIGGxUDGVEA5Ofeu+QMry1UMfKwllidm/ZpJLy1W+8blwAl3kv7hz0mXTqUSdPET8O7t7vE89mwYdSos+7naTp0IV7ygnG1PkkYN9E+i0fSfyn3wymLlNINyihe/Aq318NHdcMh1wzzr+8pZ2btMbYfFwDl/pX7HmzyakcMeaxXZMdm8vf9tQBUC/euiv3JKTt9U3lIiU0iJ1AUOe8Nqd2LpUqwwzGSg1a5zQjSaUKCv4VhfAdOllFdIKd9zvRYDJ/Ry7Aqg2ke2Di3yvnQ7IAANpbDuSVj9mPuGDWDHW1Cy2b1dthW2LIHweNY5GzocEFCqVM/vfgnbvk/B2kDpyb/k3k3/7HBAAJ7c+yoHknPdDggo9awvH4Ctr7odEFBPyXe9C5/+zu2AAKz+j6pNogkaPshf1uGAAOQ1FPBF0Rc9H1CdB+/f6XZAAD7/vapn0ANbKrZ0OCAA9W31PHbgTVpHuJ44TrlUOcjtfY47RyldeY7nvcvA4uHklO+EvR6qQxpNINn5rtsBAbX6u2s5lGxyOyCgVufaHRBQD4/WPs7eyefxUuHHzMuY1+GAANilnftW3kdpU6n/v8MxRKvNS06Irpiu0YQM/ZHoTRFCdMR3CCFGAL54VDNfCLFFCLFMCDGpp52EEDcLIdYLIdZXVAwBpZDSrd3biteq0KyuNB12v290vU8cxf76wm67bq3dR0ukCoWqM5mptdZ226fKWtP9HMIAhau82LQOjOHd2xuHwP+BDwiGcel02NlQs7tb+2YvbR201HR2DkCtjnhTU3NR1FDcrW1H/UGa2uuGGIxg81DHShjRWeLX89yeFG/o2U7NURMMYzPkKFrTva2t1p37Aa5x3tJ9v4o9VArlgLc527p9XGOtod5a7yNDQxdfjssWm/eK6doJ0WhCg/44IT8BvhRCfCmE+BL4ArhzgOffCAyXUk5D1Rx5u6cdpZRPSClnSSlnpaQMgWXqkSd1b5t0iVtdxZNEj9CU9jj/si3MSJrYbdezMk8kprkOgNSmGkbEDO/0uVEYyYr0EmNviYZJF3dvH3cOGLpE7QkBibnd9z0GCYZxaTCaOCuz+6LkKenzez4oNkuFAHpiCjuictr4hHHd2k5LmUl8oevGrbW+s/rPofUwwss476oQNO7Mnu3UHDXBMDZDjgleIoPjsjurYzkdSoa3KyMWMswJAoHFYOkQ6uj4OG4EqZGpPjY49PDluLTavIVjGbHqcCyNJiTosxMipfwIGAP82PUaJ6XsuXJZ3/qsl1I2ut5/CJiFEMkD6TNkGH48HP8j9w3+xItgymUw/zbInq3azJFwzsOQPs19XPoUOP+fYApjelURN427CpOrj1MyF3DhyPMRUy6FnONJXH4vf5p+J7nR6sYy1hLLQ3N+w6hNb8DJ96g4ZoC0yXDq72D8uUpdSwi1MjLrRiU7ed7fVH4IqKThS55SiZiaoGFR9klcNPxMBAKDMHDFyAuYn3l8zwfEZsDlz0G8y0mNSobLX4CknlV4pqQex48mfR+LQVU/Pz5tFt8deQHGeleISeFauPA/KmkX1CrI8Xe4C7qZI+G0+5SzIoR6ojznFhihE0g1QcKo02DmDWr+E0KpD449A9KmwPw7VJ4TqJXgU+9z50/lHA8zrmfsmuf486Sb+bTgU26ffjuxFpU3lxuby59P+DMJ4QmB+V5DFK/hWK6VkN5EdzQaTeDpizrWKVLKz4UQl3j7XEr5Vi/H5wLv96COlQ4cllJKIcQc4A3UysgRjQo5pZeWeijfropVxQ9XybjmMLDboCZPhWAljACLS5a0pU4pFlmiIHFEd715KaEmH6yN2OIyKW4oxuF0YDSaya/Zh1EYGBM/mgwnYI6i2mTkcGMJsWEJZIXFq5Cu6HSl6mJthLAoqMoDe4s6X2OF+hGOSFIx0WFRyj5rg7qRtDZAbb662Uyd6LZ7aBIy6lhWawNFNfsQQjAsYSyWrkpX3mg4rMZDZCIyNosDtQc4WHeQGEsMYxLGkNTSoPI2DAZInYTDaKaoZj9Wh5Xs6GyiojNUdeiWGrW6EpsNZVugrkiteGROh4ZyqHON59RJ0NaowluEAZJGQ3x273ZquqLVsQZK1X6lBGgKU+MyziVlbm+F6nxAqnmvJh/KtilH3WgBYYTmKjV/xqSDU6o5urVGCYgYwiiOiKRFGDEajFgdVtIi00iMSPRqhtVuZV/tPkoaS0iJSGFMwhiiLV5WWkKHQZszv/vkak4Yncxxwzo7d9c8vYbt959JmEnXU9Z0oNWxgpC+qGOdBHwOnO/lMwn06IQIIZYAi4BkIUQxcC9gBpBSPo4qdvhDIYQdaAGu7M0BCTmsDfD1Q7DyEbUthNKPn3YlmMxKmrcrEXEQ0YOqUXsfiaqglRkYEZnEnpI13PjFT6lqVdWpc6Ky+feCPzAiaTKJQGKcR5hNjEc4TE0BvH6du+pvWCyc/Gv1/rPfu2P8hy9Q9Rp2vgOf/NZ9/Jl/htk3qe+iCShhYTGMTp/Rv4Ni0jrGw4ay9fzgkx90xLOfkHk89zsTSV31qNr3xJ9hPLiC3OJ1atsSDec/Am99XznGOcercJaPf+3uf95tytHd9JzaHn06JAxXIgygbvK++zok6zoImkGkZDM8fyG01qrttMlwxYtqXjWFK7nq9v3eulGpZoGqFVK8ForWqm1LFJz9ILx7hxJkMFrgu2+Snd2369ApnXxw8APuXXlvR9vNU2/mxik3EmGKOMKRGvBeJwRUSFZrm1M7IRpNkNMXdax7Xf9e7+V1Qy/HXiWlzJBSmqWU2VLKp6SUj7scEKSU/5ZSTpJSTpNSzpNSrvTN1woiKna7HRBQN2sf/lxJ9PoI6XDw1oH3OhwQgMKmYr4u9ZJo3pXClW4HBMBar56O71jaOcm44FsoXA2f3d/5+E9+C1W6ZmWoU99Wz4NrH+yUUPtNyUp2JbpqJBiMKnSw3QEBtaKx/il33sfs7yvH1ZPV/4GRHuFW+z/pnBNScxD2LEOjGTTsNlj1b7cDAkrt7+CK7vse/MrtgAiDygVpd0BAiTtsehFGLlLbjjZY9gto7psoZGF9IX9e8+dObU9sfYK82rwejtB44i0cCyDcrAsWajShQJ9zQoQQB4QQLwkhbhFCdM+I1ninqap7m7Wh8w/gALHZm9haf6Bb+6667m3d8OYMCbw7Fg0l7pjodpx2aNEqzKFOU1sTB7yMlyrpkmY2R3kfs1X73TkgjjYVytIVa0PnbYe183bplv4brNEcLbZmKN3cvd1TmtdbmzkSWuu67+N5DbQf03XM90BDWwOtju7XTHWrnlP7grc6IaBWQprbvChNajSaoKI/6lgTgf8CScDDQog8IcRS/5g1hEjIVTHHniSOVLHzPsISFst5md1ViBalz+v94PYkeE8MZlVQritpk1WogieRSe7kZk3IkhSRxBm5Z3Rrz8XldFrru6taAYw6BYpWq/cOu8oL8cQcqUL8urZ5Mv6co7RaozkKIuJgyhXd23O9lL3ybGtrhCgvak6jTuksbz7hfO/XihfSo9PJiOqsUhduDGdYzLAejtB4YrU7u0n0gipY2NymV0I0mmCnP06IA7C5/nUCh4Fyfxg1pEgeC1cugVhX0mPaZLjsaYj2rWTmqVkncsXICzAKIxaDhVvGX83s1Om9HzhsDpzxR3VjKARMuEA90U4cCWNc0qmuasDkzFMV1BNUPgqJo9R2vP7BDHUsRgs3T72ZE7LUTVeMOYbfz7uXiW12FYZltIAlFs78k8oFEQImXgjTFiu1K1CFNS/8jxrzoJ4OX/I/OPCl2g6PVzkkTqnCu4wWWPgLyD1x0L+v5hhn6hUuJUCDUrg69V4Y5uWhzfAFcMJP1cMXYQBba+drYMyZSsa80fVTOOpUOOUeMHupreSFlIgU/rbob4yJVzlR6VHpPHLKIwyP1Q92+kKrzeF9JcRs1LVCNJoQoFd1rI4dhWgGtgF/Az6VUnqJMxocQlLppb7MpZ6SDpFeZBqL1ysVovA4dbNWuVfd7EuHSh6PToXUyZAyusdT2KryONR8GGEwki3CMFbtU4mTUalQfQAiEpVDUVugHIe0KSrGue4QVB1QVdETcgGX2ktUqqrkbgpTycTtNFZAcyVEJvvcmQpCQkYdqxvlu1Wok60ZUidA9hylctVOWxOUbVfjISYd0qfSbLJQ2lRKuCmcrOgsqNirQleEETKPg7ZmqNilirUljVFjuXynCjtMGK6km5sOq6KH4QnqvAYT1B9Sjm78MBWTX1ugxlhCrnJINP1Fq2P1BacTyndAxR4196VPVfLUAHarmvsay5RaW3SaciYMRne9puZqNQdHpUFLlSvsSrjCDqVSEEQqhUDpVCuB3mqI9EJtay2VLZXEhceREhHyc+qgzZnT7l/Og5dOJTaic5jwXz7azU9PH8vCsSH/t9T4Dq2OFYT0RR2rnauAE4BbgRuFECuBFVLKz/xi2VAjNl29vJH/NSxZDE4bnPJbeOMGyJoN48+GT37n3m/qlXDKb7wXlCvdivm588m1NcPp96vjHK54/ozjIHuWUiQaf546z96P4fQ/KDWjJVepG0tQN4rXvKNWSADCY7qfKzrlWHA+Qpuy7fDWzeoGDJQjecVLMOZ0te10wOaXlUhCO/NuJfLk3zAq3lUcs2wrPHeBu8L5wl/C7g88+gyH8/4B79yqbsBArZhtfE4dC6q2wqJfdVaBM5khuWdnWqPxGflfw0uXuufCnPlw6VMQl6WuiboieO17arXjk9+6E8qj01SNm+X3qO3weFj4c/jgp3D6/8H7d6p2Uzh8723InMZAiA+PJz48fkB9HIu02XtSx9LhWBpNKNCfYoXvSCl/AfwA+BC4DnjfT3YdO9issPZ/KuZ+wvmw/mmV7D3nRvjygc77bn1Fqbh0RUp1XGutCg3Y9KL7RxfUk+xoV6Xe3e9D1iz1/vP71RPCdgcE1FPzrx5ST7o1ocuh9W5nAdRT368ehKZKtV2dB8t/0/mY1Y+q8dDOxhfdDojBpJ4jdeqzFTY8A6NOdrd9/n9KxrSdVf/ynvCr0fib5hr46O7Oc2HhKijZpN7brMphjkxSc6CnolXjYSXaEeN6cNRaq46LzYJ9H0OWS4LX3gqf/Z+SodYMKlJKrPYewrFMBlpsOjFdowl2+qOO9aYQ4gDwTyAKuAbQ5V8Hiq1FhUIBxGSqMBVQjoinRG47zbXd2xw295Pn2AwVvtUVu1XFNIPK+Wg/rv0m05PKPdoJCXXqy7q31ea71X1a69WY6Er7eHA6OisI9aQMVFugxm07rbXdw6u8jTGNxt/YmlQx2K60Oxu2JjX3xmZ6nzPbC262U5OvnJCaLmO+ep8KU9QMKjaHxCAERkP3KJsws4Emq14J0WiCnf4kpj8AjJVSniml/IOU8ispZYe2oBDidN+bdwwQGQ8TL1Lv81fA2LPU+9Zad4JvO+aIjiKFnTBZYPr31PuDX8PYM7vvY4lSITOmMPdNYmyWKwekC8cthkjv1X01IYK38JAJF7qVzOKHKfEBTyzRkJir3huMKnG3HWu9ymfqypgzIP8b93bGcW5HGlQcvrcxptH4m6g0mPyd7u0prnk1MlEJcZRsVgnoXcmaAeUeq8S5J6oVxpGL3IpwAFOvUtXUNYNKq91BmJdVEACL0UiLDsfSaIKe/oRjrZNSHumq/osP7Dk2mXABzLwByrZB+jQYfy58+nsVe9weOpU4UsUyD5/vvY+xZ8GCn6j6HkljYNJFauUjKln1s/NddTN45p9gw3OQOQOufAnSJ6u4/vB4FXIz6wblhGhCm+w5qpJzRIJyKCZfCjOuBaMrDSw6Fb7zrNoP1JhZ/DokeeRqjD0TTvy5clzNkeqmzbPPKVfApEvc+SA5x6vxtXe52k4eC4tfg6RRg/a1NZoOTGY44U419oVQc+GlTylHuZ0xpyulrPoSmHm9yvEwR8LxP4LIFFUXyRQGM66B5irlyGdOVyuFBiMcdzXMvqGz4INmUOhJGQtcKyG6TohGE/T0WR2r146E2CSl7IMm7MAZkkovZdtVzLHRrByP1jq18uFoU4WvTOEqPKt8p3qanT3LnefRzuEdSg3JYFR9CAGmCPU0uvGwqtdgMKrwmMhkpZffTt0hda7YbPXjrWkndNWxAMr3qOKAiaMgLKr75631LiWreLUSUrTKpSQUq27WDCaoL1b7xucqWd3KPUoxKCYDUieqMdnWpEJXIhPVOK7OUyttWTMhKmkQv/Axg1bH6it2q1JnM0W4lbFAzbmV+5RTXVeo1NzisgGhQrWkdCldSagvVfNmyjjXiqBUc3TNQZUPkjpeKW9ppTcYpDmzqLqZ7zy+ir9fcVy3z97dUkJUmJF7ztV1lTUdaHWsIKQ/6li94Rtv5likeD08d747ByQmA659Dw58Bsvucu837hx187f3Y6VUdOLPwewqhHhoo+qjzZUgGZUC17zrDrnxlI30FmoVl9W9TRP6pI478ufhseoFsGOpUmZrX9lImwzzb4O3f6i2I5PgxF/Ax79S20azUgZqL+jmsMGq/8Cn97r7n/V9OO0+9zk0msHGFNY99LBorZovT/0tvHubcqJB1Uz6+mF3HlN4HJx0t3vMmyPgmvcgJg3evkWtXoNyPha/DqO9FHnV+IUjrYSEmw00WfVKiEYT7Og15EDjsKsbN88k9IZSVePhk3s777vnQ/VkGeDbv8Nh1w+g0wnrnnI7IKCebu9Z5l/bNUOH2iKlbNXugIBSYrO3urebq6Bqr3KSQTkdnspA1XnwxR8697v+Ka2OpQku7Fb45u9qVaNgpdsBiRsGFbs7Cym01kHpJrcTY2tRim9VB9wOCKjwrOW/hZbaQfsaxzottp5zQsJNRp2YrtGEAL50QvJ92Nexg7MNqvZ3b7fWd74BbKddbtJhc1eqlnao3N19X2/9ajTeaGtScfHd2ruo/jSUdk7CrS1wK6lZGzrLobbjTVVLowkU9jZVvDUqRYVZtROVosZ3VxpKO4e+Vu33rh5YV+Rd0VDjF1rael4JiTAbadQrIRpN0NOrEyKEuORIr/b9pJSXHKkfTQ+YI1XCcFcSRqgYY08s0SpOGSB5jDvh12iBGdd172PC+T41VTOESRiuksw9EaJzDD0oQQNPxaAZ17qdkvjhKsHdk4iE7qEwGk0gCY9R82XxOqV01c7h7ZA9u/v+OfOUglY7M65T4ViiS4j5cVd3lvTV+JVWu7PnlRCLdkI0mlCgLysh5x/hdZ7/TDuGmHA+LPq1ktGNSobzH1GqVZf8V6leCYNKEj7zz6o4XO5CuOA/6saxnbFnwqm/U0nokYlw7t9g+PEB+0qaEMMcAXN/CFOvVE5tfA5c/F8V6hcWq5yJs/6ilIGiUpRQwvzbYfrV7pux6BSluDXqVDVms2bBd9/wLiut0QSSSRfDnJuVYMecH6gHPGHRkDJBKbyFx6t8kNN/D+nHqc8sUXDSr5SaYdoUuPwFFcJltMDsm2DeLToxfRA58kqIzgnRaEKBXhPTpZTXD4YhQ46WWqUSVLVf/VBlTldPz7wRnaockawZgEH9+O14W/3wnf0gnPOQuhG0tbpUsdK6Kw5Fp8IJP1U3kcLQ/Qm2RlNfCiUbVdhVyjjlaJRsUQXdYjMhcxac/w9Y8GO1QtdeMyT3eECofQBuXuFSUsvoftOVPhmueEHlj4TFdVZg02gGSnONGsPVeWr8Zs5Qzm9fcTqUgmDpFqXsNvJkkAJmXgsRie55c9LFSmolzjXms2eqArKxWW6ne8L5MGyeCpuNSVdCDZpBo9XmwGzsyQkx6ZUQjSYE6Jc6lhDiXGASEN7eJqX8va+NCnnsNljzOHz5Z3fblMvhnIe935QVrYXnz3dXsI5Mgrm3wHt/VD+Ui1+DiHiIAGK9FIxrRwitcqXxTlMlvPdj2Pex2k6bBKNPh2//4d5n/Hlw9sOQ1kXWMrbLmIrpIg3dFUuUemk0vsTeCiv/qZLK25lxLZz5R7UC3Bfyv4UXL1YOBSjH+rjFsPF5pXrV7oS0O9ztxPQw7/bHAdL4lCMmpuuVEI0mJOhzYroQ4nHgCuAOlN7yd4DhRzzoWKX6AKx4qHPbtteU8kpXHHZY+W+3AwLqKXJzpQqrKt8JpZv9aq7mGKB8p9sBASX3vOrfnffZ/T6Ub0OjCUoqD8C3/+zctvE5qOij+lpbE3z5J7cDAmpV0OlUIh95X/rMVI3/aWk7wkqIRatjaTShQH/UsY6XUl4D1Egp7wfmA8P8Y1aIY2vu/EPX0d7Uvc3ZBnUF3dubq1U4C0Brg2/t0xx7WBs7bwvhfYx23U+jCRZsTZ0lpNtp6+OYtVt7UIBrUDlR3pSxNEFLyxHrhBix2h3YHV7Gi0ajCRr644S0axI2CyEyARugM069kZAL6VM6t0UmqqrVXTFHqoJuXUmbpKrxGoyQOsEvZmqOIZLHqOTbdmryVTFCTyITIXnsoJql0fSZhNzu4zMm3a0S2BuRiTDby1wbm61qg4w6ZcAmagaP5jY7lh5WQgxC6NUQjSYE6I8T8r4QIh54CNiIqgvyih9sCn0iE+GSJ5XkaVgsjDwFvvtWZzUrT8adoxRZEkZA8jg4+yHI/0bdJC5+AzKmej9Oo+kryWPge0th+AlKKMEUrhTUxp+r4umHnwDfeV4llms0wUh0KnznOaVOFRYDY85Q+XJx2X3vY8oVcOp9Ku8uaTSc8X+qYOF3nvUuz6sJWpqPoI4FEGUxUd/qpW6RRqMJGvqTmP6glNIKvCmEeB+VnO6lmp4bIcTTKBnfcillt7sbIYQA/gmcAzQD10kpN/bDpsDjsCsVrKK16kfN0aZyOKLTYOEvVNJkeNyRE3Ujk5TKitOhwgKGH69+aKUDDu9QiZgJwyEiSSnDpE1WP5hRSapmQ+FqVVRu2BylwmXsl96AJhRoroLi9apKc9JoGDa7c8K4lErxp3C1UkcbPh+MYVC0Rj3lHTZHyY5OuwJqC9UYihumZHjrS9UYtESqxN3idUqGd9g8FapSuFqtyOXM677Cp9EMJmkT4ZL/QUu1Gs+WSNVeXwZFq6B0K8QPU/LQdUVwaKOai4fPV2FbRWuVDPr33lbOi70NRpwEJdvgwBdKKc4YBsPnda/TpAkqmqwOosN6/q2LDtNOiEYT7PTnbnUVMAPA5YxYhRAb29t64Fng38DzPXx+NjDG9ZoLPOb6N3QoXAUvXAgJI2H2jfDRXe7PkkYrLfmuSitdKVoFz13gjtEPj4Nr34fdH8BXD7j3G348xGTA5/8HC+5Uqi7PnK1uMkHdKH7vbRix0JffUBNo7DZY9Sh8/bC7bezZcNGjatUN4NB6ePZct8DBSb9SSbvtce5CqBW25fcolSGAE38BJ/0SUlwhLjvehtc9Cmcm5Cqp0nY1IksUXPchZB7npy+q0fQBcziYPeZUpxM2PQ9f/NHdljVLOSwbn1cPdk69Fz6+213sNSYTrn1XqcY9fz6cdh8s+6n7+rFEwXUfqIc6mqCkuc1OcrSlx8+jwozUt2iFLI0mmOlLxfR0IcRMIEIIMV0IMcP1WgREHulYKeUKoPoIu1wIPC8Vq4F4IUToFLiwtagbQ6cDTrgTvu6iiFW1v3dlK7sNvv1X5yTh1jrY+5EqTOhJwUp3TPSqfylVmHYHBJQdX/9V1RPRDB1qDsC3f+/ctndZZ7W19c+4b6AMJpD2zom2UqrxNPZMd9uqR5RqFkBjhXJQOp03X4VttdPWBDuWDvjraDQ+pX212JND690rhWPPVmO/3QEBaChR+6x+XM2phWs6KxS2NcH2N/1vu+aoaW5zEGbquThkpMVEXUvbIFqk0Wj6S19WQs4ErgOygb95tNcDvx7g+bOAIo/tYldbN5kSIcTNwM0AOTk5Azytj3DaobFcvTdFKOehK705BNIOjWXd25vK1RO8bvu7Eu2cDu9qW42HwWnDo5SLxo8Myri0tar/727tLq0IKTs7HEZz5xuqdlpqVI5SO3are1XE0dbZoW1HdjmvVhAKGYJyzvQH9lalSNiV9rEbHquKx3altR6ay9U10erlcz3W/YKvxmVzm73HOiEAUWEm6lp0OJZGE8z0uhIipXxOSnkyKl/jZI/XhVLKtwZ4fuHtlD3Y8YSUcpaUclZKSpAUiAqLgbk/VO93vgNTr+j8uSkMUscfuQ9zBMz5Qff2ceeomH1PIpNUDDOocIOk0d2Pm3tL3wt3aQbMoIzLhBEwbH7ntqgUlWwOKtRq5vXuz2wtEJmsckM8mXQx7P/UvT1ikXsMxWTAnJs77280d14JAZjynaP9FppBJijnTH+QPLbzCh90ngP3faLGvifCAFkz1XVzaIP3ENau87nGJ/hqXLa0OQg3H2klxEhts3ZCNJpgpj/qWN8KIZ4SQiwDEEJMFEJ40TvsF8V0rjWSDXgRcg9ixp8N5/wVyrbAqFNh3m0qByRnPlzxkkru7Y2xZ8L5j6ibzbTJ7uPO+wfMvknJUI47B878M+x6V/1wXvSo2veqV1QCZUKusmP8uf7+xprBJiIOLvyXknKOSVeiBVe/CfEeTxFHngQXP67kSpPHQdIY+O7r6kYrbphSARp/vpJ7jklXlaZPv18l6QIYDCqn6eR7VBjLsHlKmS1hhOozZTxc9oxKTtdogomIODj5NzDrBuVMjzgJLn9R5YrEZqnxP/48OP336n3WbLj6Lcg4DkafBuf+FSr3wym/c18/lz2t5nBN0NLU5iDcfOSVkOomHY6l0QQzQkqvCw/dd1TOxzPAb6SU04QQJmCTlPKIcjlCiFzg/R7Usc4FbkepY80FHpFSzunNllmzZsn169f3ye5Bo7kaDGaV0FhbqEIA2pOG+9WHSR3bjsOulGDCYtUT79Z6iIhXT6nbaW1QIVj9PZ+mL3hbrfOK38dl+1gIj1OrbN5orlHjJCJebVsb1OpZVJLabqlTfcRmgamHpM6mSrUCEhbt7tNgUOfVBAt9HpcQpHOmr3HYlSJWRKJyTJxONReHxUKUa27sOrbbaa4GYVTFED2vH83RMChz5oIHPucXZ44jLdZ76PFnuw9T12zjoe9MO6r+NUOOfs2ZmsGhP+pYyVLK14QQdwNIKe1CiCNWAhJCLAEWAclCiGLgXsDsOv5x4EOUA7IfJdF7vfeeQgBPByAxd+B9tGM0KX38dqK9LF+H6/CrY4KuY8EbkQmdt8NiwNNfiYhTryPRvjrSU58aTTBiNEGiR/1cg6H7XNx1bLejH+CEHL3lhMSGmcmr8JI3qdFogob+OCFNQogkXDkbQoh5gJdMbDdSyqt6+VwCt/XDBo1Go9FoNMc4zb3khMREmKhuDPFwLHsbrHlcKRXOuEbLo2uGHP3JCfkp8C4wUgjxLar2xx1+sUqj0Wg0Go3GC3aHE5vDecSVkLhwM5VNXlQCQwUp4c3vK9Ebpx1euBi2vh5oqzQan9KflZCdwFJU2FQD8Daw1w82aTQajUaj0Xil2aZWQYToOcw/LtJMVSivhOx+H8q2wbl/Uzmg2bNh2S8hNgNyTwi0dRqNT+jPSsjzwHjgT8C/UFXOX/CHURqNRqPRaDTeaLLaibD0HIoFEGE2IpE0WkOwarqU8OUDMP1qtwhNQi6c8BN44wZVXFajGQL0xwkZJ6W8UUr5het1MzDWX4ZpNBqNRqPRdKXJaifyCPkgAEIIkqIsHK7vpWBwMHJogyqgmT27c3vmdFXT5t07lKOi0YQ4/XFCNrmS0QEQQswFvvW9SRqNRqPRaDTeaWjtfSUEIDEqjLK6EHRCNr8MI0/uXnAWYNpiqNilckU0mhCnP07IXGClECJfCJEPrAJOEkJsE0Js9Yt1Go1Go9FoNB40Wu1E9LISApAUbeFQbcsgWORDnA7lYOSe6P1zoxnm3AIf/QramgfXNo3Gx/QnMf0sv1mh0Wg0Go1G0wcaW+1HlOdtJzHKQnF1iN2oH9qgChbHZva8T/pkSBoNqx+DhT8bPNs0Gh/TZydESlngT0M0Go1Go9FoeqOh1U5kH8KxUmPCyKsMsYKFe5ZB1sze95u2GJb/Bub+AMKi/W+XRuMH+hOOpdFoNBqNRhNQGqx9WwnJiIsIPSdk3/K+OSHxwyBtEmx+yf82aTR+QjshGo1Go9FoQoaGVlufEtOz4iM4WNGE0xkiSlJNlao6esr4vu0/7lxY81+tlKUJWbQTotFoNBqNJmSoa7ERae49mjwqzERMuIn8qhBZDcn7EjKmgqGPkfJpk8Bpg6K1fjVLo/EX2gnRaDQajUYTMtS12IgM630lBGB0ajQbC2v9a5CvOPA5pE3p+/5CwMhFsGWJ30zSaPyJdkI0Go1Go9GEDHXNNqIsfVstmJARyxe7y/1skQ+QEvK+goxp/Tsud6GS9HU6/GOXRuNHtBOi0Wg0Go0mZKhrsRHVx5WQ2bmJfLW3gpJgrxdScxDsLRA3rH/HxaRDVDIUrvKPXRqNH9FOiB8ImSQ4jSaE0NdVcCJ1UqxmkFFOSN9WQuIizFw6I4tT//oVP35lE3aH08/WHSV5X0HGcSrEqr9kz4bdH/jcJI3G32gnxIdUNlh5c0Mxi59czX3v7mBHSV2gTdJoQp6i6iae/DqPy/+7ikc+20deRWOgTdIArTYHX++r4OYX1nPLixtYdaCSNrsOCdH4n/rWvodjAZw1OYN/L57OvvJGlm465EfLBsCBzyC9H/kgnmTNgr0f+9YejWYQ6E/FdM0RkFLyyrpCHl6+F4DVedW8tamYpT9cwKhUXUhIozkaGltt3PfuTj5zxXSvL6jho+2lPHfDXFJiwgJs3bHNuvxqvveUW5Xn4x1lvHzjPOaPSgqgVZpjgboWGzHh/bt9ibSYOGNiGm9uPMR3ZvUz5MnfOB1wcAVMuvTojk8aBS3VUFsI8Tm+tU2j8SN6JcRHlNS18uiXBzq11bfY2VVWHyCLNJrQ52BlU4cD0s7O0gYO6NWQgCKl5IVVBV3a4K1NxQGySHOs0GpzYHdIwkz9v32ZkhXHlqJa2uxBFpJVshkiElVux9EgDCqU68AXR22CzWljZ9VOtlZspdnWfNT9aDT9Qa+E+AgBGLzEcoqjie/UaDSA92tKtQ+yIZpOCCEweflPMBn0cy2Nf6lrsREbYT6q39ZIi4nU2DD2lDUwJTvOD9YdJfuWQ+b0gfWRPkWFdM28tt+HfpT/EX9Z+xciTBFYDBZKm0pZmL2QW6bdwqj4UQOzS6M5AvoXw0dkxkfwo1PHdGpLirIwMSM2QBZpNKFPbnIU507J6NQ2IyeeUSk6xDHQfG/+8E45tAYBl0zPCpxBmmOC6qY2YvsZiuVJblIUu0qDLEJhz4cqr2MgZBwH+d/0u3r6kl1LeHDtg9wy9RbuP/5+fjPvN/xl4V+INkdz7bJr+cPqP9DQ1jAw2zSaHtArIT7kOzOzyU4I570tpYxJi+acKRmkx4UjpdQrIhrNEbA7nDickjBzZ9nNqDATvzl3AgtGJ/Hlngrmjkzi1AmpJEXrfJBAM3N4AktumsdbG4sxGQxcND2TyZkxgTZLM8SpaWrrdz6IJxlx4ew5HEQ31XXFUFugqp8PhOhUMIVBxW5IndCnQ9aVreOxLY9x99y7SY5wh4JFmaM4Z+Q5LMxeyFv73+KCty/grjl3cebwM/W9jMan+N0JEUKcBfwTMAJPSikf6PL5IuAd4KCr6S0p5e/9bZc/SIiycM6UTM6ZkklxTTNvbTzExzvKmDcyiStmD2Nsmv6B1mg8cTolGwpreHJFHuWNVq6dn8tJ41JIiLR07JMZH8HiucNZPHd4AC3VdMViMjJvZBLTh8WztbiWf3y6H6d0cuOJI5k/KonIfqgXaTR9paqpjZhw81EfnxkfwfqCGh9aNEB2vA3D5oGhb3VPjkjaZLUa0gcnpNXeyj3f3MM1k67p5IB4Em2J5pqJ17CvZh+PbHyEN/a8wd1z79YhWhqf4ddfCSGEEfgPcDpQDKwTQrwrpdzZZdevpZTn+dOWwaSx1cZvlm7nq70VAOwoqeezXYd55QfzSI+NCLB1Gk3wsPVQLVc9sRq7qwbIpsLN/OWSKVwxRyu8hArr8qu52kMla1VeNc9eP5tF41IDaJVmqFLd1EZMH2uEeCMjLpz8yiYfWjRAtrwMU6/yTV+pE5XK1pybet31+Z3PkxWTxbSU3iu0j0kYw2/n/ZbPCz/n2mXXsjB7ITdOvZGRcSN9YbXmGMbfOSFzgP1SyjwpZRvwCnChn88ZcPKrmjscEM+2A+VBNPFpNEHAhoKaDgeknce+OkBtc1uALNL0lzc3dq+78OLqAl3EUOMXqhqtRA8gHCs1JpyyulYcwVD89NBGaK4++vogXUmbrCqn93Lt1VnreG7Hc1wy+pI+d20ymDgj9wz+eMIfMQgD1yy7hmuWXcOS3UsoqNfXu+bo8Pd6eRZQ5LFdDMz1st98IcQWoAT4uZRyR9cdhBA3AzcD5OQE91NSk0EgRPd5wJuajCa0CaVxGYxYjN2fg0SYjRh13PGAGayxGWHpHkYSFWbSseMarwx0XFY0WomNOPpwLIvJQGyEidK6FrITIo+6H5/wzd9h3Dm+CcUCiE4DBFTnqdohPfDy7peZljKNtKi0fp8i0hzJhaMv5JyR57C1YisrilfwxNYnsDvtTE6azOz02ZycczIj4kYM4ItojhX8vRLi7Veoq7u8ERgupZwG/At421tHUsonpJSzpJSzUlJSfGulj8lNjuTyLsWQZucmMFoXLRxyhNK4DEZm5yZ2C62487SxxAzgJkOjGKyxeemMrE4PWIwGwXfnaodc452BjsuKBitxA8gJAUiLDaeoumVAfQyYwjVq1WLs2b7rUwiV4F64qsddWu2tLNm1hDNzzxzQqcwGMzPTZnLD5Bt4cOGD3DPvHqakTGFL5RauXXYtN3x0A7uqdg3oHJqhj79XQooBz7vxbNRqRwdSynqP9x8KIR4VQiRLKSv9bJvfaLNLfnr6aE4Zn0pJbQsp0WFMGxbnVdGnqtGKzeEkPc57roiUkvpWG5EWE2YvT401mlBmfEYsr/5gHp/tKqey0coZk9KZkRNPi9VOndXWrxyqJqsdIehIiG5tc2BzOjuSWJutdur72WdvtNkdtNgcxEVYet85xGlstWEyGAh3rXyU17dgEIJxaTG8e/sCPthWis0hOXNSGtOy42mxOXA6nUSFaYdS4zsqG9qIG+BDiuToMIpqmplPko+s6icNh+HN78PsG8Ec7tu+U8bDwa9h+tVeP152cBnDY4eTGZ3p09MmhieSmJ7I7PTZXDnuSr459A03Lb+JG6feyLUTr9Uroxqv+NsJWQeMEUKMAA4BVwKLPXcQQqQDh6WUUggxB7U6U+Vnu/xCSW0L720p4dV1RXz/hBHsO9zAl3srmJodR3pcOMMSozr2rW2y8vX+Kp765iCtNgeL5+awcEwyucnu1ZL8yiZeXV/Esm2lzByewPdPHMHEjCAqsKTR+ICJmXFMzHSP6zV56rrYe7iB0yakccmMrE6fd6W+xcaXe8p5/KsDhJmM/OyMsUjgP5/vp6qpjRtOGMGY1Cge/yqPAxVNHX1OGGANn63FtTz+1QF2lTZw0XGZXDIzm2GBDu/wA9VNVpbvOMxT3xwkKcrCz88Yx+7D9by0ppAwk4ELj8tic2ENM4YncrCykbpmG1/vr+TRL/ZT32Ln5oUjOXVCKvGRQ99R0/ifikbrgJ2QpGgLxdUBqArudMLu92DZXTDmDBi+wPfnSJsEKx70+pGUkhd3vci5I871/Xk9MBlMLBq2iCnJU3hk0yPUttZy58w7/XpOTWjiVydESmkXQtwOfIyS6H1aSrlDCHGL6/PHgcuAHwoh7EALcKUMwQwnh1Py7Mp8nliRx9mT03lzYzEbC2sBlZS+Lr+G52+YwxiXTO/a/BruWLKp4/jfvbODP140ucMJaWy1ce+7OzoS3POrmlmxr5Kltx4f+DhWjcZPbD9Uy80vbKCuxQbAk98cpKimmYcvm9ZjiNa3+yv50Sub3X2U1PPgR7tpzzu9+61t3H7yKNYX1FDbbON/X+dxqKaZv1w69ajDvvIqGrn6yTXUt9oB+Pun+yiuaeEPF08mzOSj+O4g4aPtZfx66XYADoeb2HO4gXvedqftbS6q41dnj+fed3fwq7PHs6+8kQc+2t2RE/ez17fw9yuO42JdyFAzQKSUVDVZB+zQJkeFUVgzyE5I2TZYegs42mD+baq4oD+Iz4HWOqgvgdjOqx1bK7dSb61nUvIAa5L0kaSIJH4+6+c8tO4h0iLTuGqCj1TANEMGv8f3SCk/lFKOlVKOklL+0dX2uMsBQUr5bynlJCnlNCnlPCnlSn/b5A9K61p4bmU+AGPSojscEPfnrez1KJD05Z7ybn28tr6I6iYrAIU13RW2Khqs7C9v9K3hGk0QsaesscMBaWf5zsPsr/A+7m0OJ8+4rjuA2HATZXWtdBW++WBbGQvHuOPPl+0oI28AMp37Djd2OCDtvLmxmEM1AY4z9zF1zW387+uDHdtXzs7xqoa1s6Se3KRI8ioaya9q6ibK8dQ3eTS32bsdp9H0h0arHYF3MYT+kBITRvFg5oQUr4fnLoDRp8E5f/WfAwIgDEolq6D7rdSru1/lxOwTMYjBC+2OscRw+/TbeXTLo2wu3zxo59WEBjrJwEeYDIaOiVEg8CaEFe7xhNRbsaWYcBNmg/ovMRsNGL10EmbS/2WaoYvFy/i2GA095kMJICHSfS3ZHJJwc/d9o8KMtNgcHdthJsOA1Oq82RlmMg45BTyT0UCshxxqfauNmHBvaljq72sxGoj0coMYF2HRimeaAVPeYCUhauBhfcnRYZTUDpIT0loPr14N825TTshgXAft9UI8qG+r54uiL1iQ5YcQsN7MiUzl6glXc9eKu2i2BSAMThO06DtaH5EeF87dZ40HYMXeCi48rnPowdyRiYzPdFdMXzg2mSiPH2uDgGvm53aEh+QmRnHTiZ0l7uaNTNRV1zVDmomZsYzvMsZvPGFEt7Z2TEYDNywY0eGwt9gcxISbusWMXzYzm6/2uFcWbz5xJOMGcC2NT49hQnrnnJKfnD6WYYlDK1QyKszET04f27H92oYirpg9rNMDkgizkeGJUdQ228hJiiI5OoxoD8Uzg4BbF40izDy0wtQ0g8/h+lYSfZBblBxtoaLRit3h9IFVvfDVg5A+FXK8VSfwE+lTIP/rTk3v7X+PycmTibUMLBfuaJmRNoMRcSN4ZOMjATm/Jjjxd2J6yGKzO6lrsRETYUJKaGy1kxBl6fTjW99iwyllR3zquVMzyU2OpKimhdTocE4Yk8ymwhrGpcUwZ0QSWfHuG5QFo1N44ppZrMmrosXmYP7IJOaNSOj43GwycNOJI1kwKpnDDa0kRFoYlx7jVWFLo+mJxlYbVrtzUMeNzeGkrlldO/3NjxiVEs1fr5jGmrxqDlY2MnN4InNyE7BJJ4eqWkiKthDdRW1pVm4ir98yn2/2VWIxGlg4NpnTJqSxYl8ltc1tnDQ2hZgwE786ezwHKxuZlZvI7NwETANYVcyIj+Dx781gdV41eRWNzB2ZyMycxCGpADN/ZBLv3nY8Nc02Is1G4iLMvHLTXL7aU4HZZGB0ajQltS08dvUM2mxOhiVGsnBsCiv3V9FotXPimGSmDYsP9NfQDAEO17f6ZCXEZDQQF2GmrL7VvzmWTZWw8Tk4f5BvvBNyVRFEV16IlJJX977KZWMuG1w7unD5uMu5d+W9XDj6QiYkTQioLZrgQDshXth3uIH/fZ3HF3sqmD08gVMmpPKPT/Zx2sQ0rj1+OKkx4Xy1t4K/f7qXNruT2xaN4oxJ6TRa7Xy7v4rX1heTkxTB4tk51DfbWLW/kvHp3Z+6LhidzILRyT3aUddiY/nOMj7acZjpw+K549QxZCf0uLtG04HN4WTVgSr+unwPlY1tXHv8cC48Lou0WB/LQXZhf3kjT36dx2e7y5k9PIHbTxl9RGUrb9gcTjYW1NBgtRFhMjIsMYK/fLSHlXlVTM2K45ZFo5idm9ixv9EgmJGTwIwcdXE0W218vqeCj7eX0eZwEm4ycv60DG44wbfFs4YnRTE8Kar3HUOc0roWVuyr5FBtC8nRYby9+RBRZhOL5+awp6yeiRlxjE2L5vfv78Ip4Y5TRnPahFRuWjgy0KZrhhhldQNXxmonNSac4ho/Fyxc/zQMPx6iev6d9wvCoFZfDq6AaVeyqXwTbY42xieOH1w7uhBjieHCURfyhzV/4MWzXxySD200/UM7IV2obrLyo1c2satUJZF/uL2MTUW1nDkpnWdX5lNQ1cS1x+dy60sbO4755ZvbCDMb2VpUy1Pf5gNQVt/KlqI6bjt5NH/7ZC/rCmp54cY5jE/v21JoQ4uNu9/axpqD1YBKzl2XX807t59AzhAL+dD4nm2H6rjumbUdCdp/+lCpRd1yUs9VdAdKbXMbP3ttM1uK6wB17awvqGHprQvISuhbbQ6lOrWWRqtKYl44JoV73t7ecT1+truc7SV1vPT9uYzuIZxqzUGlPNeeHL21uA6DENx2yugBfsNjkw+2lvHEijy+Nz+Xf32+v6P9dy41rJteWM+vzhrPgQqV6P/T17bw+NUzOWtyeqBM1gxRSmpbSPCR1HNKTBhF1c3MG+mnWiFOJ6x/Bk76pX/67430ybD/U5h2JUt2L+HErBOD4qb/xOwTWVG8go8LPuas3LMCbY4mwOickC4UVDV33PC0U1rXSmyE8tcKq1v4cFtpt+NeXF3AvvLOx1ntTuxOFXNa0dg/ZavC6uYOB6SdmmYbB7Q6lqYPbCmq7aYQ9ey3+VQ2WP12zoLq5g4HpJ3yBisHK/s+ZveXN3Y4IAAJUZZu1+Pheit7j3AdrM+v7qbO9NqGIkpqdUJkfympbea1DUXMG5nEZ7sOd/s8r6KJ9NhwdpTUMSLZvSq0ZG0BIai0rglySupUSKYvSI62UOjPWiH5X4MlEpIC9PAjcwYc+ILK5nK+OfRNQBLSvWEQBi4bexl/W/832hxtgTZHE2C0E9KFcLPRq3hFu7JLm91Bipf4+tSYcLzluBkN7j9xZD8SM8PNRszG7oYMVJpQc2wQE959kTMx2uJV1clXhJkMXlXhIvox7rvuazZ679ObAlM73sI1EiLMndTpNH0j3GQkMdJCQ6vd6xPomHATzTY7sRHmTs5jelxEUDx11QwtSmpbSPJBTgio3+yDA5Dp7pWtr8KIhf7rvzdi0sESxSer/8qc9DlEmYMndHRC0gTSI9N5ZfcrgTZFE2C0E9KFkclR3LCgc+z4KeNT2VRUC8BVc3M4e0pGJ/UXi9HA9QtyuWxmdre+apuVp3/S2BTG96NCc05SJLed3PkJysljU7Q6lqZPzMhJIC3W7SwLAb84cxyxPoqn9saI5KhueQBnT0lnVFp0n/sYlxHDrOHuxKcv9hzmqtk5nfY5bUIq4zN6vg5mj0gk2eNpqUHALYtGk6hFHfpNYnQYtywaxbr8Kk6fmNZJgjguwkx8pBnphGGJkVS4VtnCTAaumj0sUCZrhjBlda0k++g6To8LJ99fToi9DXa/D7kn+qf/vpqRMY2WHW9x6vBTA2qHNy4eczH/2/Y/Gtoaet9ZM2QRobhkPmvWLLl+/Xqf99tstVFY3UKYSXCwspldZQ3kJkWSFRdBo81ObJiRuIgwnDhpaXOy5mA1dodk3shEYsNNCAEVDW2U1rcSYTaQHBVGfasdk0mQGh2GBDJiw7FLSUubg5SYcEprW7A5nIxIieZgRSNmo4FsV85HbXMbm4tq2VFSz4jkKCZlxmIxGUiMsgy5qsxBTJ8f5/prXB4tB8ob2VBYTV2zjek5CUzNjvfLSkhjq40Gq52kKAuNVjsbCmrYWVLPqJRoZucmEBdh4WBVI9FhJoYlqqdxO0vqMAgYn6GS1mua2mhzOEmNUfr9zVY7zTYnseFGnBJ2lTawr7yB3KQopmTHkZMYRVF1E1HhJtJjVb5JfmUjRoNgWGIUW4tqKK5txeF0khIdxrRh8URYOq8OWW0OqpvbiIswE2nxnh5XXt+KySCC0YHp1zJDX8emwympaGglwqJkjp1OJ4VVzZTWt9DYaicu0oLN4cRsNBBuMnTULXI4ocVmo6rJzrDESCZkxFLVaMUhJakx/hVD0AQdfpkzW20Opt63nGeun43BB6ts9a02fvbaFrbdd4bvV+32fQqf3gtnPeDbfvvJ2s3PkLn3E0qvfSugdvTE09ufZnzCeH4888eDcTq9NBuE6MR0F5sLa3hxTQEfbz/MsMRIfnr6WG5ZOIJv9ldx//s72VfeyCnjU5iek8A3+yqZPyqJF1cXsGhsCst32nh5TSH3XziJr/dVsmxbKdkJEVy3IJcnvsojMcrCLYtG8cRXB7h4RjbPfHuQkrpWLjoui4RIM7ERZho2l/DimgLCzUZuXTSKMyelkxQdxqJxqSwal8rW4lp+s3Q7m4tqOWlsCj8+bYxeFdEckVGp0YxK7fsqxNGwPr+aB5btZndZA+dNTefSGcN4dW0RO0rrGZ4UQWKUhU925vHmpmLSY8P508WTWZ1XzXOrCjAbBD87YyxhJiN//WQPtc02rl+Qy+zcRB5YtpsDFU0sGpfCdcfnsnTTIXaW1jM8KZLU2HBeW1vEKxuKyIiN4J7zJrC1qI5nV+ZjNgpuPXk02QkRPPjxbupcfY5IjurkhOwuq+fvn+zl2/1VzBgezy/PHM/kLLeKV1Wjlbc3H+LxL/OwmAz87IyxnDExnWgvYW5DhaLqZp759iBvbCgmKyGS3503gc93lTNrRAIbC2tJjw1jS3EdS9YWEWEx8t25OWwoqGHasHh2lNQxa3giGfHh7Dtcz56yeh5evpeWNgc3LxzJJTOySNHOiGYAFNe0kBxj8YkDAhAbbsZgUPmaPneUdyyFYYNYF8QLrQ4rL1dv4i9OJ9W1xVjjs3s/aJC5cNSF/H7171k8YTEpkSmBNkcTAHQ4FlDbbOWxrw7wxoZDNFjt7Cyt59aXNrKuoJZbX9rIpqJaGq123t1SyvtbSzlvagZ/+GAXtS02wsxG/vX5fk4Yk8ynOw/z6roi6lvt7Cxt4Ndvbeei6dmsza/hZ69t4cYTR/LrpdvZXdZIfYud51cVUFjdQpTFyD8+20dlYxvFNS38eun2TknpRdXNXPv0Wr7ZX0mj1c4H20q585XN1DTppC5N4DhQ3sg1T69lfUENjVY749Jj+fXSbXy6u5zSulZW59Vw+5JNmIwG6lvsNLba2VHSwMPL91LRYKWkrpXyBiu3L9nEwcpmappt/O2TfSzfeZiy+lYarXbe31rKX5fvxeGUrj6r+fErm5iQFUt9i52immbW5Vfz0PI9VDSqPu95ezs7S+oprHL3+c6Wkg67qxqt3PbSRj7ecZhGq50Veyu5/pl1nSoof767nP97fxcVjVYO1bbw09e2sL6g2tufYUhgszt57KsDPP1tPvWtdhpabXywtZQdpfXsONTAR9vLaG5z8u8vDlDVpOapv3y0h1nDE/nr8r1MzYrnjx/uoqXNQUWjlTtf3UJxTQtVTW38edlulu/sntSu0fSHoppmnzsLwxIi2X/Yx2IvTgfs+RBy5vu2336y7OAysmOH05R5HEn7Pw+oLT2RFJHEgswF/GfzfwJtiiZAaCcEyK9s5pMuP5JtDicFVc00tTk6tW8oqKHFptrmjUzi893lAJw+IY33t3ZWzbI7JW0OtW9Ns41Dta04ukgWfbitlLoWO135ck95x/uDVU3UNNs6fb6ztJ7CGq32owkcByoaafa4PuIjzOzrolpV3dRGhEVNMz84aSTveTgDseEmDtd3V+tavuMwJ3jUz1mVV8WUbPcqRWVjG1a7UoGY4VqZ7Mq2Q3WMTHGvAr2wuqDDaS+obu6Qk22notHakaTaZnfw0poCr3YNVQ43tPLauqKO7RPHJPPxjsNcPTeHtzcf4rIZ2by7uaTbcQcqGsmIC2dHST0jk6P4aPthxqV1z317YVUBTdbu85xG01eKq5s75Xr5guyECHaV+TgnoWClqgsSEziJ6sPN5XxW+CkLs0+kPnsGyXuWgxyE6vBHwTkjzuGTgk/Iq80LtCmaAKCdEJQSlTdFHW9qVuFmQ0dcfW1zG8kxKla8yWr3WsnVUx0rwtz9z91Tkp1nUbkoL0pAJoPol9qWRuNrosI6hyYZjQKjFymrdmW5wuom0uPc49pqd3pVuUqOtlDd5Ha6oyzGDqejnXDX2K9pbvN6DSVFWajzcNwz4iIIc11/kWajV8Wt9u9jNBgY5qWAWVb80A0nCjMZOkmf1jTbSI6xUNtsIyU6jPIGK6kx3ee3uEhzx9xX12IjIy6c2hZbt/2yEyK8qv1pNH0lv6rZqzLlQMhJjGKrS3TGZ+x8O6ChWA7p4Mlt/2Nu+jxiLbG0xg3DaTARW7wpYDYdiWhLNGeNOIuH1j8UaFM0AUA7IcD4jFh+evrYTm2Ts2IZkRzJgtGdCxldMz+X5jYHcRFm1hys5vQJaZiNgn9/sZ+fnDamc7/pMR2KMWdOSsNiMjLaI0ZfCPjevOGMTInqSPAESIyycNJYd3zkmNQYLpme1anvO04ZTW5y8EjuaY49xqfHsMhjnC7bVsr1C3I77XP+1Aw2FdYC8NQ3BVw2M5twlzNgtTuxmAxketzcGw2CK2fn8PW+io62W08ezQceq4znTslgV4mqR7KjpJ6TxqZ09AlKtSk3OYqKRnXtmQyCn5w2piP5fERyFD9c1Llo4xWzhjHatXJiNAiuP2FEp2syPtLMqRPS+vcHCiFSYsK59/xJHduf7ypn8Zwc/rhsFzefNJJX1xeyeO5wLEb33yQ52kJMmAmDQZAeG47V5uSMSWnkVzZ1emJtMRr4wUmjsGgxDc0AyKtoJD2ub0VP+8qolCg2+9IJcTph17uqSnqAeG3v6zilZGb6TNUgBLXD55G+5bWA2dQbp+acyv6a/awsWRloUzSDzDGvjuVwSg7Xt+KwO9hd3sj+8iaSoixMzIxhclY8u0rq2FFaT3m9lVGp0UgpKatrYWxaDPsrmjAZBKNTomm02okJN1HXamd/eSNJURbSYsPYfqie9LhwchIjqG5qIz7SQmldK42tdrITIqhusuJ0StLiIth7uBGzSTAlK47jhiV0srOioZVtxXUcqm0hNzmKqdlxxEX4dmla45WQVccaDMrqWtlaXMvh+lZGpUaTFhPGrtIGiqqbSY8LZ1JGLEW1LewvbyQ2wszM4fGU17exp6weo8HAxIwYUmPD2VpcR1ObnYkZsRiEZHdZIxUNVkYkRzEiOZJ95Y0UVbeoPjNjqG22Ud9ix2QU5CRGUNlkY+eheoxGwZTMOBKizWwtqqOpzcHEjFgmZ8V1WqWpbW5ja3EdBVVNZCVEMjU7jthwExUNbUSYDSRGh7GzpI7th+oxGQVTs+MYnRpUQhA+V8ey2hxsO1THnrIG4iPNjE2NprTeSpPVRoTFREVDK8kx4eRVNBJuNpIaE0ZlYxvJURbKG6yMTImiqdXGsKQoTAYD2w7V0mp3MjkzjkmZsbpuyLGDX+bMRQ99wa2LRjMssfsq5dHidEp+8OIGPv/ZSaTG+mCls2AlvHsHnPePgfd1FHxw8EO+LPyCxRMWE2FyO2zCYWPkFw+y9+w/0Jw6LiC29cam8k28e+Bdll6wFLPRL1LyegIKQo5pJ6SktoXnVuXz7Lf5xIabufuc8Zw5Kb1bmElX6lraeGdzCf/4ZC/nTc3AaDSwZG0hURYTt58ymvOnZnaEaYFSELr33R3sLK1n0dgUfnX2eMal971miCagaCekH6zPr+ahj/ewtbiWkSnR/Ors8Xyzr5wXVheRGGXhvvMnsXBsyoCkgguqmnj0i/28ufEQGfHhHX2ajUffZ35lE//5Yj9LN6k+779gEgvHpGAaQJ9+xi8SvQCF1c08/tUBXl9fREp0GL+/YBILx6VQWN3MkrVFvLGhGItB8N15OWw/VMecEUlccFymz59Sa0IWn8+ZbXYnk+/7mP99b5bPZcYf+Xwfl0zP4juzfFDb5r0fq9yLKZcPvK9+YJd2Xtv9GpsrNnPZ2O8Qa+n+wCS+YDVR5bvZfeHf8VqROcBIKfnXpn+xMHshN029yR+nCL4vrTm2w7He2XyI/36Vh9XupKLRyk9f28KW4tpej1t7sJrfvbMDg0FgMRt55tt8Wm1OqprauP+9nazNd6voHKxo5Nqn17KjpB4p4Ys9Ffz0tS3UNGtlK83Qoqi6iV+8sZU1B6tpsTnZUVLP7S9vYlJmPM1tDoprWrjphfXsdIVSHQ02u5NHv9jPq+uLsTslRdUt3PT8enaW1B91n212B//+Yj+vb3D3eeNz69lZevR9hip2h5Onvz7Iy2sKsTkkJXWt3PTiBnaXNrBsexlPfXOQuhYbFU1t/OOz/czMTeRPy3azOm/oKodpAk9+lQrx80edo5k5CSzddGjgHdmtsONtGLFo4H31g0ONJfxx9R85WH+QxRMWe3VAAGqHzcbUWkfy7o8G1b6+IoTgqvFX8eyOZ8mvyw+0OZpB4ph1Qmqa21iytqhb+7qDvf+YfuxSyZmdm8iXeyq6fb7qgFut56AXha0dJfUcqmnpephGE9IcrGzuUJhqp67F1kkVSUrYX370kpjlDVbe3Nj5hsEpYV/50SvclDdYu92EOAdoZ6hS0WDl9Q2d50UpVdFGT2Wzdg5UNJEZF84Xu8u7fabR+IpdpfUMT/RPDuTs3ER2lzWw/dDRPxwBVIX0xJEQneobw3qh1WHl9T2v8+e1f2JswjguGXMp4cYjhJQZjJRNu5xhq58goio4lahSIlM4d+S5/PqbX2N3ajW9Y4Fj1gkJNxkZntQ9ttRTvacnRrgSwisbrWR42T8z3h2WEOuluFmYydBryJdGE2pEh5u8KiBFdhnrsV6U6PpKhNlAhheVKm/qdn3v00i6l3jw2HC/xCUHNZEWY6f5q51wi5EsL+2JURbqW+0+jdPXaLqy7VAdOX4aYxaTgctnZXPHkk3kVQzgwcOa/8KY031nWA9IJGvL1nL313dT2FjIdZOuY3rqcX2KNbLGZnB40gWM/fBuwuq7P1QIBk7NORWA/2zStUOOBY5ZJyTCYuRHp47ppIAzPCmSOSOSjnCU4rQJqSRHW1hfUMMp41M7KfNkxIUzf6S7jzFpMVw6o3Ol0rvPHs9w/aOtGWJMyIjhhyd1Vp26ZHoW2zxCHKdlx3WqTN5fEqPDuO/8SZ0kdmfkxDM58+j7TIoO4/4LJnUKk541PIHJWcde3lZcpIV7zpvYKYlfKQVGccMJIzrNdemx4YSbDUSYjZw8Xlc71viPjQU1jEzxnxrkSWNTWTgmmYsfXcnkez/mssdWsiavqu8dHNoANfl+L1BY1lTGg2sfYun+pZwz8hzOHXEu0ebo3g/0oCFrOtUjFzH+7Z8QUbnfT5YePQZh4IbJN7B0/1I+K/gs0OZo/MwxnZgupWRXaT17yhoINxuZlBlHjpfVEW8crGxiR0kdRoMgPsJMXkUTZpOBSRmxTOpyk1XVaGX7oXrKG1rJSYxkclacXgkJHXRiej+oqG9lc3Eth2paSI0NY1JmHLXNNpc6lolJmXFen7T3B5vDyc6SevaVNxAXYWZyZhwZA+yzze5kZ2k9+9v7zIojI7gTrf2WmG53ONlVWs/ew43EhJuYnBlHZoL6W6zLr2ZvWQNmk4GkKAvVTVbGp8cyJTu+319AM2Tx6ZzZanMw/fef8J/FM4jwUlfIl0gpabTa2X6onhdW5/PXy6dxyvg+SHM/fxGkjIfx5/rFrjanjQ/yPuCzwk+Zmz6PmWkzMIiBPUOOKdlM2vZ3KFxwG1VjT/ORpb7jYN1B/rnxn/zrlH8xI22GL7rUielBiN+dECHEWcA/ASPwpJTygS6fC9fn5wDNwHVSyo1H6lPf7GkGEe2EaIIRvzkhGs0A8emc+cXuch5evod7zp04YMP6w77DDfzt070svXVBRwi2V3Z/AMvugvMfAR9Ly0okWyq28PKul0kMT+KUnFN6TDw/GsLqSsjc9BKNaZMoOPFHOML6t6rib3ZU7uDJ7U/y4MIHOT5zwLVXtBMShPg1HEsIYQT+A5wNTASuEkJ0nUnOBsa4XjcDj/nTJo1Go9FoNKHBmxuLmZWb0PuOPmZMWgwXT8/ihy9uoNXm8L5TTT68+yOYf7tPHRCJZHf1bh5Y+wAv71rComEnc9HoC33qgABY4zLJP+FHCEcbk1+5nsT9XygliiBhUvIkfjjth9y14i4e2/IYNqct0CZpfIy/c0LmAPullHlSyjbgFeDCLvtcCDwvFauBeCFEhp/t0mg0Go1GE8TsO9zAin0VnDg6MDlHp09IIyUmjDte3oTV3sURKd4Az5wNUy+HtEk+OV91azWfFH7KvSvv5cltTzEqfjTXTbqWkXEjfNK/N6QpjPLJF1E6YzGZ659n4ps/JCFvBcIRHDf8YxPGcs/ce/j20Ldc9PZFvLP/HZptzYE2S+Mj/BqOJYS4DDhLSnmja/t7wFwp5e0e+7wPPCCl/Ma1/Rlwl5RyfZe+bkatlJCTkzOzoKDAb3ZrNB4ccQlXj0tNgOg1tECPTU2A8MmcufJAJd97ai2XzsjipLGDI3vrDZvDyaNf7qeiwcr3Zyczo/FL5le8gSjfAbNvguELeu3DCRQ2FNLmsGJz2mlztNFqb6XJ1kCNtZaypjIONR7C6mgjOzqbsQljyI4ZhhjkCCIhJfHlu0grXEt4czW1KWOpSx5Nc2w6bRHx2M0RWCMTaEwYPqh2gVod2lm1k08KPqGooYhRcaOYlDyJnJgcUiJTiLXEMjp+NLlxuT11ocOxghB/OyHfAc7s4oTMkVLe4bHPB8Cfuzghv5RSbjhCvxVAf35Rk4HKXvcKbfR39A+VUsqz+rLjUYzLoyVU/q+1nb7F084+j0sY1LHZE6HwN9Y2+oZwKeXkvux4pHGZfMFdw6MmnJjsaKp1IAyBjRESYIyI7VCT+dLyE5LtZc5Wu3T25XCnQRhElLH3yJM+9TY4pBzhq81ISre3DDAxfiAYwg1Gg9nQzamwHra27rtr3w4vhyQDu/szZ2oGB39LNBUDwzy2s4Gu4tR92acTUsp+rc0KIdZLKWf155hQQ3/HwNPfcXm0BPvfoR1tp28ZiJ2DNTZ7IhT+xtpG3yCE6LMCQl/GZXB+Z6WC1dc07uD8Dn2nq/1HVA4KNL/s3uSyXzsgQYi/Xdl1wBghxAghhAW4Eni3yz7vAtcIxTygTkpZ6me7NBqNRqPRaDQaTYDw60qIlNIuhLgd+Bgl0fu0lHKHEOIW1+ePAx+i5Hn3oyR6r/enTRqNRqPRaDQajSaw+L1inpTyQ5Sj4dn2uMd7CdzmZzOe8HP/wYD+jscOofJ30Hb6llCx0xuhYLu20Tf42sZQ+M69EerfQduv8QshWTFdo9FoNBqNRqPRhC6BkzfQaDQajUaj0Wg0xyTaCdFoNBqNRqPRaDSDyjHhhAghjEKITa7CiEMOIUS8EOINIcRuIcQuIcT8QNvkS4QQPxFC7BBCbBdCLBFChAfapsFGCDFMCPGF6/93hxDix4G2yRtCiHAhxFohxBaXnfcH2qYjEQpzgxAiXwixTQixuT/yp8FACI3boB4HoTDH+2OeFkKcJYTYI4TYL4T4lS/sHCyEEE8LIcqFENsDbcvRECrXbk+E2m/Rscox4YQAPwZ2BdoIP/JP4CMp5XhgGkPouwohsoAfAbNcBbCMKKnnYw078DMp5QRgHnCbEGJigG3yhhU4RUo5DTgOOMslvR2shMrccLKU8rgQrDUQKuM22MdBUM/x/pinhRBG4D/A2cBE4KogHTs98SwQyrUpQuXa7YlQ+y06JhnyTogQIhtVWejJQNviD4QQscBC4CkAKWWblLI2oEb5HhMQIYQwAZH0UsxyKCKlLJVSbnS9b0DdhGQF1qruSEWja9PsegWl+sVQnxuCgVAYt8E+DkJojvf1PD0H2C+lzJNStgGvABcOsM9BQ0q5AqgOtB1HSyhcu0cilH6LjmWGvBMC/ANVQ9MZYDv8xUigAnjGFU7wpBAiKtBG+Qop5SHgYaAQKEUVs1weWKsCixAiF5gOrAmwKV5xhbZsBsqBT6SUQWknoTM3SGC5EGKDEOLmQBtztATxuP0HwT0Ogn6O99M8nQUUeWwXE0I3wUOJIL52j0gI/RYdswxpJ0QIcR5QLqXcEGhb/IgJmAE8JqWcDjQBIRU7eySEEAmop18jgEwgSghxdWCtChxCiGjgTeBOKWV9oO3xhpTSIaU8DsgG5gghJgfYpG6E2NywQEo5AxWWcpsQYmGgDeovwTpuQ2QcBP0c76d5Wnhp00+yB5lgvXb7Qij8Fh3rDGknBFgAXCCEyEct5Z4ihHgxsCb5nGKg2MPDfwP1gzVUOA04KKWskFLagLeA4wNsU0AQQphRPwYvSSnfCrQ9veEKGfmS4IyLDpm5QUpZ4vq3HFiKClMJGYJ83IbCOAiFOd4f83QxMMxjO5tjMBQ3kAT5tdtngvy36JhmSDshUsq7pZTZUspcVJLc51LKIfUUXUpZBhQJIca5mk4FdgbQJF9TCMwTQkQKIQTq+wVVUuZg4PruTwG7pJR/C7Q9PSGESBFCxLveR6BuTnYH1CgvhMrcIISIEkLEtL8HzgBCRm0n2MdtKIyDEJnj/TFPrwPGCCFGCCEsqP+fdwfYp6aPBPu12xuh8lt0rGMKtAEan3AH8JJros4Drg+wPT5DSrlGCPEGsBGl1rEJeCKwVgWEBcD3gG2uGFeAX0spPwycSV7JAJ5zKdsYgNeklEEpexoipAFL1f0AJuBlKeVHgTWpX4TKuA12gnqO98c8LaW0CyFuBz5GqW09LaXcMWBjBwkhxBJgEZAshCgG7pVSPhVYq/pFqF+7+rcoBBBS6hBLjUaj0Wg0Go1GM3gM6XAsjUaj0Wg0Go1GE3xoJ0Sj0Wg0Go1Go9EMKtoJ0Wg0Go1Go9FoNIOKdkI0Go1Go9FoNBrNoKKdEI1Go9FoNBqNRjOoaCdEo9FoNBqNRqPRDCraCRkiCCEWCSF61MAWQlwnhPi3H857nRAi02M7XwiR7OvzaEKf3sZoH46fJYR4pIfP8oUQyUKIeCHErb46pyb06DonHWG/Z4UQlx3h8y+FELN8bJsenxqfjdE+HP97IcRpXto7xp3r/fEenw3onBpNf9BOiGagXAf0OplqNANFSrleSvmjXnaLB27tZR/N0OY6gndOikePT80gjVEp5e+klJ/2stsi4Phe9tFo/IJ2QgYRIUSUEOIDIcQWIcR2IcQVQoiZQoivhBAbhBAfCyEyXPt+KYT4hxBipWvfOa72Oa62Ta5/xx2FHSlCiDeFEOtcrwWu9vuEEE+7zp0nhPiRxzG/FULsFkJ8IoRYIoT4uetpySxUJd/NQogI1+53CCE2CiG2CSHGD/gPpxk0AjlGXeMlXiiqhBDXuNpfEEKc1uXpXZIQYrnrHP8FhKubB4BRrvH4kKstWgjxhmv8viSEEN3PrglWhBC5rv+754QQW13/l5HexqW3OUkI8TvXPLddCPHE0fz/CyHOEEKscs1rrwshol3t+UKI+7vOd6459hNX+3+FEAVCrRDr8TkECcQYdc2zb7neXyiEaBFCWIQQ4UKIPFd7x6qGEOIsl43fAJe02w3cAvzEZcuJru4XuubuPKFXRTT+REqpX4P0Ai4F/uexHQesBFJc21cAT7vef9m+L7AQ2O56HwuYXO9PA950vV8EvH+Ec18H/Nv1/mXgBNf7HGCX6/19LnvCgGSgCjCjJszNQAQQA+wDfu5h5yyP8+QDd7je3wo8Gei/u36FzBh9HDgXmAys8+h7HxDteTzwCPA71/tzAekas7ntdnicsw7IRj10WdU+9vUrNF6u/1MJLHBtPw38opdx6TknJXq8fwE43/X+WeCyI5z3S9fclwysAKJc7Xd5jD2v8x3wb+Bu1/uz9Pgc2q9AjFHABBx0vX/YNWcuAE4ClngeD4QDRcAY1AOb1zzm0vtw/Z57HPO6azxOBPYH+u+rX0P3ZUIzmGwDHhZC/AV4H6hB3XB94nrwYQRKPfZfAiClXCGEiBVCxKOcgOeEEGNQk575KOw4DZjo8bAlVggR43r/gZTSCliFEOVAGnAC8I6UsgVACPFeL/2/5fp3A64nLpqQIZBj9GuUM1MAPAbcLITIAqqllI1dHg4uxDW2pJQfCCFqjtDvWillMYAQYjPqhuGbPtqkCQ6KpJTfut6/CPyaI49LT04WQvwSiAQSgR1Ab3OYJ/NQN2Pfus5lQTkL7Xib704ALgaQUn6kx+cxwaCOUSmlXQixXwgxAZgD/A01LxpRc6kn41EOyz4AIcSLwM1H6P5tKaUT2CmESDuSHRrNQNBOyCAipdwrhJgJnAP8GfgE2CGlnN/TIV62/w/4Qkp5sWsp9cujMMUAzG93KtpxTZRWjyYHaoz0NzygvY/24zUhQoDH6ArgNtTq3G9QN3GX0f0Htadz94S3Ma0JLbr+Xzdw5HEJgBAiHHgU9dS5SAhxH+qpcH8QwCdSyqt6+NzbfNefOVOPz6FBIMbo18DZgA34FLWKYQR+3gf7joTnmNThgRq/oXNCBhGh1DCapZQvopZP5wIpQoj5rs/NQohJHodc4Wo/AaiTUtahwmMOuT6/7ihNWQ7c7mHXcb3s/w1wvivWNBoV/tJOA+rJt2YIEMgxKqUsQoWsjJFS5qHG3c/x7oSsAL7rOvfZQIKrXY/HoUlO+xgErgJW0/O49BwD7Tdzla6562ji21cDC4QQo13nihRCjO3lmG+Ay137n4Een8cCgRijK4A7gVVSygogCbXqsaPLfruBEUKIUR72taPHpCZgaCdkcJkCrHUtuf8G+B1qwvmLEGILKu/CU6WiRgixEhUr/31X24PAn4UQ36KeeBwNPwJmuRLodqIS03pESrkOeBfYggo9WI+KYwb15OVx0TkxXRO6BHqMrgH2ut5/DWThPTTlflTy5EbgDKAQQEpZhQqb2S7cib+a0GcXcK0QYisqXOVf9Dwun8U1J6Ge6P4PFWb4Nipuvl+4bu6uA5a4zr8adaN3JO4HznCNz7NRYTgNenwOaQIxRtegQqZXuLa3AlullJ1WPaSUrajwqw9ciekFHh+/B1zcJTFdoxkURJexqgkShBBfopLF1gfaFgAhRLQrLj8SNeHdLKXcGGi7NIEj2MaoZmjiCul7X0o5OdC29BUhRBjgcMXtzwcek1IeF2CzNH4iFMeoRhMM6NhTTV95QggxEbV0/Jx2QDQajaZHcoDXhBAGoA24KcD2aDQaTdChV0KGGEKI64Efd2n+Vkp5WyDs0Wi6oseoJpgQQiwFRnRpvktK+XEg7NFouqLHqGaoop0QjUaj0Wg0Go1GM6joxHSNRqPRaDQajUYzqGgnRKPRaDQajUaj0Qwq2gnRaDQajUaj0Wg0g4p2QjQajUaj0Wg0Gs2g8v/CsWB1FQCioQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = sns.pairplot(iris, hue=\"species\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dimension Reduction with Principle Component Analysis\n", + "We have 4 dimensions we measured the irises on, what if we want a more concise way of describing the data? We can try to find 2 dimensions along which the data has the most variance. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'PC2')" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVIAAAFACAYAAADuy/R/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABbiUlEQVR4nO3dd3ic1Znw/++ZPhqNyqj35l7kXgFjbNMMgSRAAmGTACGEEAh5980uybslbPba3byb3V+Wd0MKJAQChLKQ0MF0MNXdcpUty+q9jzQzmnZ+fzyypJFkq400I/l8rkuXNWeeeea2yq3zPOec+wgpJYqiKMrE6SIdgKIoykynEqmiKMokqUSqKIoySSqRKoqiTJJKpIqiKJOkEqmiKMokRTSRCiEeEUI0CSEOn+X5zUKITiHEgb6Pf5zuGBVFUUZjiPD7Pwr8EvjjOY7ZKaW8enrCURRFGb+I9killB8CbZGMQVEUZbIi3SMdiw1CiINAHfBDKeWR0V6QnJws8/PzpzwwRVHOL3v37m2RUqYMbY/2RLoPyJNSdgshtgMvAHNHOlAIcQdwB0Bubi579uyZtiAVRTk/CCEqR2qP6lF7KWWXlLK77/PXAKMQIvksxz4kpVwtpVydkjLsD4aiKMqUiepEKoRIF0KIvs/XosXbGtmoFEVRQkX00l4I8RSwGUgWQtQAPwGMAFLK3wDXA98VQvgBN3CjVOWqFEWJMhFNpFLKm0Z5/pdo06MURVGiVlRf2iuKoswEKpEqiqJMkkqkiqIokxTt80gVRTmP9fp7OdVxihZ3CykxKRQlFGHSmyId1jAqkSqKEpV8AR+vlL/Ce9Xv9bddlncZVxVehV6nj2Bkw6lLe0VRolJVVxXvV78f0vZ21dtUO6sjEs+5qEQaIS6vn9oOFz29/kiHoihRqdPbiSR02nhQBnF6nRGK6OzUpX0EHKnr5OldVdR1eEiLM/PVNbksy0mIdFiKElXSYtIw6Ux4g97+NoveQpotLYJRjUz1SKdZS3cvD31QTl2HB4DGrl4e/rCchk53hCNTlOiSZc/ia4u+RqwxFoA4Uxw3L7qZ1JjUCEc2nOqRTrOadjfdQy7n3b4ANe1u0uOtEYpKUaLT6rTVFMYX0unpJNGSSIIlIdIhjUgl0mkWazYgBAytGGAzq2+FoozEYXHgsDgiHcY5qUv7aZaXFMPF80LL/G0oSqIw2RahiBRFmSzVDZpmRr2O61ZlszAjjsYuDyl2Cwsz7JiN0TUvTlGUsVOJNAJiTAZW50f3pYqiKGOnLu0VRVEmSSVSRVGUSVKJVFEUZZJUIlUURZkklUgVRVEmSSVSRVGUSVKJVFEUZZJUIg0zKSU17S7Km7tx+1SJPEWZLr3+XgLBQETeW03IDyOX18/LB+t493gT/oCkMMXG19fnk5sUE+nQFGXWanO38XHdx+xt3EuSJYktuVtYnLx4WmNQPdIwKqnp5M0jjfgDWkWS8uYeXi6pIxCUo7xSUZSJkFLyesXr7KjYQYu7hdL2Uh4+9DCnO09PaxwqkYZRRWvPsLZjdV10uLwjHK0oymQ1u5vZ3bA7pM0f9HOq49S0xqESaRgl28zD2lLsZlUiT1GmiF7o0YvhBX8Muun9nVOJNIyKs+PJTRoozmzUC65dkYlFVXZSlCmRZE3ikpxLQtpsBhtzE+ZOaxyqqxRGqXEWvr9lHicanXh8AfKTbOSpOqOKMqW25G7BYXVwpOUIDouD1WmrybJnTWsMQg4t1T4LrF69Wu7ZsyfSYSiKMssIIfZKKVcPbVc90inS6wtQ1+nGpNeTmWBBCBHpkBRFmSIqkU6BmnYXT35WyYnGbgx6wZYFqVxdnIHNbIx0aIqiTAE12BRmUkpeO1TPicZuAPwByZtHGimp6YpwZIqiTBWVSMOsw+XjcG3nsPZTzd0RiEZRlOmgEmmYxZj0pMaNNJ/UFIFoFEWZDiqRhpnZqOcLxVmY9ANf2swEK8tyEiMYlaIoU0kNNk2BZTkJ/OjKBZS39GAx6piXbidphFVPiqLMDiqRTpG8ZDUZX1HOF+rSXlEUZZIimkiFEI8IIZqEEIfP8rwQQvw/IUSZEKJECLFyumNUFEUZTaR7pI8CV5zj+SuBuX0fdwC/noaYFEVRxiWiiVRK+SHQdo5DrgX+KDWfAQlCiIzpiU5RFGVsIt0jHU0WUD3ocU1f2zBCiDuEEHuEEHuam5unJThFURSI/kQ6UqWPEctVSSkfklKullKuTklJmeKwFEVRBkR7Iq0BcgY9zgbqIhSLoijKiKI9kb4EfKNv9H490CmlrI90UIqiKINFdEK+EOIpYDOQLISoAX4CGAGklL8BXgO2A2WAC7g1MpEqiqKcXUQTqZTyplGel8D3pikcRVGUCYn2S3tFUZSopxKpoijKJKlEqiiKMkmq+lOUaenu5Vh9F90eP3lJNuan29Hr1MZ5ihLNVCKNIs1ODw++V0Z1mxvQViN8fUM+F89XCwwUJZqpS/socrS+qz+JgraE68UDNXS4vJELSlGUUalEGkWcHv+wti6PH7c3EIFoFEUZK5VIo0ieI2ZY26KMOJLtapsSRYlmKpFOgW6PH6fbN+7XLcyI4+b1ucSaDQhgUWYcN6zOwahX3yZFiWZqsCmM3D4/H5Q288L+WjpcPjbNT+GiOcksyYpHiNFH3g16HVsWpLEiJxG3L0ByrBmTQSVRRYl2KpGG0Z6Kdh76sJyqVhcAZU3ddLl9gGBpdvyYz5NoM6E2b1aUmUN1d8Lo8/I2WrpDR9gPVHdworErQhEpSnRqcjVR112HPzh8gHUmUj3SMIqzGAjK0LrTsWYD3b2z44dFUSbL5XPxTuU7vFf9Hr6gj6XJS7l2zrWk2dIiHdqkqB5pGF0wJ5n0uIERdoNOu6RfkB4XwagUJXocbj3MjsodeINeJJKSlhLerXo30mFNmuqRhtHirHjuv2YJH5e10NTlITPBysIMOyty1R1PRQEoay8b1lbSUsLV3quxm+wRiCg8VCINsyVZ8SzJiqfXH0AAJoN+1NdIKalpd9Hl8ZMZbyXRZpr6QBUlAhwWx7C2JEsSFr0lAtGEj0qkU8Q8hgQK4PUHeeNwPa8eqscfkCTEGLn1ggKWZI19lF9RZorilGI+qf2Etl5tF3aDzsBl+Zdh1BsjHNnkqEQaYScanbx4YGA/vw6Xjyc+q+TvrlqI3TKzf7gUZajM2EzuWXkPJ9pP4A14yY/PpyC+INJhTZpKpBHW0Oke1tbs7KWlu1clUmVWSolJISVmdlU0U6P2EeaIHb6O3m4xEG9V90kVZaZQiTTC5qfFsqEoqf+xQSf4ypocHGrA6fzj7QF3R6SjiJgeXw8n2k9wquMU3sDMKh2pLu0jzGY2cvP6XNYXJtHp9pGVYCUvaXgVKGUWC/ihYicceRF83ZB/ESy4CmzJkY5s2tR21/L4kcep6a4BYFnKMq6bex0O6/BR/mikEmkUsBoNapT+fFZ/AD7/zcDj0te0f1d9MyLhTDcpJe9VvdefRAEONh+kKKGILblbIhjZ2KlLe0WJtKZjw9sqdoKrffpjiQBPwENpW+mw9vKO8ghEMzEqkU4DfyDI6ZZuShu66FHr7pWhTCPcyjHaQH9+3Cc3683kxuUOa8+Jy4lANBOjLu2nmNPj47m9NXxS1kJQQnailVsvKCA/2Rbp0JRokbkCjr8G3u6BtsXXgvn8+BnRCR1bc7dS3lGO0+cEINuezfKU5ZENbByEHFKtaDZYvXq13LNnT6TDAOCjk8384eOKkLYVuQl8d/Mctc2yMqCtHGr3a8k0bTFkLAf9+dXPaXW3UtFVgUFnoCCugDhz9BX7EULslVKuHtp+fn2nIqCitWdY24kGJ11un1pTrwxwFGof57EkaxJJ1qTRD4xCKpFOke5ePwYdZMRZhz2XmWjFZh7bWnxFUaKfSqRh1uX28V5pEztPNGM26rlkfgrF2fGU1HQCYDXq+UJx5piqQimKMjOoRBpm75c28VJ/ERIfO440cN3KbC6ck4JfBsl1xJARP7yXqijKzKWmP4WRy+vno5Mt/Y/np8Xi8QX5p1eO8oePT9Pi7CVRraFXlFlHJdIw0guBxaRdsseaDTQ5vXx6qhUkuH0B/ryvloM1HZENUlGmgNvn5ljrMfY17qPZ1RzpcKadurQPI7NRzxVL0nlk52nS4yy8e7wRnU4Qbx0oh3eyycm6wpk5MqkoI+no7eCZ489wqOUQADaDjduW3sZ8x/wpe09fwMfprtO0ultJiUkhLy4Poy5yZSdVIg2ztfkOYox6Kttc1HS4aO32YjMPfJkTYtSlvTK7HG052p9EAXr8Pbx06iW+H/d9zIbhZSInyx/0s6NiBzsqdiCRCARXFlzJFQVXoBORuchWl/ZhZtDrWJ6byLXLs7j1ggLiBvVGE20mlmUnRC44RZkCTe6mYW313fV0+7pHOHryqruqebPyTSTaYiKJ5I2KN6h2Vk/J+42F6pFOoeKseO7dOpeqdhcWg54F6XYyEtSIvTK7ZNgyhrXlxuVO2a6gHd4OgjIY0haUQTo8HeTF5U3Je45G9UingJSSfZXt/Mdbpfzp8yoEMC9NJVFlgvxe6KqHXmekIxnR4qTFrElfg0Bb8pxgTuDqwqsxTVHRlVRr6rD7oSadidSY1Cl5v7GI6Fp7IcQVwAOAHvidlPJnQ57fDLwInO5r+rOU8qejnTfSa+1LG7r4zzdPkBprwmIysPNEM3ExRr62NpdLF6UTa1EXAsoYtZbDwT9B01GISYZlN0LexkhHNYwv4KPKWYXb7yY7NpsES8KUvZeUks/rP+e5E8/hCXiwGqxcP+961mWsm7L3PCPq1toLIfTAg8ClQA2wWwjxkpTy6JBDd0opr572ACehrKmbYFASF2Pi2d3afZs2t4/n99ViMxu4bHF6hCNUZgSfG3Y/rBU0AehuhE9/qSXUlHmRjW0Io95IUULRtLyXEIL1mespTCik3dOOw+KI+GZ6kby0XwuUSSnLpZRe4Gng2gjGEzZGvY6kWBPH67v623RC+/iorIVgcPZV3FKmQGftQBI9IxiA9oqIhBNtUmNSme+YH/EkCpFNpFnA4GG2mr62oTYIIQ4KIV4XQiw+28mEEHcIIfYIIfY0N0d2QvCCjDj0OhEyYp8Sa9YSrM2ETpXPm92cjXDyLTj8PNTug4BvYucxxoB+hOlD5tjJxTcBzl4nh5sPU9JcQmdv57S//1h4/J6IxRbJm3UjZZOhXbV9QJ6UslsIsR14AZg70smklA8BD4F2jzSMcY5briOG2y8q5FBNJyebnJgMeuItRgw6weYFkbshrkwDZyN8+O/QObD/EKtuhflXjP9c8Zmw8Atw+LmBtqS5kLJw8nGOQ0NPA48eeZQap/Z/SotJ49Ylt5Jtz57WOM4mKIPsbdjLm5Vv4vQ6WZW2ii25W6a1JF8kE2kNMHgvgWygbvABUsquQZ+/JoT4lRAiWUrZQpQrTImlMCWWRZlxHKvvIiBhYbqdBRnRV6xWCaOGw6FJFLREmL0WbBPYEXPhFyAxDzoqweqA9GUQkxieWMdoV/2u/iQK0OhqZGftTm5acNO0xnE2pW2lPH7s8f4pUR/UfIA/6OfGBTcixPRc/UUyke4G5gohCoBa4Ebga4MPEEKkA41SSimEWIt2K6J12iOdBLvFQGqcBatRR3biubdZ9geClNR0cKC6A7NBz8rcRBZmqsQ7o/iGF/LG2w0+FzCBRGq0QM5a7SNCyjrLhre1lxGUwYitJBqsvLN82LzSvY17uTz/8mnbzjliiVRK6RdC3A3sQJv+9IiU8ogQ4s6+538DXA98VwjhB9zAjXIG7Y1yrL6LX79XRo83AMCCdDu3XVhAUuzIy+Z2VbTx+52n+x9/eLKZH2ybx0LVi505EgtACBj8Y5q+DOxpkYtpkuYlzBu2o+cCx4KoSKKgbZ43UptRP31r7yP6lZBSvialnCelLJJS/ktf22/6kihSyl9KKRdLKZdJKddLKT+JZLzj4fUHePFAbX8SBTje4ORQbScNnW72VrZR1ujEHwj2H//W0YaQc/gD2sR+ZQZJWwRrv6Ndhgs9ZK6EFTfDuX6pe1rB03X258OgoaeByq5Kev29437t2oy1FMUPTG3KtmdzQdYF4QxvUhY6FhJrDB2Auyz/silbWTUSNTN8inT3Bqhpd4e0GXSCZmcv/7OnGo8viBCwbWEaX1qRhQR6fcFh5/H4A8PalCim00PRJVoC9bnAlnL2Tey6W+DYS1D5ERis2s6hBZvBEL4VQW6fm3eq3uHdqnfxBr0Uxhdyw/wbyLGPfavj1JhUvrPsO1R1VSGR5MblYjNGzw6nWfYsvrfiexxuOYzT62Ru4lyWJC2Z1hhUIp0icRYDc1JiOVQ7MB0jPzmG1w/X9y+lkxJeO1SPw2bCqBeszEvktUMNIdMZluckTG/gSnhY47WPcyl9FU7u0D739sDu34MlIaz3Q4+1HeONijf6H5d3lvN6+evctvQ2DLqx//rHGGNYkLQgbHGFW449Z1x/HMItOm5yzEIGvY5rlmeSFqfdvxECilJi8Q+ajO8LBKlsdfF5eRtPfFbFoZoOti5IJS3OTI7Dym0XFqhqUbOVuxMqPx7e3ng4rG8zeLT9jONtx+nwdEzofA09DRxrPUZjT+O4X+sL+OjwdBAIzr6rLNUjnULZiTHcvC6Plu5eMuKtOGJNfH66jQ6XNkHb6fHT0+vv31G0pt2Dxxfkb6+YT5zFhNGg/s7NWgYTmO3gGTKBPMx7uSeYE4a1OSwObCYb/qCfY63HONx6GLPezNLkpcxNHHGaNlJKdtbu5IWyF/AGvFj0Fm6Yf8OY17eXtpXy+unXqeuuY07iHC7PvzxilZqmgkqkU6TT5eWZPdV8Xt4GQGqcmW9fVMhNa3P5w0en8fiDBIJBti1Ko9k5MADQ0u2l1y9VEp3tjFZYdC189quBEX5TrHZvNYwWJi0kKzaL2u5aAAzCwFWFV2E1WNlVv4vHjz7eX9dzZ81O7lp+14jJtMZZw59P/Bm/9APgCXh4tvRZ8uLySLedu3ZEQ08Dvzv0O9x+bcygpLmEhu4GvrH4G9hN9hm7l/1gKpFOkYM1nf1JFKCpq5dXSuq5a3MRf3/1Iuo63Xi8Af5yoJb2noElhHPTYkmyqSr654W8C7ReafNxbbApoxgchWF9i5SYFO5cdidlHWW4fC7y4vLIj8/HF/DxbvW7/UkUwBf0cbD54IiJtMnV1J9Ez+gN9NLsau5PpN3ebtx+N4mWxJD7r1VdVf1JFMDlc/Fpx6ckWhKpdlazvXA7F2ZdOK57ttFm5kYe5arahk/MLmt04vT4yUiwkpFgxesP0uXx88rBOjx+bavmr6zOwWxUe96fF3R6yFyhfUyhREsia9LXhLQFZAC3zz3s2DNt3oCXWmctQgiyYrNItCSiE7qQie8GYSDBkoCUkt0Nu3nl9Ct09Xax0LGQq4uuJitWK50xeLuRgAxQ31OPJ+BBJ3S4/C6eO/Ec6bZ0FjiidzBrNCqRhkG7y0tZoxOPP0hBso3sxJH3rs9JsoXs32Qy6LhyaQYr8xJxef2kx1mwmtS3ZEbrqoeGg9q8UEchpBeHdTpTuFgMFjZmbeTlUy+HtC9NWUqTq4lnS5/leNtxBIJlqcu4tuhaLsu7rH+fJJ3QcVXRVWTHZlPWUcYTx57oT7KHWg7hDXq5s/hOjHojhXGFFMYXUt5Zji/gw+V3sTFzI42ugQGrWmetSqTns4ZOD7/5oIyKFhcdbh8Wg467Li4iMcbAhkIHn/Zd3tstBr6wLAPTCPc+0+Is0x22MhWcDVrBkrbT2iBSoFebnL/4i2AZZSpUBFyQeQFSSj6u+xiL3sKW3C0sTl7Mq6de5XjbcUDbD+lA0wFy43K5vOByFjgW0OZpI9maTF5cHkIIqrqqhi3RPNF2gmZ3M5mxmdjNdr65+JscajlEjbOG5anLcXqd/fdtAWJN01/RKpxUIp2kA9XtVLe5ae7uJc1uZk2Bg3969SjNzl4uXZTKrRfkYzboyU+ykRIX/h0VlSjScATaq6C9Erx924J88t9gMMOS6869uikCYk2xXFFwBZuyN6ETOiwGC/6gP2RH0DOOtR5jY8ZGXH4XOp0Ou8mOXqfdgooxDq8hYTFYQpZuJlmT2JyzGYCPaj7imdJn+p8rii+a0q2bp4NKpJPU2OXBGwjS4uzli8sz+Y8dJ/AFg5gMOt482oTbG+TnNywLuaRXZilfj1agxDtob6XeLq2H2nY66qranzE4ERp0BnLjckMuuwHmJ87noZKHKO/U1tzbDDZuL76duYlzmZc4j8zYTOq6B4q3XZ5/+VlH4zdkbiA1JpWa7hrsJjtzE+eOOE1rJlG/3ZNUlBLLW0ebSLGbqe/QkqpRr+uf0XKwpoOaDhfz01ThkVlvpBH37NXgrAN/r7ZktOWkdtkfnwuO/GkPcSwuyrqI463Hcfq0PwjJlmT80t+fREHbu/6NijfIj88nyZrEHUvv4ET7CTp6O8i2Z7PQcfaaqXqdnnmOecxzROcflolQiXQSfAFtcOnLKzN5elc1MWY9Bp1Ar4NAUKIXgliLkVg1gHR+SF0EF/4v+ODfoacRslZB8nzoaYbYVG0JaMVH2rE6I6z/LuRPoPhHwKeVQDdMza2CwoRC/nr1X3O68zRCCObEz+H1iteHHVfrrKW8o5yPaz+mpruGZSnL2Ji5MSq2/phu6jd8gsqaunn7aAO+gMQfDHLz+jwcNiO7K9ooqenEajJg1Au+tjaXTLUN8/lBp9Mq4cdlQfXn0HRcqwC14XvaPktnkihA0Af7HteS71gLNfu92rLSE29oezfNvQzyLwJT+H++UmJSQhJiblwun9SFFl/Ljcvl+dLnqXNpl/RvVb5FY08jty65dVpL2E2Ey+fqvy8cDiqRTkCn28sfP63AYtDx533ayKNeJ/jSiiz+4apFHK7rwunxUZQaywVFydNWpVuJEhlLIWW+tg+9JV6r/nTsleHHedq1j7Em0upd8PlvBh7v+b02F3XO1vDEfQ5Lk5dSllbG3sa9SCTptnSWJS/jqdKnQo471HKI+p56cuNypzymiej2drOzdief1H3SP1NhdfpqjLrJJX6VSCegus1FnMXASwcGbq4HgpJdFW1sW5TGjWuj84dImUYGExgGDbbEj7Cvoz0DbMkDj/1eqN0DNXvAZIOc9ZA+aL/Hyo9CXi5NsZzqPE1V5TtYjFbmJ86fsuWW8eZ4bl54M5uyN+ENesmOzeZwy/ACK0KIqO44fFT7Ea+Wv9r/+MljT2I1WFmeunxS51WJdAIsBj16IXB5Q6vY6HUCp0dbRtfrC1DR6qLXFyA3KYaEmOiblK1MI2sSLP4StJ6C5lJtrf3qW0OLlFTshF0PDTwufx82/1grFg2hO4oKPXuyFvN42f8Q7JgDCNJj0vnOsu9M2T1Ko95IYcLAgFpRQhHx5viQnTtXpa0iw5YxJe8/WR6/Z9jtCYDDrYdVIo2E3CQbOY4Ych0xVLW5AG3CfaxZT3ailXaXl6d3VbGnQqtu77CZuPPiIopSZ/akY2UCpIRT72r3Q/0uQAfLv6ats7cN6j363HDs1dDXBrxQu3cgkRZugppdIIP0JBXwav3HBG3JnNmQt8HVwNHWo1wcc/EEwpQ0uZoQCFJiUsbUq0yJSeHO4jvZ1bCL2u5aFicvZlXqqqhdM68TOiz64fdErfrJ32OOzv9xlDMZdFy2OJ0ku4lndtfQ0OkhK8HCjWtzmZMaywcnmvuTKEBbj5eXD9Zx95Y5GPSqqtN5pb0C9vxBG1xCAFLb7z5rdehxwYC2EmqowW2ZK2HT30DVZ7jsSXRVN2ib4w3iHDyHdYw6ezt54/QbfFr/KQAbMzZyRcEVxI2hpF9OXA45cZErqDweJr2JrXlbefzo4wNtOhPFKcWTPrdKpBMUZzVyyfw01hck0ez0YrcYSOyr2lTd10sdrLy5G6fH33+MMst0N2srl6wJoe3O+r4kOojfo7XHZw60mWNh7jY4+PRAmxCQsSL0cdZKyFqJIxhgYbCLg80HQ049kUGeXQ272Fm7s//xh7Uf4rA62Ja3bdzninar0lZhNVg50noEs95McUoxcxLmTPq8KpFOktVkIDcp9MuYNcK2y7lJNmItBqSUnGzs5nRrDxajjoXpcaSqtfYzl6sNjr4Ep9/X5oYuvAbmXjrQU4xJGr6rqE4/8kh90VZtutSpd8EUA/O3Q+byEd9Wr9OzvWA7vYFeSttKMevN/WvhR9Lqbu2fF1oQX4DDMrBN8d7GvcOO39+0n2152+jx9dDj6yHRnBj1U5rGwqAzUJxSHJZeaMh5w3o2BYDl2QkczGzncJ22M2Sc1cA1yzMx6nXsPt3Kwx+eJtD3i5ViN3Pv1rlkqLmmM9PJN+HEmcnqbjjwhNYrLbhIa3IUacn16It9xwhYcr22bfNQljhYdA3Mu0xLqKMkrix7Ft8p/g7N7mbMevNZR+yruqp4uORh2nu1201JliRuX3p7/yV5ekz6sC1JcmJz2N+4n5dPvUyrp5U5iXO4puiaWVXVPpxUIp0CsRY9X1yRyYY5yRh0grykGFLsFlxePy8eqOtPogDNzl4O1XaqRDoTeXtCJ9mfUX9gIJHqDVrizFgG3U1gT4ekuVov9WzGMUncqDeSGZt5zmM+rvu4P4kCtHpa+az+s/5EekHWBRxuOYwn4AHAorcwzzGPx44+hj+ozUIpbSvlKe9T3LvqXqwG9bM6lEqkYVbX4eapXVUcrevCqBdsXZjGokztpr3HF6DD7Rv2mnbX8DZlBtCZtN5nT3Nou9UR+thggrTF2kcEnO44Pbytc6BtbuJc7l11L2XtZdqS0IQ5VHRV9CfRM2q6a2jobqAgYYTe9HlOJdIwklLy+qF6jvZd0vsCkjcON5CdGMOGoiQSY0wUZ8eHbEECUJQSPXuEK2PgbIDTH0LdAS051h8GY98cT6MtrNsph8OS5CXU9dSFtC1ODk3qKdYU4s3xxJm0P/pNrqZh5zHqjCHV7pUB53UilVJS2eqiydlLUqyJ/CQbet3EV2V0un2U1HQOaz/Z5GRDURI93gAXzEmm2+PnaH0XFoOeK5amszQr+or+Kmfhc8Pu30FDX81OZwPM2aKtUDLFQvpScERXj21D5gYqnZWUtpUCsNCxkLXpWrKXUrK3aS9vVrxJV28XK9NWsjV3K0UJRf1V7c/YkrslaifbR9p5m0illLxzvIlnd1cTCEp0Aq5ZnsmVSzImPNfTatSTGmemuzn0kijNbuZwTQdP7aqmocvDnFQbd1xUSEFKLCl29Rd+RmmvGEiioNUgrfxYq/qUuz5iYZ1LgjmBm+bfRLunHb1OT7Y9G5Nem4ZX2l7KH4/8sb/C/Yc1H+IL+vjagq9xy+JbONZ2jI7eDjJjM1noWBjVyz8j6bxNpLUdbp7boyVRgKCElw7UsTAjnjkTXIEkgWuWZfLbD07h9mk/mGlxZopSYvnvd8vo7tUSbFlTD9VtFfzdVYvC8n9RosDg6U1R5FDzId6ufJtTnaeYlziPzdmb+5MoaPdKh24TsrdhL5fnXU5yTDIXZE2gzN956LxNpK3dXnyB0B/+oITWnl7mML5E2usP8NmpNt462oA/GGTzglRS7Wb0Oh3z0mKp7/D0J9GB1wSp7XCRlWilp9dPu8tLgtVErOW8/ZbMDIn52n3RxiMDbbGpkDz5Sd3hVtddx3/u+U9Od2kDS4daDlHeWc6PYn5Eeqy2hfLg7UDOMBvMIclWGd2ov7VCiDggRUp5akh7sZSyZMoim2IpdjMmgw6vf+CvsV4IUmLHf6l9oKqDP35a0f/49UMN3Lg2h0sXpQLg9PjRCS1RD2a3GDlS18nTu6qo6/CQYjfz1TU5rMgdY1k1ZfoZrbDm21D+HtTu08rlzdkKtugrZny87Xh/Ej1jf9N+yjrK+hPp/MT52I32/mr4AJflXTam5aHKgHPeDBRCfAU4DjwvhDgihBi8OfajUxnYVMtMsHLT2tz+XT0NesF1q7PJTxr/CPqeyrZhbR+eaMbXl6RzHTFsXZgW8vzGOUkk2Yw8/GE5dR3a/L1mZy+/+7Ccuo7h+40rUSQuQys8ctV/wNpvj7zFSIQ09jRyvO04Ta4mdOgQDL+nqRMDv/ZZ9izuWnEXVxVcxUVZF3HbktvYmLVxOkOeFUbrkf4fYJWUsl4IsRZ4XAjxf6SUf4YRvkMzzKZ5KRSlxNLs7MVhM5LjiBn1ZrrL66e8uQePP0Cew0aK3UzMCFuJxJgN6PpmABj0Oq5dnsn8dDuNnVrPc36GnfKmnv6ye2d4/EFq2l2qqv5sEwxohZnL3tYKkRRthdyNA9OmwuDTuk95/sTzeAIeLHoLX5n/FeYkzOFkx8n+Y5anLGdBUugy0hx7Djn2mVF4JFqNlkj1Usp6ACnlLiHEJcArQohstLGVGS8r0UpW4tiSVntPL499WsmhvilOdouBOzcXsTbfwWflrfj77rkKAdsWpIZMpbKaDMMu2W0Ww4iX/LFqx9HZp3YffPwA/b82LSdBBsNW3b7WWcuzpc/i6yuQ4gl4eOb4M9y94m521uzkZPtJliQvYVvetpB19kp4jPYb6xRCFJ25P9rXM90MvABEZplGBB2s6exPoqDd+3xxfy3/69J5/GDbPA5Ud+ALBCnOjqc4K2HU8+U5YrhkQSrvHBuY/LyuMImiFFW3dNap/IRhfY+Tb0HBxdoy0klqdjf3J9EzeoO9BGWQKwquYF36OmwmG+m29Em/lzLcaN/B7zLkEl5K6RRCXAF8ZcqiilL1ffcyB6tuc9Pd62dhRhwLM8Z3g96g1/HFFVnaJX+Xh+RYCwsz7JiN+nCFrESLKZ5/mWBOQCd0IVOZhBC0e9p55PAjdPu66fB0sCZ9Ddtyt7E0ZWnIfvbK5IyWSHuANKBsSPt64LMpiSiKZTuG3wIoSLFht0y8vFiMycCqPHWpNevlbYSqT7XL+TPmXR6W3iho9zkvz7+cN06/gUQiEFySfQnvV7+Py+eisrOSIEHerHyTBHMCHd4OLs+/PCzvrYyeSP8LbcBpKHffc18IczxRrTgrnjX5DnZXaKP0DpupvzzeYFJKatpdOD0BMuItqpjzbNFWAS19WyynLICEcQzQZK6EC/8ayj/QBpsKNkHOurCFptfpuSz/MuYlzqPV3UqyNZmADPBu9bt0+7oJMpDAPX4P71e/z/qM9cSb1fLkcBgtkeaPNFdUSrlHCJE/NSFFr/gYE7dekM+Whal4fAFyHDEkDtnUzusPsuNIPa+U1OMPSOKtBm67sIAlY7hnqkSxxiPwwc/B3zc1zWSHzfdB8tyxvV6ng5w12scUMeqMzE2cy9xELaZ2TztxpjgaXY39xxh0BiwGy7DVTMrkjLao/FyFESc9P0cIcYUQolQIUSaE+NEIzwshxP/re75ECLFysu85WWajnnlpdoqzE4YlUYCyJicv7K/rH8HvdPt5/LMqnCOUz1NmkBM7BpIogNep7foZxRItidy88GZy7bno0BFniuNLc75ERWcFF2ZdGJbeqC/gw+UbvrXO+Wa0HuluIcS3pZQPD24UQnwLGL4/wTgIIfTAg8ClQE3fe70kpTw66LArgbl9H+uAX/f9G7XqOodPpm9x9tLc3YvdOvO3ajgvBfzQWTO8vbN2+mMZp8XJi/nJxp9wrOUYlc5KKjsrtVH8jMn9Gkkp2d+0n7cr36bL28Wa9DVsyt5EouX8XJU3WiL9AfAXIcTNDCTO1YAJ+NIk33stUCalLAcQQjwNXAsMTqTXAn+UUkrgMyFEghAi48zc1miUZBs+wTrWbCAhRiXRGUtvgNwNcPi50PasVZGJZ5ziTHGsy1zHWrmWoAyi101+VsiJ9hM8euTR/lsEb1W+hTfg5Yb5N0z63DPROS/tpZSNUsqNwD8BFX0f/ySl3CClbJjke2cB1YMe1/S1jfcYAIQQdwgh9ggh9jQ3N490yLSYn25n45yBvXP0OsENa7JxDEmwWi3UHj4rb6W0wRmy5l+JQoWXQP5F2sZ1OiPMuVTbm34wKaHhMBx8Bg49r026jyJCiAklUW/AS113HZ29A3OoyzrKht1n/bz+c9o8w5dLnw/O2SMVQliAO4E5wCHg91JK/7leMw4jTawbulpqLMdojVI+BDwEsHr16oituooxGfjaulzW5SfR6fGRmWAZcf3+R2UtPPFZZf+91G2L0vjyiiw1hzRaxSbD+rtg0bUgdBCXOXxuaM0e+OgXIAPa42MvweYfQerC6Y83TE53nubPJ//M6c7TxJviuWbONaxNX4tJN3x8wKQ3YdCdn6vyRhtsegztUv4Q2v3K/wjje9cAg+ePZAN1Ezgm6liNBpZkx3PBnGQKkmOHrd9v6vLw7O7q/iQK8PbRRk42dU93qMp46HTalKf4rOFJNBiA0tcGkiho+9dXfjK9MYaR2+/m6eNP9+/v1Ont5MljT3K68zQLHAuIMYRO6N+Wt61/q5LzzWh/PhZJKZcCCCF+D+wK43vvBuYKIQqAWuBG4GtDjnkJuLvv/uk6oDOa74+OVbvLi8sbGNbe2t0bgWjOc1JCWzl0VGsb2aXMg4ms+AkGwN0xvN3dPrxthmjsaaS2O3RALSiD1Dhr2JSzibuW30VJcwmd3k4WORaxNGVphCKNvNESaf+cHSmlP5zbDPSd725gB6AHHpFSHhFC3Nn3/G+A14DtaCurXMCtYQsgglLsFuwWw7DKT2lxY9+GVwmTip3w+W/hzI6ZeRfA6lvBbB/feQwmbQvmkmdC27NHmDfq82g9V1N0b3poNVgx6830BkL/wNv64s6Pzyc/Pj8CkUWf0RLpMiFEV9/nArD2PRaAlFJOqh8vpXwNLVkObvvNoM8l8L3JvMdUKW/upqK1B4tRz/x0+4ij9WfjsJn4q/V5PPZJBS5vAINOcPWyDIomuMWJMkE9rbDv8YEkCtr+S7nrJ7YTaNFW7XL+1Lva6qeFV4cmUr8XKj6C469qq5vmbNOqP403aU+TNFsal+VfxsunXu5vK0ooYm7CGBchnEfOmUillGrkYwT7q9r5zQen+u9xZiZY+d4lc0iPH3uPcnW+gzyHjfouNwlWEzkOq9pYbLp5OqC3a3h7T4v2b3cjeN1gzxhb3VBrvFbwed4VWiK1DpnwXrsHdv124PHBp7TjFkXvSustOVvIjs2mtruWeHM88x3zVfX8EZyfQ2yT4PEFeOlAXchAUV2Hm5KaDlLtadS0u+n1B8hKtI5Y8HmwlDgzKXFqF9GIsaVAbDp0D5nJZ0+Hoy/Dkee17ZdTF8Gqb2r7NY1FzFmK0FTvHt526l2YexkYzfiDfjx+DzajLWr+qBr1RhYnL2Zx8nlXNXNcVCIdJ5c3QMsIg0Jub4And1Vyst5JnM2EANYVOFiT71BTmqKVJQ7WfAs+/RV42rX5oYu/qD134ImB45qOwoGnYdP/Bv04F1Z01UOvU0vOphEGsUxW0OkobSvlrcq3qOuuY4FjAdvytpEZmznh/5oyvVQiHacEq5HFmfH9FaAGO1LThS8Y5LXPqwB4raSe72wu5LqVOSHV8pUoklEMV/wrdNWCOQ4ScuHw88OPayzRLvnjMsZ23oAfTu6Akv/R1ujbM2Dxl+D0BxDoG8MVAuZvp8HTyu8O/Q5331r+XQ27aHQ1cvfyu7Ea1ZYzM4FKpOMQCGqrkVbkJtDc7aGixYVJr+OyxWl0eXykxpv502dV/cd39/p5taSeNXkODHqBNyDJSrBgMaove1SJcYRejltGKOZhdYxvlL35OOz748BjZz2UvgEX/W+oP6QNNmWugMwVVDbu6U+iZ1R2VVLXU4fNaKOiqwKDMFCYUKi2CYlS6jd6jHr9AV4tqeeNQw0EpKQg2ca3LiygIMVGRryVt482Utse+stgNuqQEnadbuOd400EgpLCFBtfX59PbpKqTh61MpZBYh60V2qPhQ6Kv6LdChirzqrhbe3lYIqDVd8IaTbqht8u0Akdnb2dPHTwIXr8PQCkxqRy+9Lb1SV/FFKJdIzKGrt5tWRgLcDplh6e31fD31+1CIBlOfHUtLuwGHV4fEF0OtE/L7Sy1UWgb4e78uYeXi6p486Li9TlfrSKTYVNf6vVIPV2a9stpyw4+/Ed1dB4GPy9kDxPWxI6Us/RZAOLNtWpxd1CRWcFAOm2dLJis0Imv2/K2sSexj39SRSgydXEvsZ9KpFGIZVIx6iha/h+TR0uH209Xq0CvhSsyEngvisX8Jd9dXj8WuHndQUOdhwJHRU+Vt9Fp9uHQ1XOj162ZCi8ePTj2k7De/8GZwp66PSw8V5IWwT5F0PFB1q70MGymyA2laquKh4qeYiO3g4AEs2J3DD/Biq7Kmlzt1GYUMjipMU8sO+BYW9X0z1COb9xaPO0IRDnbbm7qaIS6Ril2Ecuj5doM3Kgup1Hdp6mxxvApBdcvzqLeWlxpNnNfH66NWSqFEBGvAWbSY3kzwq1ewaSKGiT+/c/DjnrtUGmFV/XlpzGZWq9VeCTuk/6k6iUklOdp3ih7AX8AT8LkxYyL3EeDquDxcmL+bDmw5C3m++YP6Ewnb1O3q1+l49qP0Ig2JS9iUtyL8FmjO7VVTPFaEVLlD7z0+xsXZjaX47KpNdx07pc9DrBk59V0tO3dt6k11Ha4ORwbQdVbT0syYwjb9D9UJNBxxeWZaopUbNFT2voY0+Xtod983Go2aUlVYMJUhdoRU+gvwgIQLevm9ruWqq6qjDoDXxc9zGvnX6NoAyyKWtT/7YhAsHqtNWsSF0xoTB3Nezircq3cPvduPwu3qh4g72Nk6rNrgyieqRjZDbquX5VDqvzHHS6fWQkWMhOjOF0SzdtPdp0FotBR05SDM/trmH7sgx2nW5DCMEl81PYvjQDlzdAfrKNXIcaaIoqni7Qm8e2emmotCVQ/t7AY1ebtrzUOahI2YkdkLuxP5EuTV7afz/0zGh9QXwBLW5tRVVJUwklqSWUNJdQGF/IhowNpNnSyIrNmlCZOikluxqG1xva27iXTdmbaHI10e5px2FxkBKTMu7zKyqRjovJoGNeeui66ASriYQYIx0uHwXJNl4tqWfDnCR2HGnE1aut4S5tdPJX63L54orsSIStnI2zQVv3Xv05xCTBoi9qSXA8q4qyVmn3Po+9pA02FVwEplgYXFw84OvbhllLpOsy1lHZVcmxtmPohZ7ilGJijDH4+v4gBwjwTuU7nO7Seq4GYeDOZXeOKYkGggGOtR2jtK0Uo05blVSUUESyNXlYJaf0mHQ+qf2EN06/QXpsOm6/m/mJ89mYtVFNsxonlUgnoLHLQ2lDF71+SUFyDLduzOPXH5QjdAKnx4/ZqKen199/G8DnD/L20SYumptCUqxaEhoVgkEoeVYrUgLg6YRPHoAt/zC+Qswmq7YaKv9C7f5oRzXsHFK2d87WkP3rU2JS+Hbxt6lx1tDj6+Hdync52aFV05dSsix1GYeaD/Uf75d+9jXtY0HSOWYO9NnftJ/HjjyG7Kt//n71+3x3+Xe5IOsCjrYexRfUkrVJZ2KBYwFPHHuCooQinjvxHAEZQCd07Gncw90r7ibZmjz2r8N5TiXScaptd/PAOydo6fbS6fLS5fZz07ocvlCcSZrdTHlzN2aDLqS0v8WoxxcM4g9GrHC/MpSzAao/C20LBrTtQSZS0d7Wl3SsDtjwPTjxBvh9MHeELUnQqskXJhQCWmI93nYcl89Fjj2Htyrfwj9kI4qhpexG4gv4eLfq3f4kCuANejnYfJDr513P3Svupqy9DCEEcxPn0uZpI8OWwXtV7xHoK0gdlEHKO8s51nqMi7Ivwhfw0dHbQawpFqtBrbI6G5VIx+lAdTut3V663D4qW7VtaN893sy2Bal0uH18eWUWDZ29mPQ6fFKSHmcmxqRnQ1EyqSOM/CsT5OvVtkQ2x2mDOeOlN4LeBMEhu74aJvk9MpigYJN2T1RKMIy+Nj/dlk66Lb3/cbO7mfLO8pBjlqcsH/U8ARmgx9czrP1MW1FCEUUJRf3tUkqsBittvQPLnQUCo86I0+ekorOCl8tf5lTHKZItyXyh6AssS102ahznI5VIx6m1xwtAh1v7V6cTdPf6+Ly8lUP1XcxNjWVFbiI/v6GYd0ub6fb4WVfo4OJ5KVFT0WfGazikXZZ3VEHSHG3VUco4pwXFpsDCa0ILMVsd2uBROOgn/qu1PmM9AB/VfIRJb2Jz7maWpIwel8VgYUPmBl4pfyWkfUnyyK/NjctlbuJcFict5mDzQQSC1JhULAYL6THp/OnYn6jr0QbNGlwNPHrkUf7a+tfk2HNGPN/5TCXScZqXZueD0mZE38W71aQnI87KyUZn/+X8weoOLpyTzI+vXIA/GFRr68Opq17bYM7b1/NqPAyfNMBl/6JtFTIad4c2uNR0FBxFsPo2aK/QBpuy12j7MUVYjDGGLblbuCDzAnRCh3EcFacuyLyAoAzycd3HGHVGtuZupTi5eMRjDToDl+RcQqotlZdOvsTprtM4zA6uLLySeHN8fxI9wxf0Ud1VrRLpCNRv+DgVZ8dzdXEGf95XQ6fby+o8B/5AkA63jxxHDLq+Xme7y4tBr8OgV1N1w6q9YiCJntHTorVbl5/7tcEAHHgKTr+vPa76TCtvt+UfBu5xRolWdysVXRUIBAXxBWNeiWQ329leuJ1N2ZvQ6/Sj3tc06o0sT1nOYsdimtxNWPQWkqxJ1DprMQjDsHu1qhrVyFQiHacYk4EvrcxmY1ESlW1uGjvdPL27mtykGOKtAz2HzAT1AzclRvxFFmdpH6KjCipCVwrhbIDmk9BZo21UF58DSUXjmwIVZpVdlTxc8nD/6qdkazK3L72dbPvYp8/Fmsa3bY1RbyQrdqA3nhmbycU5F/NO1Tv9bUXxRRTFF4308vOeSqQTlBZvJS1e++UtSrXzh49P09bjxWzQcc3yTOaq/ZemRvJcyFgO9QcG2vIvhMSC0V8b9PfN5xwkLhvKdkDTMe2xTg9r7oCizWEKePw+qv2oP4mCVuBkV8OucSXSyRJCcEX+FeTF5VHXU0eiOZGFjoVqm5GzUIk0DApSYrhnSxFdHj9JNjMZqjc6dUw2WHcH1O3X7pcm5Gh1Pc82ch8MQkupNr8zJlkblGouHXg+NhkqPx3o0QYDWnX89CURudyXUoYsIT3jTKWo6WQ1WlmZtpKVrJz2955pVCKdpOP1XTy7p5qqVhfp8RZuWJ2jEulUi0nSduAci1PvwJ5HBnqi87eDPRMaSrRq+In5UHcg9DW9Tm1QaroTqacL0d3Akvi5NPSEVgxbmDSBua3KtFEjIWMQOMtE+rYeLw/vLKey1YUE6js9PPThKeo73CMer0yz7iZtp87Bl/OH/6zVG513Bcy5FJJHWC0Um6YdM50aDsObfw9v/gMbWiqZZ3Jo81CBRUmLWJO+ZpQTKJGkeqTnUNHSzXulzZQ1dbMkK47N81JDepu17S46XL6Q13h8QarbXapXGg16naEj/P5eaC2Dmj0Dc1CzVsHKW7QdQ3ud2lzSNd8aXzX8yfJ0wa6HtO2fgbTqvdyRkEtN8V+hi00j256NSa9q10YzlUjPorW7lwffO0Vb3wT8hk5tj6Z7t83t32Y5xmxAJ2Boh9VmVl/WqBCbBnFZ2sZ2oO1hH+jVkqUlXtvk7uBTkL1aKzySWKhtbhdzlqlGzgY4/SHU7tWScNFWSCqcfJzdjf1J9AxLRxVzejohe8Pkz69MOXVpfxblLT39SfSMsqZuqvqWhQLkOWLYNC+07NiqvEQKU1Sx3LBqq9ASWN1B8LlGPbyfORbW3K7t4Amgt8Dym7XPS54Gd5t22d/rhINPawVIzpZEfb2w51Et+bZXQNnbWnESZ5P2vLsTnI39l+PjYrZrxZ+HilEVmGYK1XU6C91Z5hHqBv3pMeh1XLcqmwXpcTR0eUiJNbEoMx6rWskUPpWfwGe/GtjCOG8DrPpW/95Ho0pbBJf9VEtyvU749EFIyNM+B+0S3mCBoE/ruTrOMo2qoxLq94e2uVqh7RQ0HIDDf9FuI+SshSXXjX3bZtAWBSy7Efb+YSAR56wLKZ7iD/o53HKYkuYSjHojK1JWjKkalDI91G/8WRSm2MiIt1DfObBX0+KsOPIcob3NGJOBNQWq5zAl3B2w7/GBJAraVKWc9ZC7fuznMcdpH1JqS0Lr9mvJ0xij9VaFAMTEeoCuVq0K/hkVO0HoYf2d45vUP2ebNougoxqsiVpFffPAH4v9jft57Ohj/Y8/r/ucO5fdqZJplFCJ9CwSY0x8d3MRn55q5VRzD4sy7awvTFJbhEwnd4d2+T1UT9PEzicE5F+gTeq3JmjFmM9USJh/JTjmnP21CXnafNW6Qb1SWwq4WoYfW/M5uG4Y3/QpnV7rgY5Qws8X9PFe9XshbeOpUapMPZVIzyErMYbrV6ttQSLGlhw6WHRG3AQLi3jdcOptOPaKVsV+yQ1gtmnnS15w7nJ8RjOsulXbmrluv1bwpGiLVvxkKLN98uX4BpMj1yMdS41SZXqowSYlepljteR1pmCHTq9tB5I6wVJ3Nbtg/xPg6YCuGjj8HPg8kLFs9P2aggHorNamKmWv1oo1JxVqr7UmDTpQwOLrQi7Lxy3gh4YjcOJNqNmDMeDlwqwLhx02lhqlyvRQPVIlumUshSv+VSsqYrZrK5EmWlCkZs/wttMfwoKrRu9BVn0Kn/wSzlSf1xnh4vu0+C75P9pKKV8PJM2F9KUTi++ME6/D/icH3iv/Itav+BoSqdUoNZjYnD22GqXK9FCJVIl+MY7wTAUaaWqTNUEbHDqXgB9KX4dBW3gQ9EHVJ1oiTcjWPsKhsxZK/if0vSp2Ys27YMI1SpWppy7tlfNH7gZttP4ModfW3o9WzV5K8I4wf9U3BUuBPR3aooGh+gbdzAazSqJRSPVIlfNH6kKtiHNDiTalKm2x9jEag1GbnrT/j6HtOWvDH6M9U1t5NXi2gtBpdVKVqKUSqXJ+SZ6jfYxX4cXaKqiTb2mj+/O3Q9bq8McXkwjrvgO7H9Yq/xttsPwmbUmqErVUIh2FPxCktt1NEElWghWTQc0jPe+0ndZqmOqNcMH3td7haKP8k5G5HC77V+hu0GoC2NNHfYkSWRFJpEIIB/AMkA9UAF+RUraPcFwF4AQCgF9KOQVdgLNr7/HyP3ur2X26jaCEpVnx3LQ2l7R4y+gvVmaHpqPwwb8P3A81xmij9alTPBHeGq99TEC7px1f0EeKVe1cO10i1SP9EfCOlPJnQogf9T2+7yzHXiKlHGH5SHi4vH48viCJMcZhP3Sfn27l8/KBe1WHajvJOtnMDavV/apZw+vS7pm2V2oFozOXaSuWzih7O3RQyeeC8vemPpFOgNvn5v2a93mn8h38QT+r01dzZcGVJIXMc1WmQqQS6bXA5r7PHwPe5+yJdEpIKdl1uo2XD9bR6faxIjeB7UszSI8fqCN6qLZz2Ov2V3XwxRVZGNXuoDOflHD0RTj6wkBb0ly46IcQk6A97qwd/rqhK62iRElLCa+Wv9r/+LP6z7AZbXxp7pciGNX5IVLZIE1KWQ/Q9+/ZypFL4E0hxF4hxB3hDOB4g5Pf7SynvtODyxvg47JW/ryvNqQafq5j+PLQXEeMSqKzRWcNlL4a2tZ6EpoHLfvMHaEeaPa6qY1rgkrbSoe17W3ci2s8pQeVCZmyHqkQ4m1gpLvkfzeO01wgpawTQqQCbwkhjkspPxzpwL5EewdAbm7uqCc+3dIzrCDzgaoOmpweMvp6pRsKk9lT0d5flzTWomfromnegkKZOn5PaGWpMwZX1S/YpG1ZcvoDQEDhZm3X0rHoadFWQE3wXufZOHudVHRVECRInj2PBEsCAAnmhGHHOiwOjDo173SqTVkilVKedXcyIUSjECJDSlkvhMgARiznI6Ws6/u3SQjxF2AtMGIilVI+BDwEsHr16lGr61pHqOJkMeowDxqVz02K4W+vmE9ZUzcBKSlKjlVbiMwGPg+0nNTuj9ozwFk/8JzOqFXKPyPGAWu/DQuu1gpF9ZfdO4eeFjj6ElR8CHozLLpWq6YfhpH+hu4GHj36KDXOGkDb8/62JbeRG5fL8tTlfFL3Cd2+bgAMwsC2vG1qAv80iNQ90peAbwI/6/v3xaEHCCFsgE5K6ez7/DLgp+EKYEGGnSSbidZBVfC3F2fgsIVWAEqxW0ixq1H6WaO3G/Y9pq2xB8heA3oTdNVpG94VfwWSi0JfIwTEZ479PU7sgJM7tM99bu39LPFaCb9J2tO4pz+Jgrbn/c7andwcdzO5cbncs+IeTnacxBfwUZBQwJwENf90OkQqkf4MeFYI8S2gCrgBQAiRCfxOSrkdSAP+0jeSbgD+JKV8I1wBZMRb+cGl8yip6aDT7WdOaixLsqZxwzMlMpqODiRRgJrd2gDTpT/VEqk5dnLn73VCxUfD2xsOjTuRBoNBKp2VmHVmMu1aIi/vLB923Kn2U/iCPow6I1n2LLLsEywzqExYRBKplLIV2DpCex2wve/zcmDZVMaRmWAlcxyX6g2dHvZUtFHR2sPc1FhW5ztIip3CidnKxHXWauvW7RmhBU96mocf23pSu2yfbBIF0Jm0e6JDC1JbxneftKqrimdLn+WdynewGCxcP/96vlD4BeYmzuVE+4mQY+c75qv7oBGmVjaNUZfbx0MfnqKyb/O7/VUdlDZ2851NhapqfjQJ+LVL65JntOIflgRtyWXWSu15+wiX6LFpEDOOavbnYjTDwmvgk//WlpQCmGyQM7596V8+9TIvl78MgCvg4qGSh3BYHKxOW83JtpOc6NCSabY9e8Rapcr0Uol0jMpbuvuT6BkHqzuobHMxL20SRXyV8Go90beHUt94o6cDdj0Ml/+rto49dZFWHPr4y1qxZnMcrL41vPvY527Qaqc2HdfqnKYvHXFTPSklja5GgjJIakwqBp3269jqbuXDmuFjqgebD3JlwZV8u/jbVDmrCMoguXG52Ixq19pIU4l0jHyBkScC+APBaY5EOafOOkJqeYJ2md3doCVSoxmKvwq567T7mXFZ49tbaSyE0JLnOQo8O3udvFHxBh/XfUxQBlmespxr5lxDsjUZq8FKsjWZBldDyGuSLNoKJavRynzH/PDGrEyKmlk+RgXJNhJiQkf0cxJjyE1SvYGoMlIBaKNVu8Q/Q6fT9l7KWBb+JDpG+5r28UHNB/iDfoIyyL6mfXxUow1SxRhj+PLcL2MQA/0ch8XBuozoXAigqB7pmCXHmrlrcyFvHm3kdHMPCzLi2LYojViz+hJGldQFUHiJth4etFqey24a3z7z0+Bo2/BN8w40H2B74XZMehOX5FxCrDGW4+3HsegtFCcXszB5+A6jSnRQWWAcilLt3JkSi8cXwGLUq8o60cgYAyu/oe17726DuOyorOWZFpPGEY6EttnS+kffdTod6zLXsS5T9UJnApVIx0kIgdWkvmxRzRSj1fSMYqvTVrOnYQ9d3i4AzHozW3K2qD/OM5TKCIoylLcHXO3afNDJbKt8Drlxudy78l7KOsoIBAMUJBSQY1flGWcqlUiVmcfn0faY1xkgIVfb7340waA2Gd9oPfdUp/oSbfpUR5U2mX/F1yF7VfhiHyTNlkaaLW1Kzq1ML5VIlZmlswZ2/15b6in02l5KxTeeu8JSZy0ceg5q92jzRpder1V1GpqAe1rg0we1uaegFTP55L/h8n+BeLXsUjk7Nf1JmVmOv6olUQAZgFPvauvlQVvVNFQwoK1yqvoEAl5wtcCu30Lj4eHHdlQNJNEz/G7oqAzrf0GZfVSPVJk5ep1Qt394e80uaDkBrWWQt1Gb/mTr216ju0nriQ4mJbSe0uaRDmaK1aZLySGLLKboPqkye6geqTJzGKzD93f3urQEW/mxtgXI/idg76Pg7ttL0WjRtjQeyjRCm6MQ5lwa2pa3MSqnTynRRfVIlZlDb4BF12jVms5sSGdJ0OaOBn3Q0wpdNVrvVOi0+6DZq7R7onseGThPbBqkF498/mVfhbTFffVJ0yB9iTZApSjnoBKpMrOkL4VL/1lLpnoT+L3aPU+vS7vHiQSDQdvt8/NfQ+LPoGiLVt2p7ZR2mZ6x7OwrnUw2bR2+ooyDSqRK+EgJzgataEds2uhbckxUQo72AdBepd3bdLXSX6xkzjZor9Au+bvqtPX02aumbBqToqhEqoSHqx0OPw/l72tFkou2weIvhX3jt2ESc2HzfXDsVW1kPmWBVofU2aDtvzTOgsqR4gv4ONZ2jIquCuwmOwsdC0m3jbR3pBKNVCJVwqPiQyh7a+DxidchJgkWfWHq3zt5HqzPBXs6HHtpYNR9yZe1CfszwEe1H/H8yecB8Aa8JJgTuGfFPeTEqdVOM4FKpEp4VH4yvK3m8+lJpKCNzi++VuuRupohLhOS50/d7YUw6vB08EbFG0gk7Z52Gnsa8Us/eafy2Jq7lQVJCyIdojIKNf1JCY+4EVb+jLStx1QyxkDWCph7GaQtgRmyDXFvoBe3343b56auuw6/1BYW9Ph6ePL4k/2FTZTopRKpEh5ztoJh0LbVRisUXRK5eGaQJGsSxSnFeAIeZN+AmV7osRlttHvaaeppinCEymjUpb0SHmmLYdv90HxMe5yyCBz5kYxoxjDoDFxdeDUen4dXTr9CojmRi7IvorKzEpPORKwpDLubKlNKJVIlfBwFI27yFhX8vdoSUne7dhsiMT+q7p+m29L51pJvkW3P5mT7SY63HScog1xbdK0avZ8BVCJVZj+vG0qe0rZpBm1a1JrboWhzRMMaymqycmn+peTH59Ph6SAjNoPChMJIh6WMgUqkyuzXUjqQREFbTrr/cUhbBLGpkYtrBDajjeWpyyMdhjJOarBJmf16moe3ebvB1Tb9sSizkuqRKrOffYR19ZaEqOuNTobP56OmpgaPxxPpUGYFi8VCdnY2RuPYptCpRKrMfsnzYOkNcOTPWqFnkw3WfAtiHJGOLGxqamqw2+3k5+erDfQmSUpJa2srNTU1FBSMbfBUJVJl9jOYYMl1kLUS3J1a5Sf77BoJ93g8KomGiRCCpKQkmptHuCV0FiqRKucHIbTCzbOYSqLhM96vpRpsUhRlWj366KPU1dVFOoywUolUUZRppRKpoiizwgv7a7ngZ+9S8KNXueBn7/LC/tpJna+np4errrqKZcuWsWTJEp555hn27t3LxRdfzKpVq7j88supr6/nueeeY8+ePdx8880sX74ct9vNO++8w4oVK1i6dCm33XYbvb29APzoRz9i0aJFFBcX88Mf/hCAl19+mXXr1rFixQq2bdtGY2PjpL8WYSGlnHUfq1atklPF6fHKd481yn9/45j8/c5T8mhd55S9l6KM1dGjR8d87F/21cgFf/+6zLvvlf6PBX//uvzLvpoJv/9zzz0nb7/99v7HHR0dcsOGDbKpqUlKKeXTTz8tb731VimllBdffLHcvXu3lFJKt9sts7OzZWlpqZRSyq9//evyF7/4hWxtbZXz5s2TwWBQSille3u7lFLKtra2/raHH35Y/vVf//WEYx7NSF9TYI8cIeeowaZxeudYEy8dGLgs2V3Rzg8vn09RiiosocwMP99RitsXCGlz+wL8fEcpX1wxQjnEMVi6dCk//OEPue+++7j66qtJTEzk8OHDXHqptitrIBAgI2P4fN7S0lIKCgqYN28eAN/85jd58MEHufvuu7FYLNx+++1cddVVXH311YA2zeurX/0q9fX1eL3eMU9Pmmrq0n4c2nu8vHMs9FLC6w9S2uCMUESKMn51He5xtY/FvHnz2Lt3L0uXLuXHP/4xzz//PIsXL+bAgQMcOHCAQ4cO8eabbw57ndbJG85gMLBr1y6uu+46XnjhBa644goA7rnnHu6++24OHTrEb3/726hZgKAS6ThIJCN934Nn+WFQlGiUmTDy9tJnax+Luro6YmJi+Ku/+it++MMf8vnnn9Pc3Mynn34KaCuvjhw5AoDdbsfp1DofCxYsoKKigrKyMgAef/xxLr74Yrq7u+ns7GT79u3813/9FwcOHACgs7OTrCyt1/zYY49NON5wU5f24+Cwmbl4fgqvH2robzPoBfPS7BGMSlHG528un8+P/3wo5PLeatTzN5fPn/A5Dx06xN/8zd+g0+kwGo38+te/xmAw8P3vf5/Ozk78fj8/+MEPWLx4Mbfccgt33nknVquVTz/9lD/84Q/ccMMN+P1+1qxZw5133klbWxvXXnstHo8HKSW/+MUvALj//vu54YYbyMrKYv369Zw+fXrSX49wEGfrWk/pmwpxA3A/sBBYK6Xcc5bjrgAeAPTA76SUPxvL+VevXi337BnxlJPW5fbx6alWPj7VQnKsiUvmp7E0e2bsVKnMXseOHWPhwoVjPv6F/bX8fEcpdR1uMhOs/M3l8yd8f3S2GulrKoTYK6VcPfTYSPVIDwNfBn57tgOEEHrgQeBSoAbYLYR4SUp5dHpCHFmc1cjlS9K5bHGaWkkyFq5WqPgIavdrVfQdBdp+SkbL6K9VpswXV2SpxBlGEUmkUspjMOoyrLVAmZSyvO/Yp4FrgYgm0jNUEh2DYBAOPgP1B7X17R/8DLw9sPALsPZOSC6KdISKEhbRPNiUBVQPelzT16bMFJ01Wm80MQ/2PwGeTgj6oXYv7HsUfL2RjlBRwmLKeqRCiLeBkUrs/J2U8sWxnGKEtrPe0BVC3AHcAZCbmzumGJWpJrWP3u7hT7WcgJ5GSFDfK2Xmm7JEKqXcNslT1AA5gx5nA2ddoCulfAh4CLTBpkm+txIO8dmQtxF6WgbadAYwxYLZDka1iEGZHaL50n43MFcIUSCEMAE3Ai9FOCZlPHR6WHYT5KyDzFUQkwRJRWCKgeKvgm32FFZWzm8RSaRCiC8JIWqADcCrQogdfe2ZQojXAKSUfuBuYAdwDHhWSnkkEvEqk2BLhgXb4Uu/hu0/h/XfhUv+Hoq2RDoyJcr94z/+I2+//fa4X/f+++/3LymdLpEatf8L8JcR2uuA7YMevwa8No2hKVMlxgEFmyIdhRJlzhT90OmG9+l++tOfTksMfr8fg2FyqTCaL+0VRZkqJc/CL5bA/QnavyXPTup09913H7/61a/6H99///3853/+Jz//+c9Zs2YNxcXF/OQnPwGgoqKChQsXctddd7Fy5Uqqq6u55ZZbWLJkCUuXLu1fxXTLLbfw3HPPAbB79242btzIsmXLWLt2LU6nE4/Hw6233srSpUtZsWIF77333rC42tra+OIXv0hxcTHr16+npKSkP7477riDyy67jG984xuT+r+DSqSKcv4peRZe/j50VgNS+/fl708qmd54440888wz/Y+fffZZUlJSOHnyJLt27eLAgQPs3buXDz/8ENCqPn3jG99g//79tLS0UFtby+HDhzl06BC33npryLm9Xi9f/epXeeCBBzh48CBvv/02VquVBx98ENCWpz711FN885vfHFbE5Cc/+QkrVqygpKSEf/3Xfw1Jmnv37uXFF1/kT3/604T/32eoRKoo55t3fgq+IZWefG6tfYJWrFhBU1MTdXV1HDx4kMTEREpKSnjzzTdZsWIFK1eu5Pjx45w8eRKAvLw81q9fD0BhYSHl5eXcc889vPHGG8TFxYWcu7S0lIyMDNasWQNAXFwcBoOBjz76iK9//euAVvwkLy+PEydOhLx28DFbtmyhtbWVzs5OAK655hqs1okXahlMFS1RlPNNZ8342sfo+uuv57nnnqOhoYEbb7yRiooKfvzjH/Od73wn5LiKigpsNlv/48TERA4ePMiOHTt48MEHefbZZ3nkkUf6n5dSjriScCx1QkY65sy5BscwWapHqijnm/js8bWP0Y033sjTTz/Nc889x/XXX8/ll1/OI488Qne3tiCjtraWpqamYa9raWkhGAxy3XXX8c///M/s27cv5PkFCxZQV1fH7t27AXA6nfj9fjZt2sSTTz4JwIkTJ6iqqmL+/NAKVoOPef/990lOTh7W4w0H1SNVlPPN1n/U7okOvrw3WrX2SVi8eDFOp5OsrCwyMjLIyMjg2LFjbNiwAYDY2FieeOIJ9Hp9yOtqa2u59dZbCQaDAPzbv/1byPMmk4lnnnmGe+65B7fbjdVq5e233+auu+7izjvvZOnSpRgMBh599FHMZnPIa++//35uvfVWiouLiYmJmbIaphEpozfVprKMnqJEo/GW0aPkWe2eaGeN1hPd+o9Q/JWpC3AGmgll9BRFiaTir6jEGUbqHqmiKMokqR6popxFm7uNZncz8eZ40m0jFTJTFI1KpIoyggNNB3jq+FP0+How681cU3QNF2VfhE6oizhlOPVToShDtLhbeOqYlkQBegO9PH/yeaq6qiIcmRKtVCJVlCFa3C30+HtC2oIySGNPY4QiUqKdSqSKMkS8KR6TzjSsPcGSMP3BzGB1dXVcf/31437d9u3b6ejoOOcxEy2xN1XUPVJFGSIjNoOriq7ixbIXCUptkvjmnM0UxBdEOLKZJTMzs79602Cjla177bXRK2dOV4m9sVKJVFFGsDl7M/lx+TS5mki0JFIYX4hJP7yXOlO9Wv4qD+x7gIaeBtJt6dy78l6uKrxqwue77777yMvL46677gK0FUV2u50//OEPHD58mEcffZRXX30Vj8dDT08Pr7zyCrfccgvHjx9n4cKFVFRU8OCDD7J69Wry8/PZs2cP3d3dXHnllVx44YV88sknZGVl8eKLL2K1Wrnlllu4+uqruf7669m9ezf33nsvPT09mM1m3nnnHVpbW/n6179OT492i+aXv/wlGzduDMvXbiTq0l6JPL8XGo/A6Y+g9RREwWo7vU5PUUIRGzI3sMCxYNYl0fs/uZ/6nnokkvqeeu7/5H5eLX91wuccqYzemWpNZ3z66ac89thjvPvuu/zqV7/qrxD1D//wD+zdu3fE8548eZLvfe97HDlyhISEBJ5//vmQ589WYi81NZW33nqLffv28cwzz/D9739/wv+3sVA9UiWyfL1Q8jSU9l3O6fSw+jaYM9m9E5WzeWDfA3gCoXU7PQEPD+x7YMK90sFl9Jqbm0lMTBy2m++ll16Kw6Ht0/XRRx9x7733ArBkyRKKi4tHPG9BQQHLly8HYNWqVVRUVIQ8P1KJPYCenh7uvvtuDhw4gF6vH1ZeL9xUIlUiq+XEQBIFCAZg/xOQuhjiMiIX1yzW0NMwrvaxGlpGb6jBZevGWuNjcBESvV6P2x1aR/VsJfZ+8YtfkJaWxsGDBwkGg1gslrH+NyZEXdorkeVqHt7mc4O7bfpjOU+cbZXWZFdvDS2jdy4XXnghzz6rVeQ/evQohw4dmtB7nq3EXmdnJxkZGeh0Oh5//HECgcCEzj9WKpEqkWVPB4b0KMx2iE2LSDjng3tX3otFH9pDs+gt3Lvy3kmdd2gZvXO56667aG5upri4mP/7f/8vxcXFxMfHj/s9B5fYW7ZsGZdeeikej4e77rqLxx57jPXr13PixImwFnEeiSqjp0RWwA/HX4FDz0HQB0YbrL0D8tZHOrIZZbxl9MI9aj9egUAAn8+HxWLh1KlTbN26lRMnTmAyRc+gniqjp8wcegMsuhYyl4O7HeyZYFe90al2VeFV05o4h3K5XFxyySX4fD6klPz617+OqiQ6XiqRKpEnBCTmax/KecFutzObrhrVPVJFUZRJUolUUWaJ2TjeESnj/VqqRKoos4DFYqG1tVUl0zCQUtLa2jquuafqHqmizALZ2dnU1NTQ3DzCvFxl3CwWC9nZY9+eWiVSRZkFjEYjBQWqOlWkqEt7RVGUSVKJVFEUZZJUIlUURZmkWblEVAjRDFSG8ZTJQEsYzzdZ0RYPRF9MKp5zU/Gc29niyZNSpgxtnJWJNNyEEHtGWl8bKdEWD0RfTCqec1PxnNt441GX9oqiKJOkEqmiKMokqUQ6Ng9FOoAhoi0eiL6YVDznpuI5t3HFo+6RKoqiTJLqkSqKokySSqRjJIT4ZyFEiRDigBDiTSFEZoTj+bkQ4nhfTH8RQiREOJ4bhBBHhBBBIUTERl+FEFcIIUqFEGVCiB9FKo5B8TwihGgSQhyOdCwAQogcIcR7Qohjfd+vye0vMvl4LEKIXUKIg33x/FMk4zlDCKEXQuwXQrwyluNVIh27n0spi6WUy4FXgH+McDxvAUuklMXACeDHEY7nMPBl4MNIBSCE0AMPAlcCi4CbhBCLIhVPn0eBKyIcw2B+4H9LKRcC64HvRfhr1AtskVIuA5YDVwghomGfmXuBY2M9WCXSMZJSdg16aAMienNZSvmmlNLf9/AzYOylaqYmnmNSytJIxgCsBcqklOVSSi/wNHBtJAOSUn4IRM2WqFLKeinlvr7PnWjJIiuC8UgpZXffQ2PfR0R/t4QQ2cBVwO/G+hqVSMdBCPEvQohq4GYi3yMd7Dbg9UgHEQWygOpBj2uIYJKIdkKIfGAF8HmE49ALIQ4ATcBbUsqIxgP8F/C3QHCsL1CJdBAhxNtCiMMjfFwLIKX8OyllDvAkcHek4+k75u/QLteejIZ4IkyM0KampYxACBELPA/8YMjV1rSTUgb6bpllA2uFEEsiFYsQ4mqgSUq5dzyvU/VIB5FSbhvjoX8CXgV+MoXhjBqPEOKbwNXAVjkN89jG8fWJlBogZ9DjbKAuQrFELSGEES2JPiml/HOk4zlDStkhhHgf7Z5ypAbnLgCuEUJsByxAnBDiCSnlX53rRapHOkZCiLmDHl4DHI9ULKCNTgP3AddIKV2RjCWK7AbmCiEKhBAm4EbgpQjHFFWEEAL4PXBMSvn/RUE8KWdmnAghrMA2Ivi7JaX8sZQyW0qZj/bz8+5oSRRUIh2Pn/VdxpYAl6GN6kXSLwE78FbflKzfRDIYIcSXhBA1wAbgVSHEjumOoW/w7W5gB9ogyrNSyiPTHcdgQoingE+B+UKIGiHEtyIZD1qP6+vAlr6fmwN9va9IyQDe6/u92o12j3RMU46iiVrZpCiKMkmqR6ooijJJKpEqiqJMkkqkiqIok6QSqaIoyiSpRKooijJJKpEqs5YQItA3veewEOJ/hBAxfe3pQoinhRCnhBBHhRCvCSHm9T33hhCiY6xVfxQFVCJVZje3lHK5lHIJ4AXu7JuQ/hfgfSllkZRyEfB/gLS+1/wcbZ6looyZSqTK+WInMAe4BPBJKfsXMEgpD0gpd/Z9/g7gjEyIykylEqky6wkhDGg1Sg8BS4BxFaRQlNGoRKrMZta+8mx7gCq0NeaKEnaq+pMym7n7yrP1E0IcAa6PTDjKbKV6pMr55l3ALIT49pkGIcQaIcTFEYxJmeFUIlXOK311W78EXNo3/ekIcD99dUuFEDuB/wG29lVrujxiwSozhqr+pCiKMkmqR6ooijJJKpEqiqJMkkqkiqIok6QSqaIoyiSpRKooijJJKpEqiqJMkkqkiqIok6QSqaIoyiT9/4/DIibXJV07AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn import decomposition\n", + "from sklearn import datasets\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "iris_pca = datasets.load_iris()\n", + "X = iris_pca.data\n", + "y = iris_pca.target\n", + "\n", + "pca = decomposition.PCA(n_components=2)\n", + "pca.fit(X)\n", + "X = pca.transform(X)\n", + "\n", + "\n", + "f, ax8 = plt.subplots(1, figsize = (5, 5))\n", + "sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=[iris_pca.target_names[i] for i in y], alpha = 0.7)\n", + "ax8.set_xlabel('PC1')\n", + "ax8.set_ylabel('PC2')\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Towards Publication-Ready Plots\n", + "Try to achieve as much of the final figure requirements as possible via code" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['sepal_length', 'sepal_width', 'petal_length', 'petal_width'],\n", + " dtype=object)" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_metrics = iris_tidy.metric.unique()\n", + "\n", + "all_metrics\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_titles = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']\n", + "letters = ['A', 'B', 'C', 'D']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\xusy\\.conda\\envs\\nbdevdabestdev\\lib\\site-packages\\seaborn\\categorical.py:1296: UserWarning: 20.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJsCAYAAABXt2/sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACROUlEQVR4nOzdd5xcVf3/8ddntrdkky3pvYckpCwlhRAIvSsKoqCIil9Rsf8E9Ssq8lUEKyhKkQ6CiCT0mlBCElJJ72XTd9O3tzm/P+7szCSk7s7unc28nzzmsbecufOZYXP2M+ece4455xARERER/wX8DkBEREREPErMREREROKEEjMRERGROKHETERERCROKDETERERiRNKzERERETihBIzERERkTjRpMTMzD5lZu4Qj3/HOkARkeYys+mHqbOcmTWYWZmZrTOzV8zsB2bW0e+YRSQxWVMmmDWzKcBlhzhVA3R1zu1ubmAiIrFiZtOBM4/jKfuAK51zb7dMRCIih3bcLWZmVgBceJjTacA1zYpIRMR/7YFnzKy934GISGJpSlfmtUDKEc5f37RQRERaVZ/Qoz9wKbDuoPN5wAWtHZSIJLbkJjznSwftT+XAbs0iMzvJObe06WGJiLQs59yGqN21ZpYDPHVQsd6tFpCICMfZYmZmI4GTDzr8E2DBQceub3pIIiK+ONSA2z2tHoWIJLTj7cr88kH7C0ItY08cdPxaM0tqelgiIi3LzHqHHv3M7CLg9oOK1AOv+RCaiCSwY07MzCyFTw7sfzz082mgIep4ZzQ2Q0Ti2/rQYw3wMt5Ys0b1wE3OuWI/AhORxHU8LWaXAAVR+w14CRnOuW3AOweVv75ZkYmI+OcBPjneTESkxR1PYnb9QftvOue2R+0f3J15qSZpFJE26hvAHDPr7HcgIpJYjikxO8zcZY8ftP88UBm1rznNRCRuOefMOWd49WBX4NaDigwB/tzqgYlIQjvWFrNDzV32ZPSyJkAZkHlQmeubGZ+ISItynm3Oud8CUw46/Rkzy/UhLBFJUMeamB08d9mxKjKzk5r4XBGR1rb6oP0A0M+PQEQkMR01MTvM3GXH4/pmPFdEpDWNOcSxhkMcExFpEccy8//Bc5dtAiYeofwPgG9F7V9rZrc451S5iUjcMLPejZt4U/xcD5x1ULFKYGXrRSUiie6Iidlh5i576aClTA5+zrMcmJg1zmn2chNjFBFpCeuPocw/nHNVLR6JiEjI0boyD567DOClozznQ2D3QceuP46YRETiwdPALX4HISKJ5WiJ2cGD/iv55ESyBwh1Wb5+0GHNaSYi8awOb13M+cB9wATn3Oedc7X+hiUiicacO9S6vSIiIiLS2o53EXMRERERaSFKzERERETihBIzERERkTihxExEREQkTigxExEREYkTSsxERERE4oQSMxEREZE4ocRMREREJE74mpiZ2T/NrMTMlkQd62hmb5rZ6tDPDn7GKCJyKKq/RKQl+N1i9gjeAufRbgHeds4NAN5Ga9WJSHx6BNVfIhJjvi/JZGa9gZecc8NC+yuBSc65bWbWBZjunBvkZ4wiIoei+ktEYi3Z7wAOoZNzbhtAqHIrPFQhM7sRuBEgKytrzODBg1sxRBHx27x583Y65wr8juMgx1R/geowkUR2pPorHhOzY+Kcux+4H6CoqMjNnTvX54hEpDWZ2Ua/Y2gO1WEiietI9ZffY8wOZUeoC4DQzxKf4xEROVaqv0SkWeIxMZsKfCm0/SVgio+xiIgcD9VfItIsfk+X8TQwExhkZpvN7CvAb4FzzWw1cG5oX0Qkrqj+EpGW4OsYM+fcNYc5NblVAxEROU6qv0SkJcRjV6aIiIhIQlJiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxIm4TMzP7npktNbMlZva0maX7HZOIyLFQ/SUiTRWXiZmZdQNuBoqcc8OAJOBz/kYlInJ0qr9EpDniMjELSQYyzCwZyAS2+hyPiMixUv0lIk0Sl4mZc24LcDdQDGwD9jnn3vA3KhGRo1P9JSLNEZeJmZl1AC4H+gBdgSwzu/agMjea2Vwzm1taWupHmCInlM1lm/nFh7/gbwv/Rl2wzu9w2qxjqb9C5VSHicgnxGViBpwDrHfOlTrn6oDngXHRBZxz9zvnipxzRQUFBb4EKXIi+fF7P+Y/q//DfR/fx5PLnvQ7nLbsqPUXqA4TkUOL18SsGDjdzDLNzIDJwHKfYxI5oZXVlR1yW46b6i8RabK4TMycc7OB54D5wGK8OO/3NSiRE9wvx/2SEfkjOKfnOXxx6Bf9DqfNUv0lIs1hzjm/Y2i2oqIiN3fuXL/DEJFWZGbznHNFfscRC6rDRBLLkeqv5NYORkT8M2XNFN4pfofzep/HOb3O4U/z/kRpVSk3jbwJHPzt479RkFHAd8d8lzc3vsmbG97k7J5nc3n/y/0OXUQkISgxE0kQ6/au439n/C8Ox/TN01m2axlPLH8CgOL9xQAs3+0NhQpYgCeWP0HQBZm2aRrDC4bTt31f32IXEUkUSsxEEkS9q8fhDV0IuuABU2LUu3qihzXUNdQRdEEAHI6GYEPrBisikqCUmIkkiIEdBnLLqbfwdvHbnN/rfC7tdylV9VWUVJbw3dHf5dGlj7Jm7xoCBDij+xn0ze3LGxvfYHLPyQzoMMDv8EVEEoISM5EE8oUhX+ALQ74Q3r99/O3h7fkl8wEIEmTWtln86JQf8bnBWuJRRKQ1xeV0GSLS+s7tdS4AqYFUzux+ps/RiIgkJrWYiQgAPzrlR1zc92I6pHWgS3YXv8MREUlISsxEBADnHBV1FaQnpfsdiohIwlJiJiIA3D7rdv696t8kWRL3Tr6XCd0m+B2SiEjC0RgzEQHggy0fANDgGpi5dabP0YiIJCYlZiICwGldTgMgyZIY3228z9GIiCQmJWYiAsDHpR8DXovZvB3zfI5GRCQxKTETSWBLdi5hWvE06oP1ZKdkh49np2RTWlnKGxveYEfFDh8jFBFJLBr8L5Kg3i5+m+9N+x4Ox6V9L6UwozB8rkNaBz730ucoqSohLz2PFy5/gdz0XP+CFRFJEGoxE0lQ83bMC6+dOW/HPJbtXhY+N3PbTEqqSgDYVb2LDfs3+BGiiEjCUWImkqAu7Xsp7VLbAXDN4GsY13Uc4A3+v7TvpRR1KgJgZMFIhuYN9S1OEZFEoq5MkQQ1JG8Ib332Larqq+iY3pFL/nsJ4A3+n7tjLg+d/xA7q3aSl55HUiDJ52hFRBKDWsyk7do8D+Y/DlV7/Y6kzcpIzqBjekcA8tLzwsfzM/IJWIDCzEIlZSIirUgtZtI2Fc+Ghy8E1wBzHoSvv+t3RG3eXWfexWNLH6Mgs4BrBl/jdzgiIglJiZm0Tds+9pIygO2LIBiEgBqAm6Mws5AfnvJDv8MQEUlo+ksmbdOAcyAlw9vue5aSsibYUbGDa166hsnPTmZa8TTeKX6Hyc9O5pqXrmFHxQ7umHUHE/81kV/O/CXOOb/DFRFJCGoxk7Zp7TtQV+Vtr39PLWZN8OTyJ1myawkAd829C+ccJVUllFSV8JcFf2Hq2qkAPLfqOa4ccCXD8of5Ga6ISELQXzJpm3J7R7bbdVFS1gTdsruFt7tkdaFLVpfwft/2fclI9lok05LSyM/Ib/X4REQSkVrMpG1KTo1sB1L8i6MNS02KfIbJloyzSHdlx/SOPHjeg7y7+V3O6HYGnbM6+xGiiEjCUWImbVPpysj2ng3qymyCtXvXhrc3lm084Ny6fev41IBPMaJgRGuHJSKS0PSXTNqO138KtxfAY5dD7wmQkukd73cWbHgf7uwDdw+CLfP8jTNOBV2QH737I0Y/Pppb37+VM7qdQXLA+242oduE8Mz/yYFkJnSdwK3v38qox0fxo3d/xOayzVz2wmWc+uSpTFkzxc+3ISJyQlOLmbQN5SUw815ve910mHUf1FV6+2unQX0NVO329j/4E1z9uB9RxrXFOxfz2obXAHhp3UvgoD5YD8AHWz4Il6sP1jNl7RSvDPDahtdIS0pj/b71APxlwV+4vP/lrRy9iEhiaHaLmZmNNbO/mtkiMys1s2Ize8XMvmlm7WMRpAhp7SCrwNu2JOheFDnXoTcUDI7sR29LWJesLmQme62M2SnZB6x/2S+3H33b9w3vD+k4hOyUbAAykzM5Ke+kSNn2/VopYhGRxNOsFjMzexXYCkwB7gBKgHRgIHAWMMXM/uCcm9rcQCXROWioD20Gob46cipYBxf8BjoNhaQ0OFmz1h9KYWYhj134GDO3zmR8t/EM6DCATlmdKK0q5Yr+VwDw39X/pTCzkPN6n8dpXU/jwy0fMrbrWAZ1HERhZiFbK7aGy4qISOw1tyvzOufczoOOlQPzQ4/fm5nus5fmqymH6j2hHQc7lkbO7d/qtaIV3eBLaG3JoI6D6N2+N2lJaQCc0+scGoINpCR5d7ZePejq8NqYAzsMpFe7XuGyk3tN9ifoFmZmRcAZQFegClgCvOWc2+1rYCKSkJrVlXlwUmZm7cysY+PjUGVEmiS7AM68BTI6wuBL4LSbIoP/+5ypOzKPQV2wjv95638oeqKIb7/9bVbvWc05/z6HU548hX+v+jf/XvVvTnnyFM759zms3rOab7/9bYqeKOJ/3vqf8Fi0E4mZXW9m84FbgQxgJV6r/wTgTTN71Mx6+hmjiCSemAz+N7OvA7/C+7bZOBmSA/oe9kkix+usW70HwOz7I4P/103TdBnHYOnOpczYMgOA6Zunk5WSRWlVKQAPLX4I5xwNroHSqlL+ufifTN88HYAZW2awdNdSTi442a/QW0oWMN45V3Wok2Y2EhgAFLdmUCKS2GL1l+yHwEnOud7OuT6hh5Iyia2tC+DVW2DZVOgyAjDveP5AJWXHoHtO9wMG/4/uNDp8rl9uP/rlRgb1j+o06oDB/12zuvLk8if5/dzfs6NiR+sG3kKcc389XFIWOr/QOfd2a8YkIhKr6TLWApUxupbIJ9VWePOXVe+D2X+H824n3DhbU+ZraG1FdX01NQ01ANTU17Crelf4XFlt2QELle+q3kVNfahsQw3/XfNf7llwDwDzS+bz5EVPtmLkLcvM+gDfBnoTVSc65y7zKyYRSVyxSsxuBT40s9lATeNB59zNMbq+JLq6aqjeH9pxsHt95FzFTq8rs7YMLABpOb6EGK/2Vu8lIyWDfTX7aHANANS5OraWbw2X2V29+4DEbFv5NupcHQANruGAsjsrT7hhoy8ADwEvAkF/QxGRRBer/p9/AO8As4B5UQ+R2MjsCJ1Cc2mltfemxAgtsk2vcbDsBfhdP7irP6x+y7cw482Dix/kjGfO4Nx/n4uZUZhRCHhzml3Q+wKSzLsD85ROp3Bq51MBSLIkzu99fnh9zMKMQi7ocwHJ5n2PK+pcdIhXatOqnXN/cc5Nc8692/jwOygRSUyxajGrd859P0bXEvmk8h2wY4m3XbMP5j0C9aHhQeumQ0OtN59ZsA7mPQwDzvEr0rjy5HKvy3FPzR6eWPYEJVUlAGyr2MbUtVPDLWgfbv0QF+oabnANTF07le0V2wEoqSphypop1DvvzsyZW2e29ttoaX82s9uANziwxX++fyGJSKKKVYvZNDO70cy6HDxdhkhMZOZB+x7edlIaDDrfm7sMoPMw6DU+UrbXuNaPL06NLvQG+BvGhG4T6Jju/bMszChkbNex4XKD8wYzJG9IeH9s17EUZHgrLXRM78iEbhOw0M0W0TcNnCCGA18Dfgv8PvS429eIRCRhxarF7POhn7dGHdN0GRI79TVQERqs3lADJSsg1NpD2Q44+6fQ41RISoG+k3wLM978duJvuXDThXTO6syw/GGM7jSahSULGd1pNC+vezlcrrSyNDLRDd64tH9d8i/m75jPyMKRdM7qTK92vdhesZ0ze5zpwztpUZ8C+jrnav0OREQkJomZc65PLK4j8gn7tnjJViAZGqKWYYoegF5b7g3+73RSpBVNAEgJpHBOr0i3bueszlzQ5wLAuxOzUXld+QHP21+7n8LMwnBZgGH5wxiWP6yFI/bFx0Au3uSyIiK+iklXZmjB8tyo/Q5mdlMzr5lrZs+Z2QozW25mY4/+LDmhzH0Y/ngS/GEobJoN+YO842k5MORTkOwtFUTXMfDxU17ZPw715jmToyrqXBQe/D8yfyQn53sTyCZZ0ok4wP9IOgErzOx1M5va+GjOBVV/iUhTxaor82vOub827jjn9pjZ14C/NeOafwZec859xsxSgczmBiltzMKnAOcN6J//OJQu947XlMHCJ7zuTYCNHwBBb3FzF4RFz8BQTUF1NB9s+SA8+H/29tkHDP6fsWUG47omzFi921rgmqq/RKRJYjX4P2Bm1rhjZklAalMvZmbtgIl4cwvhnKt1zu1tbpDSxvQ4NbLdZyJ0CPWYp2TA0Mu97k2ArqOgx2mRsj3VOHEsxnQaEx7QP7xgOMPzhwPejQJjOo3xM7TWVgzMjpom4yNgY1MvpvpLRJojVonZ68CzZjbZzM4GngZea8b1+gKlwMNmtsDMHjSzrFgEKm3IrjWR7ZJlsD80yWldFWz6CBoX1t69/sCyO1e1Xoxt2Lq968KtZMX7iyne7y0J6XCs27fOz9Ba2785cGLZhtCxplL9JSJNFqvE7MfA28A3gG+Gtv9fM66XDIwG7nPOjQIqgFuiC4Sm55hrZnNLS0ub8VIStxpqD9xuvAsToD7qRoBg3SfLylHVBesO2G6cpwygNrE+w+ToOzJD201u8ecY6i9QHSYihxaTxMw5F3TO/d059xnn3JXOuX84F/1X9LhtBjY752aH9p/Dq+iiX/N+51yRc66ooKCgGS8lceuiu2HA+V635Tm/hI6h2VdSs73jSaG/nZ2GwYV3wsALYMhlcM4vfAu5LfnSSV/isn6XMbbLWO6YcAeDOwwGIEAg3K2ZIErNLDwo0cwuB5qz7tRR6y9QHSYih9aswf9m9iJwP94g17qDzvUFrgc2OOf+eTzXdc5tN7NNZjbIObcSmAwsa06s0gbl9YMvPOtt798W6aKsLYdF/4q0jG2aDe17wuef8SfONiorJYs7JtwR3p9X4q2iFiTIrG2zOKP7GX6F1tr+B3jSzO4N7W8GrmvqxVR/iUhzNPeuzK8B3wf+ZGa78cZVpAN9gDXAvc65KU289rfxKstUYB3w5WbG6qvZ63Zxzztr6F+YzU8vHkJKUqx6kRNEdiHkDYBdqyE1C0ZcBYuf9ZKzHqfCvk3w+k+8Oc8u/J1XXo6osq6SO+fcyY7KHXx39HcZVTiKbeu3EbAAp3U+jWdXPssbG95gcq/JXDP4Gr/DbTHOubXA6WaWDZhzruxozzkGJ1T9JSKtp1mJmXNuO95Ysv9nZr2BLkAVsMo5V9nMay8ETpjJlG56cj67Kmr5YM1OBnTK5gun9fI7pLalpswb5A9QWwFr3oq0mO1YBq/9GFa+6u2nZMIVzZmpJTE8uvRRnl/9PODN/N94I0DQBZmxdQZPrXgK8KbSOKXTKfTv0N+3WFuCmV0LPOWcCwI458oPOt8P6OKc++B4r32i1V8i0npiNY8ZzrkNwIZYXe9EsHzbfiprGxjTqwNJgfBsIiRHbctRbJoDKemQ2xMCSdAQGqAeiPrVTUo+cMZ/C4Tu3AxNStuuS+vG3EYELNJqm2RJOBdZkykpkETAAgRdEMMIBE7IFt48YIGZzQPmEWnx7w+ciTfO7BOD9kVEWlLMEjM50H8XbOb7z36Mc/DdcwbQJz+LkrIakgwGdsrxO7y24d27YNqvve3L/wrtusKe9ZCc4c1VFkj2pszo2A8KBsGKl7yyBYPg0Uth8xxIbw83vgsdtWrYwb500pfYU7OHksoSvjXyW/xt4d9YsWcFhnFKp1MY0nEIb2x8g7N7nE3f9ifesrfOuT+HxpWdDYwHRuC1+C8HrnPOFfsZn4gkJiVmLWT6ylIaGyCmryxl2bb9ADQ4+Gj9bkb17OBjdG3E6jci2yte8ZIygPoqWDYlMo/ZlnmR5ZkA1r/nJWUA1ftg81wlZoeQnpzOLadGGoQW7VwEePOYzd0xlx+d8iMu7XepX+G1itDd42+GHiIivjsh+yfiwWUndyUlyTCDT4/uxpWjuwHQPiOFyUM0MP2Y9J0U2jAYdAEUDPF203Jg5BcgOd3b7zUe+p0VKTvwAugUmu4hNcs7L0d1Wmdv9YQkS0qk5ZhEROJKTFrMzGw88AugV+iaBjjn3InX/3GMJg/pxIwfn01NfZAeHb1l8r56Rl/ys9Non5Hic3RtxKbGaaAcrH8fSld4uzVlsHxqZJLZLfO8ZZqiy5aEZieorYCt86F919aMvE1qbDFrcA3ML5nP+G5KaEVEWlusujIfAr6HN4C2ORPLnlA27q6koqae7h0yqKkPsnpHOfUNTonZsUrLOXA7JQPqQjf7ZuRGncs+sGx6O69sbXnkvBxVVkpk1aDsFH1mIiJ+iFVits8592qMrnVCeGp2MT/572IAvn5mX5Zt3c/7q3eSHDD+dePpFPXu6HOEbUC7bpHtjn0gMw/2VUJSmjfbvyV5yzTldIH23SNlO/SCrAIvMQukHngdOaw7J97JA4seoDCzkGuHXut3OK3GzNKAK4HeRNWJzrlf+RWTiCSu5s7837jMyDQzuwt4HqhpPO+cm9+c67dls9fvimyv2x0e/F8fdMzbuEeJ2bHYuiCyvXGmN4ksQEONN2dZ46pf2xcf2GJWPDtyo0CwFrYuhPwBrRJyW9Yjpwe/Gp+QucgUYB9ei3/NUcqKiLSo5raY/f6g/egJFR3ebegJIRh0/PSFxcxat5svnNaTSYMKePHjrQQdnDkwn7ysVN5eUUJqcoAzBuTzsxcWM2PNLq4+pQeXndyV7z6zkP1Vdfzfp4czWndseopu8MaPJaXCKV/15jFbPtWbm+yUr8CS/3h3aPY9E0Zd541JCyR7ZdOyvfMd+0G/hPk1lKbp7py7wO8gRESg+TP/nwXeupjOuXXR50JrZSaM6atKePojr0XnjleWc8nwLgRD02XMXLub5aEWs9r6IE/NLuaJ2d4USb99dQUrtu/no/W7AfjVi8t44ZsadA3AyGtg4PlespXezrvzsmw7ZOXDgie8pAy81rRr/+slYIEkb+6ygefBeXd43Z/Jqf6+D4l3H5rZcOfcYr8DERGJ1Riz54DRBx37NzAmRtePe3lZaZiBc5Cdmkxhu/TwufycVDrsT6Wsxpt3q2uHjHDZrNQkOuVElc1O+8S1E1pmVJevWWQW/+i1MLPyIRA4sCxoxn85IjNbjNeynwx82czW4XVlNt5VPsLP+EQkMTV3jNlg4CSgvZl9OupUO7ylTRLGyT1y+evnRzN73S6uGNWNoV3bkZuRQnltPTed2Z/rHppN4zTiI7vnct8XxjBz7U4uG9mV4d1yaZeRwv6qOr5+Zj9f30ebMfhiuOwe2L7E69YUOX6X+B2AiMjBmttiNgivcssFoqcILwO+1sxrtzkXDe/CRcMjrTTfnhwZcL5yR1l4e8nWfdw4sR8XDOscPvbNs06sBaJbxegv+h2BtGHOuY0AZva4c+666HNm9jhw3SGfKCLSgpo7xmwKMMXMxjrnZsYophPC2tJybnpiPpV19fz+syOZOLCAN5ftIC05wIT+BXznXwuYsWYnnzulJz88f5Df4bY9NWXw7Be9FrNJt6jVTJrjpOgdM0sigYZhiEh8idUYs8+b2TUHHdsHzA0lbwnnr9PWhFvJfvfaivB0GTX1QR6ftYEpC7cCcO+0NVxzWk+65WYc9lpyCIuegbXveNuv/hjGfNkbZyZyjMzsVuAnQIaZ7W88DNQC9/sWmIgktFj9JUsDRgKrQ48RQEfgK2b2pxi9hu+CQcd/F2zmXx8VU9cQZFd5Df/8YD0z1uwEYEHxHh58fx2bdlfSPSrR6tI+nc5RNwMMKMwmYN52dloyOenJvPjxVp6cvZGa+gb2Vdbx8Iz1TFtZ0qrvr03J7RXZzumspEyOm3PuN865HOAu51y70CPHOZfnnLvV7/hEJDHFqsWsP3C2c64ewMzuA94AzgVOmFvQ73lnDX98axUAS7fuZ86G3azYHmoVu3I4P31hCXUNjvvfW8fnT+0Zfl5qcoDU5EjikJmaTMCMoHMkB+CJmRv53esrAZi3cQ/FuyqZu3EPAPdfN4bzToqMRZOQ5Kh7S5J1J6scv6gJsv8dtR2WyBNki4h/YpWYdQOy8LovCW13dc41mNkJM5P2qpLIAP6VO8pYU1Ie3p9XvJe6Bm/ispKyGlZEDfZft7OCDbsqwvsLivdQH5rkbG9VPUu37g+fW7WjjI27KsP7q0vKOe+AETACRBY0B9i9HoJBtZrJ8WqcIDsdb3Lsj/G6MkcAs4EJPsUlIgksVn/JfgcsNLOHzewRYAFwt5llAW/F6DV8d/agQgLm1dxnDyrgjAH5AGSkBLjmlB7khhYnH9qlHRcN6xLurpw0qJAzBxQAkJYc4JpTe9Ixy5v0dGCnbC49uQtJjWUHFnDmQK9sanKASYMKWu8Nxrs3fga3F8JjV0Dv8ZCS6R3vd5aSMjluzrmzQpNkbwRGO+eKnHNjgFHAGn+jE5FEFZMWM+fcQ2b2CnAqXt7yE+fc1tDpH8XiNeLBOytLwrP5T1tZyrxQd2NVXZCn52xib1UdAMu27eeVJdvCZd9dWXLA4P+nP9rE7opaAFbtKOfFj7cRamxj+qrScItZbX2Q6StLOalr+1Z6h3GsvAQ+vMfbXjcNZv0d6kIti2unqcVMmmNw9Kz/zrklZjbSx3hEJIHF8i9ZACgFdgP9zWxiDK8dF/oXZEe2C7PpW5AV3h/ZI5ck85q9OmalMrBTpGzvvCx65UXKjujRnuRQc1r7jBSGdIkswN2/IJv+hZHn9ot6zYSW1g6yQ2PtAsnQLWpIUIdeSspiYF/NPh5Y9ABT1iTcjdTLzexBM5tkZmea2QPAcr+DEpHEFJMWMzO7E7gaWAoEQ4cd8F4srh8vvjN5AN06ZFBTH+Tqoh7sq6rjvws2M6hzOwqy03B4zV4NQUdDYxNY434wGN6vbwjinHc+6BxfHNuLbh0y2F9Vz9Wn9KCqtoHn5m2mT34W5wzt1LpvMl6lpMMNr3mLmPc4DWojY/YINvgX1wnkR+/+iJnbvOkIa4O1fHbgZ32OqNV8GfgG8J3Q/nvAff6FIyKJLFaD/68ABjnnTpiB/ocSCBhXFfUI7xfkpHHjRG8JpTeX7Qh3Xe6rqmNd1GD/zXur2LKnOry/YltZuOuyrLqe/dX1XH5yNxqcIyUpQHpKEl+bmFBrwB+bjn1gfOhv55wHI8f3b1FXZgxsKtsU2d6/6QglTyzOuWrgj6GHiIivYvWXbB2QEqNrtUmn9O5A+6jB/xee1Dk8+H/igHwmDvRuFEhLDnBVUQ86ZoYG/xdms7uilqI73uKk217nxY+3HvL6cpDhV0HvMyCjA5z/GyVlMfCDoh+Ql57HkI5D+PyQz/sdToszs2dDPxeb2aKDH37HJyKJKVYtZpV4d2W+DYRbzZxzN8fo+nFv1rrd7Isa/P/yom0H3CiwPGrw/1MfFbO7MjT4v6Scv09fG74Z4O/vruXSk7u2/htoa9LbwfUv+R3FCeWcXudwTq9z/A6jNTV2XWoxcxGJG7FqZpgK3A58CMyLeiSMAZ2ySQtNItstN4Ph3SN3Ug7slM2A0IB+A8b2zSMjJQmAzu3SGd2rQ7jsMN2BKdIqnHPbQpuTgVTn3Mboh5+xiUjiitV0GY+aWQbQ0zm3MhbXbGv6FWTz35vGs3DTXs4eXMjjszaEz5XV1FNeXQ94d0SkpgR44ZvjmbdxD5MGFdA1N4PeeVnsr65Ta5lI6+sNXGtmvfC+UL4PvO+cW+hnUCKSmGJ1V+alwN1AKtAnNAfQr5xzl8Xi+m3FoM45FLZLIz87jR37I/dB7CyrYWeoqxJgx/4aLhzWhbzsVPJCE83q7ksRfzjnfg4Q+nL5Nby5F/8EJPkYlogkqFiNMfsF3uSy0wGccwvNrE+Mrt0m7K+u46q/z2TF9jIuGt6Zc4d04vn5mwk6GNcvj/YZKby1vIS05ACje7Tnsns/YOnW/Zw7tBP/uHYMgcY7BUSkVZnZz4DxQDbeqiU/xGs1ExFpdbFKzOqdc/vMDkgu3OEKn4g+XLMzvKD5K4u3U9/gIjP/r9p5wMz/T320Kbw+5pvLdrB5TxU98zJ9iVtE+DRQD7wMvAvMCk2hISLS6mI1+H+JmX0eSDKzAWZ2D96NAAljaJf2ZKV6PR9987MY2z8vfK6oVwdO6tIOADOYNKiAnDQvJ+7ZMZPCdmmtH7CIAOCcG413A8BHwLnAYjP7wN+oRCRRxarF7NvAT/GmyngaeB3vLs2E0TMvk5dvPoPFW/YxoX8+HbJSGdQph8qaBiYPKWTCne8A4BzUNgR5+eYz+HjzXsb1yyM9RUNZRPxiZsOAM4AzgSJgE+rKFBGfxOquzEq8xOynsbheW9U7P4ve+ZE1MQd1yqGuwWFmlIXuygTYX1VPYbs0hnVrT25oolkR8c2deF2YfwHmOOfqfI4nLu2uqKW6roGuuRl+hyJyQmtWYmZmL3KEsWSJdldmtGkrS/j64/Ooawhy++XDGN0rl+krd5KaFGBIlxwu+sv7rCutYHz/PB674TSSNPhfxBfOuYv9jiHefbhmJzc8OofquiA/u3gIXz1DS8aJtJTmtpjdHZMoTkAvLNhCbb23cPm/520Oz/xf2xDk2bmbWVfqraU5Y80uNu+ppFde1mGvJSLip6kfb6W6LlSfzd2sxEykBTVr8L9z7t0jPWIVZFt0xoCC8PbEAfmMDK0EEDDjwpM60zE0f9mAwmw6t0/3JUYRkWMxYUA+jTfdnzEg399gRE5wsRr8Lwf5zJju3uD/2npO65vHaXe8BUDQOXZV1vLad85g6bb9jOnVgbRkDf4Xkfh1yYiu9MnPYl9VHeP6KTETaUlKzFpQ9HqZdcHIULza+iCF7dIpbKeWMhG/aIzs8WmfkUJKUqxmWBKRw1Fi1kruvWYUf3lnNf0Ls7mqqIff4YiIxsges2krSrjx8bnUNTi+f+5Abp48wO+QRE5YuiuzlYzrn8+4/uoCEIkXiT4O9ni8vnQ7dQ1eVf/yom1KzERakO7KFJGEZmYDgN8AQ4Hw+ALnnG49DBnbL49n5mzCAaf26eh3OCIntGYlZi39jdPMkoC5wBbn3CUt+VoikrAeBm4D/gicBXwZaPbEgidS/bVky75w10jj1D8i0jJiMpIztD7mc2a2zMzWNT5icOnvAMtjcB0RkcPJcM69DZhzbqNz7hfA2TG47glTfwWiJsAOaDJskRYVq1tsHgbuA+rxvnE+BjzenAuaWXfgYuDBZkcnInJ41WYWAFab2bfM7FNAYXMueKLVX0M654S3+xdk+xiJyIkvVolZS3zj/BPw/4DgoU6a2Y1mNtfM5paWljbzpUQkgX0XyARuBsYA1wFfauY1/8QR6i9oW3XYrHW7w9vzi/f4GInIiS9WiVlMv3Ga2SVAiXNu3uHKOOfud84VOeeKCgoKDldMROSInHNznHPlwH7gZufcp51zs5p6vWOpv0KvG9d12O/fWMnl937A4zM3cMaAfBp7MMf2y/M3MJETXKzmMfsukW+ct+O1ljXnG+d44DIzuwjvLql2ZvaEc+7a5gYqIhLNzIrwhmPkhPb3ATccLbE6gjZff320fjf3vLMGgEVb9vGZMd1pnCN7QfFe/wITSQAxaTGL9TdO59ytzrnuzrnewOeAd9pSpSYibco/gZucc71Ddc438RK1Jmmr9VdNfQNvLN3Oyu1lZKZGlolLDhg5aZHv8FlpSdQ1BHlz2Q6WbdUdmuKfXVW7eGvjW5RUlgCwYvcKphVPoy5Y53NkzROTFrMW+MYpItJaypxz7zfuOOc+MLMyPwPywzeemM87K0pIDhj3fn4UmalJVNY20CEzlX5RA/67ts/gW0/N5/WlO0gKGI/fcKomz5ZWV15bzude/hzbK7aTl57HT079CT96/0cEXZDze5/P3We23WlWY9WV2fiN830AM5uAl6iNaO6FnXPTgenNvY6IyGF8ZGb/AJ7GW8nkamC6mY0GcM7Nb+qF21L9NXPtLgDqg463lpdQWdsAQElZDR+u3Rkut3jLPrbtqwagIej4aMNuJWbS6jaVbWJ7xXYAdlXvYvrm6QSdd6/NnO1z/Ayt2WI1+P8T3ziBhPvGKSJt0khgIN4ks78AhgDjgN+TQKubfHFsLwDys1O5flwvOmSmANAnP4uLh3cND/4/Y0A+E0KJWEqScebA+LtxQU58/Tv0p6hTEQDD84fz+SGfJzctF4CrB13tY2TNF6sWsxb7xiki0pKcc2f5HUM8uPWiIXxlQh/aZaQwv3gPeyq9cTrrd1bw1ood4cH/s9fvDreY1TU4Zq7bxaieHfwKWxJUSiCFB897kNKqUvIz8kkOJPP6la9TWV9JfkbbbsGNVWI2MvTztoOOj8NL1GIxi7aISMyZWSfg/4CuzrkLzWwoMNY595DPobW6wnbeUqEds1IJGAQdpKcEKMwOLyFKx8xUauqClJbVAJCfleZLrCJJgSQ6Z3UO7y/fvZyt5Vs5t9e5pCenH+GZ8S0miZm+cYpIG/YI3pjYn4b2VwHPAAmXmDXKSU8hNSlAdX2QrNRkCtulhs+1z0ihsq4hvJ+fnXqoS4i0qmnF07h52s0AvL7hde6dfK/PETVdrNbK7GRmD5nZq6H9oWb2lVhcW0SkheU7554lNEu/c64eaDjyU05sa0rKqa73BlLvqqg9YLb/lTvKWLUjMoR40ZZ9rR6fyMGW7FoS3l68c7GPkTRfrAb/PwK8DnQN7a/Cm3RWRCTeVZhZHt6wC8zsdOCEzzbW76zgoj+/zxm/e4dZ63bx3wWbOe3/3uKa+2cxsDCbjlleS1i/giwuHdGVpNDg/0mDCpg4wBvwn5JkTBpYwI+fW0TRr9/i/145IdZslzbosn6XUZhRiGHcMOwGv8NplliNMct3zj1rZreC943TzBL6G6eItBnfB6YC/cxsBlAAfMbfkFrefdPXsGybN0Hsb19dwdrScsqq69mxv4a/vLOa3RW1AKwtreCVJdtpCA3+f3/1TrZHDf7/15xinpm7GYD731vHVUU96F+ohc6ldfVq14s3PvMGNQ01ZKZk+h1Os8QqMUvIb5wi0vY55+ab2ZnAIMCAlc65tj11+GEs2ryXuRv2cO7QTnTLjfzx6tI+ncraesqqywHoV5BNUsBoCDqyUpPolXdgWfC6OAH6FmSTHDDqg46MlCQ6ZKbw2pJt7Cyv5TNjulMfdDw/fzPdcjOYPKRTK77bOLd/KyybAl1HQ8/T/I6mTVq3bx0fbvmQU7ucysAOA5mxdQZbyrdwad9LyU5tu18OYpWYJeQ3ThFp+8zss8BrzrmlZvYzYLSZ/fpEm+ZnbWk5n/n7TGrrg9z37lq+dHqv8Lm05ACpSZGRLTlpyQTwBtolB+yAJZpSkw4sm52WQsAMcCQH4IUFW7n95WWAN2nt/uo63l/tTVB7zzWjuPTkriS8YAP88wLYuxEsCb72NnQd5XdUbcre6r1c98p17K/dT2ZyJj8o+gG3z7odgHeK3+GB8x7wOcKmi9VamfOBM/Gmx/g6cJJzblEsri0i0sL+1zlXFlqx5HzgUeA+n2OKuQ07K6gNDegvLath2fbIOpfrdlawfmdFeH9e8R7qQhOX7auuZ8mWA8tu2BUpu6B4D7UN3nXLahpYtGVv+NyK7ftZuT1yo0D0dkKrrfCSMgDXAKUr/Y2nDdpRuYP9td7vZWV9JYtKIynH6j2r/QorJmJ1V+ZngQzn3FLgCuCZxsllRUTiXON42IuB+5xzU4ATbg6I8f3zGd8/j4DBF07ryTfP6k9hThpZqUl8++wB/OC8QaQkGQMKs7lpUn/yogb/Xz6yG0mhqf8nDSrk++cOJDUpQN+CLG6e3J9zhhQSMPj0qG58+6z+dMvNID0lwHfOGeiVTQ7QOy+Tq0/p4edHED/S20GPUPdlWg701YxTx2tA7gC6Z3cHoDCzkCv6XUFKwFutYny38by98W3GPT2Oi5+/mA37NvgY6fEz51zzL2K2yDk3IvSN8zd4y5j8xDnXKh3nRUVFbu7cua3xUiISJ8xsnnOuKAbXeQnYApwDjAGqgI+ccyc399rHqjXrMOccZnbI/cbt91eXct1DH4XLXHpyF178eBsAQ7q049XvnHHE6xzuuhJSUwa/6R7Z/9T9cHLbXkaota3cvZLPvBgZMXV5/8uZsmYKAHnpeXRI78CavWsA+Nygz/HT0396yOv45Uj1V6ymy0iIb5wickK6Cm+6nwucc3uBjsCPfI2oBR2cIDXul5RV89dpa3h50TZ6dMgkJTQ/Rrv0ZAZ1ygmX75WXyc7yGv46bQ1TP94KwLyNu/nL22tYunXfJ657qNdMSPU1MPNvMPt+CKRATmjGegtAXn9Y/Sa8+zvYs8HXMOPZ/tr9PLj4QaasmUJ+Rj4ZyRkApCWlMbTj0HC5Hjk96JETaZ3t074PK3ev5L6P72NByYJWj/t4xWrw/5bQWpnnAHeaWRqxS/pERFqMc64SeD5qfxuwzb+I/PHlh+ewdKs3ZucXlw0lGOpNaQg6GoLBcDnnHF97bC4LivcCsLO8ht++uoLa+iAPvr+Od//fWeE50CTK6z+BOQ9623uLofEzdUHYthBe/gHgYN6j8N3FENCf0IP9+L0f88GWDwD43ujv0djjF3RB6oP14XJBF6QhGJmxq6Kugutfu57yunIeWPQAUy6fQo928dutHqv/8wn1jVNE5ESzcVdleHv5tjJC4/mpqG1gTWlksP+m3VUHlF25bX/4poKymnp2V9S0TsBtze51ke1dq6GiJLK/fRGh2aZg/xZo0Gd4KJvKNoW31+xdQ3VDaD69YB2r90YG/G+t2MrWiq3h/bV711JeVx4uu71yeytF3DSxuiuz0jn3vHNudWh/m3PujVhcW0REWt7EAfmAN3XGVUXdDxj8f8mILuHB/xMH5jMhVDY1ybjmtJ5cMbIr7dKT+dLYXvQvzDn0CyS6/ufgTZNnMOjCAwf/F30ZGufd6jUOUjL8ijKuje0yFoBkS+aSvpdEBv9nFHJZv8vCg//HdRnHuK7jAEiyJC7qexGfH/x5clJzuLDPhYwujO97E2PVlSkiIm3Y9FWlANTUB/nXR5vCE8iuLa3gxY+30hCaPmP6ylK27/daKmobHO+u3MmfPqc5uI5q9RuEW8VWvAybZnvbNWXw0UNQ67XosHEG1FZCatuevb4lzNg6A4B6V8/UtVPZXO6tOFFSVcILa16gLujNC/3B1g/ITcsFoME18N7m9/jZ6T/j1tNu9SXu46VObBGRBFTXEOQf767l92+sZF9VHQOillE6rW9HUpO9Pw+5mSmc3D03fG5AYTb9CyJlh3TJ4b1Vpfz6pWXM3bC71eKPS9sWwes/hWVTvf1Fz3r7O1dDwZBIuc7DoX1ojJMlQZ8J3k0AALm9wTnvRoB3f+claaUrvessfs4rs/QFb397ZOHutiLogjy5/En+NO9P7KraRWllKX+c90eeWv4UQRfko20f8bs5v+OjbR8RdEGeWv4Uf5z3R0orS+nbvm/4OicXnExOitc6m56czuiCSCtY3/Z96ZfbL7w/qMMgFpYs5K45dzFji5fc/XvVv/nD3D+wrXwb+2r28Zf5f+GRJY9QH6xnUeki7ppzF+9tfq+VPpUDqcVMRCQB3fPOGv7ytjcuZ01JOeU1kcHTu8prqQ8NMqupa2BvVWSFqora+gPKri2t4PdvrKQ+6HhydjHv//gs8rPTWuldxJG6anjsMqjaAzPvhfPugDdCUzQs/e+Bc5VV7/cmmQVvgtnynd5NAOC1nL35M5j7T29/3xZY9RqUh8ZFlW2PXPfjp+H7KyC57dxs8eTyJ/ndnN8BsGTnEmqDteE7Jctqy/jHon9QF6zjmRXP8PURX+eehfcAsLBkIUkWWYFib81eakJj8eoa6thdE/lSUFlXSUpSSnh/R+UO7pp7F1X1VTy1/Cm+Perb/HH+HwH4cOuHdM3uyrRN08LX/dfKf1FRV8ETy5/guUufY0CHAS34iXySEjMRkQS0I7QQOcD2/dWUlkUGnBfvqiTUc0lVXZAte6rC50rKathZHlV2dwX1ocJVdQ3sq6pLzMSsvgqq9kb2owf7l5dAWWQwOvu3QHV02bWR7ard3jqa4bJboaL00Net3A311W0qMSupjNz0UFJVQm1DbXh/a/nWcHdkbbA23FUJXnLVOIYMYEv5FmqD3nMbXANbyreEz+2s3km9i3x52Fqxlap673e43tUfcBNBSWUJyYFIKrS9YjsVdV7SHHRBdlbtVGImIiIt71tn92fljjLKa+r52cVD2LavmjtfW0Hf/Gx+dMEggjjeW7WTzxZ1Z0iXdkz9eCtBB+P65jG6Vwf+75UV9MrL5P+dP4jkQIB3VpTwqVHd6FfQdhePbpaMDtB5BGz/GNLawagvwMdPQV0V9BwL/SbDWq9VhgHnesnW5jneoP+R18LH/4K6Cuhxqld21ete2f5nQ105bPwQUrJg7Le8pG7THBj7TW8VgTbki0O/yOKdi9lZtZNbTrmFelfPbz/6LZ2zOnPz6JvJTs3mzY1vcm6vc7lh2A1sLt/M9ort3HLqLSRbMv/30f+Rn5HPN0d+kznb57C1YisFGQVc1OcipqydQn2wnlM7n8oV/a/g17N+TYf0Dtw86ma6ZHXhpbUvMaHbBG4edTNbK7ZSvL+Y7xd9n47pHfnlzF+Sk5rDzaNvplf7Xryw+gXGdh3LaV1af4H5mMz87zfN/C+SeGI18388iPc67NbnF/H0R14rw+DOObz23Yk+RxSHKnbCXZFxTYy6DhY8Htox6D0BNrzv7fY/F9a8eZiyhJK4t73tvmfBummRc5f+BcZ8qUXeQluyYvcKPvviZ8P7l/W7jKlrvbF9HdM78u7V7/oV2jFpjZn/RUTkBDW6Z4fw9pheHY5QMoGl50L+IG87JdNrFWscE1U4GLpG3bnavQg6hAayB1JgwHnQ2J2W1x+6jYmU7TYa8geGyiYdeJ0T0PRN07ntw9t4d9O71AfreWDRA9w+83a2lG9he8V2fj3r1/z9479TmFlI+7T2AGSlZHF6l9PD1xjUYRAllSXcMesO/rbwb9Q11PHh1g+57cPbeGPDGwRdkEeWPMIvZ/4yLtfRVFemiIgc0WeLetCjYyZ7K+s4b2gnv8OJT0nJcMNrsPYd6HIy7FzlDeyH0BizHZGy+7dB5U5vO1jnlW2cub5i50Hj0bZBeWiMWbDBG/zfZUTLvx8fbC7bzPemfc+bDmPNVG4YfgP3L7ofgOW7l5MSSGF+yXwAahpqKA9NMVJVV0Xx/uLwdXZV7eIn7/+E2du9KUmq66t5cvmT1AZreWHNC3xjxDf468d/BWD+jvlMuWJKa77No1JiJiIiR3V63zy/Q4h/mR1heGhh7U2RReCpKfcG9Teq2h25KxOgPCppqy337uxsVL03MscZHHjuBFNRVxEetF/v6tkd9Zntq9l3wOD/3dW7aQglvkGCB9yVWVZXRlIgcgfnnpo94RsFgi7IzuqdB1w33qgrU0REJNZ6joXkdG+7WxH0OSN0wrztxlav1CwYdpXX/QleV2WvCZHr9BoPV9wHnYbDqGth2Kdb7S20tkEdB3HTyJsY0GEAN428ie+O+S5n9TiLIR2H8Itxv2BUodeNm2RJnN39bLpkdQEgLz2Pc3qcQ7J5bU0jC0eGywYswNk9zuYHY37AwA4DuWHYDXx/zPc5r9d5DOk4hF9P+LU/b/YI1GImIiISa+ve8aayACieEbUouYNVb8BWb+4uaitg/qNQF1p/dPMcb5mmRmvfgeuehxGRge4nsm+c/A2+cfI3wvt/Ofsv4e2fz/g54E2P8cqGV9hWsQ2AXdW7mLpuari1bfa22eHxZ0EXZMbWGfzs9J9x/bDrw9f6/aTft/RbaTK1mImIiMRaz7GQHFrzsvcZ0CMyOJ1e4yM3CiSlwdDLISk0F1nhEO+uzUb9oiamTXBju3prZQYswFk9zqJjekcA2qW2Y1KPSRjeeq7D8oaF18o0zJcpL5pDLWYiIiKx1ukkuGkm7FrjJWYvRFqB2LkK9oUmT22ogc0fQeNEq3s2wak3Ru7M7Nm2koqW9LPTf8a5vc6lY3pHslOz2RuapHd/7X6W71qOC61FurlsM/dOvpdJPSaRm5bL4I6DfYz6+CkxExERaQnp7SG7EJJSoD6yWgL11d7dmI0auzHBO+6CSsgOIWAB8jPyaZfajuqGaoIEw+caZ/YHb9UAMyM/PZ/s1LY34bG6MkVERGJt11q4ZzT8YyL8+0vefGSNepwGBVFzng28KHKjQOGQNrXEUmv68/w/8+mpn+ai5y9ic9lmCjMKAeiQ1oFxXceF19Ic3HEw9y28j09N/RQXPX8RH2750M+wj5tazERERGJt3bTI1BbLXzxwHc01b8H2xd52XaW3GHnjjQLbFno3BKRmtWa0bcJr618DvBaxqWunUlLlrbu5p2YPr214LTx9xvyS+azd560/Whes451N7zCu2zh/gm4CtZiJiIjEWp8zIXRnIAPOj5ouA2+ZpcKTvO3kDBhxVaTFrPMIJWWHcXbPswFIDiRzYZ8L6dfeWwKre3Z3Lul7CakBr6XxrB5nMbnnZK+sJTOxe9taQkwtZiIiIrGWPwC+NQf2bPAG8j93feTctgXeTQEA9VXeupiNLWalq6C+Vt2Zh/CjU37EhX0uJDctl+453Tm186ms3LOS/rn9yUnN4cVPvUhpVSkj8kdgZpzT8xzapbajR7sefod+XJSYiYjIUa0pKWNfVb3WyjweOZ28B4BFdVBZ4JP7jQIBMGud+NqgYfnDwtuZKZnhiWQBumZ3pWt21/D+SfkntWpssaKuTBEROaLXlmznvD++x5X3fcidr63wO5y2qWBoZLvTMOjQ29tOTvO6OZPSvP2Ofb27OCVhKTETEZEjmr6yhKA3RRTTVpT4G0xbVRx1Z+D696B0ubddXwOLn/fmMwPYseTAdTQl4SgxExGRI7poeBdSk7w/F5eP7OZzNG1U30mhDfNm9u9ysrebkgmjvwhZ3tQPDL5Eg/+boLKuklvev4XrXrmOeTvm+R1Os2iMmYiIHNHEgQV88OOzqKxtoHe+koYm2TwntOGgeCZsX+rt1lVC+Tb49lzYvzWyVJMcl6dWPMXL614G4Kcf/JTXrnzN54iaTomZiIgcVWG7dL9DaNtSMiPbqVmQmgk1+yP76e29hzRJRuO6pAdtt0VxmZiZWQ/gMaAzEATud8792d+oRESOTvWXHNKFv/MSr0ASnPVTGHUtzP0ndC+C/uf4HV2bd/Wgq9lbs5et5Vv5yvCv+B1Os8RlYgbUAz9wzs03sxxgnpm96Zxb5ndgIiJHofpLPikrDy75Q2S/11jvITGRHEjmmyO/6XcYMRGXg/+dc9ucc/ND22XAckAjTkUk7qn+kmMy71G49xR44SZoqPc7Gokj8dpiFmZmvYFRwGyfQxEROS6qv+SQaivgpe+Ba4Cdq6D/ZBh2pd9RSZyIyxazRmaWDfwH+K5zbv9B5240s7lmNre0tNSfAEVEDuNI9VfovOqwRJWUCuntIvuZ+f7FInEnbhMzM0vBq9SedM49f/B559z9zrki51xRQUFB6wcoInIYR6u/QHVYQktKgetegFO+Clf8Hfqe6XdEEkfisivTzAx4CFjunPvD0cqLiMQL1V9yTLqO9B4iB4nXFrPxwHXA2Wa2MPS4yO+gRESOgeovEWmyuGwxc859AJjfcYiIHC/VXyLSHPHaYiYiIiKScJSYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEifiNjEzswvMbKWZrTGzW/yOR0TkWKn+EpGmisvEzMySgL8CFwJDgWvMbKi/UYmIHJ3qLxFpjrhMzIBTgTXOuXXOuVrgX8DlPsckInIsVH+JSJMl+x3AYXQDNkXtbwZOiy5gZjcCN4Z2y81sZSvF1lz5wE6/gziB6POMvbbymfbyO4DDOGr9BW22DmsrvxttiT7T2Gorn+dh6694TczsEMfcATvO3Q/c3zrhxI6ZzXXOFfkdx4lCn2fs6TNttqPWX9A26zD9bsSePtPYOhE+z3jtytwM9Ija7w5s9SkWEZHjofpLRJosXhOzOcAAM+tjZqnA54CpPsckInIsVH+JSJPFZVemc67ezL4FvA4kAf90zi31OaxYaVNdF22APs/Y02faDKq/5DjpM42tNv95mnOfGPogIiIiIj6I165MERERkYSjxExEREQkTigxa0Fmdr2ZdfU7jhONmf3KzM5pwvMmmdlLLRFTPDGzrmb2XBOe94qZ5R6lTJM+e2l7VH+1HNVhh6f6S2PMWpSZTQd+6Jyb63csbY2ZGd7vZzCG15yE9//jkmMsn+ycq4/V6/vtRHs/0rJUfzWP6rDYOpHey9Goxew4mVmWmb1sZh+b2RIzu9rMxpjZu2Y2z8xeN7MuZvYZoAh40swWmlmGmU02swVmttjM/mlmaaFr/tbMlpnZIjO7O3TsUjObHSr/lpl18vN9N5WZ3WlmN0Xt/8LMfmBmPzKzOaH3/MvQud5mttzM/gbMB3qY2SOhz3mxmX0vVO6R0OeLmZ1iZh+G/n98ZGY5ZpZuZg+HnrPAzM46RFwdzeyF0OvPMrMRUfHdb2ZvAI+1wkfULEf4fJeE9q83s3+b2YvAG2aWaWbPht73M6HfsaJQ2Q1mlh/1/+EBM1tqZm+YWUaozNE++95m9r6ZzQ89xvnwschhqP46fqrDWo7qr8NwzulxHA/gSuCBqP32wIdAQWj/arzb4wGmA0Wh7XS8ZVoGhvYfA74LdARWEmm9zA397BB17KvA7/1+7038vEYB70btLwO+iHdLs+F9OXgJmAj0BoLA6aGyY4A3o57b+Nk8AnwGSAXWAaeEjrfDmwLmB8DDoWODgeLQ5z8JeCl0/B7gttD22cDC0PYvgHlAht+fXTM+34nAktD+9XgTnnYM7f8Q+EdoexhQH/U7ugFvOZPeoeMjQ8efBa49xs8+E0gPHRsAzPX7M9LjgN8X1V/H/5mpDmvdzzbh66+4nMcszi0G7jazO/H+Me7B+wV508zAm7do2yGeNwhY75xbFdp/FPgmcC9QDTxoZi+HrgnebOHPmFkXvF+i9S3zdlqWc26BmRWaN1alAO/zGgGcBywIFcvG+0dQDGx0zs0KHV8H9DWze4CXgTcOuvwgYJtzbk7otfYDmNkEvEoL59wKM9sIDDzouRPw/kjhnHvHzPLMrH3o3FTnXFXz333LO8znW3xQsTedc7tD2xOAP4eeu8TMFh3m0uudcwtD2/PwKrtoh/vss4B7zWwk0MAnP3fxl+qv46Q6rOWo/jo0JWbHyTm3yszGABcBvwHeBJY658Ye5amHWj8P501GeSowGW+G8G/hffu5B/iDc26qeeMKfhGTN+CP5/C+pXQG/oX3j+Q3zrl/RBcys95AReO+c26PmZ0MnI/3R+Aq4Ibop3CINQg5zGd9DGUar1VxiHPx7ODP92DR7+dYPhuAmqjtBiDjoPOH++y/B+wATsZrSag+xteTVqD6q8lUh7Uc1V8H0Riz4xTK7Cudc08AdwOnAQVmNjZ0PsXMTgoVLwNyQtsrgN5m1j+0fx3wrpllA+2dc6/gdQ2MDJ1vD2wJbX+p5d5Rq/gXXqX9Gbx/hK8DN4TeO2bWzcwKD36SmeUDAefcf4D/BUYfVGQF0NXMTgmVzzGzZOA94AuhYwOBnnjdLdGiy0wCdjZ+a2qDDv58j+QDvD8OmNlQYHgTX/Nwn317vG+iQbzf8aQmXl9agOqvJlMd1nJUfx1ELWbHbzhwl5kFgTrgG3j92X8JNSMnA38CluL1Z//dzKqAscCXgX+HfgHmAH/HG6MxxczS8bL474Ve5xehsluAWUCf1nhzLcE5t9TMcoAtzrltwDYzGwLMDHWflAPX4n2zidYNeNjMGr9A3HrQdWvN7GrgntDgzirgHOBveJ/7Yrz/N9c752pCr9XoF6FrLwIqacN/PA7+fEPf2g/nb8Cjofe9AFgE7GvCax7ps/+PmX0WmEbb+uaeCFR/NYHqsJaj+uuTNF2GSAIxsyQgxTlXbWb9gLfxBnTX+hyaiMgRJUr9pRYzkcSSCUwzsxS8Fo5vnGiVmoicsBKi/lKLmYiIiEic0OB/ERERkTjRpK5MMxsEXIM3p8hAvAGgqXiD8FbjDfacijdxnJrkRMRX5i0vdOZBhxsHwFcBe/EmslyBN+j3P865GkREWtlxdWWaWWe8uxau4NjmE/mPc+4zTQtNRCQ2DpOYHclOvHm+/qgvlyLSmo65K9O89ag+Bj7FsU/ylt+UoESaw8xeMbNcv+OQNi0f+D3eVBBpfgcjiUV1WGI7pq5MM+uFt5zEwRPobQX+gjfR3U689aaG480qfUXMohQ5Ds65i/yOQdqEPnhfMtvjLdHyKbxJLqMnlbwUeBj4fKtHJwlLdVhiO9YWs7v5ZFL2HjDUOXenc26mc261c26ec+4R59xVQD/gv7EMVk4cZpZlZi+b2cdmtsTMrjazDWZ2p5l9FHr0D5UtMLP/mNmc0GN86Hi2mT1sZovNbJGZXRk6viE04zZmdm3oWgvN7B9mlhR6PBJ63cVm9r3DRyonKufcBufceufcQufcM865z+EtLXTw7OnXmNnFPoQocUx1mLSUoyZmoV+sg8eJ7QKudM4ddsZd59wm59yfmxmfnLguALY65052zg0DXgsd3++cOxVvceQ/hY79GW+szyl4i/Y+GDr+v8A+59xw59wI4J3oFwjNzH01MN45NxJvVu4v4C0b0805N8w5NxyvRUQE59y7wE2HOHXrIY5JYlMdJi3iWFrMDvVN8QHn3M5YByMJZTFwTujb5RlRSf7TUT8bF1Y+B7jXzBbi3e3bLrSExznAXxsv6Jzbc9BrTAbGAHNCz50M9AXWAX3N7B4zu4BPtpBIYnsaKD7o2Fgz6+BHMBK3VIdJiziWMWajDnHs7VgHIonFObfKzMbgjUf8jZm90XgquljoZwAY65yrir6GeQvHHemOOQMedc59orXDzE4Gzge+ibco7g1NeiNywnHOBc3sPby1DxsFgJOB6b4EJXFHdZi0lGNpMSs4xLHNsQ5EEouZdQUqnXNP4I1hHB06dXXUz5mh7TeAb0U9d+Rhjh/covE28BkzKwyd72hmvUJjNwLOuf/gdSWMRuRAWw5x7FB1oSQo1WHSUo6lxexYp8YQOR7DgbvMrHGSz28AzwFpZjYb70vDNaGyNwN/NbNFeL+z7wH/A/w6dHwJ3tiLXwLPN76Ac26Zmf0MeMPMAqHX+SbehKIPh46Bxg/JJx2q3tN8ZhJNdZi0iKNOMGtmjwBfOujwuc65t1oqKElMZrYBKNL4RYk1O8QEs865w37pNLMn8AZZR5sUujlA5JBUh0ksHEtX5sJDHJsc4zhEROJCqBVi4kGHG4BFPoQjIgnmWBKzlw5x7KtmlhfrYCSxOed665umxIHPAz0OOjbrEHfMiRxAdZjEwlETM+fcGrx+82j5wL9Dt/sekpn1MLPvNDM+EZFWY2ZnEjV9QZTftHYsIpKYjmkRc/OWZPqIT87+v5nIkky78JY2GYY399kVwIfOuUmxC1dE5PgdaowZkSWZ2uEtyfRpPrkkE8DTzjktySQireKY1sp0zm0MLUnyCgfeMt4d+F1LBCYi0sLWH0OZqcCXWzoQEZFGx7pWJs65uXgTLL7Asd82rr52EWmLSoHvOOcud87V+B2MiCSOY2oxa+Sc2wZ8yswG483PMgGvC6ADkArsBdYAs/C+aU6PYawiIrHkgHqgEtiDN6nscrxJPZ93ztX6GJuIJKhjGmMmIiIiIi3vmLsyRURERKRlKTETERERiRNKzERERETihBIzERERkTihxExEREQkTigxExEREYkTSsxERERE4oSviZmZ/dPMSsxsSdSxjmb2ppmtDv3s4GeMIiKHovpLRFqC3y1mjwAXHHTsFuBt59wAvBm4b2ntoEREjsEjqP4SkRjzfeZ/M+sNvOScGxbaXwlMcs5tM7MuwHTn3CA/YxQRORTVXyISa363mB1Kp9CanI1rcxb6HI+IyLFS/SUizXJci5jHEzO7EbgRICsra8zgwYN9jkhEWtO8efN2OucK/I6jqVSHiSSuI9Vf8ZiY7TCzLlFdASWHKuScux+4H6CoqMjNnTu3NWMUEZ+Z2Ua/YziEY6q/QHWYSCI7Uv0Vj12ZU4Evhba/BEzxMRYRkeOh+ktEmsXv6TKeBmYCg8xss5l9BfgtcK6ZrQbODe2LiMQV1V8i0hJ87cp0zl1zmFOTWzUQEZHjpPpLRFpCPHZlioiIiCQkJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEifiNjEzs++Z2VIzW2JmT5tZut8xiYgcC9VfItJUcZmYmVk34GagyDk3DEgCPudvVCIiR6f6S0SaIy4Ts5BkIMPMkoFMYKvP8YiIHCvVXyLSJHGZmDnntgB3A8XANmCfc+4Nf6MSETk61V8i0hxxmZiZWQfgcqAP0BXIMrNrDypzo5nNNbO5paWlfoQpIvIJx1J/hcqpDhORT4jLxAw4B1jvnCt1ztUBzwPjogs45+53zhU554oKCgp8CVJE5BCOWn+B6jARObR4TcyKgdPNLNPMDJgMLPc5JhGRY6H6S0SaLC4TM+fcbOA5YD6wGC/O+30NSkTkGKj+EpHmSPY7gMNxzt0G3OZ3HCIix0v1l4g0VVy2mImIiIgkIiVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiYiIiMQJJWYiIiIicUKJmYiIiEicUGImIiIiEieUmImIiIjECSVmIiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJ5SYiQgA1fXVPL/6eT7Y8oHfoYiIJKxkvwMQkfhwy/u38Hbx2wD85ozfcEnfS3yOSEQk8ajFTEQAWL5reXh7xa4VPkYiIpK4lJiJCAA3jriRZEumMLOQKwde6Xc4IiIJSV2ZIgLAlQOv5LL+l5FsyZiZ3+GIiCQktZiJJLDX1r/GY0sfo7y2nLLaMp5a/hSvb3jd77BERBKWWsxEEtTzq5/ntg9vA2DmtpkA4TsyK+sr+fSAT/sWm4hIolJiJpKg1u9bf8jtQ+2LiEjriElXppkVmdn3zOwuM/uVmV1lZh1jcW0RaRlXD7qavu37kp2SzXdGf4dxXccBkGzJTOw20efoREQSU7NazMzseuBmYD0wD1gJpAMTgB+b2RLgf51zxc2MU0RirHtOd6ZcMSW8/+f5fwag3tXz3pb3OKXLKX6FJiKSsJrblZkFjHfOVR3qpJmNBAYASsxE4tyA3AFsKd/ibXcY4HM0rcvMOgBdgSpgg3Mu6HNIIpKgmpWYOef+epTzC5tzfRFpPXdOvJMX175IQWYBZ/c82+9wWpyZtQe+CVwDpAKleC3+ncxsFvA359w0H0MUkQQUk8H/ZtYH+DbQO/qazrnLYnF9EWl5mSmZXNb/MlICKX6H0lqeAx4DznDO7Y0+YWZjgOvMrK9z7iE/ghORxBSruzJfAB4CXgTUBSDSBj294ml++9FvyU3L5aHzHqJ/h/5+h9SinHPnHuHcPLxxsyIirSpWiVm1c+4vMbqWiPjgkSWPEHRBdlfv5oU1L/DDU37od0itxsxG8MkW/+d9C0hEElasErM/m9ltwBtATeNB59z8GF1fRFpY/w792VqxFYCheUN9jqb1mNk/gRHAUiIt/g5QYiYirS5Widlw4DrgbA6s2E78EcQiJ4h9NfvC27uqd/kYSas73TmXOJmoiMS1WCVmnwL6OudqY3Q9EWlle2v2hrd3V+/2L5DWN9PMhjrnlvkdiIhIrBYx/xjIjdG1RMQHPzv9Z/TP7c/4ruP54tAv+h1Oa3oULzlbaWaLzGyxmS3yOygRSUyxajHrBKwwszkcOMZM02WItBGndzmd/17+X7/D8MM/8YZiLEZ3lYuIz2KVmN0Wo+uISCupa6jjvo/vo7SqlBtH3AgO7l98PwUZBXzj5G/w7uZ3eav4Lc7qcRbn9z7f73BbUrFzbqrfQYiIQOwSs2Jgm3OuGsDMMvBa0ZrMzHKBB4FheDcS3OCcm9nMOEUk5LFlj/HA4gcAWLt3Lc45luxaAkCDa+DRpY/S4Bp4df2rDO44mF7tevkZbktaYWZP4c3DGN3i3+S7MlV/iUhTxSox+zcwLmq/IXSsOasg/xl4zTn3GTNLBTKbcS0ROUhlfWVku64Shwvvl9eW0+AaAAi6INX11a0eXyvKwEvIzos61tzpMlR/iUiTxCoxS46+I9M5VxuqjJrEzNoBE4HrG68H6I5PkRgaXTiaJEuiwTUwLH8YAOv2rSPJkpjcczI9cnrw+obXmdxrMoM6DvI52pbjnPtyLK+n+ktEmiNWd2WWmll4oL+ZXQ7sbMb1+uItKPywmS0wswfNLKu5QYpIxIytM8KtYnO2z+Gj7R8BXjfmjK0zuH7Y9Tx9ydN8dfhX/QyzxZnZo6Gux8b9DqFJZ5tK9ZeINFmsErP/AX5iZsVmVgz8GLixGddLBkYD9znnRgEVwC3RBczsRjOba2ZzS0tLm/FSIonplE6nYBgAIwpGcHLByQAYximdmzMKoc0ZEb2IuXNuDzCqGdc7av0FqsNE5NBikpg559Y6504HhgInOefGOefWNuOSm4HNzrnZof3n8Cq66Ne83zlX5JwrKigoaMZLiSSmVXtWhceVbdi3gfX71gPgcKzas8rP0FpbwMw6NO6YWUeaN8zjqPUXqA4TkUNrVmJmZteaWfgazrly51xZ1Pl+ZjbheK/rnNsObDKzxoEtkwHNyi0SQ0EXmbIrGPqvUYNroKKugoUlCymvLfcjvNb0e+BDM7vdzH4FfAj8rqkXU/0lIs3R3MH/ecACM5sHzMMbV5EO9AfOxBtn9okm/GP0beDJ0E0E64CYDtAVSXQn5Z2EYTgcA3IH4HCs3rMaw+jfvj/XvHwN6/etp2dOT5699FmyUk7MYVLOucfMbC7e2r4GfDoGyzOp/hKRJmlWYuac+7OZ3YtXoY0HRgBVwHLgOudccTOuvRAoak58InJ4s7bPCndlLihZEN52ON4qfivctVlcVszqPasZWTjSr1BbhJllO+fKAUKJ2CeSsegyx0P1l4g0VbPHmDnnGpxzbzrnfuGc+7pz7rvOuX80JykTkZY3tstYAqGRCGM6jWFMpzEABCzAeb3OoyDDG/fUMb0jAzsM9C3OFjTFzH5vZhOj75o0s75m9hUzex24wMf4RCQBxWoeMxFpYxbvXBweZ7Z89/Lw8aALMmvbLEqrvDsFd1fvZnP55hMuOXPOTTazi4CvA+NDg/7rgJXAy8CXQuPFRERajRIzkRNYQ7CB2dtn0ymzE/1y+7G7ejdLdy5leP5wUgIp4XKpSak4F5n5Pz05nYAFCLoghpESSGHt3rXsqNzBaZ1PIymQ5MfbiTnn3CvAK37HISLSSImZyAns5x/+nKlrp5JkSdx95t389qPfsqNyB92yu/GtUd8Kl+ue3R2ItJwN7jiY9qnt2VOzh5zUHNbuXcsP3/0hDa6By/pdxh0T7vDl/YiInOhikpiZWRpwJdA7+prOuV/F4voi0jQfbv0Q8Ka/eLv4bXZU7gBgS/kW3t/8frjckp1LDlgr873N77GnZg8A+2v383bx2+FVAhqvKSIisRermf+nAJcD9XizXDc+RMRHn+r/KQCyU7K5atBVDOk4BIAR+SO4qM9FJJnXJXl6l9M5vcvpACRZEhf1uYhOmZ0AKMgo4KqBV5Gdkg3Apwd8urXfhohIwohVV2Z355zuXhKJMzePvpkrB15JTmoO7VLb8eRFT7K1Yitds7ty38L7wq1gC0oXhMeYNbgGpm2aFm5dK60qJSMlg9c/8zpltWV0y+7m2/tpKWaWBHTiwBZ/3VkuIq0uVonZh2Y23Dm3OEbXE5EYiU6kUpJS6NWuFwDtUtuFj+ek5hww+L9jekeSLZl6V0+SJZGVnEW71HYHPOdEYWbfBm4DdkB4+QOHNy+jiEiralZiZmaL8SqwZODLZrYOqMGbPds551SxicSpLlldwtt56XlEDTFjUIdB/OmsP/F28dtM6jGJHu16+BBhq/kOMMg5t8vvQEREmttidklMohCRVvfxzo/D26v2rDpg7czFOxfzw1N+yJk9zvQjtNa2CdjndxAiItD8JZk2ApjZ486566LPmdnjwHWHfKKI+G5it4k8tfwpGlwDY7uMBeC51c+RZElM6DbB5+hanpl9P7S5DphuZi/jtfgD4Jz7gy+BiUhCi9UYs5Oid0IDacfE6Noi0gJmbpsZHvw/Z8ecAwb/z9o2i9O7nu5neK0hJ/SzOPRIDT3ggI5dEZHW09wxZrcCPwEyzGx/42GgFri/mbGJSAsqzCwMb+el5+FwFJd5NyIWZBb4FVarcc79EsDMPuuc+3f0OTP7rD9RiUiia9Y8Zs653zjncoC7nHPtQo8c51yec+7WGMUoIi0gJzUnvJ2VkkVWSngd7xPy7ssjOFRdpfpLRHwRq67Mf5vZ6IOO7QM2OufqY/QaIhJDK3evDG+v27fugOkyVu5eyaX9LvUjrFZjZhcCFwHdzOwvUafa4U2WLSLS6mI18//fgFl43ZcPhLb/Bawys/Ni9BoiEdX74ZFL4M7eMFu95ofz2vrXOPOZM/ncS5+jpKKEn8/4OeOfHs/tM2/nzO5nkmzed7MJXSeEB/wnWzITu0/kVzN/xfinx/PzGT9nR8UOPvfS5zjzmTN5bcNrTN80nbOePYsrp17JlvItPr7DZtkKzAOqQz8bH1OB832MS0QSWKxazDYAX3HOLQUws6HAj4DbgeeBN2L0OiKexc/ChtBaj6/fCqd8FQKx+p5x4rhr7l3srt7N7urd3LPwHl5Y8wIAz656lur6aupDDdozts4IP6fe1TNlzRSmrpsKwH/X/BfnHEt3LQXg7jl3k5mSyc6qneys2skTy57gx6f+uHXfWAw45z4GPjazJ51zdX7HIyICsUvMBjcmZQDOuWVmNso5t87MYvQSIlE69Ilst++upOwweuT0oKSyBIABuQNIT0qnuqGajOQM+uX2C5frlt0Nh2Nz+WYA+nfoHy6bGkilX4dI2Z7tepKRnMH6fevDr9EWRU2QzaHqKU2QLSJ+iFVittLM7sPrvgS4Gq8bMw3QN1GJvUD0r66SssP506Q/8eyqZ+mS1YVL+13KyMKRfLDlA87sfiYr90TGmJkZRiQ5aezibDx3UZ+LyEvPY1vFNq4aeBVJgSSeWfkMeel5XNH/itZ8S7HUOEH2N0M/Hw/9/AJQ2frhiIjELjG7HrgJ+C7edBkfAD/ES8rOitFriIBzYAY7V0WO7d0IwaBazQ4hNz2XG0fcGN4fUTCCEQVeQ9Cr618NH99UtumA5y3fvZzqhmoAahpq2F6x/RM3A3x1+FdbKuxWETVB9njn3PioU7eY2QzgV/5EJiKJLCZ/yZxzVc653zvnPuWcu8I5d7dzrtI5F3TOlcfiNUR49Rb4VZ436L/XBEjJ9I73naSkrAkmdp8YGfzfbQLju3q5SbIlc1nfy+ia1RWATpmdGNJxiG9xtoIsMwsvdWBm44CsI5QXEWkxMWkxM7PxwC+AXtHXdM71jcX1RSgvgdn3edsb3odZf4O6UG/TuulqMWuC9za/Fx78/8GWD8LH6109U9dNZWvFVgB2VO5g2e5lnFxwsi9xtoKvAP80s/ah/b3ADf6FIyKJLFZdmQ8B38O71bwhRtcUiUhvD1kFUFHqjS/rcSoseBxw0LGPkrIm6J/bP7zdq10vgPDUFyfln8T0TdMpqysjKyUr3Hp2InLOzQNONrN2gDnntKC5iPgmVonZPufcq0cvJtJELgj1td52sAFqKwgvZ1hfc9inyeE1jiEDqG2oPWB1yGRL5vGLHmfGlhmM7Tr2hFyiycyudc49EbWYeeNxQIuYi4g/YpWYTTOzu/DmLAv/lXTOzY/R9SVR1deABbxErKaxIcNB6fJImbLtXldmsM4rm5TiHa+t8MahacqWQ9pavjW8vaNyxwEz/2+p2MLVuVcfMKXGCahxHFnOEUuJiLSiWCVmp4V+FkUdc8DZMbq+JKJlU+A/X4XkdPj8M9B5BGxf5HVrjroePn4G6qug9xmw6jV47steN+c1T8OS/8C8R6DTMLj+ZcjI9fnNxJ8vDPkCc3fMpaSyhB8V/QiAO2bfQWFmIV8Y/AWfo2t5zrl/hDbvdM5VH7GwiEgriUli5pzTlBgSezP/Cg213mPmX72kDKB6H8x7yEvKANZP98rUh/62zrwXVr3ube9YAmveguGfafXw412nrE48dfFTBxw7q2dC/lNeYmY7gPeB94AZGmcmIn6JyYhpM+tkZg+Z2auh/aFm9pVYXFsSWNfRke3up0JOF287kOJNkWGhX9+CQdD5pEjZLqMgLzSwPSkVOkWdEzmIc64/cA2wGG/S2Y/NbKGvQYlIwopVV+YjwMPAT0P7q4Bn8O7WFGma8//Pu/syJRP6nAHv3eUdD9bBvs3eDQEAVXuhcm/kedX74IbXve7NLiOh8ISeg0uaycy6A+OBM4CTgaV4k2SLiLS6WCVm+c65Z83sVgDnXL2ZadoMOX511VC9F3I6e1Ng9J3kjRurq4baqLmK90bNVF+525tGo1FFCWTlQ7/JkJnnHauv8cq169Ia76LN2lW1i4zkDDIbJ+9NDMXAHOD/nHP/43cwIpLYYjX5U4WZ5RFZEPh0QGM05Pjs2QB/Phl+PwheuxUWPg139Ye7B8K2jyNdkmntYcTVkJzh7fcaC30mhi5i0HsiPHcD/GEw/O102LEU7iny9qd8y4931ib8c8k/mfTsJM557hyW7VrmdzitaRTwGPB5M5tpZo9pKIaI+CVWLWbfB6YC/UJrzBUAGm0tx2f5i1C+3dv+6AHoOgpcgzfIf86D3kB+8KbNmP9oZPD/unehoS50EQcrX4HVocH/u9fCrPtgX7G3v+BxuPj3kJzWam+rrfjXin8BUFZbxivrXmFo3lCfI2odzrmPzWwtsBavO/NaYCIaiiEiPojVWpnzgTOBccDXgZOcc4ticW1JID1O9wb2A/Qe7yVmjXqOhfY9ve3kNBh8EViSt995OHQbE3Wd07xpMgBSsmDQRZAUSsS6FSkpO4xTOp8CgGGM7jT6KKVPHGY2F5gJfApYAUx0zvX2NSgRSVjNajEzs08f5tRAM8M593xzri8Jpscp8D/vw6410P9c+E9Ub9Ke9VCx09uur4Hti73WNID927ybARrt3wJffsVrSes8DDr2hW/MgNIV0Dchp4M4Jr8a9yvO7XUuBRkFnJSfUHeyXuicKz16MRGRltfcrsxLj3DO4a0EIHLsCodE7qKsKYscrymDhqill6r2RrbrKj5ZNr09DL0scix/gPeQw0oKJDGpxyS/w2h1SspEJJ40KzFzzn05VoGIfMKFv4NXfujN/D/5Nm+C2dIVkJYDQy6Duf/0krWuo+GC38BL1V435eSf+x25iIhIk8Rq8L9I7BUOhutf8rbLtntJGXgtYgufjLSgbZwBHftFyoqIiLRRSswkfu3bDG/eBikZcM4vvLFiu9d5E84OvQIWPeNNNtttDJTvgDd/7s30f97tkNnR7+glzh1hjCyAxsiKiC+UmEn8eun7kWkvzGBvaIB/XSUUf+glZQA7V3tdniteipS9/N7Wj1faGo2RFZG401J3ZQL6xinNFKyPbDfUE5q/+JPnCEbu0ITIUk0iR6AxsiISj+L6rkwzSwLmAlucc5c051rSBl38e3j9J5GuzM1zYNdqSM2C/ufA7L9DQy0UDoXOJ8PKV73ndT7Z17Cl7TGzi4GTgPTGY865XzXzmqq/ROS4xftdmd8BlgPtWvh1JB517APXPO1t79/mJWUAtRWw6FkvKQPY9JG3nmajDe/B6V9v3VilzTKzvwOZwFnAg3irlnwUg0ur/hKR4xartTIxs4vN7P+Z2c8bH828XnfgYryKUhLRrrXw5Gfh2S9648byB3rHU7NhxOe8gf4APU+LWisT6HsmLH0BHr4Y3volOPeJS4tEGeec+yKwxzn3S2As0KM5F1T9JSJNFZPB/y30jfNPwP8Dcpp5HWmrXvkhrH3H207J9BI1gNpy76aAxhazbUsgPTfyvOLZsHyqd37jB9DjVBh0YauGLm1KaNFVKs2sK7AL6NPMa/4J1V8i0gSxajGL6TdOM7sEKHHOzTtCmRvNbK6ZzS0t1cTdJ6TGFrHG7aSUyH5yetR26oFlk9MO7NqMfp7IJ71kZrnAXcB8YAPwr6Ze7Fjqr1A51WEi8gmxmi4j1t84xwOXmdlFeINx25nZE865axsLOOfuB+4HKCoqUl/VieiSP8Jbud7g/7P/F9a/C3s2QHKG1woWSPbuzuzQG/L6RZ5XMBg+96S3MkCP07wbBUQO73fOuRrgP2b2El6dU92M6x21/gLVYSJyaLFKzA7+xuloxtgK59ytwK0AZjYJ+OHBlZokgHZd4dP/8LbLtntJGUB9FSybEpkyY+sCL3lrtGk2jL8Z+p3dquFKmzUTGA0QStBqzGx+47HjpfpLRJojVl2Zv3PO7XXO/QfoBQwGfh2ja4tAdifof6633aE3jP5ipDuz93gY+XmwAARS4OTP+RamtB1m1tnMxgAZZjbKzEaHHpPwxsyKiLS6WLWYxfQbZzTn3HRgenOvI22cGXz+Gdi93mtJW/Ic1Id6m7bMhy++6LWQBZIhu9DfWKWtOB+4HugO/CHq+H7gJ7F4AdVfInK8mjvzf2egG6FvnICFTrVD3zgl1gJJkN/f206LmhoqNRsCAS9hEzlGzrlHgUfN7MpQa7+IiO+a22LW4t84RQ4pt4fXdemCXjenSNPNMLOHgK7OuQvNbCgw1jn3kN+BiUjiae7M//rGKf7YPDeyJuaOJRAMeq1mIsfv4dDjp6H9VcAzgBIzEWl1sfpLNsPMHjKzVwHMbKiZfSVG1xb5pH6TvWkzAPpOUlImzZHvnHsWCAI45+qBBn9DEpFEFau/Zg8DrwONg3xWAd+N0bVFPmnDe960GQAbP/RazESapsLM8vCm+cHMTgf2+RuSiCSqWCVm+sYpLa9sO8x9GLYvhpwukeNZ+Woxk+b4PjAV6GdmM4DHgG/7G5KIJKpYTZehb5zSsupr4aFzYW8xJKXB5ffi3QTsIC3b7+ikDXPOzTezM4FBeL9UK51zdT6HJSIJKlaJ2cHfOAvwFjIXiY2qPV5SBtBQA+vfI/Q9AHau1uB/aTIzSwduAibg/VK9b2Z/d841Z1kmEZEmiclfMufcfOBMYBzwdeAk59yiWFxbBICcTt5s/wDdxsAZP4T8gd7+hO8rKZPmeAw4CbgHuBcYCjzua0QikrBi0mKmb5zSKi67By68C1JCSzF9aw7U10Bymr9xSVs3yDl3ctT+NDP72LdoRCShxaqZQd84peXt2QAf3Q/Fs739te94+2U7fA1L2rwFoXGxAJjZacAMH+MRkQQWqzFm+sYpLauuGv55AZRt89bDvOSPMDV049yCJ+Cbs/2NT9qy04AvmlloECM9geVmthhwzrkR/oUmIokmVonZAjM73Tk3C/SNU1pAzX4vKQMI1nsz/zfS4H9pngv8DkBEpFGsEjN945SWlV0IY7/ldV32Ggdn3eotxbR9CZz1EyVl0mTOuY1+xyAi0ihWiZm+cUrLO/8O79Hoa+/4F4uIiEgLiElipm+cIiIiIs2n/h8RERGROKHETNou56C20u8oREREYkaJmbRNZTvg3iL4vy7w1i/8jkZERCQmlJhJ27RsCuxa423P+LM3XYaIiEgbp8RM2qYuJ4MledudR2i6DBEROSHEaroMkdbV8zT4yptQsgyGXOp3NCIiIjGhxEzaru5jvIeIiMgJQv0/IiIiInFCiZmIiIhInFBiJiIiIhInlJiJiIiIxAklZiIiIiJxQomZiIiISJxQYiYiIiISJzSPmYiIiLQ5r6x7hdc2vMZZPc7ikr6X8Of5f2ZrxVa+PuLrZCRncM+Ce8hNy+V7Y75HZkqm3+EeMyVmIiIi0qZsLtvMrR/cStAFmbZpGuv3refRZY8CsGbvGnLTcllQsgCAnNQcbh59s5/hHhd1ZYqIiEibEnRBnHPh/bpgXXi7PlhPfbA+vN/gGlo1tuZSYiYiIiJtSkFmAfkZ+QDkpuVyWufTCJiX0gzMHcigjoMAMIxh+cN8i7MplJiJiIhIm7Jh3wZKq0oB2Fuzl9c3vk7QBQFYULqAeTvmAeBwzNo6y7c4m0KJmYiIiMSFp5Y/xQ2v38BTy5+isq6Sn8/4OTe+cSNLdy5lxe4V/M+b/8NPP/gphZmFFGYWAtAhrQMX9L6AJEsCYHThaMZ0GgN4LWandTmN51c/zw2v38DDSx6mtqGW22fezlff+Gp4HFo80eB/ERER8d26vev4zUe/AWDO9jls3L+R/675LwA7PthBalIqK3avACAzOZOSyhIA9tTsYda2WeGxZCv3rCQ3LRcItZhtm8Vzq57D4ZizfQ6llaU8u+pZwGt5e+uzb7Xm2zwqtZiJiIiI75ICSRgGeC1dKYGU8LmUQArJFmlLSklKCY8pO7hsciD5gLKpSanhso370deNN2oxExEREd/1ateLOybcwVsb3+KcXudwfu/zcTi2V2znppE3EbAAf1v4N/Iz8vnqsK/yyrpX2FW9i5zUHIblD8MwHI6eOT296TJKvW7KEfkjGDVxFK+uf5UJ3SZwRf8rACguK+Zrw7/m4zs+NIu+3bStKioqcnPnzvU7DBFpRWY2zzlX5HccsaA6TOT4LN+1nKteuiq8f0nfS3hp3UsAdEzvSPu09qzftx6Aqwddzc9O/5kvcR7OkeovdWWKiIhI3Nlfu5/vT/8+n3/588zbMY+FJQv5witf4DvvfIf8jHw6Z3UGIC89j0v7Xhruvjy186mc3uV0AAIWYFzXcTy+7HGuevEq/jL/L769n2MVl12ZZtYDeAzoDASB+51zf/Y3KhGRo1P9JRIbjy97nDc3vgnAbR/eRkoghTV71wDQIb0D2yu2A7CrehfTNk2j3nmTyi4qXUT7tPaANxHt9E3TwzcRLN+9nIndJzKycGTrvpnjEJeJGVAP/MA5N9/McoB5Zvamc26Z34GJiByF6i+RGMhOyQ5vZ6VkHTBQPzctl+RAMvXBegIEwolYY9no57ZPa09KIIW6YB2GkZWS1TpvoInisivTObfNOTc/tF0GLAe6+RuViMjRqf4SiY1uWZF/NgUZBRRmFIb3e7brGU6+MlMy6dO+T/iOzoLMAgoyCyJlc3qSk5IDQHpyOh3SO7RG+E0Wry1mYWbWGxgFzD7o+I3AjQA9e/Zs/cBERI7icPVX6JzqMJEjWLRzUXh7xe4VB7SYzd42m701ewEoryvngy0f4HDhstEtaB9t/4jdNbsBqKqvYs3eNeHlnOJRXLaYNTKzbOA/wHedc/ujzznn7nfOFTnnigoKCg59AR9t2l3Jp/82gwv+9B4fb9rLS4u2MumuaXz10TlU1NQf/QIi0qYdqf6C+K/DRPx2cd+LwwnWNYOvYVy3cQAkWRIX972YrtldAcjPyOeK/leQHPDamsZ2Gcu4rl7ZgAW4oPcF9MjpAXh3bI7IH9Hab+W4xG2LmZml4FVqTzrnnvc7nuP1l7dXM794LwB3vLycZdv2U15Tz4ZdlTwzZxM3TOjjb4Ai0mLaev0lEg8GdRzEW595i6r6Kjqkd+CyFy4DoME18ObGN9lavhWAnVU7eXX9q9QHvUaPOTvm0CHN664MuiDTNk1jU9kmAHZX72b57uXhJZviUVy2mJmZAQ8By51zf/A7nqYoyEk7YPvgfRE5MZ0I9Ze0goqdMO9R2LrQ70h8VV1fzZQ1U5i1zVtofNP+TTy36jk27fcSqYWlC3lv83tU11fTMb1j+HldsrqQGvBm8E+ypHDrGXjTZ0SXLcwsJC3J+7sbsAAd0jswd/tc/rv6v1TWVVIXrOOldS/x3ub3ANhesZ3/rPoPa/eubdk3fxjx2mI2HrgOWGxmC0PHfuKce8W/kI7Pd84ZQFZaMhU19Xx9Yj/2VtXy6Icb6V+YzaUndz36BUSkrWrz9Ze0sGAQ/nkB7FoNgRS4cRp0Hu53VL748Xs/5p1N7wBw29jb+NP8P7GvZh/t09rzvTHf4xcf/gKAd4rfCQ/gBy/5SktKozZYS2oglYL0yHCAnJQcclIPLJuelE5NQw0pgRQWly7mZzO8CWdfWf8KXbO78vxqr2H7x6f8mIeXPkxJZQkZyRk8f9nzdM/p3tIfwwHiMjFzzn0Aodsr2qi05CS+eVb/8H77zBR+fulQHyMSkdZwItRf0sJqy72kDCBYBzuWJmxitnTX0vD2/B3z2VezD4B9NfuYuz2yGsay3csOGPy/oGQBZXVlAFQ1VDG3JFJ2zb415Fbnhvc/Lv2YfbXedWsaapi7I1J26a6l7Knec8B1GxdHr6qvYv2+9a2emMVlV2ZbVNcQ5KYn5zHqV2/whzdXsaaknHP/8C7jf/sOs9bt4tk5mxhz+5tc9Y+Z7Cqv4dtPL2DUr97gd6+t8Dt0ERFpTentoPup3nZqDvSZ5Gc0vvrq8K8SsAAFGQV8ediXmdBtAgATuk3ghmE3UJBRQMACfGXYV7hh2A0kWRJ56Xl8+aQvM6nHJABO73I6n+7/6XDiNqGr99xkS6ZjekeuH3Y95/Y6F4CiTkV8ZdhX6JrVFcP42vCv8eVhXyY5kExuWi5fPunLXNjnQgBGFY7ilM6ntPpnorUyY+TNZTv42mORGC4a3plXFnuzEo/p1YHl2/ZTWdsAwDWn9uDpjzaFy37w47Po3iGzdQMWaeO0Vqa0WTXl8JvuEJregU8/ACOuOuJTTmS1DbUkB5IJmNdWVFVfRUZyBuAN3q8P1pOalHrIstX11aQnp/O3hX/jvo/vA7w5z9656p0jXtc5R22wNjz2rK6hjoAFSAokfaJsS9BamS1kZ3kND76/jvdXl9ItN4NAqPOifUYKvfMiiVa33Ay6to/8Dx7YKYekUOGc9GTapSczZeEWHp+1keq6BvZW1vLQB+uZtqKkVd+PiIi0kIZ6b7D/gicgKQWyGufRMsjtBRs+gA/vhf1bfQ3TD6lJqeHkCTggIQpYIJyUHapsenI6AN2yI5PRNq6heaTrmlk4KQNISUoJJ2UHl21tcTnGrK249sHZrNju9XHfeeVwzAAHSQYpSZFfhpSAkZwUGXKSnpIUHoCSZPD4rGLuen0lAPM37qF4dyXzNnp93v+4bgznn9S5Vd6PiIi0kDd+BrO9Fh12rYVA1J/fnavgxZvBBWHOA3DzQrw/KHKsopOsxsXM2yq1mDWRc441JeXh/fnFe2kIetu7K+tYuSNybt2uCjbsqgjvLyzeQ33Qa8LeW1XPsq2RuSdXl5SxakdZeD/6NUREpI0qjRpPvGMplG0L7TjY/JGXlAHs2QB1Va0dXZvXuLg5QHFZsY+RNJ8Ss4Pc+85qBv70Va746wx27KvmmvtnMfCnr/KbV5azaPNeTr3jLUb+6g1mrNnFGQO8puiMlCQ+f1oPcjO8gYdDu+Rw0bDO4a7NSYMKOHOAdytvWnKAa07rSccsr2l2YKdsLju5K0mhb0eTBhZy5sBI2TP65/HVR+cy4KevcMt/FrGmpIwzfvcOw257nVcXb+NfHxUz+H9f5dw/vMu2ffrHLCLSatZOgzt7w92DYMt8eON/4fYCeOQS2L8NHpjs7b93Nww4FzCwAAy6GHqc7l0jrR0UfQVSQ4tu9xoP2xfBXf3hd/1g44cw/U7vOg+e61334Yu8/bd+CZvnwt0D4c4+sP49vz6JVuec46cf/JRRj4/i+9O/z4RuE8KD/8d3G+9zdM3Tttv7YqyuIcgf3lxF0MHCTXv549urmLluFwD/eG8d63ZWUFJWA8A976wOdzdW1TXw1OxN7K2qA2DZtjJeWbKdUKMY764sZdk2r1Wspj7I07M3sbuiFoBVO8qZ+vFWGkI3YUxfVcLGXZXhsk/MLuat5TsA+NecTVTWNrBpt5eA/emt1eyqqKG6LsjqknL+9dEmvnfuwJb+mEREBOC9u6AqNNXCe3fDype97Q3vw/T/gy2hGzqm3QG9zwAcOAerXoZN3oSq1OyHuf/0ptAA2DjDu25Fqbf/7l2wbhrhlrXpv/HKAHzwByhZBuU7IjH0mdjS7zourNqziqlrpwLw5sY3yUzOpC7o/Q2esWWGn6E1m1rMoqQkBcJ3RxowqkduuCWrIDuNgYXZ4bJ98rPoFTXAf3TP3PCA/o5ZqQzqdGDZ3nlZ4f2RPXNJCY05y81IYUiXyER4vfOy6JMfKXty90jZdunJDI0um59Jr6jrDoh6TRERaWEFgyPbnU6C7EJv25JC02GEuk1ye0J+1Jfm/MHQLjTRuJlXtnFMWbvuB163YCC0b5xHy6D7Kd71Adr3hMKTDh3PCa4wszA8iWxGcgbD8oeFz/Vs19OvsGJCLWYHqQsNFHNAdV0w3JJVHwyGzwHUNwSpb4hMNVJV10Aw1ERW3xCktj4YdU13wHOrP1G2Ieq6jtrosvUNNE5p0nDQOe+6kedGv6aIiLSwC++EzsMgOR1O+hTMedA77hpC48RCfyMa6ryJZBs11EJ9aN85qK/yfgIE66G+JqpsnXdHp1cYOvSG61+CLfNg6BXQrhvk9fOuP/LalnuvcaZDegcev/BxPtjyAad3OZ0VuyNj+OrDn1fbpMQsSn1DMNxVCbAyahD+nso6Nu6OjOHavLeKbfuqw/urtpc3/hNkf3U9G3dXhs9tObjsjjIac7ry2gbW74yU3bqvim17o8uW05hvVdQ1sK40chPB1r1V7Ap1iQIUR72miIjESF0VpISmT3DOS5xS0r1pL0ZdB5jXJVm1O/KckmWR7bLtsGdjZH/PBqgsjezviMx+T/kO2BtdthgqdkT2926EUddC11GRmEZcjTclQOhPel01JKed8Hd29svtR7/cfgC8Xfx2+Pj2yu1+hRQT6sqMkpwU4H8vHkJeVipnDMjnh+cN5NyhneiYlcoPzh3I988dSL+CLLp3yOCH5w1ifP88ANJTAlxd1J32ocH/Q7rkcP5JkcH/EwfkM6G/d6NAWnKAq4q60zHTKzugMJuLhkfKTuifz4TQTQWpSQG+cFoPPjWqGx2zUvnaGX34/rmDGNqlHZ3bpXPLhYP530uGkp+dxuieuXzhtF6t+GmJiCSAF26COzrDA2fDrnVwbxHc0QneuQNWvOJNFPu7Pt5dl11Hec9JawejvwQpoeEuvc+A/qHB/xgMPB96RM38P/r6yOD/nmNhwHlRZc+BnuO8cylZ0HUM/H2CF9PLP4D173s3IPymB6x63bsh4I5O8NdToTwq+TvBXTXoKkYUjCAvPY//d8r/8zucZlGL2UGuH9+H68f3Ce8/8MUDJ+Z9+weTAO+OkPdW7wS8Ls8nP9rEvtDg/+Xbynhl0bbw4P/pq0rDU2LU1Ad5+qNN7K70yq4uKefFqLLvriqlODT4v7YhyHurdvLHq0ceEMMr3znjgP3LtCi6iEjs7d8KC5/0trfMgw/+CLtC0zK8/3tvbFh9tff48B7YusA7V7Mf5j4EdaFejPXvAkHCXZsrX4FNH3nbtWVe2cbB/8UfhlrCGsu+Bhs/8LbrKmD232D7Ym9/zoOwb5N3DfBi2BAqu3MVLHsBTv1abD+TOJWfkc+TFz3pdxgxoRazJjIzhnVtB0DAYFy/jqQlex9nt9wMRvRoHy47sFMOA0MD8w0Y1y+PjBRv8GaX9umM6dUxXHZE9/YM794+9BowrFvkOiIi0ooy87wB9uCNI+tzhjfdBUDXkdBtdKRs9yLoEPpSn5QGfSdFyub1h06Rwel0HuHdEADeQP6+Z0YG9Hfo452PLls41NsOJEPvidA4E35ef+gW1XjQbXRkMXRLgi4nN+fdi0/UYtYMj33lNF5bso0BnXIY3bMDg7u0Y2HxXs4eXMgjH24IlyurqmN/lTcY0QFJgQBTvjWe/9/enYdXVZ17HP++mRMyAUGSMMg8yiCDAwJqQe1TUXsrSnuv11J7r1dqB7ntfW7t0+tU+6itrXWoT9XeIj7tdai2VYFKsCDWKjLLJCACMhPmkDkh6/6xdnIOkQAJOTknye/zPOfJ3vusvffa65y8Z+2111575WdHuHxgF/KyUumdk0ZRWTVThudRUV3D3DV76ZXTgYt6dzr1zkVEJLISkuGbBfBJga94dR3qK04HPoYhN/jLkN1G+Urb4Cm+8/3mt/yyor2hQWMriqDsWGi7ZUegImjlcieCtCfC0h4JpS0/CtPnwsY5vnLXbZS/U3PPahj4JUjvAucN9jcJDPkyjJ8JH7/p79bsProFCkmamypm5yArNZFpY0O35Q7KzWRQrm9FOxB2E8HB4sqTOukfOF7BdSPyGdA1NPTFFwZ1rZtOiI/j5rE9Ipl1ERE5G5l5MPrrofkeY/2r1rCpoemMrqG0e1aHlpcehuKwDunF+6E8rKJ2dHtouuxoaFwygOJCSOsEo24NLcsbcXJr2ODrQtOpHU9OK62OLmVGyHe+0J9RPbMZlJvBj64dzMVBy1dSQhzj+naOcu5ERCSiht3kW9U69obrfuUvbQJg0HcS5AeXQZPSYcQtvmM/+Ja5yfdC3khf+Zp0T8vnXaJKLWYR0rNzGn/6VuixEH/f4m8UqKyuYfHmAwzKy4xW1kREJNISU+DmF0Lzs68PJpzv/F/7VIDK4uBGgWAopJ0f+v5n/7G4RbMrsUMtZi1kaHCjgBlc2DM7upkREZHm99n78OcZsGK2n1/yGz/cxp5VoaE0wI/e36mPn45LhIFf9B37ATr39/3F3rob/vpD399s9wq/naXPtezxSFSoxayF7A8GmHUOdh0p46LeZ1hBRERaj8pS+MNNvgXso//zfcMWPejf2zwf+lwZSntsFxT7qyjUVPnBaGuC0eqLC2H+j0LDdJQf9TcUlB3xy7J6+IqctFlqMWshJZWhRycdL2/dj4sQEZF6aqqCxzAFSg+GpiuL/d2WtcqPQXXYk1pKD4Wmq0pPvjGg/BhUhp74ctJ2pE1Si1kLeWzaCB5b8An9zktnmu64FBFpW1Ky4PonYOmz0OMSuOoBX6HatwbG/6cf6qKq1I9tdvUDMOhaWPJrPw7ZVQ/4xzztWQnjvuuHxKgo8pdYrn4QLrgR3n/C3xAw9CvRPlKJMKt9QHZrNmbMGLd8+fJoZ0NEWpCZrXDOjTlzytinGCbSvpwufulSpoiIiEiMUMVMREREJEaoYiYiIiISI1QxExEREYkRqpiJiIiIxAhVzERE5LSOlVUx8+XVfGPWUrYUHo92dkTaNI1jJiIip/XUwk/486rdgB8g+9UZ46KcI5G2Sy1mIiJyWvFxcWHTFsWciLR9qpiJiMhpDeiaXjfdJ6dDFHMi0vapYiYiIqe1dNvhuulVO49GLyMi7YD6mImItEOFx8v54WtrKS6v5v4bhlJ4vIJfLthMn5wOPPSVYTy58BPe3XyQqaO7M6F/Dq8s30mNg3F9O/OPLQf52fxNnN8pjYdvHMYzi7eycGMhX76wG1+5sBv//doaDpVUcs+UIYzokR3tQxVpVVQxExFphx5/+xMWbiwE4N7X1/PpgWIOlVTy0c6jZKYkMPuDzwBYt+cYU0d1pyZ4rPLKHUeZt3Yf+4rK+WjnUbLTEnkhSLt29zE+2X+cgg37Abj7T2uZ970JLX9wIq2YLmWKiLRD6Smh8/L05HjSkuLr5rPTkqjt4p8YF0dWamJY2gQ6JIenTQyljTcy66UVkcZRxUxEpB3qnp1aN52blUJuVgoAZr6zf0qir3xlpSZyfue0UNrMZLpmBmmB/l0ySAsqapkpifTJCUublRzpwxBpc3Q6IyLSDoV34l+7u4gthcUAOAeLNhVSVnUCgAPFFXyw9VBd2nV7ith7rNynBd7ZXEhJhU97qKSSf2wJS7u7KMJHIdL2qGImIhKjNu09xjWPvwdAvMGb35nApv1FPPG3LQzOy+DnU0dw/5vrWbrtMLde2ovJg7ty18urKKuq4Wc3Dmf7oRIeW7CZfuel88ubR/DTeRv54NODfO2inlwxsAt/WbWbGgcT++eQn53C/PX7SYqPY9qYHvzt40KOlFbRO6cDU4bn8da6fdQ4mNA/h73HypmzZi+J8cZNo7uzePMBDhZX0rNTKtePzGPe2n2ccI4JA3JYtKmQB+dsoFvHNJ746kiefudTCtbvY8rwfKZf1ovvvbSKwqIK7r1uKA7H/W9uIDczhce/OpLf/WMbc9fs5ZoLcrljYl8m/WIRh0urAbhrcl/umjwomh+PSESoYiYiEqOmPfth3fQJBw+8sYaVu45TWV3DtoMldO6QzCvLdwHwk7kbWLHjMCt3HAXgp/M2sGbXMUorT7D1YAkP/3UjLy7dAcBDf93IDSPy6zr0f7D1EJ8eKAGg8kQNf1m9hyOlVQBsO1jC2xsK69Iu2Xq4rsWs6oTj9Y/2cLC4EoAdh8uYv34/J5xP/OHWw7y9oZDdR8v49EAJj7y1kReX7gTgqUVbKDxeUdfCds/r66hxju2HStlSWMwjb22sO7ZnFm+lqLSqrlIG8Pjbn6piJm2S+piJiMSoTh2STprP75RO57Bl3TqG+omlJyfQNSOlbj4nPZmc9FAfr+6d0jALSxvW/6tLRvJJ2+3eMZXaAf5TE+Pr+pQBdE5PonP6yXmoTZucEEduZihPPg+htHlZqSTG+8RJCXHkZYXlNyOZLhmhPOVnp5IU73+iEuONvLA+caAnEEjbFbMtZmb2ReBxIB74rXPu4ShnSUTkrDRX/Fr4gysY9ZMCjpRUMTQ/g/uvH8r+ogp+v+QzhuRlcvPYHvTomMay7Yf5pwu7MTA3g+y0JMqqTnDH5X05XFLJ7Pe3M6BrBv98cU96de7Akq2HuH5kPhfkZ5GVmsTx8mruuLwP02ctrdtvbmYKifFxVFTXkJIYR05GqHKVmZJASUXopyM3I5nk+DjKqmtISYzntvG9yEhJ4FBJJf8+oQ9VJ2r43/e20S07lenjejGiRzYLP97P1UNzuaRPZzJSEth3rJzbJ/bBAc+9u5XcrBRuu6w3Y3t1omD9PiYN7sr4fjnsPlLKK8t3kZQQR8FdE5v46YjENnNBk3MsMbN4YDNwFbALWAZ8zTm34VTpx4wZ45YvX96CORSRaDOzFc65MdHOR32NjV8QGzFsyD1vUVrpO/HfNLo7f1yxq+69KcNzmbNmHwCDcjPYV1TO0eBS59RR3Xl1ZShtwcyJDOia0YI5F2l9The/YvVS5kXAFufcVudcJfAScEOU8yQicjZaZfy688p+AHTLTmXGFX0Zc35HAK4dlsftE/qSnZZIQpxx+8Q+zLi8L2aQn5XCHZf35ZI+nQC4ekhX+nVJb3AfInJmsXopsxuwM2x+F3BxlPIiItIYrTJ+3XllP745vjfJCXGYGa/OGEdpZTVpSf5nYsWPr6K6pobkBD9m2dfH9SIpPo64OOOl2y89Ka2INF2s/hedqlfnSddczex24PZgttjMNkU8V80jBzgY7Uy0ISrP5tdayvT8aGegAWeMX9BqY1hr+W60JirT5tVayrPB+BWrFbNdQI+w+e7AnvAEzrlngWdbMlPNwcyWx2K/mNZK5dn8VKbn7IzxC1pnDNN3o/mpTJtXWyjPWO1jtgzob2a9zSwJ+CrwRpTzJCJyNhS/RKTJYrLFzDlXbWbfBubjbzf/nXNufZSzJSJyRopfInIuYrJiBuCcmwfMi3Y+IqBVXbpoBVSezU9leo4Uv6QRVKbNq9WXZ0yOYyYiIiLSHsVqHzMRERGRdkcVswgys+lmlh/tfLQ1ZvaAmU1uwnpXmNmcSOQplphZvpm92oT15plZ9hnSNKnspfVR/IocxbCGKX7pUmZEmdk7wA+cc3peVCOZmeG/nzXNuM0r8J/HlLNMn+Ccq26u/UdbWzseiSzFr3OjGNa82tKxnIlazBrJzDqY2Vwz+8jM1pnZNDMbbWaLzWyFmc03szwzmwqMAf5gZqvNLNXMJpnZKjNba2a/M7PkYJsPm9kGM1tjZo8Gy64zsw+D9G+bWddoHndTmdkjZvatsPn7zOz7ZvZfZrYsOOb7g/d6mdnHZvY0sBLoYWbPB+W81sxmBumeD8oXMxtrZu8Hn8dSM8swsxQzmxWss8rMrjxFvjqZ2V+C/S8xs+Fh+XvWzAqAF1qgiM7Jacp3XTA/3cz+aGZvAgVmlmZmrwTH/XLwHRsTpN1uZjlhn8NzZrbezArMLDVIc6ay72VmfzezlcFrXBSKRRqg+NV4imGRo/jVAOecXo14ATcCz4XNZwHvA12C+Wn42+MB3gHGBNMp+Me0DAjmXwDuAjoBmwi1XmYHfzuGLfs34BfRPvYmlteFwOKw+Q3Arfg7Zwx/cjAHmAj0AmqAS4K0o4EFYevWls3zwFQgCdgKjA2WZ+LvNP4+MCtYNgjYEZT/FcCcYPmTwL3B9BeA1cH0fcAKIDXaZXcO5TsRWBfMT8cPeNopmP8B8EwwfQFQHfYd3Y4fNbtXsHxksPwV4JazLPs0ICVY1h9YHu0y0uuk74viV+PLTDGsZcu23cevmB0uI4atBR41s0fw/4xH8F+QBWYGftyivadYbyCwzTm3OZifDdwJPAWUA781s7nBNsGPFv6ymeXhv0TbInM4keWcW2Vm55nvq9IFX17DgauBVUGydPw/wQ7gM+fckmD5VqCPmT0JzAUK6m1+ILDXObcs2FcRgJmNxwctnHMbzewzYEC9dcfjf6Rwzi00s85mlhW894Zzruzcjz7yGijfHfWSLXDOHQ6mxwOPB+uuM7M1DWx6m3NudTC9Ah/swjVU9h2Ap8xsJHCCz5e7RJfiVyMphkWO4tepqWLWSM65zWY2GvgS8BCwAFjvnLv0DKue6vl5OD8Y5UXAJPwI4d/Gn/08CfzSOfeG+X4F9zXLAUTHq/izlFzgJfw/yUPOuWfCE5lZL6Ckdt45d8TMRgDX4H8EbgZuC1+FUzyDkAbK+izS1G6r5BTvxbL65Vtf+PGcTdkAVIRNnwBS673fUNnPBPYDI/AtCeVnuT9pAYpfTaYYFjmKX/Woj1kjBTX7Uufc74FHgYuBLmZ2afB+opkNDZIfBzKC6Y1ALzPrF8z/K7DYzNKBLOcHpLwLGBm8nwXsDqa/HrkjahEv4YP2VPw/4XzgtuDYMbNuZnZe/ZXMLAeIc869BvwPMKpeko1AvpmNDdJnmFkC8C7wL8GyAUBP/OWWcOFprgAO1p41tUL1y/d03sP/OGBmQ4BhTdxnQ2WfhT8TrcF/x+ObuH2JAMWvJlMMixzFr3rUYtZ4w4Cfm1kNUAXMwF/PfiJoRk4AfgWsx1/P/o2ZlQGXAt8A/hh8AZYBv8H30XjdzFLwtfiZwX7uC9LuBpYAvVvi4CLBObfezDKA3c65vcBeMxsMfBBcPikGbsGf2YTrBswys9oTiLvrbbfSzKYBTwadO8uAycDT+HJfi/9spjvnKoJ91bov2PYaoJRW/ONRv3yDs/aGPA3MDo57FbAGONaEfZ6u7F8zs5uARbSuM/f2QPGrCRTDIkfx6/M0XIZIO2Jm8UCic67czPoCf8N36K6MctZERE6rvcQvtZiJtC9pwCIzS8S3cMxoa0FNRNqsdhG/1GImIiIiEiPU+V9EREQkRqhiJiIiIhIjVDETERERiRGqmEmbY2bzzCw72vkQEWkKxbD2TZ3/RURERGKEWswkKsysg5nNNbOPzGydmU0zs+1m9oiZLQ1e/YK0XczsNTNbFrwuC5anm9ksM1trZmvM7MZg+fZgxG3M7JZgW6vN7Bkziw9ezwf7XWtmMxvOqYjI5ymGSaRoHDOJli8Ce5xz1wIEo44/AhQ55y4ys1vxI5BPwT+09jHn3Htm1hP/OJTB+EecHHPODQu20TF8B8HI3NOAy5xzVWb2NP4RJuuBbs65C4J02ZE+WBFpcxTDJCJUMZNoWQs8amaPAHOcc38PHjfyYvD+i8BjwfRkYEjY40gyg0d4TMY/Yw3wDwyut49JwGhgWbBuKlAIvAn0MbMngblAQfMemoi0A4phEhGqmElUOOc2m9lo4EvAQ2ZWG1jCOz3WTscBlzrnysK3YT5Sna6TpAGznXN3f+4NsxHANcCd+Ifi3takAxGRdkkxTCJFfcwkKswsHyh1zv0eeBQYFbw1LezvB8F0AfDtsHVHNrD8pMsA+OeoTTWz84L3O5nZ+UHfjTjn3Gv4SwmjEBFpBMUwiRS1mEm0DAN+bmY1QBUwA3gVSDazD/EnDV8L0n4X+LWZrcF/Z98F7gAeDJavA04A9wN/qt2Bc26Dmf0YKDCzuGA/dwJlwKxgGcDnzkZFRM5AMUwiQsNlSMwws+3AGOfcwWjnRUSksRTDpDnoUqaIiIhIjFCLmYiIiEiMUIuZiIiISIxQxUxEREQkRqhiJiIiIhIjVDETERERiRGqmImIiIjECFXMRERERGLE/wMqGmbUgnyy0wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "f, ax = plt.subplots(2, 2, figsize=(10, 10))\n", + "\n", + "all_axes = ax.flatten()\n", + "\n", + "for i, metric in enumerate(all_metrics):\n", + " \n", + " current_axes = all_axes[i]\n", + " \n", + " sns.swarmplot(data=iris, size = 3.5, \n", + " x='species', y=metric, hue = 'species',\n", + " ax=current_axes)\n", + "\n", + " current_axes.set(ylabel=y_titles[i])\n", + "\n", + " \n", + " current_axes.set_ylim(0, 10)\n", + " current_axes.get_ylim \n", + " current_axes.get_legend().remove()\n", + " current_axes.text(-1, 10.5, letters[i], fontsize = 25, fontweight = 'semibold')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "f.savefig(\"myplot.svg\")\n", + "f.savefig(\"myplot.png\", dpi = 300)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/nbs/04_Dabest_introduction.ipynb b/nbs/04_Dabest_introduction.ipynb index 3f6a9df..f0342a8 100644 --- a/nbs/04_Dabest_introduction.ipynb +++ b/nbs/04_Dabest_introduction.ipynb @@ -5,10 +5,21 @@ "metadata": {}, "source": [ "---\n", - "output-file: 04_dabest_introduction.html\n", - "title: 04. Dabest Introduction\n", + "output-file: dabest_introduction.html\n", + "title: 04. DABEST Introduction\n", "\n", - "---\n" + "---\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "DABEST is a package that performs [estimation statistics](https://www.estimationstats.com/#/) available on Python and R. With Jupyter Notebook you can try DABEST-Python. Before you are able to import the DABEST package, you need to install it. You can do so by going to your Anaconda Navigator>Environments Tab>base(root)>open Terminal. \n", + "\n", + "After this you can run\n", + ">pip install dabest\n" ] }, { @@ -155,8 +166,8 @@ "DABEST v0.3.9999\n", "================\n", " \n", - "Good morning!\n", - "The current time is Tue Jan 31 11:50:55 2023.\n", + "Good evening!\n", + "The current time is Wed Feb 1 12:40:28 2023.\n", "\n", "The unpaired mean difference between setosa and virginica is 1.58 [95%CI 1.38, 1.78].\n", "The p-value of the two-sided permutation t-test is 0.0, calculated for legacy purposes only. \n", diff --git a/nbs/index.ipynb b/nbs/index.ipynb index 18a5c00..3950dff 100644 --- a/nbs/index.ipynb +++ b/nbs/index.ipynb @@ -5,9 +5,9 @@ "metadata": {}, "source": [ "---\n", - "description: A tutorial for introducing biomedical scientists to data analysis with Python notebooks.\n", + "description: A data analysis tutorial for biomedical scientists. version 23.2\n", "output-file: index.html\n", - "title: moda (Modern Data Analysis)\n", + "title: Modern Data Analysis\n", "\n", "---\n", "\n" @@ -32,12 +32,19 @@ "source": [ "The goal of this class is to introduce biomedical scientists to data analysis with Python notebooks. There are two parts to the session: a lecture on the key issues in data analysis and a hands-on tutorial. Please do the following preparations before class.\n", "\n", - "1. Read the [Introduction](https://github.com/sangyu/moda/blob/main/nbs/01_Introduction.ipynb) and install the prerequisite software on your laptop.\n", - "2. Go through a [Quick Tour of the Notebook](https://github.com/sangyu/moda/blob/main/nbs/02_Quick_tour_of_the_Notebook.ipynb) to familiarise yoruself to the jupyter notebook environment.\n", - "3. Bring your laptop to class, and we will go through the examples in [Data Analysis with Jupyter](http://localhost:8890/notebooks/nbs/03_Data_Analysis_with_Jupyter.ipynb)\n", + "1. Read the [Introduction](introduction.html) and install the prerequisite software on your laptop.\n", + "2. Go through a [Quick Tour of the Notebook](quick_tour_of_the_notebook.html) to familiarise yoruself to the jupyter notebook environment.\n", + "3. Bring your laptop to class, and we will go through the examples in [Data Analysis with Jupyter](data_analysis_with_jupyter_and_python.html)\n", "\n", - "If we have more time in class, you will also be introduced to our estimation statistics package [DABEST Introduction](https://github.com/sangyu/moda/blob/main/nbs/04_Dabest_introduction.ipynb)\n" + "If we have more time in class, you will also be introduced to our estimation statistics package [DABEST Introduction](dabest_introduction.html)\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/nbs/myplot.png b/nbs/myplot.png index e03c305580a7bf355acdedf99c8d416a519c6c58..7cdda41eff398d7e4a2a9d25ad00b26f4eac3fcb 100644 GIT binary patch literal 234968 zcmeFYXH=6})HWPI0YyQFQ9znX02OH>y*U;z(i9B6iuB$=x{X1a2BbqQC=z<_MNuHM zCv_MQ-&*fl<5D!a&wb85yIgzk>m0*xYN{SSc;X-g0yzx3 zepMR+VXC0~VWbD&xE)*e1AobSUeou~ak2LFv2eG7XjpiWsdSJo=G=qg^4G(XCGag0rNSI-Hz z5(vK{B_uA+k>D22Byz^~&YzO!^W1(oe?0SXzpK?VjZx?Nwbz_Z1Jz5!)S#fi^<~s_ z7kwD=5H&LBN?6`Il#gyt7Q7T+kxgy-8gPt57I)#Lr_ii=lViH4GZ-kZJoZU} z)~Di}V08v?(L5BL3ibfyYY4rdYuHakMKo4u$w07!ewp%J!?c$#LRp>IgBrL<6rp?r z5jztqAL+u6MAc~_GV@09)RkgA^bvjVogoJ5mLZK>%$I% z=c>66T<0a6rM9nPf%8b5OS360bwvD?QRXo}PlSBTQa>j7@GM23kSSsgO3rSUpE|-k zYhRvNx;XMxPy)1G<_Fbukk~~*cxlk?h_gVH`=}}>gkVffQ)1|jyt1l-eqGCIu+1I*X1Jm0 zFc+I!TJM~zD2EP=-E7;ZHQumTHpxPay; zv(OA1f=j$1bq==e86pcK&h{_xP#&_w9OhJE+qR>Hs)znL+@brDN2eB1FX_N=!puC3 zN4$ZHGThv+Q?rXc)u$n(nDP-~evPu<+dVS!Ur zY6#i9%gjIy8dlq{jMPgs2Ea;#5t)a?s3y}-mm1CCWtL&0j@Eq$^l}M4EQ#i0I6)fA zEGzHLQzyO*onSsTN>z`VPfJK~9{WEut z%)OjOH7KaTfI5G{>3#DB7t$3!rv^Lbnn)8$eFQ80Li%SA3JxJV5!|I9-l%Y9>^PF= zA8V-V!xb;0Z_!0>au2iEyC`wYtz73r) zPQdZ{5UY^~M-nE};meD39aR53{sPs@@27*PW|3J@%q?}GPo-)DLQxm%ZFo7%z4g*q zr*rObN$g0iH2N@IV02~$MFR~7vrw;NQ;|4as4BUqVUfBmsu7FQ<8Te3)^kf|=WuJBSWpJzF&;8N226PP(gX9bTc?X%l#H2jAiqdO=+)^)Pg#77X70$&8CpI zLlmi#a1W~eFiEg^NouG~pvT;D@7&?rc@ISh<);XY`&f*J0$4fWs+zEy1;qN?Vbnp$y9$nWaEKI5R@${T}jC;1?t*a z>+xyVuuymp7M3pexgx*3SE;ha|2Wr2(U2XRT?$^g;eH1JatwF#?mAG{u>RtfitC>^{7Wx1v|`n(6v+ID#VUhoLlO0e&R7|KpA}s7Oh5XfC>uA-dpV-Xi2a)8pnlBYQi{o^Lq<>-Ow?c9}j!1(~(}nvp%lyh4 z)?4408vgWELA|akA9torD(zZl^evR!UXEBBu7(2@rt&ie$>5)9i{cre~hZqLNG+uHXj_6 z*-5}+bA}EHf@{+ueEX?Y0wm`k7?)nk?$2umSN;VZ1@y)M{VnN#T`{jK)^P@C2!`{C#ftWZD=RRuSDK6ZSAYK$@DN5aq&b%{SXO-PQ2PJ3n_xsQC zt9W-gPEyr+Cg13__E7or9d8TSCL5Fh2JGOX*qihV3pKoZNf{t} z#BF#p)NkRNzvrE?Z`6#}P?CkBL)5sA7P7JIW^c+s!RhVru-iRfe#zeb3Uv-G6w7sC zVKSK4cPGWDgIsz1B_)mYf(ca?sIt+$L)9WSH4xnbV%x7-6L)IK2dov1KNQZP)0$0R zNr0k^OwH5$?>J&^5T~H^QlT;5;&C4iv{Tg`@;;Z>pGM#6ae(2Po{>ZIAsLtVsOcb> zlJw__YN+ffbQnW26+LxwQ7dZhwulWuzncgh1efgl7=`ju?~a{f9MWJ8Qtc(U*Cm7? ziwv=YuG28CcL1L~J%Zqp|Jx@$G_MuBW(${o6xQLcHZWpnZ060u`K`a7**dvY$SS$kP1ZIyeKO{5r9qvV<*$GrNQWO-!?Z2aW z{qv#nvnrH259nYkw^WEBwVcZZqwcEw@X4>-z*3ij6VENpZZ_SK=eXJ^b2W(x7R~O8 zO<_naJrCYOq{@%B*kHDKsR0|}wyBCR1NDo-ZdDFy-EXz0kT-&y5F}tPMv9__V-*4# zsG4l}P^*l7VCcXWwVN6N#CyM_SdSROH_~HR?bhITMMfS}8J&X{cU;<>ly|+Tuykd$ zcK~iFN)0hc8`!wX#yE6?MTVe3*LmV9C_IzGhr-<5;dAn%3KZ3vHwQh%`NR&rE?sFV zOxVc|r$FBBlVX;cAwuzoWn8XPgrk9_U)XtLRIp57EfcDx=HAykKz0U28Bvom6GSX= z8N_5Q3RNv2Ytit`#VOZ`*A@G;v!lH`oteWH`_^-{CE%SOo)sL7)nP5NSt_LC|);Jc| z+K(ha*Vbn-da(h8rQY4w{i#ZCc#_>a@J*gN^UjY;y-~IQ_y~d0`uyXg+$qF6FD?l0hHivT{UfL?~xrQs;$Mr6eaij@oKI+v){)~&bC zjjE+_fQ?t`d%+73<| zH)g3=l~x^`Iz^4xf~yqZH4k^zbVuK8L``?Xu+NQxkFFF#o6CBmU2@X~4CTeqX|bES z2w@K_=^->&=Bo&0<6>`iXE37mF_-*?zyJJ%m z>iP}k?;Jq7VW4dM{gx|lI$-nNh8qLU^ZtQ|C=b(nCJu9Y$2ZofQfcf;#Rd8l&)ib) z<>)#_&TkULSkVs%oJsY@X~$lU#XL};1wJ;SW@TMo8!EIw&WAN{pY$Wv%=8K4-u5ed zZHjuB4v3<|uLx6fsc@;i<3VkY~#)%AV7Oa#)OTt7niv0ej zR<;x0gwQ4v#%7-ltF3da^gXH+x;@e<4(!?P$5Vh}911OU-cGPsL=Kf4krqhW5RAlQ zj8S+&KlCMPJufho0VQzwALxxV#Vn;#6KD3LMTHj*6wiAh;q+*pD(BeOU!{)95) z{JLLXxxt6XHBvj0>avHLcNJy?xI75o%vxK4o`7HTX+otQ!UyZ_w$g8dfA>22ge^A^ zErf&3EWj;&DMPR$aH{K>u7%U|vO30(5^kUQ@qP{Ve87fP4ihH4MTsfd_Th8pH~UF8nN zRW`b6W{|)!+1$uid?cuIu*dIOPJrTcy#qdo0EL{~VcByv|Tu~N1vluH{ za}FT4vOKXDiUGw(%I0IL3XFG^ilNwf60mQ9u=!XV0byJlQ66*wjm|B#p~UvHamw%z zh+ijuIVFmif2R{5jag)kTNkEr!cdIyCyvCtD!$R!-vudhm>|w8!1SG=N}bx zn;)mvrbHV>)QR_d2NEXg^x>d65kj}ca>;BEO<~xZa86oouC#DCsRL>orZleStZrFJ{X_*YabHs0WCN<2!7*`N0E2G>F?hfw5fT zgz*u_T&Mn?z}(Vc4dS$)sIo;v4`qoEznvBnqAnUL-w^2!8tanMm9_m?|IV5jf98Un z*36@Gkun(a77)VbO+kx!qDCKU6FRGvY?G>~52`1At$72iX&vB$T~>;y@Y(jyH=NjM z-ST#KLg}M8$fD>Dk3512yxd^4mSyPu&Uu*ot|(_i)1~E#uFIXEMgY5?mDh8T=!+j_zQVC`q7h?v;+%L;!Q zQX1k~aEb+o3qt+$tm|-98VHu#J@Tgl;P@}zZ_2I?k^AJ zNyfc`2B+X&_HQW*5)e2qSREXmspU&0x6GM${Zp0FtD$(F6Bmi&Fw;0(1(Xvp z`y5vQjZq^$h8o$7_*_Tm>Gfoz?De$%rZ%JWqrWUDM{P!VZugvmVUzD7Wku_y(RSb% z9$&lV4^w)Iqk}K|z_!8htW7X!2$}$uwG1gWO~P?U)Zkm7_(Kc*6xqL(%?-M5#m^LD z)&q-3JpM7Y%nc~O08ln&evjfKo0`_?1D+B2P}x$zBw48jOd^5*zqDro}TS!c~>THwdNV z79-l6gS*c9mD+`VJiC~O`8J$jK_M$-(5e$Po+(f*PJ3}M>D$I0X_K@l!bl=MaMDkf z(6t!ERW69;?=wau1WsGY{>))r40j2>^HG>a_wcScZj3VL_`yrfthfJMFy=MIC9-r> z2Q73-12vit7}u|@rv}YWt<92@tJ_E>Ac)v7_&+S@ z$J{k5!`C_!$=eSS$|(Q;r+e}kGVog6y=6VNC9LpZIqnf#otROXQ__MiB)b<3--|QQ zv?6%tM@zSk%UY8C`uaqjj!`z$5mUB#hER!9jHtr5rsTC(jwtwC=A_BFr#$rDVOKGr z|J7eKbdZKtdSly~h27if@Ft=w;kUp9>RF_~t-#8lwjb4KpMYg<)^GIY%RBtlj?5CB zNT022rrJUjvl{WEpJ?#iN(yl%#x1h;onPo4Z^H?clnKzUR0o_;Lc= zYc<;W9f}nZZ~^@qzcn4%JJ1tr0N9+6o(b=bA?IrZI(@$Xfgmg3fO~B_H9-jNB2bxw zQZja5W~y0kTRWQ>X{2WkW}1d8H*!$h7^GmN`WrrJuB0&*MJ4ijZLrCL;*7nC zrsDe71J3&k)^{;b6OgT9st$8PFdoERON7?liHJOtN^x{b>}G(&oL_D!r(n%#ibS7X zxJaD+9>eKOLFDdeKSSmb^1=bbo18Jo%KD@SadUjkw4O*L8DboB*W-e+r&HFx3Zv@656 zN4*1*FeQZ*3I&)G6jM29>ApI~f^n!{9Y_tHTI-j~&sVT-yye$ai+mPK@N-Amr}ES2 z%KoxDB?E&OA-XMr%yn9(K_A){YdPx@m_({i_Bq!{`4b9#qHDJb{Tg1fu=`Wt3tZMp z`}NMZmmA#4Ix(_dvs9!9R}SSV+3z2}{s{f&VN==>>Urs}=b!ig>ml_jBju6UW8uLv z+-6%R#;VUGe$L6Cd5}<$>YBh>L`dHdncT*ZM;F&Vu+%+GDZ|Fmt;n5>saWK5Z{8wQ zyzsC0X(YM7w_?L3r{trt{Go); z3!7co_7G7Lbg7%{sGLMaI4`faDJ>T%Y-+M#Jmxo2xqQOLynP7?d8^u{i=X;%_tivO zddrq|>*XodSg%b_*NIjF_^CrO4eajm>tHjB^$?L2>>CQ`$PFsDARLyRYKe7U57fdu z4wRamucu-^$W8H7<%dX)J>kr6@xTN+i)?@YB)_@kWt7)uR7Z?Y^_lYX>#;O_&d03q zqq!b{@f)PCUFZ6MfqadR|6n@Bw7k`umTM2fw*N|Z#j!dsZ?FU{KJfeUNVIigF2%=} z{7Jb+hCCBX7D8@gGZ&j#HpXTPonv^(^TZiZj0a|mJUi^;$<@=}{F4ALK98;?VGE*Y zEbkGHFmiWa(V(@1X4KndJbU`|;nPdB(5DZr4NorF-;*$ZB0t|$%hq26pWkS%Y8fpm zj?a0%xs_V1D&a$Lndj^LOEo>v6Yp-Fn_Bv5wy3miwXY)h=MOZ%M_s}wEHaqMp@bEH=a1d-!`v=(dkO!RMKK ztxeB$KHpsvQS|Ka{LbRW`3CLWmW1o_MjS$w7E6aY zF)mzzeBb7t zq4l?Z`Wxtdc2p(li_F=4C?3%a?d%XrYu;cQ!B0(T*_6!dbR%08Ujl2#7C z1tMj(lAJ^Q)K4X9GS%dM4jbk<_cLiXpser zc{?Z$N$n=5UNvZ$_5X*Xg#LDvLynS9g-8__=GHPvvT1x(JT#XyTfUcvZN`HwmlO@B zc;n?8>xzGF&iDtWrFYzW`@G|DrLj+o7Y;u`SKtyBSZQ9))RnjKDwIt;XRDwDzoRvZ zko_NbjXZZDkKKL$$hR3z+(W04W*cI z?RwvV*pNKtpl?zqmwQ6Ul3%S?q~CE?-aj}@jltx`Nk>UGMq{N__dM*zbV={CJ@Xdb zGBsg4xudN)^@PK9k*xPp8-VwX)yI!e$k%&y^E5o?kh5gg&RPEn-4Rh?(fu!E>Sexoy-61Hp4F#6eBySX?afFx zN0T1D9z853mMVk%1JWY!?7^Vp#XB;6Z8$d0c1!yvqN0-f#mVvz>!@U>(n{{p!mJp6 zXJ-aq*RBVH0rfKV-zL2Gd{9zmH!@(Qwi8d1IK}}a!W*CeBe*fUcF#HvZ)%NnhZmwA z3;n}P$X)l-7Pi;>D)QPm<&~7AarkdNZS6u0!v4zvMXi&9(E7tZ+L&1TmnZh*I9uI6 zDzfvb=anXZnoLFa`|t~EvTLcm_!2|ZZ*f{pe+xWI@nXa#q68o8*OFk@Qvny&-CGuF zCAb@28HT;(*UYxvab~vKpYK+Ci1K)fn+dPHkH3gv*63yW1O!kniSbXoL|7LHo+vR(E^hR`Q$Su|e);0H$*5zJL zMBP~%82@wPSXaGOaMi^r?Y{B7HDO+zySlX#bV%(>yduY|-DmZCvj&2{6VKjS&;xsG z{r=AC!0u*$e+M&ozdQZ!CAD>1vS(;_24$FZP#_+c^X$A?b?W^gTKY1c7V+WemnX|# zZDD`AUNz&5-qNc- zyzzCC1mPg!fR^`V`0o`~3U?tHWhEWxs$ka*d(ZvoT|HzS4=h>W z1Gz0hM*7Z&zYX81?9JBd{M)f?fl4^WO%s;D0ll_02B6`aEkT8>xK<8nCe9dvx zKVmNBx0cSe2#+o)WeT=>icGb?G-1wt^W+}_S?vkbMgi>yhKFxBIRB+d6D+r>h1=&c zytg^KzOl@^JIc@&PSKGIGZ3LkF+B-zkFfB=ZtX8e(+I)S9jioxj>M1ZV?$e$_+kYAB=E*#*3+>#4 z12B=vUMZw4oLp`1tWvr5X3?SIk3HefZtM;3d3EIS_7+3JEPsDtUqH3gDJO$-ZL z&~*bV4h>?8t8Ky+4y=oef61_A@melt`NU+N>LPAQu-o*to2jMJ$jl;=!>q*mD2w{N z5LE%?4>etW5YIDH4QFe$z5_#cqujE&*Rgy0&Zx59wPD=ba5VwqGFx3|YL{$ERQ`E0 zw51O37{K>Jv#_m-?SdIQ!_S^$8+wOppOoWkJAM>>vddlE3arxt1xrfQu+oJ0w!%8* z_HDSMl#;{vd1p{E25*eI1X$*~EIbM|YgwrN9f{MXntSQDhk-Rg9rq(sWLw>1BePbP zq#@$JenB@OA1l*aRKO25sp*imnHsQukx<PP*+-* zw6(RL;L*Jy{l;V_>a`25@e%J^MYBCSw+ie9@Zit&)V`#;JNI6-lizN}z-M%C>E3F( z63crdE=^A^=2@`{tt)A@n$?PCKFL+ph}~UqO1Y@?*cvTjj>0BCBwZJt?$Jig!V2AUa%4&^j)q#Pbi=LkYG6@=UW zUUQy3Ji@u62mrC&8^51+WCXv#)j!t~Wy#Nbm;f|WCSyaXBK!Ert(A10 z!;YK5I@`@{#b&_6yNKFB3)3u8oHPA3f<9@kY?&)c&p~00xqAXHIZ>jN>DG6^=gVt@ zn2Ys%|G=i-g@tzD(aWRvhebwfXz)L$XZ6->zo^E+|PsdT)+Tion=o0pBqpdbI-8P-)-p}2Sh z&)<5OAYBuGZf|KsQNm76ED>5?mGvDH68;0(;$j|6-^~Vev2*(T`pzH`R?2bOV<)F z6s&T%)jYF4ED2_V9L=izpqjm^)0u@nG&ru zx%6MXlJ;cNPW#o%dLQGB4gt62ttJ8)i?NSIHoj_VAWE3*O~0i^FqpJ|dLWWFqrE3d zMoz5GF9UfaVt884lfDN^8vSmFfP}igK&Sc%eDOkiM}EKD-rL|GWxoo70XPmfHB}dCx6D0gzj;gQ?!fuGBwOV0AaoXL6`J4zq{ci99c4)C4kU zTzrB+XTFG82l)4SVWS(7;OT01z`v9R4JTQu_whsU{y8yUdS z5yhrBY&eP7J5>I6#)(1s=bk^>>ulT&k=?epzTL@o(9*vU>MuCd#@d~3uJP#vFOW9&&aMxC<@@PPv#H>7SAMenaUCn2# zqqV9iLfYveVw=}H?sq300{_9#APU+e1p1mELYQDHP|o*gm`Wu@AnOu8IUIN4GOF{I zO;89#A5R&~Hqt44>=L~xkRL#7wH~VvSWGZ-bS9U`H;(pNR-dZDo8tJmQBM}o&U;`E+pN(Qf>`Zwp(Mw}Gtzt?gmmIWBz zbNF;HXmy&!z^L+gh@MS-D`2X$s(UGod{e4)S31?$RQI=H-2r|(J@GX^{bW;*aTQkN z!|`H=Odc3YRi*O;`hE}7A6Dr}+lN4xQeZ!PjwfYZ{}qKI^aaQZ8Iu2wz1puX@jI5J z_I#6oO;=zQvRDeX2fm52;YnP&^h4bbE*qmB^sqTosWbVBBuB1nz9&z9dl0|d${Q`y zJKv`t{i}9p+bsd)(XU|g(t@zVEhXazkRi8(_2SIp47@*Gw9ZR}!EzmOb2)}prf%cszRN^M4C`cH5pQh@Ni%h>?-g&Y5ft;==3X7UHa{fGdGH3pYT)qW zyp0}BMa1ox)ParLC&s02#P!#9%u{NQ`Hre$z)!JSEneoaS(2p-DPB)|ekR549}OJ+ z9){dvm6_d`!mw1jE@A9*xnL-*WHu>$(ffoqiprvbG1)6s_G4>(q|JM;=+~IMt3$j$ z%|T=;`_M~vUj*kI$?;pVS$!}&%wA?i6ov05m;NyY+o21!l}-$oVjAs>Pry)mos<6b z{A*K+2P`kO(HwG;_8eP#(ffeC%lf)uf0JL7Y$jQj6B9vib(h zmsf74Vwh$kM z_ld5L1%-Z^t~WrKyn8=U9Zdtr%Ev~U$tgmQjsHq%a#D)5Gx{1Y6lRRBkJ*rRdZM)P zn*+XWwp*EGq}}~~HF49is9m1?@Jb!i{%fT=00>zv*`mhN)(FtnA&KuiBHW&50dKWw zGZg%XRWqQ6-}${}?+yCaR4A}tqryE#Xzj&Qu9wJX(J$*cGFw51*R^mjJm$R~h&B6*U~87w_E6n%HE(#tT3lBZI?U3qtgQE4f$ z8T5BGJ|%<7MM#&Gk;CSH8~Ey0>>&>gN(w@S0rF0w^*JtK_NMOM$^$)n-fyZpOI>%v z=bLh|ar0Jxz2$_#o`>7%#qL%#-j~)+u#=SaFYHI1duhkO?t9|T(#_eSmu!tQ(wB2? zkk>ysnU}|wZ(_Tq#J0utYuSkhUp5|@^f-iDE&qy`4(l1u_VaEk4k(&tMcp|z7cuCe zUT$d%s8ySZ^kK5&e44MztC@09XN*M}3!fnFbFH1v+x*1zGr`{V#pN<}0LRjkejcJ6 z3%t;Q2}Vx^sT<0F())DIG;QnL*zp)kr*Xq%Y5UHjCebg{x<$h6fA@j*5j#$Kn>W{h zUX;wNGIGGGO)8i$MSd`>8QNIKAnfma!lj>2QfcMoQeQveMvKt50LR`lzH4%cn?p7! z<0)Q`ED{>F%^nz&(Pz)f3xkAB=@4J*@K{-`wRT{u=jUc*@|xX@WpOv;;yk~}V6**1 znP&pnMT3ZU24;*eE}VAvaHpY`H@IbFM%r-ZmeL_-3E$#Eklx)F8Kf6izcw3~6y7T) z1ud?)$Q0tkjSHKPl{gQrOY~*upm3c(ecUk*{S#~LSF8ypl+DWPZKwsdbpj?W{;`%!EqNM1P->1!qrz3z_4_x!? z4E$j{kMtyiwwgv)FK40-MsmZB;l({ZwRd2J^3UT@&-8wRvX-1Q;T>`v2g-N1DTxFk z&`me$)}HgCgm+Lwx8$f_t~_IdpKO+1rkoPoyk- zW}{Rh#j(f-s&xp;j$%Q-;s%I2G0RVpbDbuD$Iw&o*&oq&9xJm#irMab;w98&IJ5PL zu=pc~O**|^k|c~xU9>jr?|P!WEw`S}iP6h3dY^#YxB#knCu#XiPiC{A`L-P6@+?0x z-ep@MHw`a@I=A{ITlvn{np<`~XZOOXhn{oj4ZX<2o9ve-c`wUAAG!uGeqTKGknaj( z<7LLVnJOhPl>g%V(L|EP`l1@!2cuv$?tD|kz_Mcav-hn1>$k4I{i zr9*pOQSvg*Dz-bl-h7!>MV*VL;X@BorOgLLJDcn~$AUR(r)=iUM#w_P3Qx~%1`CoC z04+wd@Hr!_tYUG!x7|=SB1};EP($P~3E#U!K06zsJNu<;gLMY}L4zd&{^o1L!z1*M zkK{3*QaExs@jx7{W$3d8%ZA`kn-J;H{!UIMfsHuzQ6LgT z+qhL${xK_bQG{UQ*JlO32h{_`*9MZl3c*V6UMar!2Zcrg$v(;~HnGC<^lP?A>mP`( zeNccB6kdwmQpL-q1uOsE^tAY`6@cYpes=4@jK7Xmz%o4wKPXA=jYRopL)m^A|DcF8F`>=G7fZ@xrVa5*0o6r<<c^NM`>PPQA6Vxmep=;6BhMAOc3f5wW$%!XNJrZa1Fq!Ct)N>f{WdlVZElLu zW3g}~v{TbeJPky`&)G;D3Daty2rP%yZ%pR4cu;*i=FyR8y1K($br!Z;eXCjdMh>22 z&oFJs!4S*7`uN93oawj!uuL`My9Ri=vmV)O1bwOQ&FN1!pMHN3#zw~-s(C3}SeUM4Ul3z}{KEz5Q9bddYo!a6PU9@M zU(^N6#PPf77^f0T16V8V{>uGHHXaAhw4l$MJvDmzb3h*PNW&{X*Er?Y@7#i70^zxQ zozX(fmCtqI@ylr!I$k=y(1cJ@Xt;P&>&3jmgY2}kSL~%%=|ZP5S}ywnxGSI!7aT^{ z*)2aY2U6sM}E^dL@s$zh<>EVcUy{ASfw zBOf`y4tIWM3E;khbCWLC%d2z?B3a=0yShYcU(mrre~Yg~hzH3w`T9h<8OwqGS-k0! zcoW;5$og<`9;Om{O$L>x1N+mLXCzORdTcVBdiYXurGuh4#kEHT&6Q}6Vdnc%Tjm5c zgpCK2Ifm&48Fq6>%1GZQ}uP2KC!pmi6lpfr_*`T*3q>alf5D9bja+iWuS(*25iFR7LE9R zJn?JaJi}ju59Lt=?}KqAp*6JZ>yPgCztR<(T)N8vLtVo!DTfvGH-7GFg8+m-StT`< ze8wMa#Mbb09Hmq&C1r&dIYkV(-|ge0k@2}iRCbmt4?agt_QMrkuV(FPwO-$He*Mwm zH(?t3LnH{-=j23T2CvN8f&v^S%e&Hpw?h_X zGZs%l0Mif@JV`j)DXJ+n2#(b1YDwkN>A_x@{0kM!qa{U;DjyjKPcDNVnNF-^_@)SN zfZu?ZnKBrA>l ztL{V|6K@Kpt)>~Fjh~%80W@8Lz3(=KF}c8fuGd-4Op30xt*b3w_yL?rDh)4re~~vN zNYGKfuYy071X+@SZprc630B&Ez7`OSB)B;8j35AOIsQNtU)@+&-M<>5OSjrwNPgjT zYtSjL(5Jd~ty!G>BICu~G5xWcrp>L%dJpqvy7D9^gKr3 zY{atU4kkYea~|;aufTk7|DUASWX-k@@q@-2FEkn4+P;+EOvLjF!o2t&-aJB0SRxNy zEf~K)Ir5?J3S+|KBb|p%&9Ys#)$8-xwdL)U|F09}o{A)w56Uqb@v`4Z1(@-h1~kE3 zjM)=!kaK?Q#;Ywh%{KK+ueWK&wi#x0FSk5ed0_GFjo9R&GuJ&5d|@cQh~D!*z>N^f zpF5o>*{i3WPLzLNtX0AoY<0e}gf-_{w+XfRfzmrNQRaTk@t~{Ma$bP*3g)?hGmRUE zZ3rv=E*^6vwi?Xe;e5UniYZTD!?eY+T({ayx4xKCzzq&L1qMw8fEq=aQseB;)(L+2 zHLrr3!jej?rx$iiY=FBne(nRYk%?mW52y*;JSudiRp`e%XH^O-;_Xtr;k}&=ONr!` zkN@idJ)HN%pO#!kddpw+PCdLldVN&JJlI^UV7dNo|6Q5|sfE)EzL9R)PCf4i#+3Owi4Io)Rov6@;_HqZ6qW0BR%+}|C90M~QilC!3>wS(Ss7Y{*yJEP4@ zj?E8`MAM7VYSKt4NS&Gz)#-7W*8*1)w^=Pys~?Qp2@-?SsrWd+QG*oBszdMcs&?m$ zXvWG4Qr1__bFmbwyq_fBEwCL55|JJOXY$L2nk{H>cHdI*SDgd@~#~0!$CkFXaq;p+5GV%LgD7y-aDL!049{G?isaN?6m0|LF6UZT| zQoQq?d%SdavhKH%FrQj#F9s3UdY$nU+v@2Bz88uq(j_jbW!nKK#OPM{=^xCYKX+a7 z!%k*Xevx4q)L2Rk^$7L2!bqmu7HyKro2VC}&I;DCkNMRYn0@q=S{gDeJGU5+(;8qx zY47wIzx$5TzhFyA{w95f!IV~oR+NtSBfA=_akXFpi>r+5pPyf^4>sUKS+6jb(AwE8EH*B!~jY(x#U5r!aLOUbf$zJ#QbuP4cYo>#P(1A~nj_}ZGVm}yR zAU-rPAKCTp-rHgyyKR2Xm9W0NvhOh+8-)A1WTneD#qFgdA7sUw@De6kdkcJ`_pxI; zdie}}GUA@P+iCHpBuO*M@#-HAL$vEW46HnA@eW_OtGFRoIv?4I3Yz)Ecpz-RbI*fW z+=Fxl2Uq1?bt2sioz5S(15V=RQ+#=OMK+%nwO&a6^Wt|v zkzc4GyWW$Usq84V$xB3oaAlWufC5f4^OiFoec6c?5b!?$L>;~S&EC7G3cl&mO7^|m z%GYip$rcjL&n^3gbT;+t43yIPZm^urDvP5H-nadyrE!(S@knu9S{7QC$48vnc} zW-k3Oa5|rHf{kw|_-LfROzqkneIvitU#}5g*BJOl>&?_fQ}h_w6lv1JthKYCR=I+i zifB>n>VBa%J?EcWAW^QZr<>t7hdasb{*>!;pz{&;>&NAqk`tYq7up^K!2p7T1JZ2c zW{fGBBSs@IvL&8?_Hr3WQ|4Jwy;nZDl|TG!;Pz+Rnd(1W-r5P; z4k{PR@t;*wR9Lg9BN0hu14GPN!^6Sy)8#|N@4_ij7=7^vOvoD76i`TE+I=63DsNbU zdqcxAx~A|>JtX;DjAo!`Hh9>rr;h)SDS{h&!|Ngygs+fa>*rJ+vk8L4ayQ-=s99hZU%v2NB=J=2>&?6FlE$wyn#B7)JUAz* zia#q_!%Qg+T(z=JIXuxbEVHh%VqeYXUp~Sal5JL#3<#gD*1Gah#qCWja;>v~0C8;# zD_>|Dk}iwAVNmJJuNPJGL{%#=4kYhypDfpgcJav&i&w8(0%J%KwFO4lX zA6?cLU{YEAhF4_}qc?w4aUx^7VSs;8tjSzDZ|yH&Qb-5aie#{e%ft`QNHJe+NL3 z>yj~95)u*WFjH_Gh-LMoWETtP;9(5 zO}UUUeMvy$2PfE#RjO$Ac|K{Jb)1P#p>^1_Y3vjxa8FBF%-}MIB$rw?x8MkZa`<@I zZ0vY}=RNw$2}zT1=$t2@OPqtddW)ixyGmZ11$9lU?eLGyAML%uwpEQ@YAEDo#@tZv z45`uhT-I^(fxyK|Ssg3eBo%QBn0JgfK|&`n(JdK$z-#pdaTaYx^2n7jeWdYIDe zbjNF{#W`T#$@-TLM}VV~rmy2Vtoi=F35{o4MSqmVIJcdtHp(8h1>EZXY&K}C_xbsj zka)U3^3P_?KRm)rBeFkwpWJN2o732hT@ty+5{rvJ5iK2Jb;-kg}}TRn=4RzQtS^e^p&ZGV5jA14HzwH5Tuf+jj3A zWl=8WNFEVyA|Cmm(ZCWa&~U9mdAfu`pY^1VBOAKOAaOoGJ?R+nUuOBdWiGRRV)CMA zw{Pr<*bc2Rvx=GbzF3<~q8-htvk|}Zf$?~PFla;Gx^V&mzRB9s z;au+mp0wQ#ZaP~7o*WR19-C=P&R7Z+{$6}I2Ig=WCdv2k^C4fJZ)vwJ{f)^*=wCN_ z5hZQlMATkCXn!j65?vnCshSg@>uZ(-JIi`2oP3BZcT~4?cs+G0zhMsfpqTIwtLk(@ zd7Vvc{^%K#iY+g>`TbW!2fn-WpEZj6Gj0LgxWP!P1o7pnECS{ow((rru3z&!qsF-Zboe&UBY3~s==_psL?_i@3vZ$84ffBE$e_Y^a z>3??N+=6%k*Sl}_hSUrVf|0%jpd(GVc;10iTnsggo^+;6rvikVe6@yk1t|HrIPcGS zxxhhii|%$#=tdpHEZ~44Ni#}u>%kJp6B9KIE+YpwjMM#U5pmaa0gIQ9U55`;zax)t z)l<-K>UP(G5VQK_nG!HsrGxhqUo7u;99EESp?%4w%icNc_LX%>7vsjmszZ>5SCSE{ zjn%=|v*)kls(kV+>!UZmpxlHY)a=&}uGTLTjJ5CrX_PZpyN-mo%H`^Ev(C3oD+fo( zA)JM}pT@eKbHZ*v z*c?$_^?zl^Z#B!Po$~qraCII)O=bVvrwJ%kk)jBg1q7r^uTiX#rgWr(fOL>ffPf;b zO3~0eY6Pi4dMAK_)VTCckS4toTF86iuD{*)KZCO~;wHD8d%o@SJeNvGbIq`o17Yv^ z53mkqstb&3IxS@!RZPP?PsqJ!#KuCG3ANOYq#Z$%V>f0tnQ8s`2L$8#B)L9odx@}J z%NGGl46J=99wla((Aq1_k1{5`E}C5Eh_@z*IYN{*@}#lq9RXs#|5D1v{nnsnT%l+Z2SA(2Wtk$WG;?||Xw_8F-j_Ib8mLGe;&kX0(_;lqzd zJIX zE;0QU8Vy&=c~@*{y5+63p03ObGtM^YbCni-(gC{X=jOJaZjr!^mB|2KJ9J9A-vqcx zS`W?b5Q5TGyOxI)E9zFR5Zid$mnBi#7yH1lgu3!Vms6>QdV^1D(@QDjIXGvMdR}!9 z2r^cYk|V^Gf37K?%ykmlg1YD__y+u5g@S#Ul=t;xX6KvC*{@)CRWCmBdTy1-kDX_4 zc~e?>Z2t98(zSD~%Cs!p5g(-x1}=e2Rn>S(hQRfzqQwE zYXuT`YcAbbZY@**P}s{-%`++PfiW`*C1Y>Pt~$rdBS4>k)aaTCxRfaWtLvrnJ#0EC zLZGL@Wjvv!_ELttfKW1r4ONi^;t_3N`M;4z$O$Mt`rWkToypa~yR97!ze|l1bTRMeelQhBdMofV6Q!5h?i-i!_1yWXLuM)sk8SJ%8BAVWQTlO?x$QKWccbck6=%;QM zGE4QDyL)sZxa$3TJjRJ7x)1Y!HqCwEG4yR{L&d_7Y=#ApYlN3wKpIqllG0WFnEI*O z(%=MWs8u=PIZCMRQ2^@GBt7Sp{=iLT=>2m>SNk{WC8MLtxl>6>>qeh&=$r9fk{vLOX8jpj`Nj?wCTd)4l z?UtGIPueg#+-8q_?tAi9QOtr8i)!?gjCYz|bYxiKMZ}wX9#NxBnS|$2Pzz+QJD7#$ z42(B4t=hQR_vH0s-?Q7-eq>D z0GJXb1Ym1FgSiM9sbKz#?oLj6knc&YvJ63pjIGf43z*ub`S{o#+;!Su({)1aF9wb`NqI!UD%C^Bgy`FF{Oi<#9*6@OKk9~$ zYmv75$F}-{fVr-Yof<8iZ04R!wjBTNrwnPHq3w~*fd|I_95&y;1u$d`w{2l_I>6wU zOPImQ3_O!jx9Zhx_w2O8bPY{EhhHPk;=)yBu}CLu;S^N zo1@!?*c?H$;EZ$jG6gtp%ZR0fGTm|7vd7z8V-{o?r~WSeAN($2VBVlLmpiS%QpFwIqs23#fTK zu0*oc&moEpsCH0Y(yL_tFCIKhP#$})RJKC?8rmZ=_8z`<>H2HedJ}k2F zxT_fN^@sTE!?Uq&VdK>>d(z+kRWzTT>Xi*NRvwI5o-ljGM6VtIHhYP|22?y2zsx$x zwL6=^US6W-B&P6D*pK|LJ#uaZvxh*Ie7}uhA8br1b-?G4?NDn`iG7l_hofH)HiCN) z$8b?5bV3W3;iSZ@xXu7Kf7A3H63+>Mk2t=Vb#E(ba5oaT`c^saZ^aTt6zkU)%LJX9 ztjrkI)40Y1B!WzK<^V~|-vgqC)?&~Zfj#B7&(fZKIp{k|(*pVMNF|{G2;O|hGa320 zC_8NtBvIL68|Wxm~Esjp9ANst=Id3Xskd733znYf`V}Ma_AD! zHITLWKob&Ph_cu+fzbdUQTpB&p8|g;`>;a3F)216oodBsLIAIr{J!q}tr44A9(6El z1BJ2BXPJTMwgF?--%pzDuP05QA4gg{BiWr2!wc$**!5uAmE9Np9$I2)fxKbkJ0&l= zr}w8^6rn%vet!=?bmAeJ2;Lv0zX}`k{Q5@t=VTdtbh}Y*1&(z|MigJy=tnn(zw-dp{`JWec4zZ_E&aH68}%NfN#l-F*t!_`af} z{k1kvP~(#e3JFf%Jt7FMI=B6ZHkH}Q1H0WQq%@xkF8-T_M(zInB<9`yrIJ9UXWg#c zSx6{*K7Q=DunMUpyE^EsQhMWtq_k_pVqKL?;Pk_)ZF(bVkLBt&sgABZhc9-P<51Ev z;?6yVZQ~uRShFU;Ayg`g3(RgzSWVgb5vNn5h<=ScEVRn|o6pBg7m9l#JSN@^y-h7$ zjCnT7TFwiYsI9!M)j{JlLk%GC0IK3G^(V-wuu~$#uCidb+fYSl-Daj}RM?lB4L8k5 zIq8=z1-x>G1=qf?+Hk)xTn8O%WLO<-(Qu%C)%vT!uk0oJgX??mnZdEbhdNRF#iJhh znyaJ`O!`4Nvsg!Zn?2{t4F@y>g^g@l%mu0NP)eFXE6}>nZ52(Ul3S(we3j63p|T}w zSBZ`2ZDAx2A*^Ic;UW>vss;_zfV`M&V4c@r?sV*@4^Lxg5qlv^=(V_syjEQCR8(6d z=ox6dN%(9IN6mm*7_91BJ!`(Q^(H%$j=_Ki0raIgP-RiD>gQ&!gMJ`67ZYwJ*xu89 z;d%S%RPJCS*8KhPo0%lC0A)7g5TrGeLRmzPt8^nK0O&N?r$Tc^RynA(Z+5}?koO}8 zuUnV@bNH3X7U9e~HQNHJ%W|_%pDY0N4niIPU5HXJ%m&+X4{6{9`r`mmc{<|SI#>6=<#u&O3Fg(YlcxQN&+Qhyq_p&ws|$S-0vK1$EzMET*0(obR0gz%%d1gmZ~RuGUHunBi+#uUHD^5O{MWh` zzG2%JJ{`qa1J-IaBCmSw&9Zz$+onmN8*JnpTY=Up^;FR(F3~e4sGy0GSJzaH4^BJf z5B3&hT>v|zmR=%N@MQyCz@<>)DbH4^wE7uyC8E;1j{JYE2?zU);0)B^74$#y_>Z}D z^plMO{;u=O#g-Ixp71SaeT6!_oBZsUNpR!s%6@g^(gPq|@Df=}dRSrn!A{z#-??@h zObih}oD%gDHbG$jK-!f(l}JM0F~{d{Fi|ZNaZcV(Ap?4XvGED>-X0d4K#4GSVRr?0 z4_d4Hk(;A6MgPk>YT`->LcbPkLGdw*QLS?6$}oYv}x)=4YL1wL4L=I z{ZAm~oqf^e+Eh69HuDI%^n$sWZa^!MygQV4uyHVqIh#y9G>HTxjDuO8_E)9eT8a1@u`xZ<|+!)3kT#j>svWZ7${ zhr`cqJF(fu33mv0_-VozCata)_;ABkXBi(*(Vz4mjj^2T`5mH#mj7-t_kYA-LozAs zuei9<{3$6$)?h^qSZRApD-%*B^xmHO8gz|XQ3x68zz+)9-8KxiB0>&rbt7pj_r*l z9vl{qQCYy`ojN`E7PT@2*b*@g_Zy?zo@$I1W7|%k%~!Kv$RhJC^RESZkayhI`+zzW zXid_kLyy;-{O_1Y&yxBCZEtohcqN2e;zK}@;S z_8-ztkAV)>OdJ$Hep_)w-vI>}{qy7$?Mi@mgoN%Y6`KWow#t1%C7d837Z#*m>!PrPwH`4MCFV1Kmz{R4;X;jS*PV}K9^ix=rXIGQcr&9@_;ZT zERzCHUZ}b|sDV?!apM{>sn-{K3PI*E;I!S=)V1TYG12vD?D8GIh0OL+z%=xJm003& zK5??SXdoW`nfT&@8|GNDeTduJWD6YByR$5J_tnT`BL>^~RG8wQ@j5n~yJ9B5+=~;YZ>R zzyY}>uRT#+Wi`6Ske~s}04$qhUgn{Wos)LZ*%aSSiPY&7WSs3}+L4`IwSt>YoJE=L zP#j>g{|Sj8Yp^19%#}H4s z(8|Fx{OC%n(WyG>IySY9g*>p4Re0xLqrYQR|KzBz!fy4dQRTIkm5#1u^S{6Oey7yf zN@dymxTKxM3rbbls6#LSpxpN;f4APo!7}lh4pK&0R4BU>%P}J$^UxxQ6rum#{T==4 zJcMN~xiz$gJ^sUU|||fG9b@wu-wfw-jr?mNe-10~5wvDmOKv>G!|51e|TH0ccXrx zaR-pF6HLQ$gdN#XztIch-vJhM=OpGxe4XQ+NRQJSO^1DC$I4;fl^4AS?Tf5*OOLBS zl2IsdF-|J9J}({0V^ddO^a||A40`zI*E+o?cpmM9%ufJP7>q-ScmXn<#r_d%1&ROh02v$@9|(B_`!!C37Uoh6vzmPt z_OS2XQiEysNoO{LFm)L7=;}R}-9P_bJLJEHHm(A@v_BXaDO718rp#*JrXC4~ya-OeU7wmk7OJdV`{tIWsEW&PFL9w!Tj!0n1=CmtAVvuqTTd1AoDA6p$(4Y> ztb3Cym;o}nswCBqt)~m}=1yLyJ8`1QE<&i;+_8>)9V#>s9=>wVYB%)XW1l7+`*nc0 zVMZ`DjxFh-N+Dnk2&mCE(m{>^?el!MEryaV1o3usmrJL%GLgK+CUQ<`UFnl<1Y+s< zfWv0|hXyHEC?9JthNmczFU+@WDCt^|zcOjcMLd5q4_#m+h@tQiA zyN^T#xct>7vDm&dZ;;TEk0|glCr3|^eZE?M3@3)_)5)bb!f6W3)69J)Ie^9>ds|_> zr9ZK^(;%*C8KLD?1e7ayjjD+FWrJ)P->zoKI+gX+sD*WLzf9kS`qW2QCQc@X}6@kzO)j!WPfclXH6&{4E> ze&AvC`pgjG`|hO;5%;qaA^kKlw^2T|&~sI6N$1t}ooL@Z$EFwMmAG;t!*cOX*9{^Nv3nbY>jeYMX7m z{_h4)M(j!xq@5j0e{{~fRAbAC(nT_cg<%dJw zk3TT0@n-#%6Rw0NDl*E8waPE+t~b(*bE{Qd+z%?>B!sS$Hx`8U7EuL1q8tMI_{igd zXI)R{@~sxVbeN{vuP?sW`vAW)^5V^u{B{8!AUS{~)`cx#M-Zo&iYNco51tMb>|7Ep=KFNU|v%wr>+1`%f#5t%gC&T@Hl?JMO10`*wq! z|FB^ExU2Nwwo`vpG&3^z$kV{#DWOsD#D~BPazKP#5)7YUzK?+ao;fC|`1k9$) zLomg43>n?QiVW3pg6n@u^IB)+8jZ{0>UG(c8WVgsDB6s(?YA?M=Tdf2_N4$|yjaIM zh={uGgv(`Ci}7lKgsq`6Mu)@oVwE2^&;`~{{~N=HL2ZDF>lKY8D5YCQem?K_Q@15z z^~nv4CMGKk9qR-}gh;*A!%GaBEN)$=;TH6#ZWkXJx0j|z+&H=+vGaa*Bu#mEnPPbL z@ssgC{DaqD$J+A=(WQ?pbbU#FmPVnq7IZCh`9R^-783emrmLZSC{Ax(nJlpCL>^Gf z>k-Vsm(-qAmOr3<=R!Mu7xTpOa;lFT58b#~Ex$d(zjuUk&NG@{$o9g6Af^5T$=1cw zTW%BswUyK>Pi{!Ip29riOJ;7~BNc`<@v(Gp3o7yBYXl8*$cn$!lHaiHMh_IWEB?`8 zcrF)RA01*)Z?!qQQ%cYZ$>!2+1GN`=Dk-?)q114YAMj=odd)RBC!u)W*V1)yyiAJJ z%42(x3uROUdPl(h{;}!|>g`KogyApV_wy{QBPGM!**4g|$MuW*YldW!L+KzId;?_- zUIe%(Or{CXTW$k4f^rXH6;xW2aO__LTrT`)>9=!@e+>8|%-xsvos-!RIkVcn8trsR zP0@#N&BK2GLoPZYPgU`!ZJZ_5#dUct)PGb`l=thjpk)z4AJ`@hfWOg{(VL3 z5R5}*_Qmo<--iUd7*ngeO-!NO zP7tJahabtR&X7n66Iv_$sJTSggY#-tB4HBLe$4kgJ9`2aTC~&Uw3CQC$6qgye2{z? zqEaviOwH`vB$GcjtE$zs%N8bwGI@C7O{hWQrDKT!sIucBUX(-w# zi2UUr;KLnGLK|f6evzBS95Y>tLN%`b|E9E`NOC8g(UViA_m(IN?qKFHK;%>zLL_7Q z%CRu?MGX>m3FnT}u#_*ha;jmdz1vNZQTVdF;tr9D6Yz z3@v4xRT#DEuXb8>U;8E;az_&qCW_?&rI*Z|3F@1TWIRxYPL@4Y&0w~Ko)ESP*{Bz9 zMuQsg4`2J*`6xcV7u|~Ne*nNC_q7mD1z$`xFf%C0wq^kH^Y4O{f3Yoy19vWf zz$QP50x8Ybmwo|xFg1{QSb_@RYuy*waHfTjQHC&H&);ON1M%B9^U*#NNi&j642MRh+zUT(* zVuKHB;Ev^%6ZS}=eEX=Dct0abU*ZsIf`FnegC+p$I4Z-sz}{Emu?+k$DV1e+B|EP6 ztyYfDHpNKoCyVDc{V4>d7uYtAbrWJh)BN7~e|O22IRJ#HoU;iO4J#IK=XPiK{#RAA8>2YT@(ARj{ z2N&YFFh#*VWiA-zE>Wyq{_ZO7Ws0aKlJB&UB+b>q#|dW2r`WW6l!aj(!(FVWGc!I< zMzS&-Wa5x|y#L9n-hjMUg~cWklMV@khkD)%dLlKe+b1jisnUpexN~HZQtR>3vCS6K z7y|vmA+-{oX9#MQDNoGdHZMqaUrC-=IfXK-jqO%1t-Y2UJp~vnNArR%WfT2m|AxFj zw!QgbdUpHUa(!uht7`xG+6O&*Irln1*nY(^gRqW-BS$~}G_bsoDpzn<*3D?@$46Be z0Wvpo3v$Ia4)pl#l(Cn9+Mc>xZqr9S6v6CD3n|;*Ic9Eth;h1(c5G1(&&&_vMy>(8CK$M&bBs`}E+&r1!AT}+U=OKMf19pp}HrMMyT zy>_(D8w2Qk2c?`xK;P3Tk(yd2Qs0&W7nULLCbo%3FddA# zNWN_s+5WROe(9|9z~@}W4eW}O0X1mI+I5qxKl_Pzr+YGuSc>d6j-j<3>r$i0O>s!r zeHVkpDtyj z3%bstg^^{+_2MsLGGPf90?y9PHshqGlQS`+bBp#$Yp2sAf_>_|BqLAcA`$07C#FvA zNu$zA&}pwRsBsWdk0}bEmH^diqoIRl6}*oGC6|0br&Zctc=}Pc@(E|x#4Bd09@Bn3wooIL=9pn$H&XIOj?pSD zgr2I^S)NDAj-HZ+v7qG@%7s%V==4<0dXSx{ap_lls&vPUN!!lc4@&sTYzLpvYkmEu z3H#>Rh2GSuJUP?7OVX}y6%j`Uem}+*Z9TW9pApq!9D{D?>u(%maovqK<_u1>N&pr* z!}w$Z-np)>qaxerr8*UKP+M1ts~2s^WZ#nih!r|^&*VX7*5-}`HX~05PPdB}lbDQU zQy?QFX~w!+N#-1l0n3IWLMA0&HS(Jcj-NF0c<5EqXY4`vrT;sR0fw2eQEIgM*QvOv zgIR6Hx0s?wO&TRP_;E_t;kXoz8LY1zgHr160AE3ByDV{5-ik*R{wb+NE@niu!i8S9 z*WsZqqGY200v2dN%ejvMtGn&5tM;QG78HIOT}q3060Vy6%R|IMw@3f(?!?Ohm=0TK zd#H+dSUWa$DRDHKT)@TAl?Eh{e$$2zD!h(H4C>!?Hl+60ghe#c^F$B(xK7>$zCzQ; zoGi`8RWvVb_X}{bG2Nei!Rf0tg?weyL>bF%38p-*%0KRGJ=Lk4B55`OZQ}>%j4`tu ziOM%%>{>Q549M4c0W=}3Dk_rz8cv?O>W15$l!$}mI+UXK8Tb3N)5bV7#^y7dZ^mhe z*Qti8lYuj|sNL5#goS@|W{#&MyP*yr$yOO4nz4@b1sX^eo8z02o6um6E4Hp9OWuKt zJ-(GBMl&6dzd#HD_{N(%f*HO`KYoM3tSLu5`cnIszA6P?;>Ea?BRt8p0U(!F4Q6wWNh08u`r zK^{z2X5J`p%FQdb|5ug_xPh_+iArB<@U{C~Qt-#ac^5S?taTFvWUTjeZ@E#lX;1USewWZXy4(^cgW(->s;2Sz%8jZXlU zfB-Y{eZK<6O!HCIZe;HGu-e=|7l|in?EzqWkKDXy$-FUq_>LiJEj=_pRPH7%5Le+r zla(HFiCOJQN&RwooGK(tYEZ5thGL$w@{QwrY@uw>S$FRP?ryEr#BWU3e}50& zy^V{B0{IC6ny3uwtNCA6cOoXWk$~&F?GY?VXCQ$1<1c`Z4%hFl0U6Tfmyxz?)z-@J z;Mebu-+wWN$q2N{v+e`^{bk%E9LCX&CX35`@X*jvB5V#LfYGsJct9>q{VJ4k*`hkL zrl*yE2w`^W`1HP6q=$ZY(B1!?f-1?4r&p`oec+Luh6B0*sZ1GAlaTjmz)DorFW|F>z%COt;Y3FxjKRi>3tGe>qNoNck>murPe9m%j94GP+)@MTTFf^KtLv z1_*n_aBPaXY@fH>EWa%n{0d`07e5-q9#R_GG?3#gY`!Y5cT{uEk78eL!z=Q0-u%_y z!YPM^UzTaBdYWgprFvvVcMREKwN-aCr9jKHTiIgRnWjYPK`Ec@TM#acOe^F)iufAC z-XC}QxVwQ-KQOtmE@avWL9rR1pKji#nQek8+RtkSwZ_?bJLu57~#1#1KR4 z$hmU!vfr~!CD`BQjy|HIujx2?tBrq{-f(54*>yFeV}c3 zl>_LdCfRK2L|UuvMt}5RI zh_y8(cJY~?_(3*x>s1^50x#LquXa^Nuc^m2A4kmyFf4wH64$VsM-Dg?K75nfGDm|i zXfNRxQtAreymN9UyMZdxH7W3rrg-7NeV8dL%dc<$O{uQtlCWJ)g^q#hzFtvICgxFTE>?N3%265@)+ zZJ9q6FA#wt!@}5M-#r7<%ZpS=lSO?<_&kH53uw3yilBbD``t&a6bTqap#WuB- zQzjHUMGNUh^l%-TJsAU2!-b-VAF_+KN^7T%5Vm~>A+eT~y1kwA?4Tb$7U=xf9ITxqglrGK(zxid-LfFDsTtjugDVsMh9y^sb;HDdU@KQy4_DxR&DxRba zG^9Ckobd-bj^l$3sBWBLoWWizuPaLPVG4Bl_k0{^oqm~Ub$ko+7p~eW!V3zc@7t{1 z7bD`8zU-Q9u*U0~ZVww>&9C_Wz50}Iooae6o#E;Oprz2aYouW^JrnO#3H9xHQnmg} zb79VQV~2QS`~+)3W=@n6Nv&QCoJGI$vI-bcSZ_KS@PTLUUDNOrsdqkb^gE15?ddeY zr00CB+&*5q4W_EaSG!5l_g_*a8`qh%lZEf{=uNhTGGK;DTs=Yr`VRZbaU$ko4gI|L z@*N6wADMToPaP2KY=9~+RVljmIWWAd9~cKy;Qb*FqBXVxo?RaOd+$KTMg2mbka|$U z>Q|uxA+!ekq*f|n>j&z^rAf3XHZm2PG$P#FQ)Ft=REXA?8SSIC*U96v%``01Mpp+t zcMxycF?@G)BbTd(Jz5)DYbR9aFLlXRG*0YUr5ns(S-mk7Vt63;=r0geO2OrnZ-rug#rReYA7dmep2T=t(nh zLYgTSi+GzFdz3s5*i{Yv8blfuNmJWUc9i&Yvf!xoGcZPUKk}%Q@?U(+opCJTslGt* z{WFS}q*%}BhOcele@|+`sPmUwzmD~5!@{|jlH2DN)&gy)Bk)e0h{=23aaEJN>)81S zft?(fRq&4jKHK=YQmY@a?VcZ8)n%$;4ngca@@+Z`4ac7_#4jUl6SX4Ru{XAhBna`d zPBAqMS~cX82liVlwZv!78yTuk`t)`7gaCyG41s_P^U9CUpppLJ)=~-0zF0MhTyeg zZ2Ubiox$XNsxLd4A)o)+Z?inOltj?lavs^z^E}+Y8*5MAN_3+siD`azy7-CC)=CF` zqXn$v8W!uPS~}j<_4IcDhv@{(%lZM+j?cFFol+h8xAz~nFGUWS)hJFEwSa{(DAFxr zsLv>@+8#JDpl;cX>?(~)u}d&3mEQK2D-eb4l0+g>9ik?+1$K0x4fxOJE|L3^-cIq7 zb>99&_*QA_DbR~{Z3QMO7yVx(+e^7zqxmKtR@ZvLj?>=U*L*rU2z#LP2IykIb~&<+ zc~N~r56o)*{;b|2APEI~(J)4<`&x&$i}5Y|;MX#zQNdDgrM2reIefOS8E;dpmSUCV zz_e62M5RYPW7S^}keF}_q%u%HgU&7J;a=fFE<~7}A<>x^+Di#g8qHCDEKDasA^S*@ zWc};m3g)FU7XL9Yo+IHfpO~9NAz_FY%y#74p)nzbp>I!Hh_4(k@ek0jbA4C&>-haM z)1J{Y8I_wTAJziqCxu(;PBiyTU=lk3$xD#KP=N@ellIb8>{8e-Q9h9+*%{}4PK>(92KT;+9`~9wmv)G&9B_8k!o7~znH|buEXpMX@&aRu*Q#1> zt_9C7pxsnu3FSLODfqK-=#k^ViM*YXe75G^#etrMmfj1Cw)s~r2TcZg@_`u_IOzF0 zy7;+8Y$8fT4ydQ*6M8hAT!F(RkLdBI1mXW2Z{MI&2j9TmDRM@>fqrh7Of{O4Bs)+i zuMGo9@OTVJR7BKEA6~-6F9U`c zjI6ccr&R0Y2rDbT)9GVYMB#VVT*{lPJEe2^xLh90*O;6hi+$FDl*HhZgUpsS`kldktKG!7YpW8M}4&j>&4NJ4%o(%iDiX`g-sxodh}ZV_g(>pWdDf1 zXUPpqb3b$8sBsIDtvk>gi70w62jegJm~|}plPPa9E*P`Dx7rFG$NU$de?eDh!oV}0 zF2a(JOGh+IHiiI=MPRq@3Hgy3`3#ZfBVDYmecc(lE7xHr97hjIoaYq%)-Bw>RZ8W< z`(40Vc4THNGXF+bYJM*c7%GL6yxdRKnmthe@1Y5iUf`f-vqvNAyv!ErWD_}6Rt>5Q zp-v6IOC1RU*m{KFRk@STvm;+)tp-gb4tr*eL-6Zil1ys1jj2a!Ex%q$x^~Uqrw3ka z8Mu|kXPXSlusgT)Z~qtv#eUI&_3v#CWFI7}33umVSp_oT(99t#QLr3FQ|6?kIt$I| z)w6Hv``aDZmRcSZD0T#^ExAcZb%6q0&VC>*@~Nj`cj5mvY3_F~djwc=w^oj!!GBru ze=fR?4(U}rKrmW2y4n1WAQ(4%{&_~v{N54*qHjOwA!~{BU?=5+l|ud=3M`>ehcaI z?Aae2PsQrIJr9%LP=eiGaq_5lmSGKSzYt6a_NE7?pymc9(-rtio#f7h<}}gx=41k! zruv5BhH&**xhkewk&!@HhYkRM-ESrGlH4;L>`8{?Kzci5t&c3ZP5X{Tf?^oa@*q6% z)#KygOTQnTlDniTFxT!22Ro(qn?vS&5Wvs?S?(3fD!IDVcemC3=lY#3d}8)B_{haU zeZ7Y@MMx%9;~qTE;h%(}pbYjaT~pR4?J@HuQ|QcvyG$`wT`Q~wAj7D6byd~4CcH5^ ztr;>DH9MpoDR2jxn%IxIwB_>TFJ8g{jRk|~5O&=|f?h#@;0&~o_^-J$brkZ`c+`ZH z{sW3Ov)aYuKZ(zgdyD9xS?w&8=2F$v>F>lZJEba&p%d8qhz35}>ilr?+hAS^c7}kT z1HX0!R#*o$By1j2ib@%iJ4PlfLZ3;wME(zr%_qqSi;v0VFFv6^RtE z<)}Vv!29nL6vomj12q*AiAQE9J|_>NCkrQ9H}67|TIANaGzVl=E6@e6#<#Zg3=-l! zR~>4H^cInN_=}Zc2`W~LWzts`fB;dBXDNUz&|N#gseFuUD_@1-1Hn>IFx)%8B2(0r zQnbcRQQU#1yS6#ce+)Z6dt)IeFMZ*9Vvtp{&Emj>hv4jdj+`N&a>O)i+<}Rd``or+ ziRJFI!X7#*lHC@7)AzLsv~;)*g}!I%=^ll14KI*ulh1^H1VixOPL{o5EuuN zyp#-Ir}COIpnM($;quM01}ww}*B3(A9EIvLYmFQYGHgKO!rzD6bjxlWgje2dw0SqR znY&FRriHHN(gDICBAM2S)6($(v{}F{$Jpo8xG%Y>%oX7CRu_Y-&dj#JJ0ZeU@7}~y z_JJ)vVHtP?Go|g2F$EuA#%tGQDtt^0&J^nsogH3ld)gD?$uaC`$z>qqV1F8Np27me zUpW7U3r-yP;nfs?q0O)5jH&@|l<3EN;c#Pu6i}U`1Zg`c7QwXkB1kO4_axbo zTl+_0{^Y@5`puIBCX)#zO_}uHV&d`<^SqOJrc>h^pd%` zKkO~he!Zb(CU5OHrZFbKW4)fTLXtybINO)v-HUUIs5g_cwsN+yn%cp&#wCj?D6)4{ zwC}>%F6*&JHVqFCw^oe96AOZa5s{D8T~jW=5~KqfGwiu1;0u902d~V|do1L8I>A{H5>`$Vai*s`LOwLm-k`O5Bbm&x?T zHcQl2?xPLC6(c$`8dL`O-^GLzV5*zwBMJm=OL83)jHocJWB4K;at*eB(ae>Gys%)!q0qlK@x z|8~Pdo*l_>c(k&cA-b|c|LpHPteo`LIj**+NT&le`r2x z40Dt_1D92?LzFyyH}+;{NEFDh>Mc7rN0Jc?&;K*w(bEf(Cdz+exIk%?LUKemLFkWehAp^KxzsBfV)ItbwgFi zmM_;#@yEnQjQ9PWEYutLA;X-qRt5n^8eA(&M9w%acv15C;-ljA zo=w~Mf#aY(M?0}G4P#rGuLlZg!G0EENfK}B(h8pUT(Ft__%+pUr(4EZtPuD?r+%ia zc{;Fpb8$=t`tguY$YFw}1qceB-PP$#-*{JpmdlyM1$XVfF`;dnpu!TMpK>)+$2_Sb z6=>8#&gL|iuT}7qj2- z1Lo4LMGiwMR*#N;)6O*hl4)VynoyE=XPw}(ceQ~y9O#;&n1)bVa4#usUc;*fw{m18 zRYsfXx36ATcJR~gk*^acTZmf6hBZwj)jGm;Mv4v;0{8phMiuD~^l!BYux}+U@~;S@ zT}|;$`TJUlmHRj$-h=(c52qo;m3J2krX#fLyO9hZql%!%)W`daFY1myg$B<2;9b;D zOVo=(#vyeZ$zEqXOL;Zh8l%i`Ck-jDy7km=F{jun_~}Sv9P^nna^=>nIo$Pr>?bW-9ipu|OJ+;Vs4<&z0v0*o*0=4j;wG+( z<02qou{M#lqg7yD{m%;MZ>p353-v-_h3wX1t=;xa4*P1~xVf8?F)K94PLik5hE1m2 z1Ha2l?KM}^elzxwfPnBu_v^NGS7~f}&ks)aD7StIgv7d%1J#E^pOGMQW3$ePljEz6 zCqqg{(v?GFRi#KCTe#)?>K}&UrNMXob!6`A z+^6QDF`PUz0#g>X{{Gp0U=`luNryXxzgzf5X}>h*8{xDb&fT(Ssx$+ASLOE9n^BSN zih1cm;B2mYI~F4RvN4`J_>Ae^n99Pb3Ebh)yD?mL>FprgVWV0i-!kYdEM-|o=7-|R z<1x2zfc?v?AZZ4ET?|wOc;Qyu4K-Rh89!DTn~Wdfp5>3DkfVtv8G)&Hr%Yq}hXtk{ zwGovYEb#{g$nN8VcqFQ1p!_YCu*;C=E9`~84%Wh~3*imFClS=wbEIP6_Y(2?$^UsZ1I0M2eLaYM-V?JWy|7q1WLhbc zBM4jV1N()mddZFY$yIdRMs8{A_rlAG7DT7h12EZ7lp^Mhu>$jjGtD1pwl+BPjT@>( z7M*Q1MH}H(r=ivJMzU)KIJA^uwjRDvTx{-UPW1cBa;X-owerA>Ho&c5y!G{Kxu;83 zYk!F3veKv1%MrL_>nXRnLwcj$#L@({HN8#b_i=*0`7!Cf88bcZ)-rx%xqa?a;fo?l z+$Z68V_88`CWe@_#%zNbb?A$Bo);_B!~^*)@G>1jU=mRx&Luo8ki-3aWG&yO%B6di zH#RaXn*FC<$gMvw^d_40ySTq!6C>#41ExMV{S2fZ#X=cCVNnEM4Zis3jCJH+aN_T! z!`PWRt}}mn#X-YO+Y{z!&+X^JuOytO+p&_DH{D=p`1B-n>A8Fi}P_q4TSh}V2>^@n*1k|L#Naq^-9*CE&2QZsw&gzE#2h z&{=c*y$1^ElFaXQ1a?=(ID5Maa|FdxQ_lOiq2*lK?F?KdzH$mzeoQMY$esK8mD67~ zsx{zVe|>e?AB8KP4kx8Zl#l&iu@3VYqljPcn@BkaYcQ^_)?Cdk_?-sn)Pg4nMR3@^ zkpztUFF4-y*MC&KIybN)sO_?V4^|&3-CyH99LD)o%g0c@62}ZkxZ7ncxrRq4re`_ZQ*0O zOV8+6e+38o(o%{81!D(W{#>(mQP+U3li82SpuM{E#X8cy%$wo&CwkxVafFR#@^W5s za{&G?<#{s^cnx7Wu*paByfyb(2`P&FY1Z}UEp2>>b)e)|l4|_Ljmor$Fp3Yk3+9A=( z_%p%a!@;g@1dEz=v|jqPY$o2r^F!TlA5~nIdyVIYhPCs;J#G<;gwR1P{nJABq{x3V z-!J8FHvQA-5qLMr@3R0%DdC#~cuC{OD`6WEd=Zo9)P|Fr`wuYJaa38;gB{o$i3k)U z%A%4&Of`TRky?LsvFj8IwL~!-LIx5;K6C;f@lAyJSAWys6-%-r#b7}w+)h%dBR{rh zDzM`o*_}P1`IXNEzkriNRB0lQTp0Il|JsFv9|TWi598XyZ{V}8r~rTVa&i_+kbp?P zu-J^QJ-t<1X8t>?|Fx?!fEDMhye{y$^stEv_ey$!iD6!x##P;u8^(q4osI9nrj0X0qaQN(JF3O;U{@$gc4Nw#dgf4>$FEaEEH)< z4N!cb*HtsRr=0cpc)HfjIl5Mzw8S8c4C&gg#c0^}ZkR_EP085!>i`{*HrApoJDs%_ z3qL>Sv3^&3Hj?*{TOyVfhkW_GYGz*O{H$!z`qBU6>OG*E&Yt(-AWKoImC$8rA|fEY zE39IuiUQJ0C`#`Lp$fvPG%3_v!WgoKrieOWd2AcG9$QOLizIA4k+n{3S%RB z{9X8d%=C$=nGRqyj_#lW>FDe~m3~T?JYZ5|`kly_NezEGcAKotcX9KVzMMIfrp@rX z0upI4)d6;N3A7tY(Wl0O$qC+KTl_79UzcL^FdeNm%|jOI^~bHkOTeD^q* zBaYH3wIg#^;WgRoYLC|J{mCg8+)cgGy7eSTuvGh(50-*$b$26deD=u$$Cdo6(tEQE zqOn?$sZrlA5?4DOMw_TG|CXBD!KOO(dH+T3Hj3STHKvcyYYuQIGHSJlx8Hj z)HMdIZSwsF?wjRV|8?56y3F=q#Z{RZMsBj>KYH#%53}O9u(5e$_k)k;`WfK)&#k@; zB5A+9M-T69R5@dvrr#@;o80d@@}A@`dAZnL#$&$c(mXZ8pQ>sYM)Q%7k))T4+K)7dA|M=J zL8o2nO~VoD<}Kf{;=e~|8aZ-AVzi!am|dtj38v_-*^Vzd9_pPAz?Ccw3RlaM89&1h zA|)XJb!#h5lA&7uZL9My2lJ2FE~Q-SZp5p$>LppT|jI(*OmJ^n=eR2;~>`ul@i&x!&)Hsx=?^D5-p$9h%IX5qx# z*!NvtOjsR%e7;|vJebJH&S9>gJomrez#qm5!w+-5KLvSP6yOrW9JolFunrK#j8s}rMyC@O71|oINvW}j|sO=XHzRokEvOCy#oBqc| zojcmf<*QcB*L->qY`zC*GvII3)}*4+DJx7#hh6!iZHI9vbAAp(?=ZiGmDefzNB#uU z9SnW=saYnXGS(e1edOw=|8o+K1k?C{eeNli?b1m5O@939csT%ibxo*X%qp&`e5_T6 znugC@Ry*7Ctl5orhY}&73BxsXvs@^xdv>A&Y>To+U)-en4(%AEZsyV?=#}S$7#bzkR6RJH#8gbE(|rq02`VI}hP?pmNPkOMh9gIiN;9Ir z$Xj;x*6KcVD&Y$DYzS@6NV63<2g~06{D!<`d~4Nb9B3}`X}<+3;Fca*g&!R#!J^ui zsJsuqR^^XqQQvLO)TrC|p$D@}MIeX)K2o%Q;Eb#NW#)`PZAsnSnJ2dA0z?S&Qs~4H zjmQYdgoZA>T$IzTAhcPeq=UCf{><}vIAY!S6|;=hguTmasXVhq5WZ9}~9+xZn3dEcT zEM}1dDH_{G6ks;*6CEoGB@Hf5EPelhnpJ!SYrs;T9vF5O$#HL9iqL!Zc!{EaISm5V zAK$#5t5J!6I1y@KgJ{5NT+>+M3-b?RPa;L4%L^R~L#lY{TB0lGWc=39j&~mi2=1bn z*a89dzC>?GAZN70^{3%pE%#?_vq&onqN}SiWBVzg~dbgqIP}2(1T=gUAkI zWZIY1&yBqitaJIOPoBmN7OVcDaA`fo%Nv-TEK>N}d5jn1AJ}9-#oyyi=sCVa)I+PW zYXxKRT6TwF7e3hCGPl;z)ZP8Q;GT)vo)mVDjD9Ryn`~$YPmll?XMP&87DDh}Cod*_ zn=7w?BBIAho_qj(h<@Q3TL;z(Z+tA;pwjAQ@+#FS@nmj-|(p0q_v=+;7(6ffkd0PI;QfA4mCQqZ?w#8HtajC z{R+_NIH&KV;wb?Z@^ayG5H2&hnzw>caA%$qbWDdx*n(2gHKD6ec~kAJctMP6d)&g~ zaUs_xZK8^0%Qkj2Cr83?uo#>VsFwSB)~EFrUK(%T1a9lP6#8G;@A^_6Q0|aFzs-D> zb8QdIJ90yIjx2p^dH5(M{^Jk01`o2_^M%FIg!cZ@^fY3t7&bWdL>phdKIxOTY z!I{{a9V+lek0_Q|EY2CT#Vs{rJI|RTqFPIua>VsChAVZ>or6*?=QjZ>XnD#Om^f&) z1f8QUuy0S2~SudOzn%{GE-t}8L&#`}OapoVp>skjuKFDWaslBu1^h@EB9ji8o1s~t?h z#?H`U%+ueE4^~w5isMt|YW`IYr*Ct=oqX3Mz+gzuXYV;nYR!lCj2M`=FE(VMbNc-o zR=Om{LwzUfo16sV@Zg8D*D$>*Df3;{l_$1&q%+e zGexJdw-^(;j{IOV5%!`rUiuSVMXmea4W4vMLfHIBKCj&)iCen$CBL@B{F<-@=8tga z>U`E-cBBdjg}F zrIka{SXj3RH23Z_WOecft^(?iV*QZT$9CLxb|FUt1M@ z%j0j2P_<(KB1lx`-9^@S&NQj>+qj@=bAu9(1OgC-21V+?o98C{@GjAEYAEO)(9|i} z-}`BJAAoK|FfaFr08)&qZTWm$8y}2Unwlej=@%e&?cE3^MrGG-4(9s(>@FP94Ih}6D0 z1;i1jo5cJtLS$N0y=)D^1k++f;e~ngbr{l(&9zruON}83I_1ql}MXQ$O<=v1Pv->=e-j? zKgQ-}fr=zJsrF1wQ89WgAWj$IDe%UH%m5hT;3C>S)t5VCu`4t~daG9#vYb$q#60sG zW(h(U-q>j?7 zc6n>2+S>ltOYC;LtFsqm$9Tc#zj2;rg-L|U$8|%9)xbttZ>It|_B%9j)S}X#_8UDq zW^rJ5u8Np4xqrNpBSwT{smM)F0{FAOO*HDje9y^F)|{h4UHQC=k7QzC zi~o#1(o~&Zrf;np&-Sl9P>Za=i#qI=UMiF{x#6y&ZU;~ng6{y2z0a*aaJ>^el8AQ%quTtq{a84bmt@X?zSH7aZ-)OFuR*`Qt3ED--UV7$vevVc zqh}OkmCL_jWZHG}qB z_92NpISE^!`)k@|VivOMK6CcfyCG{chh}>aY>8zoE>?GYC_*y4xMjYygwg#e73Gb-$hQ=mKJYW18goLcC*2op;cXopkpS!z%~t8$&)G| zts4lLt0Q{)zS77YJ~Djz@;F={f_#gf3$x?P;pT*7`;~7v_J_qU1)%L_#&;Z`5e7IG zDoow^Bxbn2ub;UE5o2QC9glD=S{=^ZizkFI<9TLA)OhM48o#D(X$ z&j}55*HR-GMj2W9Qpt?DR}IE@pi?aYZFnFyNL?_bDR(*4u9iWvO4-b$@AG50CXL#K8-SFW*XuoruKwB zB8d7_>DAPOL`@gC{hm+w!+YddK7_+Fkd3hZSM&xi$^`#xJk5D*20p!oF zTwdelvGHB}YwQu3VGWg=?FhdAvR&pHG8lGao=VZMclahaW=oMl`1c-Ygd@+h-{az2 z_|^X&G?@@aJ`%*}2x4+L+^p~y1(>sqJMEUYkiS8k+~ogN5QA)j<_%_AR%obN#*6DA{qx7F!Wc=jX4|g)nDC;#6M9tVy)F47MSb<81-kKIE`O;is;P@gW=%K zThjpbKj$z|6fif&CpTx~rZwJ>75bO)UEI0b5*ClvDTu{V#FIYNHg*rlY2gmJ7ydmm zkg&FqgA_`bKxN)V+G};Tc1#9jg{Zucfhp>T=kursG~s(jlIU!(a?A^9N9BT z@9^|j*E(kQ-GKVStQJ&u#iu#&LIghyV+7u{l4RCeToHdQ?yNCRx+oY-7(D^{Y+|7G zv~X!b%(K5-h=L&A{z=fOpU^1;oG|5X*=EQpqvOToPZqEBHbGcu`-RoddEsf+_dYdC zib=gQ(syU78fbP+Fai;77Hgd)b_;1J9yS3J{XsLQ^8>h4AKY#;d~dbxvLZ)Jd-H{Z z$!d6WXEW(X028L_JKq|Bx&83nEPbrPFlvq4#qmqsoFmV`-Rdr`8ln{K5L2UR&hDn>7w2YAinRt>q1myo$A*VON+raOS)9S=&7Zj}02aQw;x! zG~Z~7{ZM40=;W%T(Pfo8-hum8U8Ne%Hv;jkx>SxFa9)ZrTCC^s@$Idp-e6VB16_7F zL~J07}!qWz|WUL}pyVtP&pN{|06B@>upWkq^M&ss3aF|hDdlozjhr@HX- z&S%x}mSdw4E^dnVMe4n_nIXAW3}W`&Q{3wOpFUNS`WeYo#DVGt%+lyt>HAnZZibtw z;OqqlHh1!fzHal1(X$I+W~_*uuZ80UP3|M|kL9AjVvb6DZ(C?)~ozAp{RHKaB~p^eNwvUQ;-FD!IzQA0Q z2W#kKd705&YqfE>?BrmdFL0HXv{Y@;dAMkL)VaHG1F3|1u@3^_B1cP-PJShyzFkjH z!SL{z2(tKnxHByBv=5U>wvz1aOqEx$Y`VQ(z+>6Bl5ITOHSL}kn;tM&#iC@WB%@t^ z@k1SCgXN+9h>J70U#k{6e_N^!Zb*qdIXLWr7?HAHidG&k)vmc}O z$|-yIpHCH;DFv;*s6%PxFaBiyp(?@%*B@QK3Om=YuN$v*`@yrKs*o08cha$Ey6?9K z!Bb@>7Zir(_dk80f@-QAu(rRYDpynTDM4gNV|eW)vWzq5ezcv6oL;%$p_h(OFDTG= z5q*dD1<{UDNRwZQc>c7Ls4y1+rl7I^0@a7%FeJ96+M zh`A}R%0o$qDU(Q;6sBnEG#=yA64JFI5-)dkT$?e^N^WoMP(m!#Cfx$XIA3zm@=R#n z4m0R6Fb4`?pN2Pmugr=}rN(lIL?-vu+Eni@9&8f&@pRq$4o#(I(jF;B#Z~ixX*`zUEM3W; zgEzs5lzd2^8a+k_zAyL%aj#`}A&U~!U4wB1$}gzRVOx zw@aIh6ivR@w`{a-Gr2#Rmw;(RX)QkcS{u6YtknGC%N#@*Ri+ zuK?LIvZuYM-roi_Wp-`j&?(R$We6PKXGWlFs76S(?|WaW48eqRQ={(~%YGrrw#u92 zSQ^_`WBR%{gXETxmEv`1==le}|C^g~h8wT{&_mOI}rqRag!6YX#>P zqu-<4Rv!3tziHUr3)qP4n4K|mY@hzec@F?9Yc<%|M+S)pV`Ib5a5Ah?`P_ueBPpiY z*Ufjk@`!TzaV262oCa|&uk$@`-zLsOG2LIhm^C8`g$ycathp%zk zcUx$;;SG{qJ)jP5((r1!WQzYap(g)0(&etXrn&S%N5gQ*D$6xnozi{JidsAUJA0Q3 z=@C>7H5o_2`H^=(;|uOpZ1q_R3QG6)r{TzeUWQ(Gh-%@YsDqn!R`6TX=1jJfFTG4=+LV19&c`8=l+ zo%pm|&x9JFB$LYs*^gb2?YsH zxwaiPY}b7?rM^Cx?3&Ea2UpK<2o9Jn=&s4*%tW(^lnO($!b4)eL&vNd5;!>70?~Xc z$v<451Tnkl8@gQ^tFieeEA`4q+L2bSX8YL%XPVJf?_a-&cekjbel(A6$l(*+wTkm{ zxpE|1^Q`(SOH6Sd_g$&L0Tb174&-mvE_GfTh3SOs=+R@8W!5B>)XnUNPJMgDEug5k zlp_R!WxX+9X>8bvZ^RXVUT!QfayfPwPRV-iJwICbv^H(Vyo02u5XpXc!P(OwQT(CY%W((_}lcx(7zx;?+YX!7G! zE?i{n3my( zT&k4&ZAF&&gWCgEhAbYRw~p4u6gytkL}CpruhFZ{PA5O+vwPSi)OE zS@grXN71qE-xX;l0dr2s!~y4hhwgBZ1VAV$F5Yl5mzlNB6jHQ0zUp5*!pfv;fOdR< zKj|xgP;Wh}N#5{1knhs*L)IafSY>Um2tMejossyk^c(Pu0J_?YVwHN4x=<2pKLJvE z>FrsDmIa2{rp<+KU^_Z~PiJ%C6?d5WQ@u1ZECQFnwdsEanKEP(0Kx0bKy3DSry{F zCgeO`HaEb+`8)V#<8iVIkL@1wYH?=RkJfsq#0jKLWSkeoc-U%&_dGsp;&WQ)oF<%= zx+=iY5IxT)lIT+Jy`jS^1G`#rpdGJ0+RSNt%Q=G+9Wv~u6^Q?11$?#Y{ zSivW2U-83tZ?s)G8+Cv1iLdTduqqc+F^?x(nsiJ3M7V5N#iXm*DDPfNdA9wJQhZmg z28$2Yq>u&S%By*Xc!EPvz1h_PHc##*B5v4iq505Ckfdq=CRVY+$1RoDY_U+^q5r;j z7?h+sHr|PTaYJ~t41gL;dVX;NnI%$5qQ>S4J@VE-qmhwn$ud1z=hazr?vdfTirS=1 zyoa(zUTd?|OQ6tQ9O{k}&jieu-w3m2_NTpCnMpOizYYr?h5kQ=PC#fRv_!>k+W`uU zE0mLG`IVvl_u1mok|8(EB52B z_d*-bh;%pJz%OPNJS^hI0!cj?q0MKQw8Z?vny zLUwnES}wT|WQjKf+f%>J&2qpXjl#Zks$$$ZBT%A$F5wokrR=O!lvjh#MA$hBt;bcq z5a^WBxXwJoumX8-g(Ik1R{4)mbhS|ZF$91HNc-QT-Zi(Xt!PKg=F5CUnCKG98zZC{ z@r=X8t`9Z1yXz}`J*z%#Ize%-JFb>s!MaBej;_ zPLVo;S_;@OsuBo5c>SXr*SdR|G(BmlPbBq8)8@qbRF`#e?ceP{;uHO*FEhR-(;UoX zRGa^xmXa_Jc0A(%P?i>B|dWF{O<2Q`2t(S8&2TR9i| znzoJ=e$ZK7sI0N?GH>Dy9mtByU{sFkpj^`YK_84`=jB};g(>WeP$)mq-3ZEQAgWwz zoRHqc%tsgZsjxgybGrs`3CLmfETC21?-~HyZ^wgw4fpkp>QPBG7Ww0ZdPq)b4-wOGfErXIE#N6e8&eLLq$J`G zZdwknGuamoe{czn>|vX}26%nSK3-}>wXI~tFb(CMMaR?(YrDSmCf~_8^`9jlEqS%h zEP=35MQfGlIRaNz0=f$TZT9K7qp>#m1hX;4qr`8eV33L1yQ@4o1`>A9)Ik*wzOCYwcCDu54;SY(+i3YwgfsO28N9DZHJ#R{eK{)Ic|P0Fg}-IQTh`pn z-t*c_QB{6%^P-;}36o5E)A9zCJr%#OaB#R4uyVcL%bA`~^;kYweHunTIQ0?EnWG@F z?U~(Ar0zvBdC!NhjV~zgh*E)@wHk~X4G3KpOfX8>P?kMx%No!v+WH8WbJ|p_+|5p; zQ3WlIPh&w1sVUHl%R+)!9JTyAs`2)6+OpOc@iXB`WL+1t;>zr<4e?e)rN(sj z8^Y=P&5gS+pY3-*Xy^d()<$4CXlB>s(6>3$)04R^CQx>9IjJZK7|ahw-tx@aS-=Z; zIrfIVl2G+5A^82tEvYKF?)*T@yzbH7yb>4nTn8YO^I%uv48i1`^tRt+a!igsdfIHT zWHlc*S#B!HoPySf9*jJBETj_ybuV@0J2QhaIs!_|frx(l^_D3o?B4U)ly$%YQ5)*?3cGySxLKQpWm+(@}Bm95p)y;wSjkgQjeJBv!Z*fa$NxKe0Thn%M%-J^Ztrdde z*fI*#ZS^^%BmkHaG=D?U6k&SN=9t-o63>u_YVwbksh= zxo=r3BFaq^#En3yP)Z=aMsj3ahm80s&l?8PekieY$N6HQ6{Q9zLodL;mdO(I={Zr7 z);9Q3Cr~GCnp525Wmz(5(&)(NcJ?=VP(j3E#5l-;0=W?A4hI<2EbY|LsO`)j=iO=86`&YU+u7M7_zp1H_KNK^mY4XL;B;DP1V*b7NN`=kP*z zjd-{_t4PFS?;3}$KchTI1EY%L_rk{msszxf@4!J(j_;#Yu8T5h;Y1(<=rwe#zolP0 zTcDx>c`6lKh@9E$vs}05?a7_oY-ycP$O=*7*#O(2i&O5`75tjegQ(c#1LUPCQn#Uz zEBNKlq<5~Csul1TZ3o_!kLbHjR&Ja??TY2P>$tW*MINFkzkIu z107VzCl=TOv*gK@<;nFF$VJ!!=ZQmBzyNYBoRT-f0><28*}>9qwTTL5wU_}a{-B0k zw}0@5O{Q`#eVU=&xtJJ_n0Z{o*t+3dyt~31rdIvyfITbB6nI!byWbd@6371_f|=XL zNrr?ciF)F8VW0O`Q8<8x888nm$b%RH2fuH5c)rm{|>>-v!?0$BOyI}G`$6p_MQJ^^U zR<~XkX3I%Pr(_b42I65vBNw)%GJPw&>b$-_^YPjeG!yxAA+^Seu>z$L*(3Q|DT#4)0!Ye+tE2)covyA--eB{%$*sj`asQq5gHvY@D!jcZrYO9dL) z>24rV3|3?QzOT;kwR@v)ZE`X+TB`@-x9#BlI*jfdO`EOki#gWs^+`R|>f=InB<7W` zwY}ORaAfguH9@Zz+_;iQG&LLSQ;oji>p&K5t)t_wp6U$+JYZqMC+L;Mo@nVP!~*)M zTrIz4=u%%co3FiP*iutGKvodD*I1HEf&lel8f!tIPwUIRARoEl6jgYP`ll;olmDUE zB;G4oIg~qlK1pE$Fm_qK@?2#MhSi4TlIlXDKb-mlaAQHV%S3h0+~+QVy(0NKY4H}I zHbiW2Q`$Iz(_ltg!rr#UdRVp~(76dmD6}sfjQ(tJ*4ikeXzE5~J5G53uqc*AC=ReQ zlGc+TP1Fm`Alb-_0hk$JKbF0wE%xI77KUyE?Ny{x zd2Q|oES>E`iIdH!cv&8LRet9g5JeeZUj2KOYW$x|jD3M9Lr(OHU*5yTl(Sam_5i@gf}>)tR=TY}vh#2)w5WKnRGUYzK{pB z{^d5angju zK6JQlfBla@boT~2Wo@f>28Y9f4NvGjjigNjd;&&D(k4AUP-X)j*kB-}<*?RiI1Qpq5zm!k07|U=B978!|7&N!wW$jwP{in!dVBZa&-|Nx@1wmV zeb)n8upvMGDg$JjSIWLemv9}r1K9u%0CgJRKEJ&NKc6+G8#{gT*g==Qd4zil#B%Cn zbrfxsZ22^7!(dC?B{y-T`$M9Fp0n9%`9-2jbK! zYtfkBWn|3SI!{`$_&w6j+t2Fv2LY*i^jVcij;m>47FNto*mu3aHT38X))=rQV{B`3 z-BR&W?IK=tM-or_SiFJ^G)257`H=*&4#%;nam+eAP3+W1+V7?J%rvW-u^HBQnn)JA@f8W4HBPNJy1@7Mo zp&?FGAny#Mtz(iGUyh*TKXqUlyvJJv38{JLwW>+3KNM0W+dcl$AY^T6_6k>yx95vB zt`9c1RC!83e$&Y}eAh#h%GcZVK0z8)z_GR!6B%6sxPbQnu~@yXEX;L?SEHpv50$LL zsi$E`C?^5VIVa}XMYxwFW+wwW<%ouW`K+CH4~^c4*|>EQtC7`_oh~!I{7ZZq((u>{ zz}G&29$y4n%2l)+pvd;&S z!omIIi`l$fA=W1z9=x`72DbKS9HR_4f&&p)H6u?mDxRSI7LQio@Dcs%BWYzu#=Gbq z+5FLJ-hyEO)8&t9rD&Ds7YAh|D&^!C%1m1$VH^7=2Z;=5<9ii;01H|B`y-tLmjf9> zH1}UyozycA!N-|(%ziZu=~f_jkLu6iIoCu?Ax|!M?&!kP<>d3g1zSQ`Nk^4G6(v_6 zsGEkg>ef4fX9>(~S`=$aVZAcy~**~4!!}!tv3h{>^UqEd|?a_d(W0U zh(IWi79&=KG)3+_$|GBCuh#xdilhDJWy}$w=bLl;vR|w}KkF+`&a(F=sJC(DX3n}* z;6J)_OZ4th1KmIxkfIg0B$W2~ShsJVhVib#Y=JP2gn>>HwNGm(X$PF!f0sKUeCI=_ zZjT$Fg@i||cp$roWLBc-Upoz7Akydcp>P${{!@)$$F1`U-7N;L-yQ*#5dUG#OjZ)g zsp}E&(3QX~@>m9M-JERvh3ZD`?*K@M@aCA6z|11HKpGGOP_x-UEFfbfYL;UNk1tq% zOA5bK2p#L>|2E}gLf8rr;`fbVYDVWoi&ugT9g%dd@Nyy}&R@eRd)q%EC8Gf-An0RU z5q&2ZxAG0J^_zieHsNwmMl=`0eMwTdibxA*$A#sPyD{R29McgDKqZ0wAhU%v4}b-B+Uph0!M z1CK!^!fWsbCgbOIe2!3)K(0L<1SpI!!D{sJF57WwGB3wq?2sQV7Y=YUitiIq^_@7} zZ=l&ZE^t^MFOf@jAZ-efdXP-}m<2e!g^mt2CYp@)FP@{16_}2ihlGf$Mue zq&O?g(g=|M2p8NA6EtLkAAlYhdP7>gbC0Clo~a)J zY6VE8oPRok19RtaKMcEb5yfCob2!@!&Ray(g4aRFFRzJOb_N5fTHo081*RU9-$9a0 zeR+~_CQW^{&m|BRleKT%YMD`I758T+6FH4hY{!KG{J3rRJZpJSA7m@LcRQg|Re%-L z2sM&R*F4+EF67L$iK-fyH-Zn0o%QcHqFi4ld2qj4c3+&{_>j zfY<=n=d0|1ETBH);N0s!7_BS4b>cJ=m;JWw9;*)JW={%*Sgm z_z2PqQ72X>QU_(@GTY<-cWmFDz-A*k_S|{LOR!8GSshFbpbEoNkevybDT3ZL5mDZ& zWOdV6GiOja&=-6`&MO*QWMWC;F`z@a1RAh?8a}ij=)rOmD#vit)8*P9M64Ww|6$*! z>tt=U?374y7hNPE*0*=7LgxBjFXlV=ofKHC#9I7)-#>rudj}JDU=(nckVdBw5>i;r zjG3jN+ue%N4S?4WbYJ(H0HNHevn__F^AOWw+h$M}3bL7%4MPxIPmyMxrogu8pgC#r z+<)+vD+}3JB)}kYUfT}qG-HylzA(ok2S&dUq(VTJI);ndjRsK;%d<)oBKj1 z(81YjO5f%uIM3)Lpf0j4bqNtn8F^r>+;Ugut@C*zQx%z^8gb+d#j(RU`wB-HBltz; zCi=S!OCQ@W4H~P$=nM7k-OdV`YXA{?X7oa2YQu|QoNWdeefIx;bIG5;K*<>}4Uw*J zAf~A=N&rY^bNdCt>$3*(B(u~>Z_JpuD?y$FgqU%Y2j0G}1Lb*d5k>}I0e$jRA(h3_ z8w;w+|9+D8{e9XSLw9fw6n$izNu0IpK7XnXT7F%X17eari zC3j~qzuH554A*fX!Skt!GF_$^xE@d?U4maIlXeI+7N@7 z{js^zR>)mn+YRepzfg`Ga`-fg#BZtbYMv<2(p5meG4LP*Z`;ietS5q^oh#}!&Jl!2 z8XdB`y}E>-?4WO@*&&}M9ssCm05Yrh%4vMZGqEkajO816)S~=OtXy8?8!W*B@Aun_=MW&!vv zFmrVv?!|lIDyOfV8fmFfeU;;-fNDApk?nOj*~Zr>#ZtR_r>p+#c-2e2x04!nJ2Diz zKL0`2d=6*r4@JoN{H;heP|^SrlQGnn=)t&Q$?!Iv2H=lsIzf8x)Tx-Y4gf}`FECj# zDTns+3cKB8>eu<3j66;rA$=Cw^Esm4d(upeVPxMA{&u~1wRx`18K!yWoN#TQY&^kF0973a3Ih)2 zgQM>mp>C!tS`n@M$kax{J^-wHLid^%_eFqWTYT$F9Y~CC99DBxd_JMm@$m&d>VBZy z1pSOV;w*bhG(u6i(eOm4@dLDPAf<0UK@M<<$`V*bsmTmZ7QDt|R> zGm1EP1pfX^$Bcn=XGUb%+m$3$4(9-5(~JhJgL(h*8wrTc>>j@bD|0)8TRd>)QBWMO zbCK7JJrQT6Q^x%6B>`g)JIpQbi*(+4mg;1utaG(9>&pVz)nI9s?za6bJ2eHEmB{fZ zWa=Egj2KX8z{T$eC12&!KPd(m%zD^Jo`qmM<|jwuO)1_(?ozD9?kYXu*EE^{OZIbt z^?!Ox_F`o)I)_=qyJofpt-YU~~FfZ*XDvfsUCUKM%ai%4LhpubWb079Sf zYM*A+bH+e071TMpAvvR2wqGmeJ!g^0Khjp|Ke98muMUXHuSB!|JBF4ngJXzb0?2v7 zF=UXdxhV+AT=%&E1`+dhdyj0yD?#{yVAC0?4x z=BK+ym=G^0K5vKx+EtoV(YM&6Lls%i!5g3~xLlV4gn{2LldbiIr~E+LC;fBJ&W%y) z6s~Z!100EieU$y9CyY@H^=5D$xtD)eWr>}}rij+#z7QNve;7JwW^^MZi%d}Oc3Nth z*1m5v6=&o}&L=z!|D>Ndc>EfYHONh_J6sZ={&U`iyR6;HG-PeIH(ON$y9GM)^q1$| z%xD|4M9%WAuqal%8qOp;_1(vf9hf?!o=e82heRh|{nO1^52{TBtIJUZS`Xqn%B0bx z7Y~OOO1~OtysNgxyp0yB$+gms`{&;w?0t%G-E<>N3L1Gj#U_>sRbAH#|2g?^@^ScdVs>T8tdP`PDZBo3 zmTl+JpQ9^Fhjkofaf8D6z)Y@@k0)C~^0*oF>6M6q2G*~$C`$)Lx+CJ?JF;8i3I;o0 z`a?>2PVJmscFi^aEwrMa7&UAnQZgBExdwowL+kW-P|_q|TxSN)z4g5sNtFH9?SBP* zfc$~qSf{~X5EBWVN)*I^E)io8YW81DM&~z4?8t%$8h@RwNXbxTE@~x-%jfhxRRGWL z_?Ezcp3`59q%NYBXLFE!!`#pA0EUC5HqXLC$^Jnfx$LJ)ECd(56u{!Ev^*$k0Ww*2vP`?*o+ zq=bCnb5^*Lr9 zJi>nEN935QW^Dg-|WKYDGMEAcKZcE&Jg%(?6_tO@_7^ zmB?hYr5YMy$kgd!Zd%XJqWI_>FO{5V6Cg1rjDE&n2Q24#Lt*jJv61PYjr+;E_9m@-7v)5G(LK8RHc=e*ek zg47PX2L|zt2u}@)_#zj8yTrG4ol3QGoB=<)<@)Iscnr3HgoDLM-o)}EyZ;+B3EJJy zoN82$rZ&q?rGW+`3D_JGXtD*hJbz?`iNwhRwNToNiLpde@||Ft32nFb3$(>`$%ch&=5~6k3S6Y_ynYd z9p~ASP&hwYd5F(F)4uIJs#}J(yG~NnD|0YDq_U5iXVt4ytOqtfOfZgr$kS*6;j5-% z>=OLIvKY+gwGCP0M$d4#`K(-!rj`FQ#IWUd9Zv&&>|XoVjzyy8$<9a*xd_iEH3U5_ zUL8`_#5M+9dEa<=0Kgg}puxJp7IL0V|1W7}Q+M3n$PgVEP*-j`$LtRl`kLF|#GLn2 z2hU^8Ifm4$m8e&&3;m)e*HpMoC%zQY%2z`?OW)R!ncVgOy*Xbevy} z7J~1&PNe_x{yza|Mw?*nvh`ordc1dB@3I9h2GkxBUs7F%^nuZGBb{$);L~otCrg*HZG4~_Vq)YP9@>Ibwh@qJ}vDD&==QOU^tv+8mcx~QRi|rU;@l)O? zARJoadJ=xiIb!~3<(@8Ed||gpff9YbWx&+;eUEwzJ|7fWv$XAad92`O?zSC z)Gn99KO<|T;}o{qZ%AlRN2uH;8NW4bK z8oa>JWq(_haQOsQ18+(I5JfT|W-odZD(?SFur!_A(>PrJ`rp>)DiZ4P&xd68Fw>A3 zD%F>UaRxdtt*%hr_7=rd<`m4I1TGrbYe3E*OE14e?Qqcn`jfc-TrJT7JEpR%{ele{ z;i7f;qo#9iT2Hw}ws-F{0yP4unpCa*S=5oP0-BvhOE8FjpChsii1hi+zf&;PHnH5Vj&4Hp^Uv!jRq~~7lgN$+m7Sfp z3BWA1+?q-+nX2$@46YZn>7fc-FP!|K#sg=-u5qp%8GkuUgsDAGnI~08zO#Eodb-u? z4Nz&E7i?DK$*260B9)s)f*5n#r_^kLK6i76hC=K@bx)6g?QEHmZZO2@&cKv&UuLqD z(<9uq!ZUjyFk+nBxQnD73;vV~{3(a2v_lH2L+H*Ci35b*4V->dWP!BjRw=d@2U+~J z^~%=Wt_Mbt3}2Y;Ge{sgC|$aFZu~M@Y_O8_#6)uptb%cywW(PlWf}SF5rAMwc$%In z0?7C;6z)nsVLm=wtxN~;9klL8q51CKjv$c+L!Vj49~(0YT-$LUe|jl&iRjrCc+$}P z*xjLhF=ML{N0HSuC|s4X_jCuUfq9!m;zWPQHve|4x1;#N5;p)_9uWDC@a$p(4T|pT zn9t)qXRu~sGN&(k@Et&8Ej;2tYaZ=l?EplGqXGFu7Dqxq`=f`ZifJhKs~5H|j_Va@ z+5l+>l*FszYX<(EVBP40nUf#LiMqhXMCx^^^8BCC#(rD0Et(%5LP2xSW9cneK?UoB zk9M`CFQ2qj0m9$^?*y5V9pC3*=utn*uzCDmkV!5-TJ$Ks*RKZCw07W zU6t+hK!b?`>KnN=r37zxwWpsSwpg9|_7^&!;L*F27pV&)XCni29nMR*r3OQVZFg2A z+3JgNz}mr+)-l8L?PfHFUb}gzckX-4I}lpS%@@=_2pJvVDd41*K~na_&S3>eKJF{h z*tmtBSlYZ7!5cpeapZIOx%9|1q(+{c4k8DUy(<5=pw5sGIh zzFk&9?Notiz%%-A>vXdvA4}%0{J;L-4RdNa#2$kGSJ2M3C`p|5$fi-e#RZQ)#3{{7T_O5#5t&o1m6l@wl zoDL%~R4+NLdb^%u3&as&yI(492m2wxNhbPU=EBZx2SEgAJPE3)SKze;Te)_0!1raO zm5Z{JR-w|eut@9^_d1Ndy=2N_b@DJ>{y@r8Ku!ky37cV^uMsKt+jDhJmMi(m{|%!> zwuQ44$AttjIAJhMju!4Egn7xc8o#IPy5Ut&_BN)cNJiG)7PL&;Is)+IF(|e)qv^H( zz9O>24xqj?EWT1R45xk*6sAtD0-)a8fdUty2JQ_0so$Z#Df7~<@u}~h+mS&H#40#M zoQ8N?yM9DN9LDl^0ip`y+20v11KpI~uP2=T00^Ze%b@UZDE#3JNm5mxFy}r!&Xdtg z>eTAQ!wNw}b8}n|^hnWjb^ib8dJC{7*zON_h=K*^^Qa*C_y{76NT-U#Xhye)oRg7~L=x0R^cMqtk)JK)T_(r@rs^f3NHNxCU~`;?8rQ^EGSSfm|yHg*X=eSVvOOi+g|dQ350dvPJImZm$$h zGAN1PEF%AOr7D4p6q`u3)e23#0pz4d=lcV-mggCIA3uh%SGabTR8|yLuRJBhm2Z_B z^_%@pGDB12!6Z{$`u{c?zgrHo9x7d~V5=5&6b)g@M$x}%VEGxPb^{mQo^VqCr*n#!3WwVA5VXy5x1__Z@KZ#dfAR)g^BWqP!Fx8@o;gjZB ziuOWM=Ktn1jonX`732-H{CNsK`_FCv$0R3!NayF-pF012~ub*)Giqzw=EQ*pN zGld_3Re2$+S@Fk&UubGe^Yu`u`rxM^BAPaMW)s@+571C_JNlW%u@J#9^peDrYej$L zuy!jy6VH_F^Cwz!4YA_b9H&V!@HC#PWL8|6muAvGYhUP#m2jrxKbKIdHy>7C$18bF z?oZs13I*=ytDln2;{4pNoOQ$26W!-8-b$gm%_)?Kwrn9sahJ0Y5{L&%JZ=HR0czbNQ7&`b zKx~NYJ`x(M1L>fiZ)QC^8=L?P67#U3aTIkCwPu`*zw#--3g{T1lB~Of#l|;xq#7F! zER_nCIKFW_gPlT+-98JcFpKVIjBHyj*E!AjOIB~)6J8xv)cx}GSRP8}A`^B`dK8DSIQVBnRbOyPhV4v2F5cU?NZOn$dy-|d?Pk~M&m z3o569v<-t(YBTA@lK^}7MIH;R*$*eWr-D}Cp4(%_yD6DZKY+}IZ!*?fTI6I-ekiWQ z0o?W8k8NL@Iyxr(1+!kaAl=^2re34i1yTzn841|||DQtjtAb}_fXavDp!br1%9C*Yu(#`3CJGKjea2U`qlLBYKt1A?%Qqr&Z`CmC3oS(sbxcr1skGs#&kFz5z6C){xv!K&>v+vL;4n{VTRH?oTiMoJM!Otj8pv;U;?3 z5t!z^!HETRZr>Nalg;e;_NqlQTzq~(;SH!m6JYa&0IURR+DvwZqW1V#{$HE?C!H|x z=oiOSIZz!{%R(7NZhT>!rs(pmmGifXF5V*j0?|FQOQtsv9?nWXE~6=9_7~>6^hEqX z3E(ffE&yp2OVS)_Ik9=Do^En=zAk(7fc)Ma0mx|zHiD4c2{Swd6-j`xkzJXYbZAwq z!qM=ANNpO>K2O4nvYqBi!X*tho+%~Xgj<)|D9_Ret)(EXl}0v_TvyG!kV*h}b${|J zDts`3KM$zYj)3t)H+SO+y|0H0i*wY>@5P70-9JNTy36^mixVHJmQU}LlY-*R%cTg0 zX1%EbLt~Nl*Vjx@;t3>?rn&CW7&m01>8I*n0>k2j6_T<}b|p#zW?w`(tZn#JX1-+R z`AFd~K)75_`1*g>ZWnl-emcxAQ9a)61;ZR7XLMtI^k5*J(|s!QFfaV8)HZNTnT&r` zm$t6hIX4!N~Y=G*v|o;Un=-R~xVKPTtM81(96kfl&1su^J!+usQ?i zldao0XuNy0RSuchsLxIXTpeGurven# z0F)KT(%9Eu&zRqORe?+8dgUz4pYpinNEzYw=g0x2`mU4j$Z?(FEFbosPk@3#e!|K$ za}Y@p1aM8&eTkJ73OVtljS1`VOq9+ckwrlDtrur85= zSLAnj)Hsq!^2JI^a8ehyyO{%o{VyJ(W5D_I9d|Dt$Ae*5h!m9}2w_0MTL)OXl}NC5 zL3zQR=$qgzNEjJOl}1GvsO$xQ=KUE0WO&TO*8Ad0ezCboRwjG3!kR^1S25ry2vo}a zJTW1wb==^maOYAKAHy1*tlrrK71pkx&@{R`7;@^dV-CpN#FUn3pkRkMimLQTA*C>u z2v&rRnJnoP*nF^yNH1sMjBE| zw~5+iuhVyH>UJw~S-i9T?E!$Bp0}E{*LPDUlRtM+rjfDF;Vf44koLP3A;$t|yCKZ00F!W@8<@GgsQD!ll%I;|+D|MTlXRgayzhdcp7~B#8CkYFj&KE{ znSM|If&h_AE@RW|9RDhr1rs0NAJz; zBfnc?j>F>huqxxrHH)889!*MZO!)28_TaKI6u1It0dOWwGLe>N1rHqRPikkJrdtu1 z<2SzH(4B|5U&m?wYbVNuA0(F$U@OPNu}lIB;|o93H?=?v6PXE^eHB6y?h4GVk*z;d|fztmv~waN9r_sGC|KnbPx zOMR^6`(!Ftkhye3s%@`_L8ClfO1;x|RqC zmm~tf(4Q0tx*H@zNJ>`a!dX_ow=Tlo0Ek)sXCJ3(o}b~Lz5y_vcR=uf_W9(!w)=tV z>|%qm+gfLGgRfB6&NZOB^ZEIXBhLa7HOIFuHE;=5z#omU)ad^=uTmB66zzqxgLFKv zun4R9Oy`*`+LKZ*`9N>FG>%IXc1N@ksTbOBL&w+AIscl>M9f3K2Pj&BpIa5OzUbKB zUKXtV7cl`W6YvPpKYxp*_7wo6kvwgCO5)%$X87}cD&BC1fFP6r6#v4QSIWb=qYl&; zJg#|R?3f_VO|U<8+)oi{mWfwke7yT)-4|q@C;BR;aWaZ&(X3s=(fh1nktHx021srRo-Ajd z&Q7Hri*VW{9j0%CMCL70i3sg4*%z8yujFpM;(YRV>1BP_!1dceym_#x@#P;xyeguZ zDgs~q!OwtFG>#R*SpfI)>P|wp%YaLDt`7<|^ss>Pl#PN>bonJ+C+ofgriPw{;>qq= ziUrCF;3KmyRDF(=15?4_Z`4uq^Ifj=r%)!YB*w$>(1pDo+LMayx1cqDuivSOc@Ivi zi$LIQoTib6j_Mit`;Ty>Jb4dU&l$epD?Zf$RlnB|EVthoUUPIK0ps~{j)#Xo9esJT zceyZ82Xzz~GSXSIF}*SfAt5n9?K8#Q!`hOnMsj^;b@Oz0*pIWo0=I9J=9SDu(1Avh ztf=8A(P^T)Bb6(f`SjV>=x>H1h1a=2i`+<5Z;&;>kVl@e7_NDDoZ%T|5q5fZ9#7Z^ zEHuiJ|Gm2MqsMxuy%aBf6IqA2DgOllI^0k(x3Nk~$hee+Sgg=j;_uyWP?sGBN`d%E z7hjZv0`zeiu6-*~vL&BQXHa{+Mh>Yg=DGW#!HC455oiBhzXQyHDm}RJjZBh8^3!uq zN2ecY6z#Ot`Yyi*0=2}G4`3M!kUUycyY@(w`p4Kb4&KF~0-N^+vHN_{c$}-_Y5|ek zu;wMD6{xZ|VweGh@7&mPxNcJGyS6u$;zzWbISAwZo#{D61x436L4!6)JqMYymOvxL z6&y2Euo`*w2a|;)`JOvUOG;aY&Drk!t;8I!-va>snoMTT?!v-HyZ7Y&{DI%gITW46 z(wLxfhs|BoBFbz7^>ep87FlK+dIH`J@RUeu7T_yGn)$^A7tv{t;?#2G$1_v0kJZ& zHCqx_qy@A3(xHT8NiO166iK`OXcTTO^29dtXOp^_-uQt8Kbx<$=W?0#km`?-)GS;^o}Ku9QC>GS2jA7+_()tIef-{_X?()+EZ}f{Jc)T*0eI|4h0k4`_pB6`A4$Z_?c4FixF%$-6VW zb6w5UqW`{lTC9oOf( z_@*a4t1GXrC_R5cG15DIO!+jdh7lFYR`t5P!|p`dSBNBKQ7rVvXv2UEq>uPWpmd_b z*6n3T_{=?dQ^UqLW4SzYi~Gy@`QZ=}RTM}N&V@o{0VjIwt{X|32mgtRW6%q@b`WEa zl_w{MW#?8D-@iY~%%TMMne~mkfwJc#i`7wdg@65bmyfTW19bp!5d%ph|2bZlSd#7O z!n`IGa2KzBvrWU(AD98yrSrF(2e0a_zf6=-j5J~fr#BM-@^bAP}n1qz?t&pqj>I9dSJjgF3# zdEr0D#~5n&doZqF`AnZ3?`-&&8+CHl9f1c<+u;n;Q)DHP_X6$$0(5l;YII%qejd)Sc}1 zCzjc7KCA$OW_9~L_q}b`+a~aj&TkP>N9~kNZ#OU85)|#Z&BcnJHBCsCH8%yud$!RY zAcr)l;oA~iy%l*b_m7a$Kkp!Yyhk3oRb4&VeN(glwf`;3kW^PDp3t}=84$43lPKV< z6m22nHxRPFRhBM&7Tkb4;7#)BB7%*|E`t#J4)YVoKYPCTpEfV2uyvbh`)TZR+UJA^ z92)0}$V@2%$c)c~h2NVT6dqJkQgCqie&4f;BytCvi+AKEki?S@k3!UWpG__iDWNNx zI??)tnc`(bm2Am-$8VLROSU8V_~r=p6#JmGUD|DTdEoQ#W6qgWDv3J6n;Oq_VACd)m&gR6>rnf z_$)Z~NDnqp0mc2(p2YAcNYyw?0g>A581L_(vWu9xer?{$ZLR1#Llc>BtnS8-6d~h) z@hgtLmIk1pW6YFe27S+;BtHz!**^D-=ZDtC-`_5rnop{=Qy0?$_p7yT+K8rU z>QE9%(fNBLg2OsJ4I8mN*4ba+3kv9Hnwpai&5WRO2#1b+32SZ=J&&)c;vQjz#H$21 zI(3kUN{df?u5ZnjriI)qIJ`@``M{3E9lZH(n?AXu(o@P^h#%K0e!)R+AU!~ae`gaD z85jxtqTeH$e~#O@=00)!6G8&_ZS~1w8>|3s(J`_#`UMr9&25~%I@(p}+gG3Zd7v`~ zRI^@B_ROv-Ig#<*Wir$8KXp0sUu_zRzVhe{t2yRXljeiRa*XE%CdR}KiJ0Q7YMn8= z!XfIys_uG?#MS5Ia*rSE1ec23di7wZd11Fb=<-+51=d?vOnanPZ}0l9?)qcXpGXBq z_w1WONMC_%3NIykD~}9Ndd+QHiqK7}7R7RU;mdRK&^5*$2Gm7XDXle~Gryh-fjHmb z`L8$3a47>F-8wSF>1_xVB%_X4C+;rZhbl*~M6=!ue#d1SkB--# z91ob?-c{}QJJ7yP^}8J@4wqYgnA5eTN64Jm(8*V&rUaXxr4PPm)C@;@Lg{bYrl6;k z3_)A7ax<+U2shhE-3ZtCZToCx-!`$%olq_Ourng;LRBiU_ut3R;(r-2{@xhT1;lQc z7WT7M=-cy^sl@9n`FnX!6qbJvbH+NUrJoaW7KJX)U4-^@;)eq=&6{SsSJ)%Y>4fPf z?8-nr1?{tcx9@|&8ZF9E?8L9xHYrHx+i@hCiz}?_V$THXk>cjeSCwMBpF6eSgo}gz(px5!{G7l%`x?#X6T6bnCepm%1SSjnq zGaB&Ob;wc?PYrx66N$SIBLf=yTy;?;VrflQ8ZS(b92**~c%EORsELHNC-6gIkwaGv zYh?Oeho*?Q0kU=1hRY^G{0~p}?A{jFV;EBO3G2iVx2+wN)TleZau8c~=*0`YY*J4V zwmqWfyvBu^t*rvetT4m5Yt@XpY7fg^981v;^D1dkwsGD07Vx(;L=+aqQJl!@a17)8 zf;xJcz4sA@Wyp567P&_DVdUQmek~UJ!v}9^xOLTBB3?*+T*8;9-*HdN_>u90z9M@P z)-@$zmcDwVy|};V%HUWPZd3Rsm7O!+8<)RN0fC5i(&gCBDP0S^A8Jk)&3gP0<{H$Z zbF7SE1%6Ux-lfcSjSbyvqvg1Dq+ent5?RrOqj!vdujljwvswRH5v98#T~KIh`n2xh zN&Uw+2b-c(`{FgFkLOM{UsmT3^gBFku4d98149?X@9IKsN%joe8D8cfbHc%6o3O0^?<#z|NWLb1_tx}hoJTjzRq-Z`Q zwha!SgV>1X*meu3R^*~JQE5??8X!!m+c+*?&Oi@t5KjbkVR}HR=hwao47R3|=h_D~ z(g{W_TV`pmnNANH(E%tQ=t29sMUG$ks1Nd3=R$_KvIk?|Kzy9`*f=k=A@ciTwTRx2 zmpX@BOxVSg>d^BW6_sjW&C~bQ$&J*SJ-tt5J2egy9-baOi6Dv$hp5b2oTYct9H*-YeezK_CA zx&Z40!Zbt)WU}sW2%gBiEpTuI+~e_or4H8RrNlhlvgfi*wLDdf^5d~n29|COtk>g{ ze4GdYCfgf-5pKlk7yJ#eU-!v25K)wo)Ixy2dn=<66=*!~I&p&<62%(prR=^YvTHY* zW2+-vlb*0SvqOUzi?89ph+=T?HOBxw8g8$Q(RmN3VREysh+n`VzBvf>S3|%lRlLw~L#5b0+5p;;2ZjBu%Yqp#BSH1Y zU4%hlNj>c)A;i>*(5P2Ns}fCMEwZb0*Q9b57M%DPu$yzt{xyWsYRmf{`R5yoRV1S+CuYXvcUUauzDv(Q){P_xbdn* z_;xNEl9K@=TKPzw+y7CH-RZT=m09~^zsVkTyC_Nsq`PmL`nQdTe8|^xk(lio>_$;2 zU)0%OC93P(TetvauUBhfW7E4w`9LbM**&uSV$s@wiLu>M6^n-w3I?kXl4&)3d2j)9 zT&mofZJL-vS|;XP4L)o4j%(*$vo3bEHgF3O(xc3b3q)uSlLq369lae=?e@jT9lH|G zl5#?on+~QvrB;_uIjQoEF`ZTgHE3%uRi$+C-tB9US&e1&Pe$eNgt&qi;Lc2?yO?T1 zv+wwGfhz_yeDB-XozaL4y@bx@8|}0|(H1Xn+VO_;ekR;lu$zxdtQK(d?AEb!EMQ#> zr*irNH#`*+l#(%FajNl>{R;xgyAHDNf4)+D-d#__R~E0A&Y7t~B~WcI`H!^AWd@WVqFzwz-%#FgN}xA zfdSXfNO!ksnfkfbY#(@8le`mj)Sp#-%0aA%PZ-U~)6na20-hS1XjT+C#8{f@@43hv z8{^|3lBbLdCO0swTga2vM?4r2c6=7ais5KF&N@CtLLO8N^}O3C_CF&pre%17rQo21 zbhENJo$A-M?gRwz3MmW0JGryxbL>7gpR2~FlvxH7FN2QKvuIuX?<~`5&v*w=Z3b(5 zo#;?)dMGaWA9=fl2$AKrc5fLoec>)m<+{6LM@Y*utUP|5g`jm(*Lxg=ZCSbMAeoSD z;oVwYk+|PF>ikayHG)Oc<9*Ye_0SO=--yvs#L26HqBBI5o?@*Dc8{o`FGm9ZWAOm1lJ{WZK zhi$Tj#}BB%-lJ7fIf*$2{q6t$cCsLO$)RI6L$rlH@?VyXWf({1%^YuVO41a|nn3KL zmP-wcP_7r185i6xDid79y2Qm@=&e9=x=3*L+K|Wo8RZnB0GFhCk(C+?^xgHgw{S0PsOrW}jV;9!sAAxzS#c1B zSHwbLqrI8(5Ydacfk+iAtBy_`kR_KCV8SeGDh7_38-`xqiO04R^1e3lBCXyd_9`d> zqxS&ewNIufU>Op4Un8%@&E~b)>qkcgjWiReC)g+L1`vowH|dDV)5At>HOxi26~Y~5 zR%K8nF+liN`+M9LWea}*{-6K2+QU9ag}3r^&FN-zzU9}7wchF%^c?sZaJ?p^v&iE{ zptvn9Q>O0K=hbe{19-PpZF1f-r4YZ1qGjEg%DV=oc#YqE45+TS`Y=Gr?z(1f)iR10 z-K+92U?+LpqJ@00Sl6~ihwKH%~1QGQ-V&P1SSrNRXcleseNAgPH1 zMSnNckV7=oL480{+&xYwU1UW)G}wGA-aXo{p)q|}vNi7~em_Lk{N|)#NT6W$s zvUsX$Gf&rLXVMV4_#1L?_f9&l@XFR( zMg88gD0an%UG~A3^G~~|VAPNlDDRqc9WixyBG@QeTpebwSQK1ShK%lu>DDTcTor0E zEOmN5Is7x&)L=Jsa_XR2;8L9k6C^OHcbZ!8YOr}FYM}np`#K?&Q^K3!bxe=)5_^6; z8p$Z*F-r^I#hbzixF9&CQn=3P2+D=4>bTMWW%lD8C|d=!_cH|wWlAN zqG~slxr7C$`|)JR^Zn%wx8;Mma3cAre7@5oba9mv(~xPf`IjCdu4|#XB9>{0!*F8O zkHy}lzs`ZMR(-?8Ws0qJrL#h4rHU?DnPg1y9W{Aa6RUM@Lm<|d=*OSuWR0z3 za?s>Cw#)@~D04b8R9k`HLawK3|52T7QlUz}v31hC6YH@S0juADXqw7@g>W8!V!@dhgjP03`XUx zyepfC9d7h%?_9tv=3aSAwb3Fjr&q8EoISW-`j8N72g31Yfi-4HOL&!@p(K}m7d2)% z5Vdh(%WbiB`GDgNw+8CF>rJ2SV6spun##(Z)CENE^`_3{qis18_lGrcapg^;kALJ} zkmBh&2QiYD{HN7W5_?ubdG2JabQ|*F=J&Mb-8}zSRmqQy&Q|rdyky~J*oBX%i?B{S z;aCGSAi*jgb7-rDaAoB`knhXp3b&U)uA%PVa zs8%2JYp#a^VdZ(MxN8L)sp)A2PrLu#@RuxS4N_JraYOtWWX^lQ1%&o=coug{2JC%q z`O&WkZ-A8;EU8o14?yj?rZj{|>9) zU!%(ev9iusB@_L0A7A%c9#VCYrzKBvp=S=YJ)KYjoa{n@WdXFNiN)5WiR^W)_hk|w z(Bb19Hs3ZH=)B}{H@6gRfAq<7EY?WdP&RWsQbM58UQd2xnE&#zg)860{etLEX9^~@ z+KB@0wvnP;^%i;mzC7k?60X+cYI5~QRymj+ul|^r{j|O6@KUH!);)V}UGt;Q>FRrW zush_1q&B)_kG6jhCbmDcny42n2Eh-PfIDB%^!{Uy!;g;U;_X%9%j>YNT?z=IoZ!ZR zD6XpWUc}*O8LF8fqA&fb4!MY5DtGSxoH=Sqsz9iXhzg15us9y}!iL~J+p|fugyNri zyJpB;c(G_@=8(OvW?aBYS5K7)9FtuIqEaIel@3W?`e56`A7%#iF>E$_+I3I0qNB$^ z;PTuq>crh|lDc0|Lg&6yHhQvs!Ne(PevC>}WGUX94vHE|r^A?GO`*^s&+ote@Y1Kh z1Jz3QN9DFj4D^L*_fyU3u+du*P??FRqN+G1;J9nZRu`hFIGs?~cEPSwL5=)8YvUd` zz3xhP?^d>N75i=V9FA7`vrC}&LYZ!Fqm%lPOHZttCy!ksbyvl58Z-ZrJG;MlkwfMGs*N4Y!+I{Cw4rnB{f3!0=_&d><4Vj3f zkEtC-%-im1O?ANM@S!iq6l@QOvTEXKM*5k%dPIDqYDf%l&YmD6ecBb4mL6WPyM9x9 z&NnG1|C~|3kaeqcw$+U<{C*OH>Nl@oK%{F|YW1ikrb8TxPj;EmJ)5`4_|77TQkW#7CYpz{&dtL=!BCz=lx>qGmd?0=ZzCj zgFI%FPq`%C_n(y#-_kU?`GLA*flRc&G#t|FuHCqlY}V2ksuztdFrTE}rypm_uWL#A zv%v;F33jzpwRq{`Y+{kHIVkRyk%s&l<2(l$>Re(OUdpNew7(0kY<*VbF-78ny;nYi~yy%CN5XP~e z%`M};g0RIifkY}xjno-9ng zh5u7w!u{q?o3c5!tH5ne((_6)Aaeg%1`ub%O*e_t*bHntn@nUyBX*4FWdaFgt-)5L zuxI@GsHpVL9?kA4!kQ=-^kW+EIFY#v{t!sgKcrLCq6!Uz=CDSheL0%}iuoFC6oGYA zDj;q~p*SU{w4DCqc0vNR3QXKzOY*jObk7M4NQ*yCwfMwXJXU9!2UUfBCyNXG{ZH?iO-S^+=@>6nZBHt=y{#l@ zR97>1=;}T!BaT8c`mWO|E{>rGwqZlhmln30)Lgw+u*lQo0wmAwYj>M0cTqXcZ`G%h zklrsBl`dA^cguwdz}!XGoU1nPxF`J+Z;lmmbdCSI)R!4jFE@hyYGd5)vf+6Mf13NI zx`O!csO^K5Ku)vGBvWG7WMNF$HSiBtzn}wF1~@VFl*qr&IMe$+!Ub_owI27)MgFaJ z^r}G>*Dlo9lYKpnMM%}n_c-?ae>%UEnNh3FQY@BXtLyw0l4SchyZVM@u{ z%bQk8Tn?!mv|ffe6uTWqJ%-}gq-M8;i@rgn|tAMX%9GT8wIC@^HpVXr>;X%{*n;zv}v2adEj-}-oeXzYEZ7O z!lJq;AVAUCe z;_wj2w8~Rw1=`+9y5RLNv{_zb;_>GQ;{5tTHi}nR)yl8DT9ApsNiEF1qaw zen2K#Ru98t%rIy)TE6J_90|%X2-|D8y1KT?{=sPfdBD7@rpXt>b!-eLR4@W!bO?`T@dvZ;yTkiKbj#J%?i)2nXR z=rty%n|XK?M4GF$!TG0`eCcQH*0+JldQq_w-1>`I*o1_CZ1b>lUK;|#l#(G6p&AFg zNKqOHed`7ut&ZeL)Ip90vvS;l)?3A0>#IM~S4-NOJO8(mrWFV3CyO@*ReQ{SHfFxe?2I5`79H$b zF`7}D%k;pqG`THGEL|CSh;qVj`C{wzHg~&fwCC0+k4?4e<3#e2r9|@MnGhNM4(c}y znWv^d&FV~6%PqL5i+iP}#XPbOTBf)|Pv1~%%RwI~8e*U2qrVqez zp5B70T8ks+;_%`qt-MeMOQx?JrASC7Rh|#>|eYInT|2quHO2}2X_QVS|t@O*&@5~Vt7K(2+Sp| z3Ze8i`zWkq?k0X{5}?D%C%66gec{WH4;+I2o9{W?assw!J&hfb814W zMpQ2-dq_GcZ`jB2^MD?Mzbe67j?L#s z6C$pH^8Tf*f$^B~^|^FMm|=BQTP7HxLu-tV<{QlO#Vn!2?d_aOLl|N5#3eFrMf9n+ zG(@oW$O31LEt5X|BD^@(-r1fm^Urn0iZ~(VY?{@$#&(89J=JIrKe#`!wFi2rr=Ly( zq2dOhA6RxB8%GZ9)r*8GzW8t!qm2aDxA11MtyfQ-%9u}PX3CQ#N#4U!OCb;D7&jVU zN&F!U#Z9g>`FIRg#8ogv*!Nb3_jj~Ka{D~qXB!Gw?cwPjWT8Fo+c1PcQaDJ+#od0v z3YGp8%cS}Kc9wJi6fLV`b8MR}lIHg=MmFVU{?3Mi@zQAecJ$Q0)(T1do9hb)cb{*e zU!n-@T6NRBk+NSR@ILiC%%MCLT!+tyWK009va@<~fY5*OHJZ{Ys~OgvKXzCvEUnZS zi*W4UknMD^^t2@6P%o7M0&A7?tui*&Pjww7c;7Nd#o%x&>u)QEL^j}i7F6mei6y~& zGhS>f48dg&D2#4GAZnh#)%nk?LvrhA^w#tqmf<}d4{%cA&fI2~s+p@(O=@{eNd9%3 zz@hKVwQIiHCk4kzO;0gOjXO!cthNWZrcu|sMuj_!6{*LrvIQU^G}2A>;HCb4&asMS zb>)nd?Vu5=i{fj!&@Lv5+Te66Twr->QwR?_KHXHjHqy<=C7I*huwdIgBo;B0Qh|tw zV=*i-F=(*2mKj-pv+;Iw`(rhYy*14|^8n2uvNwgNdnv66QBCrRa=GZo|D+2*a=L%K z#67v;l(}X>F>UAB_pk1~EVfCwv@l7cQV*hXXZ5!CDB`pE1VX>2c3|MdqADPd2a-a6 zQzB(yDQ04k+X%&H$>JV&F3?ANmZ$H8(Kr2x`=_)OsnO`Bb^~E}72e&uHrI5@$aY^0XmWZ!PFfh?B)x2ZalYBEdBQ(RhMZ*3Gl-qgsG=W!X`Ilps-Zby6&fLbI4p#3xX>C8vPviCCK)d zDI(@eprXP^!ZcmgWk>Ih3g&o)3+5Ltx=S1yRF)vfA-ypGl=^QEQs&!s9NB6*OH&!9 za;wBE&+GIEU#+f?GE~UZ>f{e!>mT(1XAY@Dw;pxsuhq-F9F1vfkibA6G@j>zTxOQ)>+=l0WR z8dXDApGu8+hYh&IZ0|#QKm675H$t@r&fODvF$~w^b6jNaHx+pJz1k(Zj}(dp@J{u- z$9rN;*Ug7yF3e?qemj7%l!3xv?x;2oI=C1E?O(acC?^zaor&Xw%yd9!_%Uw_A=zp8 zw2~bxY3u*Hq^$!ZcpiZUf5VMGh*XZ>=A7E^o0`KBq>9(hdIJdNoL5Kkb6(<2>pEx? z+&)3P?NwZOv|&)8?Au=YzX*@WCF}3zH$IeN{g5T%NdF}NtH0vm{J~n)@pq5Daq?-w zXvsdGXdh!IfIM!v6gI;uJci1jzk@CGU2nSzTX@TT!&XrWNSQ015$!St@u&A?xQO?T zeV8dtR?=rBrCspffLGZ71rv?_pIt^~YFsL-?8#guSd;O& zaBR|;7lV&s%|=@-m#K>wm@Z?|orXYQgJSI$L>wA%X=|)h#h5f7=9%s}`i|_em^t); z1XEnOSP)x1d^A+4{plxiq2-8M2gHODrPmjwIr@c!RU*TchZsa?v~2>nnO4cBV}8ad z-7kq#dRx>rwO(BL9ZQ(Qu)M=*6Nj zfwC7CD0E6D<3!E0w6`i4A!Os6g@4)dTcvi=Hkqvd&SQdGMU|Tn)PH*JFK_I`FB6p~ zhX_o(HI;y1VNGB1^S|2z98V}1W>UYhQ`ZWF@1(@7yhnH+!&}e%?_L!R+1rgdlg5q8 z$fok#<}p|OF&rt+I6rH0F!FPUb3MstpQziIZiLz4_71(qxm8?jm*Z*Y()_=7tCu7aUZm#N3@qs3`MjuLBv zyf;_qCi*%?`8E>HM+u?&{?^3oE)QRq?mSV|2@YZoab0H>kkK2~B|!(Hv31H0w?~(X zRh>pUz$x+roZ`zl-;=lcb|Pa85^T9-9OeYW9VO~oh5j!k#C8Ut%ZefOg zf7~!!BOWbl5Om-=cgw$W9;7_qIxI{XHa2w31)JMEX}D|B*HFc~HW)hZ0m;P@Frz(; z6KoFY?8T`wa97Xr`LZV55T9N8p%&Lvlu|J<<}!rJ!Ky=LED`u%wgyWAO<1D;b#I;k zpEj2ql`h4^_a=!Am0Q!WF?f$kB1gX<(_quVPrK}A+Q)C0G@onI$MP%1d)69f{UzTw zP7M*|`kyT^uS*nL60HFdx$9dc2kXsHrC3ywNp2OB^)9m;NJ92^Pg+vDDf`pp!dK01 zC7K?Nth|KHn_4fQc_0O-O7MQXct?p?qdY*TB|1u^8g=2+n0Fk@=>hJanp6BoQ>%=| z?$<~d`gY9-MYuvBf^z@Y5are#Jw2paLSdj%*e?%XTD1D54tb=V3%v7Qw8y*KMOcrs z+cQq8Oc)|q{t5TUJ9RwoHV2l~>|FMa%&{VBLuo@>W0so>ni!NAQL)d45cLG->gWIM z-lsEC5w0^210pI=*O-6g&y5B|;K2vn;vYBX{j}?xf~Z}6BMILBfqKS~F*P!7i$*U2 zIn2?c1nZoRi>N>tkkFFg|9fl*dIsR>tm}C1f#h9D+zeTD#XWN}B}b+iKVr!}M8}y2 z(Y>~n6~+sFu-vzdR(x@zXLBzFUGnwJ97WL}W6X)I)dmL-{UDD#$Q-2# z)|fqwsc#R0&wb=Jf*XslYBJX-Yf-ZPNc1*xu*{`?9iKjyy-ZOv2(s{_9UkFS{ejh* z8$PORkI%u?<W&iFJybJ%_lD$l*u0Hipsv+16zMm0C_YqnX+kHk za&W74NZUv)Zzvu+ZV^9CT4YvkQ2D}lv2{yxa&@@+5!mRR{7S`(Z{kpG%J(Mhkm~(0 z)yUh#1itH5$|tvAW9H2i0r5fpHzVzLi&K;54^J{Bpi+164)H!27Zf{{``IO=`#v&G ziDe>e;3h*e0&+V-JQn0 z%>jY$-zTP;a`Z0k@(q*^Sa$Gq>wrWwDWfY^-2Kj+uBv%0!a_pO6K`yJ?b(;PjXc?B zlqRFAuycp!@JU_V-v&rsO)HY(6jC1iH!q0S0hvGgYB1ooc7BaE2=wtCvRpbEu#79G zS5n88jH$vZrjBSJq7pZAY=u3jAb~zl|1UQVRfP@wO^(yAGH;<^V`tZsjImFe4{j@< z6xDK(T3gXs655{HAKRLrolxrJm0a8|DKkIV-)BM?^ytP$Agfn10F5V`faqSvJ;F?V zhyMfZf<(pEwC^&v zb^DH8HqvY`7gy$BJL2Q&7}`9Nk^^%hOgSC+8rQRm>C!|j<_y1n(76l|RdzVgKUn49 zKoGxTf zTLNZ&UBrMb?RM&^FNcfG;9A`*Vlf1%d~-}afJfjVy6GVWz(yytFLzIR>NXtigDUH7Tz!1y_K&Y3YHep*ZS3&*^(_cZix#lmBDiiP1S-lgXJ4&Sm+Q86W1r`&58})cfk^rF*|jq%$Y@ zEhE4gELv^jrNPvG-KAw!b`jsB0l=F4vHFgQi>ZOwML4jtAdXx?)-)e?d52!$bJ`0) z4oV-}wI!ujpHKT7wFMLn1f3${GEi!Z3lmyf4_vI} zi$}ivBjbPiK{4puK`fI|)k2=*-W1I8ddxsn%>E<-{`(E1 z3kW&_TwwQX49gf6mgJEggRGnfHs8HP0rr-c&>lgIJ-Od&nB|T0vc)aOMm7n;#GlMi z_#dz z)M3CxH(;BMMp{RNtmYogZY{}SIHenp-+V6Kc2Ie3n6#za_)2X+56hp zzRm-SsbVp;7-GdnjB=_4BiY(=4CP$gawRI56X!wLmI zE9_;3q<0!zDme-k;~j}9RJ)vDxw6HO9+29^&e?bnBdTg;?3LuE^GqcD)th%VxgS(~ z>3K~qY4(-sMfIn$7jMnSa7gZe=IV{AGYo5N%`PjK0|K5y%wSL2C`t0Id`eGES7$7yTrzM(++H`|1y@ zz9_K`X51UKAOrTQ$jV#kdA-r$XDKAkt)h6DD$@9hcI_eVMh8oa0Ek}t6tm)%K$nnG z!%Zk4Kyt9eKT&$?$>PH6NKzh;vpaae<%0uiJcZb;D?1#Dp8d(zN26JRyVE9t92tIT zS}D%VG+1)2@54YR6+9Hknbn5`T7tz)T#3FwkCuQQt~7wyc|f~qD@7G_JaKi5Yy11} zdmrFE`%@ZoJz4@?8f@bsu5C;T%F&pbQ?#Iz)c+3Zr0_+K$wxAyobP_JQ_DL+3!Bz2^LYi`pxno)b_26dP^bb@!j!bJ7F!l zKY6It?>`4No8lua3<+V3fji0dOFF=dq+~RV7 zBbDbaEcwxxnv?q`b&|064&0nxROr{6^I3(IQySFDnTNy$x~U-IwFa2YE4|Zkgn&l> z>&SSb=qPWYcf(Q~&nzN_pl%*g`TA~spwkK`xfr8P=o=EuMqe{u<(xKyn{V)Ef4jFd z4aPVenU>gJWbfWCEhZCe zan_-U7c+_hsUFwF>)CAt*@|MH>Gl+q7VFb@Ez5$te|+{iPU0AK_|#cfe3}t`X zlb$L~t)3fFw*HvWtr(DLh;ygfcrtPcO2P3}x6~>EUdQ6hsB4c3&HAHAC!I!l4D<_1 z?D0&jUdJ?gPQnxOIS3@@FqNn1Me5xIf6r)59@V!*T#Wzy^P1VE9c^xuVgvgIgujgK z5?fEVOgP06EYA{(Z#4soW>cPOeg3_<|D44h!98mp>)|+xs(xV%o{P^EUDX{Re}3Yhnc1bb6-9gXbf-3N*9!snv=gA<#hs>7V0-iIM4~%kRt7LpS@dkb=lr3LPG%=i z?|ssrYhn-Y5btU=^RdmzV0$dp^IKmOvwjg99Fnnwm&*_>{n8!v42oYo760g=Rxuv} zW^&1S6_eRFmwEHq)Ams}vX?9qw9&jQQ8ccjIlz9bm-LmlcoWSad4!!1p*p*q%t|2>dEtTon2F0Lv zy`B=f*CW%tiQP+)Q6oK-H!+uRCQq$#KJIEKMja#Q<1@ZSrIcmo&3=ZtZ`T^f)S;l_ zaUSe1&aeM8*p6fY>>n4Ol%c-P)!lM9;38iEom2_Ep!(Ebq_1S4@ zl-bMd&nLsXPmWJ(kp?SkM7{3TJmoH(dr;0|*Vvya8<%hOGFx0oPAKKmVTGpnM2uFm zj(2PvI`4ycy|+^H4p^e9$&3cA?;%T0Q0(aM7cGk3= zdZES1HqV#x0FbFQhtK0P4R_(2;$ZVlrR{gA#54a)cDUbenbsasD6pq&*TD&&c+PLT zg{ues#J})mg(_|+@lA1wUT&FNWLw@XYu-1w+0y#@{+wcmRrtIa5-@dm9d`A$Y=syk zs3Bk%+Uw%}L0-NdoM==0pkLsS^b5`Lz@&VS!s)B`ITCw!DN6zZ-}OvvK*^m|mC`69 zgWO-rt>{UKAozFgQU2J5hb3lR4@w>#^4ET+B9MS$=7nT+RND5D3k-3kBj~fz^5)KD z-3WM24K?zcipFUzP~dHM|NMo_Pr8e~jGh)i9O_Uls={md`j)sEEC~q8`1+_$^jB8k zHM|p=-fnq1{&C^qP|a{>zMot@NFumpc6U8D6}%!KdP4lYzN!e7f%3K5H1mEuk@oQ0 zZV;aKv~Zsb46$!(ncfRa6a9I?!9F

D>B8_eceNrjM^I#^=}4463}++B?V#N7l-IZzLG#*lDwaDAb{QmoQkPJ zHBEe2s*WDeM(2RG0?TgC$j$(+09X!Gf8!5a5Ak~X&y z<+JC*a;wkm2dz1{_{AAT4=iG9<>*ifg8#O3`A4Xa_-CZ~XBQ(ju%VqvvNJUnz11TG zyA_X<0O&V@GM$y?(Czjo4o{YPd5o-l{U|iW2#FRDrDF8BR9jwX^AO+ROC0J{;ZDh= zos>D9rnx8zi0?1FmS)`pdj2GpFJSQQzYV*|BOp-Mll>eSmpR_lyGN|kMFeFA zC?4K-pPh(=%uX&Gls!Uy@%Xr+7JB3bJ64f);M4(sdL6Mg9b3JUCSbD`72~uf%RIbQ zb<`0M5A1FN7&G?qiz>>?98&0raZiCMj<^|ri$lWmrD$jD*-Aq2jF-vRbjsNmfL(`d zh^uo+6@=i~m9dH8SJTYa#AQ|{mbtC_ye&(XebYGzO)Wz35)qAXLr&>VCo;F~3z-f3 zThv!Eo}UFZ$$gHPNsnKkP-{tw)d;QAuOLi1-|i9=hs0hy-mr z)rt`*ioramyv~*0LD#<+!RSUQ$W<_UUGS}jSpDi?9v`7}rSjN?1KJ5y23IdLjts6; z$vKTSh`-6Pyx^Sq{;{0Z*FC#m{G$B8nbNigRU*6Z-+*0S)BIItWjZ;Lih2LrIf)y8 zb{XaXct}lg0<;nEXJKWsVVm!9uole@Ne~xTZsg-)i}ajMv--BhT5r%6sB$w-43lbc z&#I+xC-j_52IoLoka|84QoEcoCv@FQ$lDq&$RA=J}-P3!#G^T`FWbNkREA%qrB^P_DOEHNDCLWr%xa1l}d@ap}#je;^fR^uv)gw{Z>W(6*o@gSaG zWQfCF>4O$+f_du@M*cQ5W92j)C~}jznzf_%5!!hxAziQ5&e&l3Hwd#c|E&{Tju}^~ zRF+jFIOH^mmf%Zxr#(;bJT8_tCL$;9|MwI11_iRqs#05{4P$Mc(aU%S2y&rN?I!<@ zt6M+t+AxtE>+(7reV*b!@ToUEN;;u;ITr1FqwS7fZ?W!w4B$*Z8+(j6Ir0>G>WWU`n@Mj;d-Mi{Hn$kQ&f=BYLD<81d!E z#Z7#iPth=xGfqPP@-{;TNxjc7waW6c+w-q{@jmqxy!k`R!TI%hipx>@bex>l4_BNs z5AC_FoB4vA=JPfRzg^wuNc0#OFN3U%uPmBCbTDOeRSM1aio$*0y9Oei@o>rEjigKs zsjf_>#F2DUhyq>jcY^sZVp9A?oFrZwX+LT>xNSDLSxSOT8ko(7P?lj6=8^4geab}h zzS&2|&&*8)4r)a6^Iw=AY=xi^_ZL&e~7hMl+YIZw(4WF)$4Y` z*fO!F9Dsgk!hJVar93}tzb?@r#oS(kr;}C7r{G~9GfO;=pxt1i1$ekQ0bgaKowKy( z15l_CnU}xtfr2#x|y;6{Tg|+^eNgAmx;%mNOZU%-1 z8wmsD?Hvgdw-#WaA50aq2kqnstE+V*BC>?W@BnX|DmV5ySzJaUfCdDPJ*-p~e--@Jl@;$b;dEB&-7?-gyEDSMkMd zFp?;gN#frZ{A3vYW3R1tJTq$oYlJ%b+uYH4O8(I66D^5 zeQxTA*V(fVg>n%2WrISPuU+kS{UjF>buy865m-u3rjEv}3F*JOnX;d~`RrY)~q85YBsw zz8Dnex*L;~`H~VU?1dIf_Ap|kvN4`g^Jy67gG$@6l8Js;lG;%nzEDxs#FY$|oJzY6MMn^|h}j(!LFmKIzItvjAa<+g?Kr z+*yCH?&J4vkpk%{);-~+vQgupPH}s^BR_Z#suGrl@tl&sheS2d{iGbuL>yRH98F9f zP!8{OHsY3kY5F{)fT$Sd0d&kpKoaT$bhp+D# z?~RawSY4lDqnGl@Su=mmATP${qmP!?P@F^k)F+f7t^6>^U@AWE?ys&6gv>?D(~_dW zUo+7Ii?vuAi9Q|U-_8*KCHK8K;vf9#R@#OXE1odBEmxgS+dzKfyAZB)j_vc_;wBc2 zlkA@qN^4&8u-z1t<&wRc7xf_Fb&*w!XR%(bpJNQ(LJP+}=Fh>z5XMYCymr51`lFb} znyc2!V!F4>*8>Ax%qVr9lpZa%fkgND87*=v%T5t2-H_Rbzl8aEgcnzjq-)Jm`)dEI zBi2ig=Ax5JUls@7T==lE^T zMG}R$%H$tUlhRp}Ft#hhe>4ytM4kv!w^&kG$~hV^ES5HHp``_)v=ek(>_Ejz1Q$&Z z?}LCblAenAR?_gE5}K8kAmML0&y$zec6_G4Knrq>U>YPI*^}Mv)WilCFv$z{5t03O4ExWJ*{EVe*M&*W94h* zPI&(z)vn)BQf<1hfPWk=DX!E`Ve(V;t*KMS^>*wuZ})2pO1eR=fRSabir~$jlG`$< zH-VjhQ}(|-qj*Zb{h8pwus_5=uYLHRDCdLF*OAg|jje~8o@Ch46AoQ= z2no_oR$J>-Jp%(~^GdHs$blh3lV2|VOr1zh??HUE{(cxq$m~-;E>yc7BobiOrQ_#E zEiU&+KBlGiuCi=?#4bb;}_vu-f^)&VYNdn=j_7~7RxIR*L_$abv+G?!v zNeiy<_E@7)`EA?gL|HK|==&5J`b@(1!gJ^kBJR8J)g@jOd2VM?*CHw;D#IgguN5_> zwvC@R+VW_+b*AQ4{}VmRplX51k&qdP6khb0?~(@Ir-9!!|6NRKSxQzUBAwb6{(Pu* z1K1~fUk>)k?xyQS$bK+c=+f7%w^!ZhEBlt( zJ*z%Z>+Z`4S(Ej9wd@%aN##lxh!-39_lIOGEH02gf6P?I zA0PLgWE)yh^(3R))Y`(;_gC&&QTp0^jt(KzdcsDw~~i9rIn< zX>UwNBCSvD^~Tij1xh~MoaBqn$#s>NgG69DRmDcafb!84X%BE*MuvCpu6B@XG549~ z-IfOtKDoRy*pA(HKWgBidZ!HU85(!kg+nZI{FH!s^7JX;iJ=ASLoUAwJL~bbWNsF- zTW71NJ*JlkN5a&RQcxH)nNaLklWPmjc=01a8|fHT=!eiz>NaA>gN#}tbN^W<{Whn@ z9c@%Q`dXX6d{1+kY)=c0H5wueILrPMjl5ik5ylbhLJOfM*Mx&fa+?*B?}XW$1ZAW6 z77nI0wd$u%&uM9*cNko@m{BE)-Ja5v?*qE^_aGG%2nHEn7w2R>^y$bB;PDGz8 z(tq&A_U0dNiP4;ccj(5TNU%;htAUZx(VdOj9rhSL-C?UusHabERh-8l*`VKA5=+ra zkcfz+(ZP;uQ>RS8gpe;MLRCUt_wRJ<743i@Jpem5-K`XXfnkhQ@ zV+2I^(t?eXmv!h-3c|E=XC5xVmabE_Gc$#4I@5N&G*J4O+0eq*_Bk|z$4{z>Lfgqc zBfOQy5^NrnzJi$GkXalo{x`~k{PV2)#`*%Wj}47Dk{(34jbTu|k3rHEmpOWd9Z_$+ zPUKe~0h~gmQYr0f^wO+C{QRMkZAy~la<3szQZKaIOTb9W$Yjj$?wWQREoFdCO@4&W0M5=z8Ga;vITc+cay17KU0cVjR78`o`yoOwon$`|=BN=ggV%Z+B7vZAf? z>h~|kZKQ0&{8&7cB)3!MMo##C93~by67&(>SM;=cWms_zGU1IXJSGV{P--lW8UWSD zFR==ViH#&MB7RCpuzuTagfT^)4c=-R{25V728r{~N%tb_^gyXwcFXRF2PEO@A`RPg(Aro>x%;?*aauuv#Ov3uO>FZni9i9S?r}sZhnQvT z4rUtiXQgt?A?}uX!kngvrjU5VQ>dB@3E&lV@RZap1TR@}(4c z5YV^F2(+y%dp|P@AKktWDq_|^A|4}@SC-nBc*B1NueG^Os*Tb~QYcolL%#M_>(%%k z)IcI+LfWy&UcU9YW^gZB)=D-&ko%oVGt^}-9jzr$Q zTT-cnLy}z=8u&`rtDtjA#1S327v1B#%YOMKyaDI@g$otxeWEl-%(gR1fK`b%e1jGN z-{3jm_IqEiT!7sPMC9r)A{Pl9I8R&O(CUV7jKaS0E zWQT!K?L@8!F41yWXr06Vi_AyBO(`y8#ooW61{z_xvL|oN*z3DKU}9k*B6~1hZcFa! z%yU?H-ZSb5+*X|}m?-#U!4U00sT#eLX7!m>HT>=ZZa`EXBuK`J28MTQi%KH41#d6L zQiiMjiO4pK%9#RfMVnm}B!#FT2>C%;!2CaVSc`#n4j-S#PRX}vk=I|JV|=RKkkX;2 zvUWsI;?`CF%zwf{xQW<%6Nq~S%=?c-RL<8Zjuqpri3H@z0HmBAHY3j(f<bn&}#%AF3A3ddWTT_A!D-XyP1TkiBj zEaqGtvRLJ|mOc##{4Jiy$pL3Te}36SDlZ_5#decMb@l9XpV6?{M-0f{+YkR#pE6HK zi2BU9e~^W+QnOMWOF1Z3)!uR%Iq9SLPi-6!yWcxSZEbs{mV3G<*GZxT%yc~@k`L(o z+fsrrd`>&iuec|qM*>P(`OM&nR|v^)%U;LKBoo_6a+IQI9<;4Ch(Cy2yu|*Oswcuc zJVbBImX><&BI`2=0H2VcqD_WvBYN$NY!i9aj?sohzxUOCQ7 zA%6^!%7S$UNBd#K6uxopD_GXq{oq^-2o-XO?5-J;4-8ry49G_L|MkUxktxX8kB-2k zBmeW``0ua(osD0z@L$>Z@6z~}Ec{m({woas6^5TP@LwzWUn}{q#qj@~FzjMcmmAPm zgA%;65=?>es>IE;MQhj>s%L4*4fT)3Z9YDFCWp3y?T`%OH{SoXth2jSzQq40G#wB_ zP-MyVcXwBZS87++8~D0D@kWa;^tu_1)z=AAoGVMCmE6UaDi?m9{|~qw4HcXj$(rTj zd<|d~3iHRu#xyJ}7USNoudlCup$|SPJLI8nnz2g@Y$pB$wcPwj?9pTZus+ksdQT}r zem3}Exs*q93R}aW!JX26I*y}}k&*aYU*01fe0PZ}*rYBizcZDc9|g4m>tY4;OKvP9 z!+#TqxW;f?*Y^VACe}uR6}jjYFTVsO-`ksH?wwHgR(U?J-Ww13fdNWQO-0&p1%N{y zg>(i(CWKcUZbnI(58#8Aw_iX3*o)C2=Tw#7l;PhvBd{zVOoRA6!+^|G0*0HMJ)ezq38R6ID=9AVPQwd?OS& zWCwEg62T2T>a6T+r(zDo1qh-2=~k@rBX5-gMUn`KZZ&;2&cN4240#QR%*sEY<76Xp zxL=IHk2S>+$yn84L3!}hQ7HCbeg((wcY*y%$8f?{N7goXU}@4ZTZ_p%&4RlTi4@;o zj?FHIbum#!#MZfXYq`k>7j}d%L+Q7*2EJqrfk4P{-<{+H#F2#K2PyTUqCx?B#CF@{ zxQ*0^Uw<2d8E*uRmqI4WvO-(0OI2IT1Ex<-AYXWM=a)+ZiAx^;D70_W>5F!R5)sC2 zvbVo}jKv#T21-w_A*Y7WBm4s#Km4N8P=PoW|3dAdo$?5s;>;t7We5rUC$aX!zj`Wc z{8$3Eeb(lTPY+cBS(mC2QGnYe$yOizkNYFFC|IXKrg|2su!Y#x8R7xPkk1Q8z`36S z{*yBF(~=~@iIo`cz!(S1-5Yy>^DMx*>6Z@s zIc)+R>ind<6aD_5e9nc%aJ7(GQX_0if?87GQF0%d@)h~P3YP4nDjkd4r6+PObrczOGKXI?ZaQ5DdgIusP!_-)=f=M7yh5q0eh+A3X!)w?j$Oss;c^b zz6jVR`Ah;H?GZJgWp?iB)vK}pd86~oZ5zLTJYHX4FJKK_{o4F$zF8$!PCkt+Y*i4_ zQCa(n%oh^(SsrkMEtHu$NvZDRt&kL%rbS z1m4=(=b)PRF5tPelvEu|hdx0olC7Jr?>jmjmx&`16X$JF{aB~dXEttajlrDLugXCT z%HtmpLb}8Xm6IEhaWpkG6~Z(_T`N5klYT+>z^>2l?hV*jIEX=Gy{MYNjS_D*)Bq>R zGGv*|)=aDq*|WD_ai7Y!u0@&4ZE0zg>O*HX(6sv(puNohk|cyu{%d<{BNGFpqVV+EQ!z`NL=UjUIpe#_Nd;lI;5eg=&?fIw z&fdF1fYzVYIpd~fw{A4{LesqeTaH07TQ~NCp(w=Vm-p(WY1;k=_2q$4=9fA zEU^rHp*qk-28-3}Q`wiIj)eWiZiU>r{ldRX%ZF#6J7dTo;Xbp)Bnh1TWM{g7qDmyE zqD+O?Y=!jX?)pspNe=x`2G*c9v|0TpUObe*jYFw241|bnoT25s@h*dhdig(82ljK(>)?la-*TV*06%H zppW5et`(CR&lJ5~WAF&A4!s}$Z#}qBFBT*YW*9mtm44o$|_gZ8x1P zH%y$;ci)2ZpFcGK77-)<4-e_FlC5$lY&W%3*YyI%6-UCPoqAqYmADR7tWN3%v$2?a z=t253Z$88*(RgUHT5_!d8T%XapA`Nts>uuNDFOOYaEsNfTE$Qhs+U5l-Ik`4`y6sq z#@Prq+Y`Zj9Kk9t8(lRp$Y_=X)mS!D&{U$=vwOk7pL2K}a{KSlWoBjZyVk5hh3A<< zeb?|@2*S?Q?re*+ibLskq@8jatS*<>Q^;5UK%!}IocT%l@r#H=fZ^>@^VXaSLeZetq#oxv1oDm+CXjI^m_Njg#{~k z%@pAI6yWt$Omw6XWtxE%N1=YPhmgvK1Y?{KveV4HMH-@h?8qDlTU5!xTHt~pjh=-C z7xWB{f~s=rK-BtY?$T=m%0CFSkXcAsxn8LU%{>vu+COtw0AHT{@uIG8#3IDt-^ZE1 ze&q!0es=pme*N<-#AH$JpoCXJ;||WqpJ#3ApIwG^kmKe!GXJ$XgIKQ0$anErY}> zWLPUl!-Ymy$ym2c%?Qt?;xnQJuR7=*67eZvATU3zkiXOjSSz4e0U_;_l{xBQYaeMnUEuOyw_ zOMdLAl`Y3Sd+9vW42!!sf+=2NTO5%*NfKsk+D0+`&q1a zE&i|$B~M{p^=iWPM*)OI)$VM~Q=l=D%km%+&VZ(@Pj8DqN5R@WuYUF_D*{euASMBu zn+r_byI)^J54e=p1Hk8i;k#0*AmmgJ-(f|JJvn4A-8rW@Kmu;dRJXusQ%bH|V0J?< z2pa>G>KJDp$0_@J4SEf@P$tr_NC_PirF;nT;7Jz#^{+Bma?vdbYpV6vGM%Heewp8H0pxIuP62b3ZCi*=@TPB6bvTEC|pKJot&>Y6AYIQUM4-o*$?M8oYA$I zGMhD7EFxX~^ws3Ml1xBxD|L1g%Qf9G^dUneaRd?$EArcc?<_J$Y?u5;65h)!!jO4-)EEDNH<_6_OtG>Tq9UNDQyQWn10C`S2g^3ggXGq#G zFfn1%Ri<9;sn3PP5dK!xolRbAM6@^Cb~fAW$o&i7c4$CCaj}V;`PIuNjEszR(9W6+ zb;BbwlY>ICQBA?}%<4Qc4X4LtVUwb)26-feg>H2VT1=#jtM2%c zDKF2*jP7jJ?yxX0=&EjcAc5dZbW|oN~Z&VR9tW^t_=LRL!8(-gjF0L&$34!}(Z| zDNrVg6Y;f_s9pMq&9E9q#`oO!TRdyv$aaT24Xh5V(!#lZ3IjVE>uy9JiV>Iia3(8w z-bC_J(4X(n*cB0I?AmagD}(O3N-%+lme5pF`(W252J0KLu9S5k3J5s$#O=|HCp&4q?H|f)5m^;f!#~c4`QaHAjgq#BbUPZCJzzg zf|ELmvqg4pe`z@LcbR*3UlZ6@p%KAcFOd2CFjN-}Qri6fA+ef)8Gl3ev3+u&%&uIo ze!fRW#$qszi;A=G6Nr-k_H4B?u7(kwY~shY-dKVhQ^Iruc;;$0<}f|4v$G?Rcs%kd z2oS6;?c=!#9clvuo1clFsDbo80unF<3+JXe?Ggzn0m0CtAgU3NRuNbz`<{mfDGv21 z<5EO~SdAQVN9LUxn^egCXq6*l%HV}xafOFiRrI2E8@hGZ%6d4L-{Kr$L(1pvtYUW@ zmQ6Y!nGX3Cu2|jI3suNhVXirn*Sj)Dk*Bfq9ySBhx(Q)utZvXk3>ubQvBA3WDyLUoH<4mY zVnLJ$G-Rx04)PB@NA#3v+2^}*Q(0-FPfcCJz!*)bX{evS@c2GgRdux5pjGqNkPXQBz@0)0RjnG5oa ziUW(g`GIhp$i@5N9Ujuy~(X=P<{J-MbVfF~k> zhbpeW3waur+(`YinW9fRiRLW*jbVJaqaZMVY7vhuN@?LEX56Is<~1eI%a;fb4zV5v zq~l*WZV0B31dON;tXxS8q0tYCJ4nIB!eQG~JYHP1Vj|V3z^1{jO>yDliNqOoDX4Fc zq-t6Nfn=Op3Dy&#XUR~0EebL+PG-wPS&P|HBBUk8Ut{nDAcI~Tiz5OcA=hqC*Osgr z4I#-8hBXUM5Kq0J(G##Z8gVm0X)umJ3Q@lY4VGjXtX#9+olk%vCSKb_h*wyCUc0#) zNH&V`IC51t%7Z!JRZ{^18RwrRl5iwSE&@5qzP~@1xHXK{M~q&h5v0*R2SycGSPZ5I zdCj|oCiqgCzP`Si_}m-Foc9>p+Xf^#J3C_%T`L3tBOg&+eMjHVUrF0?+;a6j3xY`+ z1%vvF9MO#enMflTHlQ-dc5Q*%YvW{X%k?Wgmt44a(aX{&T`V%S5l+7$T(5rHK&&4Z zXLJHC!9u%h$s{8~EAMifcCz2_H=qr_qmezN{p|=;h~*hY6eNpf06IeT9P(a3Rj?q1 z>S8EJ5)$I<%7KkBF`F-F5_MX(>qYDvqNfgVDV6n=IeyBhhk5U_$&3Yzwc1l!!-NPM z)JRLO1GI3EJ$Pi$TBUZSdOn?6)(qKW1PvDR*emTwnk#}a(eNl*Kx%Ur5w=Xt(*L~>e~g`h+;I|!mDqA)KJrl+UL zU;wd5%2vIRgEk_U9`nP>;0zR_ona11zvp=z>sV_Y$GO1!EBNk(`9nDcw4!l-eXLHOP8*QA#hDXV+x^b|Hs88E1kZ~(WtU8}xR(DUxL`18G>YxR%Up%at^PDzx4 zf`R{s5L^~%18l;?&B{f&O&fF|9Y!{J?yFYl%v1>K5$Eoh<^FcP$o({Mhuv$y#~U)6 ze~&qQxcHZWay8DJg339ZdA@JtjRFG}C(N2osLjetrzv2D5bo+%z5HF)Gi1WN-`zj% zyhX0;!jS&h>-$Zkm5s9;3X?%qHSX$s%-~Jh$|cgM=jkx7X9rEv+uz+E%K{Ck&wr}T z`4jcE;3=iS>)R1hqh$yn%qZPFKK7lKJw9>*%x>aK*S}`gcl1qE-}UPGtba$)CQtv4D4YIemWjTxB}ofEYF`Js~5?YYm%In*JR|&sGJJVRt-KqxG$6PGF|G<7$2YRiJ!9(%-ot7*)UBc%+)=l}yi zRd3t|Si95eC#N5O{E-!Z$w|YH85QSrx4)|C!bTfC%E5PCbZH%p^+CODK_#3NSW&V; z?Yl8EM%MQD?Cqg^v`{^|FO9ZCRX|WTZp)wj#CxX&{88qq2I@zMS9^vTj>beN6$MJ>NKf9#VFRp@y#(BsMliQH81 zVUYk0%2DBGv$D7|6gX4Wd1kGN!k##Ud;oF#3vHga6Jy7y;^MTU-R8iEa|5m^{LRREy903JpE%E&&<_{ z4v2mULA{^79=e^>sxN%ipS3_hcSBR8PNQ#1Sr>&Kpy?poho!8Po}R8u>-dJOq}hXX*`QDS=;E-w2MNM`=$`Imqkk1yD9Tm4cIU%fc!q|vLCpw5y=IawBS5S@;~puafD(BR#>cg;`s47=;< zkZ1H}JCKcc>z)04{T44Idlv1}x4rnAXZ6UMKwaDinATM^*-#RNfVpE9ibr1{QLENR zSiTm-&M*+qX$5&Gb%|d_Ag(rPN4i{Xu*(CZ{~)#BTGE3_n0Z?9_RFfJOC=E^rZwXe zF7|tKY|}ZnXj#WKeP3$h3&&_<80Y0@hs+#t9gIrW{hFF0n4QOQD@4mi(h=H$=T4Vv za{Wb^2|H5l_uVcpZ)T~*RdFe;A2t&~Vcsx=Xv$B z_pKFXpZjSz{x!_E;_;Sz#HnhH^M?^T`D6hmTs3>k)v}6Uus^(`F^=KEsr62rO3O+B z;q{w;_kcjS)C&MV{ZW@KPCwVKqQw1nmU+?dH{aoDRXe-yliLvzrg3G;8?A|oe8Mp| zEsTweWfanW@^}d@WAT`7aID8FNuOBM7n5{l=Ru6O-IdQloTJWc)f{ntSSw}EqdEO= z4b8fr;ubDlY^;iShdxh7kMp080Mb>JM8K(Uc5i>h)osBY_>*LJ`a4ID-6vAo=iYi$|L0b;+t>``BgSS5! zQ0@;IA_SL6>ZT+N`st_UhNj*f>gSaP~rOIvL)? zLOkk0SY6(l_>dtwy@s#AebluNdsFcekb%^dOMqF_hdp^SaUf#i6&NP(9M{u%qicA@ zY~lR(KR&cC_}m0Ebs0tfvevK=GG3fF+~UOoFK))kGF@s9VNo7Erz9sXC_;)juGx6Z zd=PFk-BRvpjzU0u9i1=J9g9NLOMG5dDKRvrKPm`exg%5|y9CH<%j}u<6_?Dxoe5pG|RT{DX z^3&gCk9mwIL|PoDsnnudZ|HIRweO~}GuAI=^<2^Th@9eJ1;c`}I;7yFce|dF<1qSC z8CCUA7q{GfbwAUgcqF6$F#VrdCFFYE*~LyOP%7!+MsQ7M9$V&J`_OXNt7T&Baf8gR ziBbAF^+~Iab?ZI_++0>(r`wiL-QHQM{t{5|!qr^u+N1r@`u08Ey%=5dq2_~jT6(Rf zmciD8w$D+U%i5J^$p^KD74Mn+!JES!+~oY-?yDf37Oj z!`0RG-O*biL-fYW`9AqorLDEOqHmdnt`ZCo#~$RXtvI`|-dH6%UMwk@ge;Zp)6qEH zttxdEM8xLXYkId{xGLvzCf}qk2}QR0+u*7Ml9H&U8=TLgB6Bf0!1_$3HVY>qef9jW zb8yEED{qw_n@i<)p1uE50!g&;>yi|n0^WKj-F8hR(CtKwh!GR~sYK0gJcOK+TUN26 zZfwJ=*^S3gk7cE{chw&PmDhzxRquQj^(ukCOKw;-G>hjlK7TaGT>FqVEp3-4QtpMQ znVT!*lIRfk#ZAre;fDdmT#l@ct<-Nj?&Gj1r4H*Ex3$rv6nBQtxHi;e{)LMFjJ+f3 zHQL!Jr@Vc;L1bTh&eZcCBKJ-?u{(K+s^h5h>;9aZJzUy4JZa(i;!pSMl1olyPpX`s za^tst5kDGduZ@uYW$@^!yLT^?>euh3M}3n*&(9h&2I*b6&@RfVecz@3HV&1|1-;wt z7?l0irT@nQ^JOT$oEnnTFKx;=w;aiHS@lHOjJCs({tjNyZrnYfUC+^Vt39`RZaW(~ z`}H4Cgw%aJyL+Uxw9>di_W4_%v%;@Vd=H{i^^+L!fIcL*dq?h2h6?t1e95g^IqkRC zmdi7&lpr)88?Kr4l-oZowJnQGe{}isP&-?^ zu~g_G%8D5>aYmq(2zIjTOeY^72{zc`vbOA~K1wUnr{x87LH?hzNSUTr8rbtV$cd;JL0-D{aSP=4cFRO6Qb?$aQ-FF$NbsF zQxu~{Pgh)LpJcdek-moCGTTd@a+q2_KidWmwg5V;%Ds!(Fdq4WRgh{%5oY$lDC&uTQM?BZhOsAQ=j<{V+sli zIF{RLY_y7bytet33s2G~br<@h88L2=%F9hH_;d$yKf5nGHq&jyKzZM_WG}o>Mij5w za9o;i+-3I^@iKxZfRz`h#;g{8T|A1D2|hUkF5rsQH2qH-YaKs^xx<&xzXQQ z;bTG7(tBzaP`EN9AO%gC%tKMtauN3hN4!AnV_8bhlz}v^R}_zS+M9YY@!B58R!sNW z<7~1b5((hV=R==iXd2;ICUe^ApnE`0!KE7SXce+A;QXerqDd`{P0v{-9kXw&*2eiq zG**WeUqd=b9aJT2mY1>+l#P^Q{pGGTh5jF1p(|x%Wufl6`H}W3UIVZoeDuM0cP-;$ z&n{huTsF;1=c>6|)3sdz;ADtvFC%+7!c$Wmxp+08SO5z3;*w{rt+8&uoe{57Yud2nuZ`~!QD`%aiq%nh?t+~$Qk&M$f_3li3Fzx^BLUI-Z@h>>6y4(?K5`}m*li+D=E! zaCExUg2k+0;3heWGoc*zOs44806dpaQt&n~BCL}bWMOpCx$F?Oh)!rRl0{N#sj+8S zai6n^obm;*v?uLH8a$6#HX`!EacF$@+bWGKp&HMEw$KdkTEw2Av!`Gi;2s;7kI#>+ zQ7-y~McbNRi|ge^IMlLGKDFw?`iI`in?i3DdG3{+_R#ojpP_l$=C=WAc(H>hq@RvQKObOqbY9<*5U^{8QXxvmGZq1dR^-#c5O(y=!QC7+l(8IOI=D#J$A^S+hRs=l!_RKP@HwQX&h9dSipEZ8h(E z(a81vfSBxjb8%%4Qd}spAiNF^&D#-uLIGBOHbgKK>S*(0Gxy_QEWk!jp0{sk{M5@| zA)P-z=%3%zhAeCu0`)FyvG;?FWs@i5d5Ht|sEZ%Dm$PvmwMQ8CO)-QNJ`#zmXa9Wg z3{q+cS_v=KDSl?SU|xpqP#lJI4~&quRfL4a;=yNwX# zhydhb>wMU{m= z`i)OFG#2<1NYu+!iq}OhDW;Dan23$lP&glWvjA$mvC=u9d1OW1~DOfTBIdJ_m6sJuS zn{>w74!0}t^;*zowj;rIRp?=*h^Cs_lLblf&b_$xw*;$s_=9U<)hVmAMJvW#7+i*i zBP*UfO^S(3P>(2DjNgkppXMP+cGpVTR^SJ85m8;^RR_H8nxBtgJ*L7)J z;I$Z&bBNLrrAvQRIHT=KY~>E1a5s$#0{-Qj?jv zrFm3nTH?ytuV@!_KVD@NBq5q|@%WC1Dl{DVLL^BE>gy$bJdAOYO}j=>VPgm1bZ~3I zrC^kg4?lza4{g->!}XkT4M!KJw}mYXoNotNTt_!uKPf&5rh-t)AQlE6Yhq;n8avZ< zxQX0$YeF$GSRbKn(kg1NdM4Z|5@CPgGCMQ>H=ymJw*+j$!CCaEQV|KhTD|8!j!7cS zBNTlWt$u>Hb)hog1;(cY*Eq|w!8`!PtlQ)3lgc7}EjR2tSXFm!pwc^E#o;R({sm=TCx8Kxv^etAYnEN?4S1D+{yF1A_ za-vX|KfGzs;V6mG04^D${wm+uIbW0~_sVZScBqL#RA$66hnJ_YWtHORVNKH$k9_Xl z5bEF92S?!n4RrJUDN}=;Pwk=wDKe5OAN?N_O(Me~R+K_m*3sQj9;3p-AL~0g8FaK! zN%YrW8o{l0fe?%r_smeK*ZX*6>ME;r-RKBr#*C8KQt$W6uvp%twu^LMJ;;=W6EPf< z08AjtCL?}UVn4Y8jb*>q+&)+?X5a5aWT~Ppbsubf;eo;Gb73s|10=KCwxP)5;$UbO0TN(G+29G+Gfi#5*QfOW!B zFDlf^Veez-HP@@&-dcI+o$Hg3g<1QZ_T&U~+(?gULzGT?w|RX1ra3vrZ>=YF#}&m+ zhrb2d&!A=y&}tu#K6>=X6@jB2+t2Ht8v{!z_|XEQyI$hYyafgwK{f9~fmZGQNM8x; z!vE(iD}a|Xv#^C@_99B08V}aRn?;R(=UX|HjSMnf$l}dp!m-+u4f1xBgpUyf7}$M2 zJDr6wN20bO(cr4R_q||elN(BUnwrvOC6l|qxLc$r#t$J3N)1~l8#(_ia%oTd1|zlQ zo{=+@8vr5B*i5*1{`}A6(rDNV3YUiJkN(vq?vKEhjD6E^X_{AK=5}$A_vw{c@-$Dd z%0O>CZ9rmd+!9Cz&9tCDtE0OCIiN!??XJm5C|9J_tP z5n)*qH@U^nI-!5K_O-8Z1}w49o;@46NmcdrCOf}EZBO&OXZON~$Y|J)CTqQ4FSGU8 zvm%YF?IVbaWz=owb9?x`Z{_xI%*sN=F=Y^yY$U$r8~rnuR(C6qXi!Bt3H=2M%=zt{ z|FUZQxE%q{ zZa%^h9r-SCtvyIcQjTe>T~$q2VR?Id+KeXOX~66G;+ZegsPgpeR5|5JI$$P{MqT!A z*k@`h7Rs?|n0^LOE6>{VGML_!slyVMEG%3LzkZRi1x%%c& z)T+Y8cl*X|U1&Q*WVBq~q~DQL{bP!Yj!mq0T%lS%u@-8^r^DB&8 zNl;DzlHGFi2>i=<5a!+grx66kdey?r6*(A7C|{O%uBrFaCDT#xEVQ4ecWB(Uzkf;d zx6nG;?|{lHzt z%x@t#Bm~Z|Qb32$V!TcZb)roJ4*@PI6+sO>@=kw=16d;2R5WC|c}+83?6bH95l4Dw z0WzV4lXl)kjou^1s4QAgxQ8!`23T#*~U6V#Sy{^fK-ga=B^z(z8at1_FDRHy774yztE^8s{jJap0 z_C-d2m2GUq;hOx^=P6bl^_g1LvCU6!?qvtYQQ*g_CJ!T=FILe~%@o83kDK)~WdW;c zTQ>gO|3q%h`w`r!*>9|>Z;#U|tU2}amwMp=aI%QqWH|Mf423!+Pi`jx14yXtEV#Pk zO|!tVyw7#7*W_ai?!q?eYw25=X{$v<8oUW!w)~imOE;(;gF0}}^=Qy0vB94A8CI@e zGx9tdlzSwEU;UGmrLL zGU8)F#W(DcE?|$1{<0t$>`oDEZ>AMEZvk1%an=Bow5TC1_IUN1xyiM3r!BCSM`9}hJrkMXFCFvf9w;+N85&(Pbn~_Cog3_qhvg>Gq;g%H8fGpx_(BV;{wTFPGFAW==Jggy@I-(t5&EY1t~M&{~Ene^*GE|VyI87XftJ2Od% z5)95kPnQ^NE6Jx$y(mo@g+L#PT_YoV0jUQgq()WU3Mh1L8YHV@oSK42nGN%ebeOvR z<$p?(4rdTT0m~UqNZfBfVOe?0_5wvYbc;!3NBCr_W+K2}Is4Lm#v!di1=w3|6 z998HGf?h8Mtvi3ufFXh5N}Du!t7P?++FJ)FqT21%AF#F|HSrRFUk38&rsVV^36$Q0 zQS4Y6WI4a`>%*XyKOZarix{&9lWaJ!%VDZEa9>PV06Lq*Xds$Yq?3pp)+iA+gIX`= zmB6*SXxDYR4*>~|o}ZPA?Kyd*dXOrBgxlMAZ&*T9Py< zg$O%h$Ki)n_ssFhrOugd=!^lfxlr_h3Q9!&b!VC==#SO#=fv(hNNJpP&2E_us)aVpzD>3dSReC zsecdFpP1ndzS9j?)3`FX9ny^X%NNgKE>mi6JQ5!-3%oQ{Mh`4PGAQU`M_Rj(*)M#M zDE*SY+qtPfshE<)dpK}hIFN?x4PDnFGQ-?n5m)y5+36!0)|~5*EFu+_ta_gylmmV7K0uQj~Oy zMt6d&NZ*zO;*V-VGYfg&#e2rEJujop_*7f=u4UC`snBXprk6gLOERHg{{Ql*F9AR) zk=V3jZwZ5|5bz4hjII!?afDqn#H~#?ovy>zb0~5QwBVZxsgkdweDvYHJS1bOa}>As zGJT0**-+L8cW`nRC@QmY7?zC_6kG=j?b6eGFO$HQ=ys)cO_0g&LHAAR~jWmW%&*gj*~a+^_d zowX(ywozfvTU(Wk@f0Imo;C)=@gq@)-VwieI?1GZr4k|o0j$xIEAvechW;NV#M25Hs{YDEc} zC6=^%YrqOij7nbJ73?d46Uv}bX0cQE1E7}TK&)xDFzG*Fa0rsy;iDa~0iN6w0x1m< zRaIsUdPvz^%jGOZOW8P#OT3r7=&&k-HmOI-iR(-7WiPhAVeUnQ0gR-&X{iiWn#Oth$!-qyfpl-v4mNH~*>qGsy|Ex^+ZJq^ypHCp5$0$M12*CE2YI-PpnN6M)KQ`i}NGM=?T{ z4if4p7zmbE9Y2eVDLDBl(gB_({?mm~MKUZ_G7Q_Qu3(B}GbAFF9oOMyxeP!`?~0ge zKS#3#d$B13ew_(qt&SQ61>S6-d#Ai_=vp(Cs9JI8Ap}uIJT?OrJ2bUo`XOx^WU{>I zOru7OuolYm2bW+onMXcdSUGKft>2J!ZuQj?u#FI1C5JvxwpH+a+bwqbPPj-+X-<48~!}<&&RVd1@e#7(tRGR`YZAEf*o6t zN<*cM(b}4He!PsN7bSSMv(RUIbLlNEF-uAyC!Khcv_*%TPoFu*>eutrL-o&($TXk~ zNug15ggi%O(nT0wXo65c`i!PYI9c#KKO7X!c+hxlS zhV{k$!)FS3bUgUS1b7>#qv25=^^PSh4$3@U-~{N}1RHNly+h*a55{MWt{K#eFS}Ht zq~f^I5v>Bz4z<7X{JOtLv?n9@l8B^aMu*bN?0+B>gf^i=u@VJhYUgRtXg%=dMS_%2 z4hZDEx@;jLuBk(RO7bsz2GEqpf<@TDU~5vn<+t9Nz#Ng*S+;pDn1E(FDj?@ip6TrF z+xrQplJ1LSjP9d@QD{rz>Abqe<8L(Oc2UI-Z~H0EiYUsBjqe-}M$@?Cbu+Rj|2+N6 z2?G};vwJUQq{{tZ2i^}uolQmgu zjM#g~;j(yY%8xH@0}o(+rQ4Bx$*5DjIxlTH*Z)+F)16)n#mM@V)3l&h)DQ4nK9%}hgA@L3@lVUp8n7w=QIzFoOxy489$-OW z8R|VSd>UpdAVeBw>Z)xN8%d$Tq?x_HB)Xr@`ow7qI-d67vO4Fiz3-n}ttSrwKiKKF z8GoP}V7g(Dn7h;$Or98D%3}x1qsth$ngSXnzTg~^63?dz+7ns`xqSm#T0_lsp9V`c zLqLlF{e9%s7i%8YMC^5%S??t1UZ`^-nTHq}+`OF0OLJutkG|CFJ}W) zO=fGwd}xnS^0!fN!@N8Z&ipl#X8tvQJ{!YeTD@MsQ_x?zwm_{i%oN$BAQYW`8N6E| zqwQ-HQonq|WUa#Hnhzr~UjFjQiW*+QGnh5&Y~7nSoA%$W{)`?Swg{d>o0=;m?kcD8 zI(g797jRA3HwKwKX5)1CJvjTNw4$L<@=pL0Q3-rn5$X2#iC+X1$O#f`9jS7(Df;rC zr@(a=%O+}}Y3jE5-E2UXQYhZT>B*;emT!{z}7j&YFWsHHKw63K0HM8ylN;@ta-0OjS$ zs6qQI{X9hO%H_y(t8(teM;lW9x3nhS8PziOkHzL zpAJ!YVL||pj1kF`@wu0RwW@=u-H9D&#B$`RNX-D4XC@oTJ?UGCN4z1yYXQqZA#2QZ zvjT~ylMTpCTQ$EE&VeI6vM_s1oOrc!rd!n{b`f2Eb^1&*a5m0mmm)g^Q5=Q?dw`{0 zFw^z#@x+AT?J_xR97EY9yJpwN{CQM%@8b^`xVr&rVKGuH zdB*)vz=|M}4o5w_AJ2IK@P0BF+A%6~+{@Zp*(pa|m;oHYsXnR`x!b%35r)zR>dpq` zzQ2t+3f?y(#hd93tUJWNr=CR0t+<)x;`>LkGJW?@C35;>GlIR(O>wa7CL9<}8K4XW zp4vFhdtoi;zTxag6qtBa3MKe}`DJqN6(4k*ssvhQyIV6#oJWd&^0YQ{cn`55rob*n zHcc-&{)6|{t&Y5yo?1V?PVBqa-grpOu)pr-~-)MaR>(qD%ZO6Potc43>9me9>0E$Sp=L9O^+kn`T(4cpP$ia zi8G|eMn-BFW?y~gl1+eo$rD(D*Uv9Y>c&g6UC;zw3@z;50L%Ndv=m8L3fpC80MtUG zl13DeoMx1ZZEBs5DLza7O_Ql)m>d+f3~m`xZcM{O(K&gyRlseXelclx2tgu5kg*-t z`vM97@m;K2bvc88%S$?OsfpZkS9#Ie_)AIv@_%8q9r4~2cZ8#Y0UYc{!T0FS{^JDD zmD?MQ7*n1c3hAf?oj@jM<71t|F+~MF1rqKk?7WH>U)SGF7{j(9w%kC8o9Os;`dyAR zXa_H4*FO4H701Wpj6N^5#|I)4!61wbn6$TLKz|wrhk_Gi| z;605ji=JFcVS*+WRNo6=hId5DMf|8sxl_@P>>x=ken61wy!;&>N7a&y+RGl($yfi-V=0_l{?AinIXqRGpo&o`jVHGA=L>%FP$yQ`S@dbc(g1N%3{Tf7{P&#lK z&1d1KVrk#Q6tlcGzG(UcG_LhH>Z(#1x@QxJ8s(}OscT@`Y zNgm#wFeHamVM$^+qo0sxp(FRbxi<5SRyb8z@oAdwdIZLbbM$*&Y? zhdjX|sS^GdHalmRo?ekD6yYV_KTZL&958|dr1b%lrH^x9$hWsWc`HACi3U6oEiAxL zBxNTrGc^Th2iFxuOLKlQ#~<$we+dgqRrGzRT#g`v!kFQhCx8yK!LS@f$1h7L>XoVQ zAH)1p323nO?$}$Ytj$R>g<4FUco$#p^1E`iiIXRv{PwzAIi{jPXUN+nLm6s7wyp{v zJv|v8!i-fRX_#@C$Mx+aI}2%!O<*nXuBlh+GomBG=yK}(A9r@EyVz~q5@mBe{xQug zsLD=%Td)=&gSFkUc9jsk(@&jpJ>%(#pX%VemMJUFqJ`{$%Kw9f+nyfP_mb-JItmB(d3_=P}fRlg%{O zv!jERGfS|ykMiRS^5Ab}&-^U3XQe=KIv5>&VQd-R-d;oG;MgCZPuN@w@GFb@a` z7AZTt@Y6#z1{6}8)>#e)3>?tx<_YzkMZ##-cbM2Pn{r(EVTY(PTUZFOykz^-w?z_($`|9k=O7{ptzKxi+TeU`_V!mqrzw~cAyiW(kz=(~dr?`J zApFV4eQDbTlB5LPP)83k*oaOjy5Ao1R#I}{xGi(oYkDv~-mWr(|00?b_iXvL|D0DJ zt?#>K!LbH4aA)kUB8`g}ACcQiTM?L*2@FJ}m{nCyaq+`iQhKE9DmC)C7TEL9(L)KRz>_;I}Xl=lG~U%|65=9VyCJx^VB zhj|vV&HVYmi|+5fFqm|STZD?11~2#{W*id44aPFS?imx`3vWHgc*_cvm`Zpooy5(> zF2~5Di0{m}=X^GQ*B*SQ5>6HY%b@Yzo)QxcL1Q@d9mBpi^Zeg4>=v4jIC+I_|3=zn zM~VqZ(c@;Md0+y6Qe=$@drJn81qJ_c*ewz+nNk)M5wbdWm#ip$4ljk^c)7A&ty-UA z7?9xxWflJFcwGJiP)AP=<%1CHix|Iac$s1}o0KPx=Ff<%hx7H3_f)FIH;}`_$ZD_w5PhKe^G1{m^L`Vlzv#0T)ak)8B)5vb%K$AM!0noZ5hAt?6q@6!dnu54a#a z+uiE(@Bv(DZNrGn+)@R=!7+EfJ;W8Hau7?RKXqX)i}TO2d>K)lrhx7q5)iC_T!E!AXupH?;^?@Jml?xWSDr;4f0SH zjJfmu&FN&t`yc+)l~XfASf>+;u3PqvL@M%ei^>EB9`Nn2^9H(Ps6G64Dd6r*b73>a z=d}A;qiJC9dd!QmyF`-)*h#h7LqxmJuEgJyvbA-31N+pRbYX<2um(SZ%pyISTRIBv z$!}}DcIOhr-`r9S6f=9`_$5ShJ|ons@HVTs5|Rz`zWsGWSWb;JKGyMX-&J&?#|=N!0Pd#yV$XlTNf0x@KChbPySuNqFD8O*x2_Hk9e%P%C?1m;5 z_RmiYu+w3u?gGKi|2rEh8skL`$Vlo-LIH$4@%-3d;PBbdAQd>em1ZGyPLAR1qWnf9MMq>{?oGlp4w8cgBu#|E3`>3k zt~De}gN{EE@dKP+0dOkCCQ>pa|B@Q);{dcSe}0W=4^@vq7z1~c0b!ZL9W_?Rb6iEd zP82?n-+MLDfkQbxZ`Tg=5v?_&S;cH0(2VFGjO3f}ql@}BjLH*DIgU3k21`4N!vjI< zdc2GHonVSkSN1Q zdZ!uZM?hy#CCxl~)|R!{=c;MhNaw%?QGAmWkdba}!zBgm3Zkx!f=9X2Ropv8fTYvC z{Z`Fybu?)3UMy&XYAQ)rtU;2oc;N@gY|Ub!PNEec*WAy2{(N+|2#vG|-sxKMqA7*{ z76-W{L(x!98_?hl*8Y42WcwMJ*-YdZpW!@fqG-3k`k{3bVd&27#P{iI)s|onYew`z zd>2kv-Ud(x!t5&KxZ@AV-WI1KQyC$gN7&zHhRJt>x@GT zKWK}vG?)f6G@_Loqb6H!GRk&=Z((Lx+mN%aH1Uu%f)~x-m?X4}5d_UOz256#;Nc>q zA1Uys$54h}Mb#vn!&9P4Y2(yu1dPKW0h)s=?$ z3g|U$E+EnUBHgL>mw&!H`}J90U=|&})i8^;V@EATh#isj8D*X@m>Sls)R=jy=q+L+ zey?)Sy>rmSNDv`&T`%j1i^BcX)BxN+O?fs13Z5ixkGr8f%7JH&9UhEd&_@;(c!Fl3 z`cSt@S~R5+A+cKi3^K(ObfLp#C5-r7bmrOh=H01;%P@;sZgM}}F@B(^&LJFm6h4rI z;aR`~ge8m(G(u5I#q8f^C0R| zd0?M=3`@n48yRIe@R^J_Wx#ANj%X!eAe2irrz+Qbb5sxwB1#&!*oDKMI^)tvxiGoq z`rsMqZ)?VQNK@B>FHq@PLeXct5IS61f$K`hL>R1Y6Y-Xalfrj$QtN-*xp=VXzLVFLYny+16`-aLn zLe8wb9@M9R)AXRDU>o|uidd*nMPTe*caClswtZVY?&K^C(zz3^fx;0;QTl?|K~#*R z{2++r;3$FC0Yfg)!V3+FW>H3aYVU(eGU@S46(nGCUP4z4{L=hIMO3g!oPXR5MKK)U zSUH@ykaN!B3xibg7c%UJu5wDU#2KZ}mg=?Oa0@e|YK%=VjS2x9p2tBAmT2J|6gKl} z`}J{Mr{JrxD~D7yhmo23_JHUOWw{vLIY5+W>EgC!Gr$8E z+J@ffY0^R{ISn2mw7lwxLt<%uKaqPTdMd|2x4tgbOd~-?ycZ`=cj0!axZ!=EEJ!%I zJ>Sl*NcQa3kDI;i#c*ML0cxLSV_k|6|1Xt^p?!LyUt50y&D@;k$e<8kaS^A-3mo=0 zL)g=7j-!Y1L0dPFUS|%6nve)(lT-fCCFFhK>hL%CJ>D}%pfN&T7I`UqZ%NJ-JhW(y z@eY_TLebY4T&j+qNlQsY3o{$%@jcB3@vhu{;^VTi$VN64R2i2!Bi~DLz{VksRPy?1 z$NG!v0#R8gV}@wLr>?5@UJ22GpZ;r?0^O+m8}r&aq;>W7TvW<*gS6RVWpmM45@N3X(8B2WEvX zEZgDXMyOm{sMoli!`#Ws5OEv@pCW8P70Nz?%s!Re=ebSWse=f>(;MtNyD1AO!vmq* zWuq_@_JErZM1{e_RiJgPYEbfO;u6QefZsJ$;-U7;V3P)Mvhhir>^2q&!|jj;IcGA> zZzF;=;#mZQ1QXCSLVqTUZce{TO{iuykM`e%Zg)5jjP~leJvb#(vnRNr8Gbs(H3xU0 z{blv5;>!`MdCh9PU5{lU6*5C`HzP_1%gvrS0i56kj{32>76d^z`mNPRJn>Zhm73Ix zZVpZVK5ZvmYYj3H=VmMlG2+l86alGDhj!fyM4D1*>ZUSG?-%1Ry*v=FU9ytFxK%U6U=w)dEYbYfo8x^_JXpr&=FQdL77D7XRSj%4?4WztqN8!Z zI+&LK(!Mpc?&BkIFBebPH%=I8gwCp2a7$eM>CSLbT_SqVG)za0X1=|QaaxDuFWM#g ze`=3I!(XJXvg*on3B#wo^!XERj!6@CKn5|fu&{WjJAXdux(O?)mgXzH`C&WE#wU06 zaXxt?47vog_TUpZ(A0>`JGR}Yq>3({T-QoPmdKcQgAP`D3`KLUAcT%39hh5+#<`Pr1*a}#qjf^vEdceu z(0jyoVnI5AeUN>`C3xbOw)~FjZxZ}&jIgOu2H4_kmMDQoQGsxReB<*(%be8*7o9=T zC8R>%9ODGUjUteEQq6I$a~5frqOcf?B3D9u&!|s-!U}9U-ojU&V3N+uSFs-t51*Em zRS#C?ki$-_31ug#W)5G(EOjGcUL^LK0^{}mQpNtFm<2E}$Bm_A)tNd3*Lk@7k+?F! z-=XZ=V|`B2RBJYB6*hXAZE7behJrMlGbR37b@(ojPczDoy7uk(RCEF9{M!U7O-Ypx z5YFXh8z<5D7B;s3n%X!=QDw_Z_q8KDwz` zjbb2r%VYGVMr*`Af*8Z$K(Q+OoLR@hCU4Q@kB$n1rw6#)C?_ra9?|&6Svh1o=dHlQ$9MJ@ zqi|CKqncO038c0hgBS&=1U=)(!xpv)jfgT)v!rnk99Y3( zZ;k?PyShaBiok1(+E2f+0J@; z>J9~$?{qF&p7UcG;P~VsP4V_A!{TjEsN#R^Mjd2@f;DJAx9z)ki-Kl7q~J?q8rgS5 zt8pl^{3spvugATk$H)x;0v-F*1yo zs=rytKKwmz#!*Sp9509#8z`m;Q@AnqH~L){$p(y?l&8xF14(D7MBOWzy9EB8x$dY@ zB(g(ohMVR6wIs)8l~1ASG*p}Q$(;?4A{TQWM!m}s8t_t3Wtoner{jXDbiy??V>Tp6 z(h!OJkgraCiLY_=WTOA+#d;3(Q!a)6bw>#}I@sUgv(-0+TI8;`s4vg@#8K>}Vzwzz zd9ZB(8kHk>rDyi9I3*6!z6|=Ld}e8-iGmz*faN0B@CaZlcG}G%#p9`=Rq4JCE?IoT|P)H?LJZrH(}1l zQ)o@Sz!q4jX-oUn_gDgg2t_`Fu_00*VXrVTQP;aQ#y^t1t>0^}N@R?!cVyt&A$38U zSd3dFLkstn`!ObB({F(YOx#R>i77a3qp3kW^kxcUexhk-#?e(hjMm?G88KWt@v?$ob>=AzZuh)rriHpW$=@qxA!Ew zC#MmJs>F;9V7_8>qpB9gn&cQ4x*wRzu8dL)OR?@(KZ&>aU^+Y9U5biA|2>cmfR8n2 zmtQc^ymwqr=PtI8P~^aQVyEaL8gE90R7I=S-JN!$iIKAu_kh`t!FZU@%kJIgoMX`~ zhkWVdBKHdZ?l+EuGh?T8wzMY(^?uHc{Lr0&YG*nl=3p1>k}Dklfe+D)qF!LLP%Mq+ zHV4r3h(39TL)6k7p4313&DiY@KGTFea1)b@fRUrO^~4%J$U`iZ$cB~3y>i^5GpWT_ z7wd0+zK%{(`pzie3jMx_Qjt7?fB{RJkFw{Qvz30l@PjC)0@d(v=Ca!}O+eTw>a6^% zAUb99%J2C+gRCC1v~xZ!dHTDiE5IUQlglwD06}4*EgT{b9Ps@x$(yNv}4`?&n|`^TVW(xEFkR(58%YTRaRyi z5(Piy;!ex^2<-=k$HTG}*J_W-n#zwDg>xz0VR*zY$2RXdWMTNQYR!dhG;+ZwA`E+B zix}6N*3f7Nc6NF`Z5Qo!7f3On*TVYa<~nICb6|j9|FasXsU`Pr5B^x7E|7Psv7XDP zq%`%k>X;51lfkaQ7C7R=C$^L2xi8Z zmBT9pEWUIB2$&hvvfrSpFlZxdC=~6Ji`ZloYy%Svd0YuGg`zjzoBttkjAkIt^s8&H z&B1P#pl^KglR>;%6=y4JMZbEBk#ywWhan$F2^>pO%>Rg7pSakZT%Dy!hR&Q3^}v{g=yzu zTkwZl`o3Z$ItQ}RIWpAX!{4JZMa=d+@9;8>8fM{ggY2x?>qbe*X@wuGs7Xx-#P3Zm z>}At!$SxGnralpiiaA!7lh0XU6Wwt@0nMPM@o9@}o&74Anl5tot5cfNKL?&hM&p$9_0Afi-4XP#!M4fU zNH`_sYghL@eEOrG67V$4{FAEuAtpLv$Eh@3f~ZNgG}spgeD=bamaIhY4j&| z;&$&dt%HaPK|Q|s035mF%EtGLYl6NClYWH;1)xGHD8-~_V}g8|#@Bal0^_SGTKgI{ z=PSIf<1E}$^josgn~pHhzmjx#5DZna&5LC;yfK2=;n_8utiT$W_9lAw6HQ|4#1U17 z;_-6OEBbTk=}RtYjW@vc8tk()4&d=>GYT)DzUYwxj2lNUJNUP;1}lR;w>H^ zQbs~qxox9C0K=7WdJih*ETD}9uWn2Ks8{j(-tY)5eCHZ(AumEjPY>uI+XC$)c6bN& z*nTH?&&JVEH@640rRk=&3^vap8b-gJy&aTq>@1D?bMt6Mr{hPZ?Pq8gUGRI1XeMQi zPE6DUNfd47_8_)IlCjlqBAN%mVIG3Z35z-HI=BnNfKl^vcsCeBl_ot!_De}*1H&q> z4(~5gy-NXxI>N^wV)b^E3E8MFN{G-9e713%Zy+u{FIDLMXCJM?z&d&U;FVru=|3O1rabF=h2C$M>bZD3x^-4d}FnjAA>wWbde$Kz$k#MeAa+ma-DlJ@ zfkcy4QxN{u3o&DI5k7ods-9LFJ02)I1$RNqBU!8>_hSJ>Un(upk+f;kEd25-E)_a5 z{5n?fkVc7TIW<6V)Dq%PZyFlJ5~78spqHC5uGgtb&aj_I)BJy_z1g$~t;W7qk~h0_ z5qsN$BL<{#x%zoIwyn@0X&KV@dQG3us*)Bc)r6>(ux;r^nn7vPe_p_gL4;w=@JL11 zLg&~-lF{Z`fZt6gSf8G+j}K=#0nx^1ZUEYZDzS%%YqaBE!{XM$4m+~krV7_l(;s?! zC>Ny6FZSSeB*eVi0Ie0PPESn7822%FTAo$Lf8Z17Z}pzh+15tp8Q*PDh$Yx-UX3ss zQ>WIqaf;%OC^)dlG|D_O1Y_6k zulFX`Kw}vZED$*wab7$lo?**h7X~CA-}Z=2YVev=uWySAVTTV|Zzs~T>o}BpB7-c2 zP=ywXzC092#MvW!*1tmIB^z_o%7s~Iz}J&@wI6kg+z$X+M9KxVQAEf`lPQ)M;!V*C zCK*%z!5^oWj+4TsSW~4-&KV`KX~<-~Rv#zIsa*4yos01`gfb3UT7|qMhB}o;MR5)@ zcEe#|a4+(-Y1=hC&qMMX3Vwlsi(hgG63Y}l!QMkApo4k%U%0KQ9{4T+jEGzUS6 zfyXC5b~}yOM=8WS@U3W$KSRTaplS8Tj>GoKmZ;_1#^TDT1=#8xCmAUakgKuTb=jK7 z@%nZi(cK(Z&k=6Mxb4h+180^}GSK!jr|lNVb}0rbGBWo-q>C>I#Q9_IYHXKp&X3uw zT~N)8Xol*%6i|~}Yf-QO;Tg>X)?wO7@Fo#U~OH5;!xsu&ns}AqE$rF{3CfG?e5uormTc zzaNL#t}^X+V?oUjZr>rPQuZ2BNM8LtBSkhzs;J}N=|AJ!vnz9dEoE$GA0XMs&m3)l zES#SF`Kyw~?=Cl)V1<4lx#QY-6PgeyH*cMOmYrNs7LIKEu7+^`;D2tc?=V0ThE(0C zJnAn&odK#*|Gl3m?E$(Epf2dmywqPL&D}I@`8RnrBVe9x2KFi0AhJ1?88HtTj-Wzk z!5z8#jWvz|%S~~qQLk5Y*x>kTd{i2;1>m+R06~s@KNyX)y1naJ1pa9P}~S(y1^V7W7Am4C!J!^QJh@*(4gf?~LsPE|VnUO$&wx`4=_FtaZ6GF&uB6RbQj%4);49;R zA}pxq){_Y#AH!_uQ6jHEaB0=y7}vhAg&!X>ouXnhG}TDp!D;kADt&!f1LNEaJVro+ zP0@P8(l&BtAjDEN>cs$fACv2nA_6=NRP7tLy zGpoX(iE;y|*%sd9jPg2rG1Rn0ZOA?m_ySqU)l;I8=t?*pKVAw) z+YgLI+XUN|5$cw_6R3PjU^`TRqxDhyxgVcrf&mxiWMEfpG8qH$A+t&&q@U>g#|B&3 zM|#^|jif^ahk#hupO2fo-P|C&n|5QnzE01(s%p~rq{^~M*8Xab>FMTPBk z<6+^Vt)bDQ1dm$XTRg*`{su863=M$Tww-DP@9v<-I=}G(&n~*WS(ZDZ zhi*#kPT?0bK=Q3-XHz)FQN%Sb;%@36^M>2 z^c|Gz_Yr#XlC5!&YdEZpty#q$p%4kJ zc=SD`eCBWcnK$2D2pGHHCEt)cwS?|{wmGGE!`38}24J~|Eh^D4d1ymEa=e`Gc%C zNi-j9z*;RBq8%__=!@dO5vq?w)O|GK^#Z&J4d&;sTFvH|3mcdPvg?3KvZ`e?4;f#03E_ZUc1{E;@_qj%mI!*WV^PaqjhHb;$#_kq_(BAaHS%zUz!!F8Z7 ztH162ydB^7h`XsD_CD?*rku;GXsDJ3yaf%YR0NO`_rRW!eQrCBj^!o|zFpn1f1iIE z9$NWw&>456SEKn;H+Xp8fyW?B*Cxp>deif>1fw4>!s^gJ>`zkVQMUHF5eR+`MP?5SE6T(Q&@qgE?V(8mHS8S%oCL1MF ztlM40rO8E9QZ*~`Z;)m|)*KV}`Xt==avXCJ^6~0wX|!F>pATrnw*4{J75F`NsbVyp zZIl~+965O9oCWR?dFjVE4iW#Tg-gsicJJ5BMi68i+J3<*d)@SxCppYIT~~)SX)~&U z+qYmd5Q*y9UlIYDL9f&3R z{?%-7g)(1bH!$bGJpVG8zsmiCHv=C^IdVa&6ZnsRVwNlae^CrNThHIe^aaxpWXi*C zcTt1~+pHQ@$A5&e_Iq&LkBh_497#$_8m{)b@-MvRp~u2WTlnufDwUmi@q?&bwO(;~ z&cw)N*?8twk0;B~&&0+bE+Bwq^fsEbwa03^9~F1=$TpmWFk#G5^vz&%&+K-uv-L37 z`gULW+D+++1KlGq*~6|7cJxU_s1#QS(|7@9<60k`VACu!!=2@0hsbJ&W6aOy?C-A% zaI$>cPwvM5`vlZs3C&r>J+fp4!kc*rTnMKYduxCJpYQ-Z+?o|ad&Ak2-$KY7Q{jC9 zX(vq$QMWli9w@9T(Hk@4WbX)Es?fOG)}IX8Vmm&gIJum(6-TQ^535)oNm~v({X5&PAJvV{hP>{mBDChQ(%k zq|oF7nNSOil$1+e)Q&vW3tA{MFBARaAHB#|lDz+qZ`Y!am_1n)upAh_IDcDeSlo#59EY}sCjKa0I zj{Ja=R<0lyr61|6k5L5#C5i%S`8F^@e2F)OmfW=xJ3zg=pzKRM*iD}pue+Ze?B0ga zTMdM$U4j5?vVrgv^-xrxd>F!5M45Nt?oN>r9pMT_W9{-N~cjeQGC?1p$^{gK-s88r|?mQ)`<#F5^Ika%Kl zL%lh@{56v+*Umn@K-B&ro@!qis4!CsfD@8#aaLYW5fE)YDlX7djp+RG)qCpmQQLa; zG`a_bJBj?f1{Y(X^I+c7o5`XzpC@%F?5BRc3yN3`u{9N~A-|3SP z;j|DYSku47&;Ob&e|*6gffoC}9{=Xwe`G%i`uo36qyN7T(S2OmN}&aQ zomD2W{B`3%~m38vK9#qtqQM4g+&is2P$!FWHe2Zvx%i zeTNUPgde`g2HlK2i1evzaRrSiB|Sa8M-7B{yZ8A|fwV*a=a##4SqLm=Y-u(yap96* zvY>^jAR-=-b8PU-N+{;qq+7<+Nb>M^P*C=bO!lV)us?+(aZ?kA{DEJ@#C*XJ>7cf; z)yUCWh89bcm5J4`@}BFsDVIHy!dn=~u?zFXUpM}_JPc#6$)X6>j*TY z`#Yvl8Rfy4b!k;ql}@N7^C=tZz~jb`f#FyE@?M+Jou%eyw>KFCP~W|f`l@6h(%akX z;XwjH>NyO8^|Lt#(zxmfC-ec^K%_SLltUT2fz$CXH&)7Za=!L;(g0KI(A)yh3-R%l zKt7ewxpm{lGHP!)_vo}l4mE>=$gAup?ifdx5}%!PkB!`QEJ&X#S_Gg;-?(>|-1t5a zrmCZ+F@t|Q` zK2(a@U5zk;;%WM(xS8xJ+q%O|8oqa@PJ;x zUq}=nkkaj%8*m|vnw%gZtg_{Y4<9DDjTwc8$iavtjf{+nr>LVs%z{_|i3IJYwinVx zy7!&?a+R{`v{HBP-c5~>n4#aIQOh%`Oo&A^!X9BCF=L^Ku}1_*XMi8RXxGHIPhkfz zP5>a(C%{KlV$7KR$rontf9(xHWxp;V4({gzV1K3qq%dcgq_|B!5M`okcppA|$T;qT zzoljFOx~E_VZs!+e>v+gmeJa^Yjw7lc7Po6E4=mcwzZKx9Eb$jZ)zxdrK*#u1w0$W zOVVY&EjN-YbtQbH>@!|mgMctz{_hw;OP;wUqw21ot~tsr^75cDjkLr`mRE?iWmZ6p zGg9afVNa*g92{N}_6{;J2fIMgjlFB*4wq`qS4B#3~?aB>9KkMveZ&+s(6)h?gP}NqmA5z-xN+bSN8v*G|p58^{%& zc2GzXe5 z8}k_BkCwtN;7rgUj<4AN>%;fPjGpL{2z6rlQhy)5WIAzDdSH^Ie=b*9qwEKT3}(zy z|0Y43eYoG9UBOHgC*W}ulNEH0CyCcWq9y8^ZTmh$g4C~*AOw07{TzG9EV~AAd=%z* zwSqGAR-cR%&AwH?YhCj=xGTO#6Ouqu5)h>ntN{I(c!{L^0iOZxJw!xQxx^y)b_(_;9F~Uls z!Xu0m7MqWAm{=?cSe2v$p>`6nz{pqTbSB+%yzZBS+udC{z6pbXyh*rQ!6Y>t!(W!U z!Nm0&c-H^@`T6%JeE0h5 z6F&c1N;^R#yaJM}BVmKO<1hFLUPevuE7|{%+QY0sB3wP#<$!Reb!`7o8;_YWe8QMx0IoOQ$ZDm?8-f~8 z*>cPQ!2Z1B{_fJ^d;J6%{w`Um!q0ZBeDB1g-+PfrTp_t5o-ihNDS~{8&XK@w6_wEF z=wCg(yilK+TN%ocG#76^gaB?UjK_qWh{R|p6Px2;|M2txykr&Zu zqA}C}3JxcY6!Zuy|8V2Rjg1)T2uXo+AY9f4vj<$nz%bxxYx~EmxV97;Qz97g!?u#x zz2<6rW}M@<3ox1!(zMJPAHq~H<*9i)ZXfoN$v- zBnHB7cq7Jt2@QmyvAq!jUQ)U#C{Uq7;|223t6fFD!ye(wPU}OmLFPe>{Qxx!iI8-S z#Q+rShu(#|6-xjEhfF9}(J%wm+b(Se6U0@f<>mZAME^2qL*BzuMCR%Y@oJ?(>+pcc zBZFefrmx?+Rr6hjIwk|v(x6vqG?nPubdrqW(p4M(Q#e)UYRwZHm|+KF1;a5*9TYtMH=H%ENTL8(sG0 zlw2_!2rMoenqfggag;W9tQhu+|3ef~49^lyVH9b|QicK;s3)*(r(sYg0xsc#W2aF%2(|6NTeGZEbF3&g8HS z?a01gF}|EwBxDDRC8a&&D%-n?lQDM0d;o7){F8AsIfD3q@@19*hrj3?2fEza-FkP2 zlqQGH7aA%LCTh2FwP&qj?K%5P!RHofwU*&LlN;A=-CuJ5!&wsR6YKdk7U#96Ba01T z3AhoeudQ$0=h75(a*o9@TiZGe_w-{hhoF~w8(&W@FZ3+^WhFi*-uI;eTEvwk`cmEX2TVZ-UyvHMKjIHR!NkNw#uS~ANkQ)NqPVyzGW+5F2(tBp zowSm-tqu5wX%?56NcyzQyrQQCB zgQx^!_AwwuYU5|4&4$h07ffqpHk}tgh3iXUghN6@^l0eECwSZHwIem z&-twMkU|jVP98mZ;EXOKn`N3wB-EJ$pDS{GB5Ro!C&QTQDog&l@&09;IgI)OW*}~a z4+zLgTT*PU&B;pYoVr*gYITUuqEw>UP37T!8&Vw*i$})s^9uv5E@@J7!R^GG))Jwc zq_I;_IH;v%oW7a)4im?(`pdq?&LU~e6$pjH)xuq#Usmx^K1u7=KhAF1!^M#zrUraV z8PjWD*UzB@i#*b)6CklG@7ec%Q%|8_X0mi94;yGx6PuGRE`^7B9Jt^h+;`+;p+fU8 z@t3DK65nTXBd8`gV{%^g(~)Rky3ACo`G`LG*rG-QJHhh?c+dPN5jmHXxOl$fo&&qS1o-5iw;~Tq{`|lx5Ee)Q2)WF=T zyAX~PpI*TIwm}Jk${~Oc25-bUuZ5yyIY9}))Uk?-aX!Z{1SRv$tB*TPwDN|McEPUE6-Cuw)kr@=BD~ z!x|*ct_j7&ihvFp=v?tS2=ndxdBJa{~u zp+g1VM>b6ZV>g2KO(+!7$wzNkl7 zFFX$WM2@CXo`KLm1jWtEYP_E>V2H#Tk&4CgD&-hAOfCV%c7B2+f?Z_KoE()5(>pBi z)NWFKQ`ZfBoH{0-;i%nC%eiH|I?YVYz|(^a>jU303&LIO6!f=+K&iC2EYu(FR~=_R z5D8$=+;uothUs(?Xieg36h z_v#~g^~I^~nl$G$FkiawC)GCqwgo?=3Epxrjv@OEB_#X^`jnQe5fKp~5%Hchdbbw$ z6N`oiivlIv?$n7DHfk&s5D>VrJ3o9?W*#S2#6B5^%h8pON^c;NKl(Ljm3pb8RP$l+ zEs@u{QNCfF^2%aXL-{qO zs#2pd6p6XeTU;gCWib4B$Tl}OvZI~FJ%s)R$jKC;hcyI^{_oun1t>z`H1Z~4332F^ z4x`XxavhW3tCZ~~Sv?M}rs*!{70quI=nhQjABktJgfa!eN1xlOB{(r-)AYo!blXis zS1zf#)Pdl2qDR0{y~Q(93#~WrJI3yv<3(`v9!U<-s>PCxOJU7qHVOHBSMH4q&)J@)|tLv^z?r)T4uEIXi1N0RqO^Gt~jwX!ZF-GyWmib z+-wi+nB|lbehobu?kn!+gic~MT>%=UlNVSP-#(U{x0(_*6YbIx*DZbio{^qsOiOzH zzE`n+w@49pa{HXAk=>a~!gIU3yR~a*8Xv%1<8U74^9TjyZh{tbDWo4mE9TXHQ;zox zvtWbaka;y9I+E)n&A%G10sf9(txtZrmmNc%%%jtUPQ>uo*jTQU>VASGS|+Db2>c0C z0kpEnj?UQ!p@|uhJM5NK-T3=JQ@m)pXLr%OsyV}wXFk5wu0i8!Wj8zRtd+-=?6a}4 zAq})A$btXuh?22?GB-yMF%c2A20xU5DLK64)B==6=6B zYM#k$n(9dP8RxyeE*Y2yZA59l$bo&LO+f?#j1D@QJp~D1*!}xV!m9z zGSIEPklvEfFB>@bd3&9+F#o>vs*ev@Mq!Dq=dw#Ybe$GOt>h`U+q)>HV_pB4R7~q% zt1n5WtN-jm^lc(fZ&}SEPcRw+NfxaKaW-WzJ!+2H*axiaq9-f5@ls=YklYzPqHb^S z8|1uO-AXHtb!?C>xVBl(TV1m_ZfM#{=2GF{&MO|Pb>~+*4%|7+b*#I*Ygjuh`jpG0 zX*r)w)zMp$+5=B+O+a1FhkAqIWgv?nQ#ZJqF!EVupeVcz6j=RDp;-4Qlxlu4r!n_F zo7m7^vLGFW^Oi(UeRM<=LmPG(dU5Qd(8OZ?_qCEsR>fPtJ~VCfdc8lF(T$$a-{Mrg z`=z#LEI%D<>qcVc}3opGoQL~_Eu4+%1+>|MSLX@CJ99$24jdFIvTBs=% z8hc~+LmHX(KaXQlqG5ks1~BR2K}~*IxN!1iFWjT&$YY6|nv6DT2G0PeKJQ(wY?PWSE2Zgvf(F;Uy*VJXKUHG1k9wRZy8mIN(VqVRh~XBhe|KRsD=5TNG+cPYEHi^1`UDBMKodA*re+g|U`!U)80>PZ ztD3%Jkx5X6Syc6$t}!GCyy)b{EIWamz)tOy_3IVPWyGH)qK|e6ihVJf5KGo>5B5h; z2h^EB4T!JA$uJXckgraA;a8q$ZpxY{8SLCu`cS{dvO}nIUhN^gIJX&=o1K~&0vF}4 z`V;jv#~@gJ1CtO$ukf*UcDN1hs`a@fbanT`R`7{@$$Nw*tKlINp@Bw66X}L=mw`z! z6aJ99QTPK6_M)ghQA~q`*W6u9e&%Cz&{sFaX~(TY+KJm|b7J?!7&pBNX5MiN(s3Li zA+dpP5(=Eazu)yUcWf{Lq|c`pUAV}x$CNd|A_+**7Jc(9zzIzc*V z?Hc3^BnDk%$HoN}kfvWV?On>Qe58+da@tg?UCPTlYn>mkPJG^>sn5)z}@jDS?4n`*2j)Obw?wbXbj(?FJ(xBBxSaMoQqB~sjj>X z9Vq16OT>#}(l#ywW5<3TleFS#LaW3+d)@a);mAR=8SeoJ6wOgZGVa%vO5X_@%vv_! z_{6>k)?a2c)Cu90VhPM<+K_qvkLdlFvYMizqD@Uyew4k?jMiCcs|D$Z`7I?Q4Wma5 zfA-bWOe1QcDkvc7B_~nm0jCy{Zy*0s&DKu8Kb|qCR*#@fvgTv#%}}kY116X6SFkv8M)mst6lmhZzC_Gi80bY}Y$Ksx@39BFy=*g7GFEN?*6nZ&w#M5#9m{%~w-bE?Y(l?19 zfhfaT;Ie8N{ZqqbZa=6%abr?w8)V^}qBAEgXE=s}X()@(Zt+;Buy_wOsW zNv#(+h9PZ(IG7^_W!Od4R$4ID&0HU>lg2 z5+8(c%Ak`I5CXPp<&JBRI?uG22KzFe3#ZF=5WTa2cH|i#Rc30=yZrnx7zQbuvU_*pcXXrJ3}DQp8MP z8*OIgXo)E3BS#^R&dJVQa`ho&2ygBMT0sY`tG4|t^98If%OYBmi86}!W3bCiQL`R^ zT$N5L9bT)JpMi1^@r(GI3JS&R`qeR^H1stkL{N*xNQ*~r$URDd5zq_kb)wt2<__p{NJv?3dm-u*V z%C>+;M%xgALksq2hz{|ux#C+bH8z|x^Fa5?m65SN|M)e*)Fo|$ zWuqq!=<3XNqVF=4L5MQ*v0(z@>3~5Ibq7nBbJ>a&H5t>+9N7tWC_<`-q4f?pO?hna zQOC5Nl`hhsBWtqH);&%@oe+?|=B*c;R)iVrAhdVL2}x;>zj#D*3Jo2mv4WUeGATfF z0tt99gwva9EyMTZNdA@X>eG<xnu2;r2JPatfE1($G~6XaTf)kHdF%T8L02J(u$(hSpOy^j9;`=I=D4NXnP z?HoipH9_V5Txv)KIrq)DPf*|#FuTwuxg?_n-JL;bMpFkVSmG!7XL_U<A146x$;~?nlWp^=ijVBel^2cwFwJtCkt7o!?fWAh zrRTa4^q~yx-cm|$R&J_Gy^SUVpr^HM2TM?y@t9q}HTe}gI$3~|CLV&^j|O0x$)x*} z?IU8YPeuvl|1|BecxM7061l<=4X&Gg2|D^3&A}Oo^N{!+M(m~e?Uo8tX}#D#4PDL+8J!{N;EjcV2Aa}LjOgt^r*$eN>FIMMAH?H-aRs!}PV}LR?XW0- zJEX(ik69Avd(11=K@1~*F3@aSF2fJC#xV}5J`=sl_VlGb|9G)#*y0f1)w`&%!`puY zCxF_Ggf`S7lj1g-rrs}&Y0;jqiBli1SDzigI5o?Z4dYn*kD``V|z#bwt(Df9N*qV%1;w=@GgaBEO1});}`9l z){UnQ+^}y#IxN0J@=3wX4Z7T*WM1)b8%S~KGuQXRw6{{rj@EQSPF``yz zWCunLd6laKLayBgd&O3OtX^P)JZS$@15XJ(VjS9xR+laol_T82_{fzKuYm}vNXnGZ z&ZN>3>puiC0f7*q-*N|))$wPU?j`I4)21)c0oUEv^Zbf;kN$*h_CSl}CC)dwh8Sr6 zt%nEs=mjOf9PFWT^|lY!540j?#61Rv!*E)bZ2$N~=rFrBPSwDRQ~aMRZK(7;0|Num`i)#k=FHckzu+B-42nkf5sZ01nqAhLqH_jC zl>N5Fm9`{3z4(}f$>fkLASvk(<+=ek9egxLwl{pVG`rOM?u90aF;`c$sIAA!Zja`# zmh(V^HSLr`ybHM_#PpzPRxM=`k^owz651T*G}kOrnJHFarf`Rg4IVP{n8?zf218Kq z+auhG+sS2>zvZ{7-(&a~dO7_0kUw+h9;L5W=BsoY*c#uWx6!EU^BMD}?|<1Kb~&pz zt2W_43xUDs`mP>Do~L7%?W1l>C^H9#ENHztPswqS?9j51B{KXAk+`fMaQa6%5CF)G zUblAX(IL*Yq;4pFP5v61RSD+4N9nISR^OyL0p5tQ%LeR4*Z~%;l0F_4=thxSFvqK` zlR1{*Dg&G<)erH9wgQTL1@xEDvY0=JgqH?+lU*;PuZqC^r=P0}f}|a;z=Ku6Pmm4cQq4ruqU6P z;%O3L*^|5)uMLPHMWX3W&?{xUjAHa>KuFdaJIaU%mwogxk)ACe9 zUa;DffN-X3gQZ552DP}U**-vdtVKhV?Uh+W#K9iJ`)FwCGCYPGdy7`5g z{A5J+317|=nwpGe5;2U8GHwVF!(p_(Cg*0Cgg=cbn1n6O6;MFrVlqH@FCYuVxU5gR zX{wGV0AQi+rHBTWZweJ{+b-V`D=;5wxeRpLe-Js@v0nG7RzfHb1S|=N*40QAx_f8% z)b^RdsD#ARcEx9q|MfOG9pp`^SiLd*)s=wgnCMu~%eF0^VaBQ+hZSwjveOQ9%(2M} z-k9LlA|oIz;^ZZ_#zGx_AU`s&J0?LyEVvKYod(X6(})c$ju|Q(hDOG*0*O$AJ@*@V zhhn)$t!z2zI01wHA91^;pGy;CzHo}=|8kdhzE64EYoKb|U9Tx3jEi zAj&09QLiw!rAs~EHc9`o$dXCD-bN#X7?#`y{}s7TA08djNPVPcX=G=#Cy-^o$Db9q z)$aYE&9kyKX4(4M`lG0Xa#xg|cfc+;Y(6 zDnz!l0`^DYTlCPLBNUL#qTaw>kY*hpgK_X1yhx%@Bg3I60O1jl7U3qEMOGL>gOD?iE-IH7+%OrIHgb zaapiG=+oZ!MjZuj&KD}>84IVm?MrttJaALZ*Ic-1mE5+EzY9O!$xY09(if3RraF48 z_tsvC-XP0wBgA0%Lf*XqPhPJmNf{J-Vv#k29s(KVk%1MSoJFs1eDSQ3Y+l2O-77X3 z(DV*GjP2AtID>oK+@z*Wb{RArp7uYn@hnIF3cX20wh5sb$!%@kn`v0zWg=XXO%*4J zL?CEan%lOkuf0wk`wLFXf0g z<|Lq!|1rNuF4L_%E3IdlRg1wVzplaYa}M1uav$#?^kS|=BPXJL4A=gakGuWetLXD! zrkI}~b#zA2#o|6c|ND}>Li6fb3DicSdC_na%yG+Ve|iwjU_}0OFv!~Q#~qWt&rpYJ z$#hTdvs79SA^6N@C-WRqn*-9fT`{XI@6!d=wTZQ8k74j;Q zgdS+{U>51?&*ttxXO;56F!+&TyQ+bUAhZ(6z;7{JH-lk{0xDzNLb=qpbD~B|`F$KJ zohuaWq1njVlh)8lrY@+pVz=01|_qcnIPdv38DHrAiXY}uD z*ADdjH6oTc=t7V(PBXw}gTCotT!qHRpA>O9XX!O7_7VeCTHf|nP!Qh=ePvx!6m;Aah zcdXdD0D+}ifIs{OFh%NXS8`G59-RaE4BX4mA1xQ^d!_g^cQK z+&ZD<6ivt^jChjZcBzx??9L`@p4o*AvE^RIsGAxZjLR;y>!CwSIoFSjW|l2SVj6-z z$+43ZCZqupn_S;?T0={#kc^Tr5yq2fyi_k8%5`;76+^zG|%dHeTylo=d|_`_vPH6X(LjAfr&i{yh< zwWr9+o<>iQ%+fyr?*JtY6;r!Vu7)5T)cMS^b29oO22%wPDGo3!55?#T8c06b?~v<7 zR`voRnq@KqAbPBSwCBzb2OjOY3{B-aG;@!U@($On^o6lZhXi3pL<&H%?Bu6|<}Dev zF;&oVQO|s@6@}zD3q+XuM@U5D9*<8d3oxKihi7qf2h}-Q%eXDpQ@B!J%dqFt!5wcUjEA(FgXJn>iV969$L7Jwj9DO9V?rITN=j(B zEjUYP1sBo#I;f#x`Kj5bqv`EX*v_@eKTr^&J`?dm`r3~+AR7W_2K-QBVS@Be^4!XZ zcdH4d*1maue(wtY4fldHRZ-31A9w%|*$h-(3W;>An5k|F+&Qn8N2cE1>%Q*%{Le;7 z<&jMf8{T#byk=*J-*48Ll#e&JM2E;F1UUk)p?W@0(J|;Yc*j z?0TvRxC(vnKoHQDq|?ByVi^QWW$-$e7Gvr)%J;;h023j{R%Xxa=LB<)B z07pclVCso!hhzn2jh6Jccvs$P;pXJLaMrTbd!KOik$V!K{xWHaw9KxNHvjzcjZmDO zf#2lHHHt4 z%&ia!$xqa7du-h1?wBF5qW0WQ@u(&~m+)6VEJUkc% zHQ3V(!cQL3SQN-igQ^4R4*o+S?@Q4F_tP;``r(up#-QhxK-Ah~=1M~g+h`mv`q$|t zF4TJ=2!Ns-83fQ6QO4YqY$S#H(E4z<+~p@|)AT^PdzqE5$DxB+;?uHcodc5!BRDy2 zX6F0m2UacY*3h|gFhAv*l`l{3c+ZQHqAMOAno?(pr00{iLhW*xarTb`VnLkB&LdtQ zBmT(u=-=7;5v-$C*-GD~B{ez0$-NDp1irMm2nQqD;3J)S0SIukCn3!A!Jw%V88?(> zBOv6kmttt`k|M&t2aHYPgHx}9qyVJe1@%c0{T+e?D1-v(g5V<**C#*`vZ-S`DfD8 zj=ly5-0)5PL({4~w9)YePujh@-Bogz{l+Vx{07^$;XZfQ8+Cw{4v?z&hv{fh9YGx`Hm3cr{?pTS4(o6T^T}3Q(dO*<(-+3Zxkp6a<|J(RCMZPZ z&%M&l&18K_^$?&x#IS2|IJ^l&Y|U($vT_Fdnvk|d4rBR3n6ZXx%Zcb@ocp9}bBNWS znDXEEIOviu?-d`xb=?&skEJ)2kcbfni~%@q%1m_!#dKlct8HZZR?$=oqj-cv7D+YsFf z2L79x%tQgpFy%WPyA0u&W?KTF6fl#0PEve^Ss`t?eKw@?GLm!D%0USHa`8==2D2&^_Kw)Ri zUwuuKkAV8?DL47CGz&?sqdwn)Nk|KMEy@wA!u47Tk!(hMh@gEm<5W>q0nZ{F2DcMPa z|B|`jguC}0YREcA73&VWvBxpoSwdyM5g1R9Ei=ND$jL?R~dq%ONBiNT;8g%Qc@NF^UO(n4*JDs z(=%YU5JYNf)k^arw+TG&Qap6*9 zgKv|=awgkLYerTD*)QJPKw}h$*2Iizz?x8^7Ua^i3QWU;#(CqQ*(e}D$PNLUG)#ds zGNdQOYkrVz5BL@$2@$ennHBd?J1nXH;*63)&|Si#m<|!93oM@bSR6Qep6!Ai11FZT zq?9X|AqucXt?)O;vXP_xG*x2*RO1=wt0{=+!ZnMHA%_ooYLWkf1EJ zsl774VANDyQDeXEfPYS(Q+`>jH0mU^p!s>Pm))z(lvozA)wyhkDQiLH4b%c83gAV~ zV1u)d8Ak;+<(B)OJnD}Qkv|18!8X_r$F3y5QBqD4@)KYr9xvDJfW-nj%FH!!X4Y;TiG`KAiZ^0QKkc`;hEm+#+D6=HM}s{%rd` z53HZc;K#CY@$vDBt})_>LMqh}s+UHKo}6!uI4oAxGkx$uE6;P^h{w|f9}Qd6#9Dr= z8ea6mw<}luvq?kD>X@$r2;>0N;>Jz+OQU^*B@%s}OT}xtFTSZkT!&aD+P3A9bB?`X zfQ~U}K{nNgjq~Buu&>28=|8o7yT!P){G8N{*e%hUtC8Z;b~xY8gF%i#amqC9;CwqC ze6Z1IyN6-uZ`KumzAoh{H!|q0aynQ%94m7%AAeOvrP`@Qjr!{PTL0k%>IfwNuHzN= z3P3*LCjv0ZGW-N1mhEX->ew>6jB^Xi<&C-R@V$F$h>S?JD=hUvNwCWNE^Sxs7yll{ z_U1lXDs}~6TQt8NBViiY3Q=3IWtJm?nSUg+UyBB-vqSyAY=~>gT^J^IZ<%_rb40u2 zGvT;GP>AESEJ5cQy;n0+@4n>E)5K|^W0urkj24SrL%~+m6^_n%+Wvb_z`{gpi?%U5 z%CynCQrG1K1JZ8Wh_M1OgEj$tv#t$lV9axvEDG3GXKJf&dqkf|6d>(YaqDE-_bo3) zAMHu1@jL&ugYC~)<&kIKKR0f}v9GAPUSyU3^l9ys1Gij%O7dzic%n8{9yz!C7RYq3 zZ*L@VBO%{7rDTXrLLEa0LpCEb&W)E4=>F@SWGZEYw1dgKfFxRkYAekwY7m&cG{#VZ z#?adpzz-r*(e~!`>y;~qeghBRVB+)V=mn-Vzv^rKIPj}KH@J_--qo*NtUUx?^hxQ7SoutFl$&dT~MLG|NXl%PD&UJVdit= z`t>}di9F&h0R7Oi38}6{=hiI8o|}TZimBq^^WD`NHx*44P0yRp(O&=0CrF~Q)RJ1P zkH+A~r0d&eh)mUi*$V~@HS4A05L@fc>Kt5H<~M6Nb%1=DD4mPjJOW?*0?-vI{KKH# z2GK^#7~RG1txsArD;7<-h#hu2GnRPXZ{pVb-ycC^Ss1Pow+Nmx@peGC$?h0?&Of~r z`B&5y2_%0sg^TB*IzBE{=F<1ue(CeKkNM89MK+TNX$l<@d=;^B$2Oa5qNqor*7~?E zt^km%&pMSyyX^J{jZAXfne}l&RSjD!^s%!_YQa1FkpQdE$jEM$o&mII(^1R!chofaf1Fek4q9|AN<;y}BQf(l7iz>FY_1$^!B%{7SfKWSkgWVIRPX(ue61=bkq zDw<~Z2PK_yeSK)qhEy{U_8pcIJF#KrfnG{aR8iXnU*Up?HNG>w8Hw9nCqAiebf`Kf zrjNgkHocO}k1LqgdjH{lmAQ=jo>^qJfR-F8RbeWjn8yS7Dr#sN0O3z$7=5c`GZ^Zm zQ{e?8QT2@w)=R@xkdy{Xzh4!{n!2H^(YX1;{n6q3w{VEcJ(B(5LzUh6+W|u_c9jMsuxlq3FJlkiU@?| zk*eTkV(`mmRHixPaLr{0ea@5A_xb92UY{bz=U1)~kkyuzZjU~)RHfRL`@qdT>QSkY z86-8@t)M^@yks*T?YUQ#XZQG%1<2w?=pzY?rK#qIfEzc$=%~0^2Ot?kz(e{)zR}j% zLWm+JBVhBLIN$Th_S2fnf>ZU6t@E3+cNJz;Ev$&0I$kw-DBjWLvsKIHKJEY94;)y^ zTHzGFA&1o34)6^)6mPJDhQ*NYKAN8-RwXaKAp81tlp7&2zGDUUnEMG6jXM8}RX1WU zPc{xO)=RqISUxGw!4g^y3XdElh8gMMOM@B{QST^(7*WQ2AZWck!asWRi zr-@r>VVJo8@ZzXfMfK0>51uz$BapbiZgK24CL6w_v=(lp47>qlAoWA&tjdBt5#gNZ zd6<8mRV%*fpl-B)y-9-%=#+Jk+y!bb)=7%jK^`FrrWTy6G%W%4tg_6MFww;y#m@^t z&_REvERkkF67u5Vk<70|t<2)*pwlnK0d`wc)n3z{ce_E$i{hfoPC~xE!x|sDVx&Gk zp~B9)d*iRox|2J!Q!j>ElDjM37kSz%hKm#Cz5kaWL|Y zKE6V}qCSch-g&!4HpV~O$@j{VvA&R><5YWFtV@&47JjPFo8!Vl-)YS}ALXc#B>(dj zv3Sq;ac_tE!v6^o58S|_UZecO(bM?XCUZ_DCbm7x&gDBCF>V=VXV$bjN2dFMf6vTM zXMaB}(z!pb9=X=D>>R$cQfHyuX;`wR_3fOA>dYE&YxzSRmqf9qn9t`Z3nXT#i76G^ z>BzYySDt7&=}DZc_`a7fi(*;X5gsq&y`0mGo9_yAZ^L_Z&5{3j8_o{nD}9vSP&qc@{+P`GM1 z!%eX(ay~p1ZXkY7C7} zI<&stC#5N;Era4Or|6&Ree1MR>p@s5-irKZbzL~6ov+k3SP6Qtco_6z@;+?Ez%ydB3A39EPh4;RP2DmAT&uTN1i9IRIdH96Tl z>RR`q{gV-F2|Hq7Aj8afS^m(D-<}`tXe%+^0V`#XhO)+UbV5_ZQ@2G}?d`kh$o|IK zYDQ;C?r3;pIwXDDTuFq$vP0YOEP^ve#wRCN#JfHkb2cH#Q zJ7)Sa(L<2>+Z!Lv$RoR@E9#ZMp@#}ALU@FkcaQ6e?OW98vdQbVud(R6iNS>y52*^sgHX; zt3|T@eTtg-Vw20HMurgY3XZa^I9>xRf`Cte1YI}D+!>qH3C_NBRfZn)uc*y-p*Fs_ z4aJK4P1DKbu-5xs>bp#h4#y1Ep>t1X>)R6P0=ItK6Q6(S)eajuuWpdMr^7(t@C7E?4!=cSw=k@tuI^CHqGLX(Q>Pc=-q1he!-TSuq#_- zWsk^aHqRN0>vuLeZC0^bK!8Lx+a)KeZl^gO%{H5G=;WI}+>%*c`^iqxrh>=K>wDRt zeI3*IJLk;p@jsmHKGu%5e>A*cRcDor!^-B3;tEB81cJ(rE$LU6xD_&Y`PPe}JS)>7 zgH}o0771h+Y*B$|MbJ!!*!0HXciY~L_!J|hnEd=$t{@~u#oQ+sn()!$zh)x9kghE% zuObw)6;GgwTh8L`9LPCc!veqWtQCfq;-IZe{DIus$3s`xdD5;$+y`ufpt@Vaf5spi zht3jyaUp08s*Z?>9Oj%Ecr0hNsWIp2IE1BdlZD%EN)E)bww3ug!*h^^Y8POHnwgrG zb>u&|)SM)aLQl%vCI2G<1B)0rm}sHOy{zTx#f}krtXREV3D=pTV&WNaa*6;w?9t0y zvpz~BHyOR|X%>>lYd40>3u5n`-i4NFOig`~XM5iHio21IU5^zk9Gnj0uZpsF(KvfV zdT_+QN74Ld9@9U@7X})Ppz`D(Y+}PtYh;`0`wwYvmuky*jQd7(2fAaV zJOVpDv2LlOpP0am-Y3AF@=#n7s$&d169`dLV9 zo!(rp#p!hhkYYm4DVJ>XD8KGAxJa9K%`I235)JDU@0i9+eSUq5bZ5Iz%Wju#yO3-q zrza&QJ9=8Fx7_mNcB!F<;o-Y}aXU{kNXK>+n|7-f4{R%Msi@@-QbxEo>v^oP=jJ-R z&e$;Cf!Yxoo|E6PDZ%3CbDJC|77UGACuuZWuQB;v zSne|QcI_JzT=f-+E?>E&uj0-|x8acF9%8ffrat#LGu@_aTBGJa6E`{%evJZsd8}@> zt7TTs+aQYDuWFV()SW?bxiQ|bg+dGd@a-YTz-^!YB4-QJnhm0dS5Y08+4tM_KJD7& zKCrH=9=^y`t&S;{>2J?13;}|B$AnElP1U(_^qkN~vJAiw91Yu|3Ub4!JfQAF_EL;s zh0^Lb%10K^A%X;C9>P5r6}RY(uO+pZ|D|Iz zy^>rOiT;odyHjSo8|ef=6sAhHLKMF%pOlspnZ*c26JqDA9$ZXZ25gp<5u#BRwZ^d# z)^G0}K0MdyqGd7W1)GnwOZ2w!VWtgXGe)!e6<3D1-;YgS|H}|$VW2>h`$^J?Exqqk z#RA+&cPA@`>l9ys5}y0uEgbgfIdNxM^)ybJ1YP5g5}4w8+wlJVE?2AP<5t(M@yGBS z;^D-;w@WTD#l*m6rZuT0#nvA);zjR(oD!5knC;vkx^;|T+4__(2P`$6&-K6UQm7n{ zYIpz4DY4*c8KTKwx|dD2l?OekQf2)OvybNI z7q9*-dZ*`AHLk?{rbVIJ)G-h*O>6izb_T!LZIpk1?)QIWjy!R7QpCLyFEZI&I<4y` zr{3Q-DV^s3K{~nbuKg66enc_jO>Dz&uEO8{z81u_YZ0pC`sO~zf(=dc!gS|1gp~4g zzd>)9M0WqU5OFDX*0^1Gk&Hmh#Qf8}2W-!cAC+Epwc50kx}lYCcM1rEI85A4m{_u= zTzjH6=zA~Jz}QbVjaQ#nFdfmKDj&NkI4?hK9du29puYO?n9b-6zeUUAS5JPbw+lMeXB(x zcI!u{;qSaUj(^Bwv8L3BHg}?za@cPkTXv_6T-|WKwezW=d2C^Sy1sXJf=ag8kgaxp z{zRazZ4+pAfl}k|9jlZS0%gVn-aJ$dLo!@H(AZg(TDaoiWP{DlCB7TyjzqAu<70Yi z;zrVb$97RfONA}hMKvLC3JPR#2hwmn(xFu&ajJF0u3d%Ie3Zv{Eqf@^lXVY`9~t|f zR(AB;m?f9SxojIM(VbTyRyh50|7cD6?S$4g)smJtm$jp=jt%LE!-_Qh1mw#_a(%DGSs3ZKW>=_ehhf-@r1qJ1?j8XhfC1s!YD(*5# zgykn~bc&u%>+?GvZp3`uJf4NkK9LWs&ZNP}W3)aVUMN9J=+OFs2AmTg=J!72MuV6U zSol9g)^OQUA)B2$R#aY$2BI2Rfeb~sSx2%jnR#rHTNBOx1F5P7QXGK zH*>|MHS+leUn!9lc?<9D@mBY`wd)7v(`HQ@VK_wR?V+#}MqS-!%&Jv}`^A*~(g&t? znSa%fTdEa0{~=(gRrp$~`A%Pt{tLQoV@O%T){1oNW+tCGoHhFL!Dx5MrE2eGNS0Ja zq=k`~=P%?}_x9B)@%4=S^veqok8DRDrp*=@-Rl@PN0iL!VCW)Cu!MgCxE%+-IACl- z{efF@x7?58r?+Y%>7@Nm*y~7_^p6%hHcd44YK5Q(j~VNT)n3ZKA%KrW(xD%cDk7oC zr6a-Fye6(NDM?R_o;!I<5DjhpjmRy{5q6ihn%;_gB*UM4oEVJcQpVJnKQJ@^a?-+t zdgBacvMWdJ21;*e`Iz+U>3_7E+tYlxW<^%T+bwbcMsD8xRUPgu_3DQGkrx(guSk`o z>YjXk1O)JzWb!~BLgA6S2X3(|1NQ>>uZqf}8v{v)0xTyOs}c9*rbu$<)mSR``46vM z9O>h6NT)g8?x@pgv|o2Y_om>SS~CJ;z&ynjxIBh(yG0ZhT@9r2l~v*ErL)OD3q;ZM$stBcb0rH*uDcVx1eZQ`k8m+WP@lQ&rO z#G=1AuVw_}>S>G`I}LzK-LEi2lFK7oBqGSrY|w2E{k-VI{*B=PiY|}#N2HH;N2Qri zihvh(nZO5&Z-XQs(r7TW--?IPZDb3KYV}-<-tM4$x+2mP;G5z20GHHZDI1p4jJKa> zIegz5{rNsM1@6M|yU#;*9j!?=Thf`P_2c`L%hZH_;SO-UuQFpN^(qt; zK*D`$ijc=!=gw_n>L+MgX5KdLQL3ih^3kj_FhGYn`8mQ>KrY`$ZD)pjReRG_lGuJJ98|GqX{mpgO`G7Iqd zUpTTH%Qxuz1Z6IYW=)mtx8&Vp-5Is6-J;vth5eQ-b;*3k@+oqWV|c}jBZE*gXAM{D z_>_~{2YvTE7~r&`gB=YAb96&|66po(ttoFc+P6=4Uz`(F;{J&#WYRL@rps$y9T%fz zsj+{VSM>&;r@HphE2WL{27w2x_&#gq(80A;0nxA2jPmKaalnP>^~kHVUniJ^0C#{> zGSsG=p2(faY-U-XaR)7wT1z%)iEMFHhe~ci`uD50r@yJ8Jt9yPwZ7G@B`2+!wc^&T zJjQOs<}C}O&zoOC}@J9hfq5!*W%imOMJ_y$h#XfwL9zcOY?mPGu8_T zY)k1{O7-Lto-^_YmG_&?4*!nUK9pF0M?}!QI%`Ybl4t#*U<$<8(!(%6% z&_y%^b;FdA%^5gJnl?8iq-F`m_&Y4m<$tB(DIg{-NufnM1)@(wz_3j8N1#Hl4IQnv zfHhZqy1Pr&PL&oF?KZbE=^|^f6B%p)hrz-#NP<%~mlEK)DY}tWV{nnjG zRD>VTkbKe1jXbjAv(FA*LyioDX0SZ4ruD;PYXtxs&NBSCIlp#YrXofBxfAl%G5rGv36@DhQxdTz5 zjtk8K3dQQ!EB;9}l=-HF&H|i~)<07UdrB1Aii}R76%lqPHBfaTcH$F)*PXU%T1}9U zZp}m0!WX44t;_s%wH++>LgxgAepN<4Ixg=!Bzp(?RwzRg4X-0a&ZC5#l35LbW<*9| z$4NxWS8T7hw<_K%VFNqv;8)EXIw%w?DYtx$MZCeTOgi|YKBgj$5xSZML-)O zB?;*?HcL2-Sg@V`a6%KPLqEk$JElgiRGZ$-lZ9(S!p?^NH;+{dYh5mJnpU-+=qOk{ zcSHqdCFwvEl>LNs$u$X$--G5cVE;*W`7@spFG>bq)Ni9swfS@d6q;<0NsIfFNIhLD zFAwK}(HWT2lRF>>SYY2(of(;P2e7X!b(TGS+(9^RP5p<^x@W4D?cVuEdZ%VH;T;}&Krm8Lcw(|i*s7E=s}_3x%j zR?1QGo8d?DBXPgBXoCE7--`Lz;IUKZm_o1e`8}a2>+ENJoSZ|NVxBe!R>eMcJz38+ zjLxdU!Gl@_Tez&fx)nYy)Aq!$)Ziz_DtotOh^=MW4@=%k2$wEp4>WfLUVja9X#d+yBpI4@JzuiOWk4qUHZ=F zfxz-fOr!*eT~PVcLzXrCC5X&#mY5^4B)#Lq2jat4A2(+o*{Qn;(*(&SwP+jkWH^~; z=eY+58$?A@dD#$(BAok>q$FrQmQ`E+^Z++54{jSCb8j9#IYTekS zIhVDdTJogo+s)(x$k>fwD$Sm>{VHH3L&BN2OzX(sU7E~82|kQfC$#rooQ#zPmNy~q zhk$O8|2&OnhB+K%5$MJd1I23iE`BNa;V&=DxuS}yALwe`ZV>up%VU4e>8Moz{E6

ayfqsqo@%J6co|hiUH3e%MyyAt7cTjF-NDgAb ztd}fMhRMT#Eq9{w2#TjdJhHSieNb5O%^s6hL ze=13keFGG8ypEms6FTlXDdpwv?BJRHKU}?aKvdiJK0Fo}gas;Pfs}wE-HM8UbhjWQ z-6f5pa76(f38g!Rj-g8tP>}8%M7pJG;9UnV_xt(1=MO=JIs5Fh_u6Yc>sik#{S~wd zl7T==M!05(ng-&G!dQ|KC22z=qwW$85Ft2`WwoiL^`Y$3cJ#*?AocJ9fJYT--Jh;AXOBOZORW!sU!=_uN4y>-I%!;k)zP)PX`A{*3iYuBE zH4ChQrC1tFwfou1^L%i$!-8}zxrJLiGqGda-5sC&a~{l$SA<3@W}#jx;q>p{if-Hg zW#kW2;v@57Y(N)p1)4kZPB!QIM2uUm5TI#=GD1@<^QrzNuc{gXM!+5iw^nFtw_g@pxUZ}^=6OsEbJ(Ttm%oLn5@+rKSo zkEh4ht(aeql3V<)AD>z2C4878+Y5L9Gar4J$}*Hbxm0`4YIA#QRil!mSPk{U6(j)( z0fIoWjg>tZw->#}wLzGCVK6OyWzKmC*Gom92*$z%2ueq&EJdS$Ha(M;RiOx^RX4$+ z(m_i|6S)gKUwndF_0gY%wbTVWGyUB=lFDv?$X9@^`nuz9TFJll3&y+=U(A*A(@4~F z!j*k-su_PQSf|7(*pXtEl;y}3F3=HQ+y>F|xAxKp1L86zDLSHGVBX8=4qeA82HQxh zTM$WWM7%56ZSLE*`vef6R$U%%be}+O2t`bruRepfFatA`?zmgJ@Y40^z76rJHQx#; z=0p<(^UGs0REWFG#Me~kZuXqBZ#2;wKN`7jqW5n*El4!*;+8Aij}Q>fZI*tKwkH=unHiq*yTdl7_HGpJmYpZ_79rz@iaqHKG0fY+L_Ve4D zbA$k4xg#Y4^$meqL6g=WZanS?$1k*nkqJOc%4pMa) z!AS9M8)Ua<(pI53KFZ!5B-+y=`zzc_VcnU=3-6DK>b!3!og#bv^!w`R0a-unRF8=4wpPH%A{EZdAo@8PQg{+J^(HKk| zyc7_3*lvPG?Hy7Gr3A*uMcdvtC2wNcQY>p?L1FRsWbqBJVVNkQUaKR1?U#g{8-*Ebb%{4Cvl zZU%gMRCo+^$j)^@Gdk}<4FyB4hPmm-fqS3-OdXmioLK0B#V4s~`Z!l05hpnRWR{=S z$Lv=o`tB;FQDAFJ7Xgh^4?Z86@^vX}Z_dNK@mw#aRGc5}j7eB2;&OOoac_Au>q!yrZ9`|<~9_GB7WUx9=I1*yk#!h0y$*Ct^fEPo|TH=GtZ zcrXWlWa{GLcAN|w8c98j3dLw$Ez&wQpVrQ-5+RFEtXjFkDE_49&cj4%&!93(ymR%L z_*dy?q-H&%XiOTfgD_u&_KQ4uyhT)oM*oE^(g14Cjyw}J{{=27LYNUP@64JDm(lh$ z8N7g6|FY9|d6&>trKf@ihDq5bLPX!{zN^6S(s#jb4tPVHv z$bDB{cs97xq~fBzrQd%~2G1!``gRRILLl{Z(-hz1_&(APgrn8dY2@kML5-ruHM=+u z@5&PaeEz1Q_a_{w67ze4em^4*GBm4C(g@3YniG*}i+4`bSJ)}02d${Vy+;@CN^2Dyv=Gf~_-8*R0 z&KIki4o}K!ov2c&w|Bl;ea8)`WKK}-h-Qcs?G|+pskzBpW$fHvcHB*o@Y$1+Y?at8 zCk(&uUunq~#SZ8wK+PaVYub^OrlBU(2`Fm&mz1Clm?KdLsSozHOE7?oM;8)NGm5HBzdDOsA3FS*c!o5GFJ$ z>mX$|vA#8ZWM*~e#d@X|;Y64khRPCXKo*$fVb9 zz12E%$?&f|MWL=dM{HvUIC`cNpxZ!=*hKvdB~48%P%rCmk$g^KuD;cg)c8Zx&kc&~ zYy~1ctg;yx8GUgGIv=s?r`D)A|BlyG+o+`8VX@t)b9NffT7nK0m?S|Rwo9Rx@C;kV zoMiPg(-w4CHh<6`XRp%ymY#OkFt3u$ZSGa|oJ4;}rLecatcRvknanuOj~H5+>oeWb~<0iUSRPdPcz6hCSoJX78o zO&pQ2qC7pQ5ykOar=_Wpw3oT5NKRU=gIQ_9Hk-n{_LZiIwr3X{IS&??@5rlu0B`Qq zkByE_LW?T}OUulK2$L`#}nm*FY^m8&!hP4+q1=Bb7=I{*<_NS!_=PS6rC1XnFk`tZNqgL)3b1>^F zsIE*Gac>xi$!+`K8i})bF`(-t-#g~2#+sEbR(fjP#C>f%CRbLiczkZ-b_$8L0F)Sa zfSPUwIF(ybr4J+|%s_Yn;KeL^a0-Z#B~JPF0o1s6gSR194)vb(KYs?9ol?GwBeE;e~tqdqa66CZNGS@ zNUP<6T;nhf{Y!7H18d&|V7CgLF>rgJzE(CB@h&<07v7&!?vj38YX+y3ksy%hTl))+2>Wn$3Qr$10*7{z^Tyz#P+Vv zGGt2Iz;nz1{;s@ia$esIa7OlQ?6e9kJFPsowFr=0&02dn0RE5nG;&z1Mkn*}=4&f} z7j?W)$ms5);=@KCY#UA*)~7rFIWg^{DcJql)3i6YB^MKZ#eXU z6P$gS&zv<@cK-n1emsF%>S#RB_FbTy7M(-mOjBvpOjiz&rhf5%hc&4`TN^2gv=wSD z5)oP@knAx5B*mdYL6Z=Rw?ps|bLa>W@Ytkb$*S1e=AJ!!)-XpMx|YO&k%1hdG~}ha z0dU5-u3Jh zt9cUji(-1OPSzrnxcZjiEA{?s4a|oAN`3r&2Cp=Wr=!H153l|JGUNF6&@B>w8h%Ca z_DIeAAySk{SPYqY7ANtg~MShBw$>P zVk=J7F5Z6G)T_j47E6sft_w|k-`ifwF_8+ix|XK@p>BmJviY4^+|P|0^$tYqZ_F`4 zXYluL7o^14sr3FVx^Wdvda3>&#UOGYP@63nW$WkH6t zb?K1Gz#dwUH?tZjQqU=}PYrf~A?#lrYRS3I6kZ=eFFhM1q_}|tsY0!oXJHv*p$g_68~R~egSFxz@};$h)s?6;KXt7fftCe7XUN%TwXr}%Jd%;0;uk{j?e+%8Sva%|7H9_ZP zg*07_-^H3>s3&npMoA`&s}&Y&3T(;wqUt$JK6Gy}Eq?XtC;@s2bwSYdb`j46^ELgt zr-^`;c|^)`uDv38Hnq_-^*ZXfY(AUR^**wbEKl=#xW+w?bpI9%I9@W&PwOjdN4=@C7~*7`?Ea3Vx={v_(9oyPid$IYwPhgW%5 zik08Ap1>r~eb({rYb}$@qpP@TSK67`zpZy&{KcGc)J2M{nQiTH!3u2m11Wz=vZA#N zBi+==y*X9UmLx=x)QBQv0%bZ?gc-L2tS0R~W8%&p zuGb`a>(RSM)tmlhL6!Wzl(Ta&-sVd4tSpp7rs8wDXEHkfZ%Ip(^&jo{0Bjf~q_-y| zu@XQZ#P|nhzseUj#`A$y)if2@2MXZYA*L3w0+iBEydOa+R5w)jr9ll3;1A3Zg|LFX zT$-q&uW49dN^@&*KEhI6lSKlPCsBt(Pg7*!{mbM$qqcJ$FU$-65~#ifL87#~;Ages z)t_nf)h+23r(`vg^_FiA@@`O8dcIArrEf6Jsh@M`?lA%n%x3K(-X@(*GiS|sjNj~C zy{UQ-W%!5_he^&0&%+Wf=2(34S5hlMdG6YB=bz`u+j*qFx5QU3DBAw~U~~c^ zG#9tgau=6*(cqb%qWWEyxS9DEyeWFi>0aAMWr_d%*^U1BJ~}!JD9PtMY)4XIxhUA! zq}|LroW#lD78t>RulBRjPl)^>&02od%s8+j{Z(7DUEI3NK&BVxdEAR-iIXB(z_(O#3& z-14}+15&CEz$5c5?}7wLS|n0$)-!XkBjxe8hso}%KYsiUsmGo|W~}8npHun=RwFt2 z&uy!3$3#lS3N}XjOirTije>c@5>6w5VQ*qFOD5BYMgygXZXbV>nOshDeQ4y+JeiL1 zQydE#YY0jW`b5tl!AR#s@FUE?j4-CqO)O|)&0O?uhSwzZ3Q`gWH*#=vV1z|YjAwSk zN}L_#H6-Cn0p6>Wo?GsF2dO)IyNbp+2bfG)Uw;Dl(BF7d|G4A?T$Gs<(mW>+*!5yW zoW+5k0&T|xC(Ep=YYT)^Zz0F8Cb$m9!q>g3JU#s}n9~yc{G5+|icxcveg?pg`E> z`R2WfP@CBWLqlKmfj0u>Ijd0nHw{S(a;-=pD@bjxFRXXoA`u6-QTg7zdp)NA4inWP zuWqV~p!z7|<1FNJBy6GOtUn`BVuZZXCsxMAU)}p0PWG195Rct1ziT9{8@P7i^2t>8 zmL5d+pHoH&<91|HPIxs43R!IHyLn`kKxg&xD)?*Lb3^RR=|@%$?!!e7mKpvcc3t0P zAa-mZ^OnE)2j_!IYT71XTNrg_V5u{Hw8E(*R<{zoPHR@Qp3K^1V05O#S zqkq&rSY#6qLDWgmgmSI0QzN%a?b%CN|LkF;c@jn->ks#OW;a93~_2szV&*Giy9QF%kgl}$Zc z3~^qeo>)a$Il<5Gq;t8hbNSG@3T8@@>RT&NzWq8DAsBHf+Zd53)C|eoofs)4O?_>N zit)HKfX#BGm?vevVDYvsSyb-C)qXj^Us5&PeAYr~PO|i0i%spLFC;0s(V~uYlGiMI zo>Q^6>x#eS()r%?!GqV3(o2HQiIM_BF;Ni_=|x3+5Q#wV^T*)durM*bulxN+CvW<* zUgs*7Xz;SA$XvwIOqh06H;_93U+xd1L)&YwnV&!*| zsx`JoCzzL>3v+YqMmsWRbQDXvO152^qQ!~0N>^!A-{LCxy|_nk`ZT1wX(CSunB%*d zvWiLo09zO6C7}?RPwcx<&Zw1hnM&gD{&oqCMqbUq0lARICJIrmEr z#l(j3T16rKKad93VADBe@>CHtw1rQFt}nIRN+hm4YftlmsLV&ZZPVZd?KBL|&SAJx z&ZN0=UUh05?QzNMaT$h4@BDoV@zm>CC(ZCEc|9;Z(`8NZM|7<&`ec4DX>oFM4m@Ru zQ$NxaJ-B-l{Vh=v^RSQ_n*;!&Q8cETg?8?Bi1nKlU>_D?bfC?;=xSdzbBIPiuNP@!IRkPP zEfAWS4H%BxZ=S%~I+p4{VCN0BY=We;0{I1f`{^y1+L*ig5VPJX?9V{Nb3hA4X#TW7 zDYE^Cm7hm22rRa?bF$W(>YBR*6B=2uJ(Z14EED}|qin1vQ&h)ZSg@!sYNTWw7V}NlsMG#7kY}OjZE!&mE`# zP`-DyS1X^{C|rQoBr7%CDDA7x8S8=pomfaKOo!=ye2F~~Qv%viQ=m@Q0WTm0KmsuJ zvPcOU2v36mZxZYT7!)%*yDZdVs{oMR881Q3Ku>?atl_#pJuO1X8(1oLwH=oKrC4^mwm^7p#F$IKiS z6X&#Oh={oZPyyRusZ?u$F)h;%veak&qak7C*NgOIF$tFoI6B6Jn?eWcIhYRp!i0rk zk&2%Zgrc#3Q3**S_7N=aSvH-LjzZT`lQ2#aaqznfA-uligS2Iy#6Jpw1ix)NpnE_9M8|5NM%2`59+k! zEIHJ_N!`0Km7WKjNi=We#2PBdjrlnY7{^QaYV(=1iv)DP)j zgajrQzdSE@-{F^zPV530V-Eh{hX2ZJO~^P)u&f}c5k#kPm$F51fn z5h1M;hMxC(F_#ypKk;Cj@lrg7hkgptI=N=*tsJodKYePJ1WwwJy_ zo7XafWI#S8fbMc=tq@{ujvPFn#_Uep4OG6gNg~}Po&2?yTCY2h7+?+`Tg-d0EEw2I z%_?$|um3hKqXbPe#O>h*!!EXXp-rbIrs3O}X%qSIsP-viW5jc~tiu9!DL)}!kyaffaWgW zP*lq;nL$piM0O)Fv%=B&mXdf!SA0;O%nZ2&8I#t0W=oKN-cA#|TZxapd(#QtGmRs6 zR=#KJrFy>AJ=A%K3PQG*eV@xs-F4g!7OdB~{R|^`45UudYL4AY$B`snmVwne5 z;_IEV$e))dGfBLbPJVencmZ>##CYiWwh*fDJYq!m5 z=Sx`DD39==iDdKLyT#~Dj|msgitq1`;7COe(9c2;0Wb z`h{T5Sx$+bZ;T6=~f47lC3hl zg9#u2`Y{1+;q`Gjh*IjLg_DAuNvu%fu~>A&N%49xXo~8(G>VxiWg9`c@MC{3v8UC5 z1Dy)vvA`m%WoVjZ`o#`!Tz)}aeD5@Swduz*rb7m# z#q21q^IfO+^o()pa?Jm&V#pxJ%1NO3GC}EUyTWrer)~vWW!wc+9wG$bPC);o4?vN- zE~yBC^VxIfC?KWcTWurd0KhcJojXW%!{Dl>8bdzas6KN&ukDh3S5()%fE#RM^}Xlp zyIK>_EtgQn#+o;HRAe=DTZ$>)$WT0e3kT2JZ%J3j4jv5*?K?=j`~<8@@B1y1O1mVJ zt)|aOQ-Yq*sRYPNDScZ{Xx-i6$2;Vrat)m8PomW=av2hSWcQ|JW{N35J3mNwHN*IpzAoD*z za_`p=byK4{V)GzpT7N{8I54nWO8R=T z=ijemjh%SJutv@3YHC;c*r4(c%a%!rmBp2_+y0^SHTg3P@bAS-YsVt|X9n~NzH#kU z2wMhQswc#awJTS+mM@es@F=_~uVac`;Ll}5M=XYoL9)bnQ#m+OkG@@Jvoc%8Mu(UM zY;#TiJe{>CN?xtWd`L;gK*_tW#@#y2L+YJhC_RGBv={y)^KX6tmh(SYqTWEl$!8WZNM&?Nv=F+cZ@uZaz{XUb z?Yw$?JaJd~7z4}BAL_Z??s67wff|m9@5UKHAJmAn84G5v)U01*pIU5=x^!+qcz%Ad z?y0|=LLYzOMx@<^36lltj}DV>JvT@Tr7?x+kB*%Z?VeYgSN((4=*%>75w72y-!s97 z2c{S{MqCF(Wz->UW#U-hUekj8WWxnR7wtp%>!^-nZ)@UQi3aIQxwH3tdHm(N9o*Sh zY4w5~K4>y3J;uOvH1O+ zhjm0}r6DQQ4i4}=*7nxPu|0WzMo-CP*(O(Jenl%0mMPG8J6J*=FMN2aR{S_?o&HUH zz3Tv{u!K*GaFfBD=fXNxsHog0&Jyjp?C00LwV)hvXO)|Rz?D&3!eBNr-J-_vCy(8$ zUAB9L%*B2~2lB{K_B!CBZ4pw4-AW6k71OUjtfY3%5=bl%HsPtI%)m!D_`2{2U#DR^ za$LUi;aQdDexPZ@BHpu_w#{pVGKGNMz?1pdKNs+C^ImuaF1LN+2p3W+lYm6BRVJBF zeqF!{WwQ;h7T+0?*A9IF8!W|OPnCjw>)NpSWg~xIVF6EZ?;EHI(=*Vb7W)&bP9fi*sYP@zq#Eu zto<+Dd3gQdJ9%vyPrZYK@;EQzRl{KkPtN$%Wq?I@)7|=NmR1d`5fi$HLpk5gv~ea- zA>R!P51f(P*f7TalZ-{Hz~Qy_F<(P}8Rb7={CCkZYQ+$PhYThsTH ztD^l8kTVn^ugD@4?1!uSu8-^fgu6(&Y7v!K(U>>7RHQs^TW<+^baYC@kw^HVKzha$ z5MGFIA=^}PS$I*GdsbIlI~^1ejX{bXAag1%+vdo#K)C6E7lMKBU!v=dnCg)$7)Nb`#2_y*y$=A=$OVWJb814w>15kW>Y^B;-s zEP6vjns@-5w{>|*eiv2GgCH*wt3!~VjNjW`pYF{|t_`3~gDM{_5RFY;-aZ&^Oze}t z)jrejS*`RQ@ypp{YC97fmavMamx_+|W$q9-%je(c&X*BvDQJSqqE4G#-v5OT0pIFa z5E?cH6&g$eDK(EV=-@*ke*rjMY+2o`Q{Rx3KI~c*L=6)%A^gx?<}Rq8v_d^BL{)($ zl~)hOFnycoZ(nh;&wJDXC)ud`-f#X&XI$yi4K(x#;g-p=ms+RkdjeBjl{yLGV~OJ& z79kQtoqId znnmId$OWj?69+E~P?xJ?Bogmtf5ar%jYva7e zImLVRQW&;xNZ_y^lYs^~wrn|QQ z(ao#RAg`ATSb@Ue-hrbM2H0X8&w{WT0PxwLFBRX9ehY(+|6Ng z_%|bx3EfF3-77(yh5TcNUL`H{8Gkih{?GGazY%W{FC^H+0vHQJ+ys_`b zY?2UtsokF2{$6bHKuiNX1-x}x%^BoqWp(N^d%`=cZ|NX0N_7&2P|P#$cE$RWdUg|f!JvUngdE9N2EnQ8LVzi%Fg_9&4HD701(BGsEB@_xw+<9 z{=f))xh&Wu1P>qk3lpr!*?5eHMx|)-RE^_g{3o7421(zF9pADshC^tb-qK*+8J$G` zas`ZX{;VK>Vb)0|)<9`rkl<^;NP4jr-+j?1HdCk66vV8lAa+3#_n^MjXMwQ9kju-( z4?%`u=J#45-IGRIP-xQruySXNgWF^0dCj+Pj}-ln%p*`Iq~}(l4cs&!nyLs(tHekD z`<&wp(u)k3G@7owNUFR2W$7)gsF8tT? zLyg`lX+BhV^n$|qPcg`&Sq*7J*MTmmt3oVxVp39<-q6a5Lamn(3J}m<S=;naIr zVckKD6rKVe#yTXWN2%T?Of=Eleo`3zrQBNUW=XoiOxRLYS&R%h0IC3m6>YoJKP1k(;1*u@=kRO(~G;ve2RjXDlp10g> z8HfD4TC3+&n%Ce_(%+n8#6sE-7y+2-U;jMuJ(v|PGGw_Tts(&U2X2UFDsu85z3@CH zfJ6TkN#}~uvTBORycYFf1H)9geC(7+aJi&319`=x6T%X-yjnoQh6v`$#2Po|ab>q{ zrKk9b@`tSGp0QlMfLW5T_uPsQiG~6lEoPS_TwL-|q4L-=YY;JV7w-_s1`Of=_Q z!1}y=pqBy>ytCi(jxOt`y_~o(C&hY=Q04-qN-x)=UL^&#d(B&hgN1!Tr5Sx@%&n4C z{WhO&05MsWXz;~9DSbKRrbphw#+!lcYCCu-4&ZVi=vHcK>X~_jVTN2@KKoqswfVsr zC-WTj4v-E38h@saAebCTP7F9@#>B*^nnH{;ypfx{BVEJ#EMn0?t%(lpNyuf%b7Hpm zx$2PxNJJdaCUlbO90nl%i~Cxmm+Celz+FClLL>e+y<|wr#l&c*WHPsnWG_bpIguGo zSW}w;?X~#0+zinlTB^!VyIRxZF~qvVf&nuE@_<#O*;mI=cYTpr%X<#=(WoA z?Q`T4u7e06G(xZ|r8hW`6+88TwpS)lnpo6X74YZi>}NF){|Hu#qD9B<#JJQeb22VdX;&^jF-p41sg^BGv5>ra*wB`71AV|wT| zAd46sXlJr8R1qv~cWJ`Y zw(ZwiJO%r%6o9K60jz5l{8QH3tt@L+onPdlS7}`bgX<$VpCKd=<)TsP;*;c?0jI`2 z&bL^X(yPqlr=ariTTw;8sO~Qg7C+)^?s+VKbdI-f-m9J+=a(;^w z`$TECtiXVWGI~sQFHnk?sEZNR5ezi!DElIUaT-~AcV$S07O~Eu_X$vzqYcF%irU%{ zkK0$=C4GGd(ufArDnK7K0a^u1?;kr)s!%!(ohmLgg8KD|CI?JHTl9tR z!R3OBx{(MHq$P<-&X<4Pkks*hF;sNnI^IidcP9`)gkkgES_Uj%kvK-V%rs=+n6E4y zpIUGC)E(!`$8zXUruaIuN>byZ^7@@fX?9v`-FL69< z_e8mkM1U>n+#JV97@{41{4)0v>{3e=D$*HqMpK2y|xDIH6Po}-aO8Pfk0PPPT(2I-@Eq`!3?0JS_@VI#ApYh@q{fOjec65g}xX#%RvEiM5M&pz=thAdJYaE zAK{hgQ)~)0SB*$rCvj{%b<6{KIw7a?e3xUp3nIQobE95;95f|oo;ZG+IA%@bCgti> zy95YswdyzxCPFHg0Ls7!0|iM{e%8*OtK}C@DCBIrbH8qFPdR=@Dg<}vA(FNG13sDf` zsN7L}OUVYFO?iS@X7NLCbr@+J4`Mk~=e}#Gq6WL>Bi8i7I`jk-vjTw#}xVBnJ75V!Q`jhqGkFTNyi&u+g{u@9%qP39(#9p}5GT6)$c;G_U`JG=B+ z$N1G%iyj)ONq)_o$n6HIXexUVB;grnK!GQu$K=^W5`U+RKC6fiNl^zto6?>PWm+Ah z>K;6Nd{>DN%BRXGOAg8R0|^laHnlNYR1X2ppznoy^NBz@`~QYthm^iOgFcL1pf>Mr zrK(cyy!!J_^CYw=Qvk8|mTpjS>OdS{1o{ETy5iRwcCg=<oxL>%OX@1HC+{_^e~*E4D46^_m1i!nDdByhY+@b?~@X zP+w#oppJhBh0iz$T+;y4Y5Q<>9W-a|LC4E(KXP~EE3qouK z6sR(GlLh1mw?Ir%D{Xy$3v;p;X}RLv?n4Ab)!nBU#zGkAcdvV66rk4I6+Jpo5;uO& zC-&Xj%Mc(x#DK$vz46;hr739dR7&$Jk*5>@{4DUipzy+WLU`dL~H<863+ECDFOJ9y`E<}mMu>?+ zlA<7-nXLkFDml3A39Yp4_qgH&1JTlwdJo!$rO{@Ft5ZQ44)55;h$;Hx@ zHVp5|@2Fr#?QVJ=6{MhPPD!g<#|~wx43*y?6k#@0=B%0hBC21$HUrESG|MbAHc+g}U^ad630TIv6~3fMF0CZRqf92U_## zNU+f2JqGf!TSYUH5TVvM(54h+9`SBETs0NvV0&uNWn85MNbc7LPkP0Jgq#V0`TJWC zPH-UEZs?w}PXU{?I@{aM+c5;8L7&yZk?loyZOpVfi)>O};Z^cb>lwYAgGyQU4AfTRMPtB%-KkWyArP&gxB0mVyHJm#M= zOXmfM5Z2Z-znZ?|BYq%^u`H8I={h}fcG52xxZ34-;hD4#!#8u;M+mlGvefLktK_4< zL5hnuR`SDg!!b<7Z<_!L^YM920@Al{-*#wY{dX;({0~9YK)HUIq{$SLA$2~dy(5F@`LC&OE|1f2m3 z$*Ek1#D?HPj(l?iWA}bc*sCB|x&H)VV;#XWgD$+AK7EKP!mp--&o-v{myaxPz8~#% zv(;uPB$OyvdXir%WRkDO;ZjW7>M8H~zVCFT{iT`S)xla8)n~ z-#mW5q_dWr6_oYSXUd$pqVXGpcgj6=~jJi=?0OMV!Cav!5-{ITD)z@tpnNt?x(D+bBopNaiLRZUtDpk?EM7W(0gK>vlNjh!g{P z$*o}#nBr@%e*x*@?YRW6y(?>lbeiN^lUXy8o1=$IU6R*WU+$t z;3!@qXEK^LJJijraa%kwJY*|?++)}2bMV+9^x!e#V8P#{m3BaA0kc05Brq<}i@8J4 zy_4<;E??$2uTVx%9y@7~#KCRhs}~EBT925AeQ|Dz@-S2Y0=s+r(SAA3746>7Rsb-fmugOBz`>g#SWFNf$ z+t0{{ym|@dkqGG~y8r9O!w9-GI`Mibh@w8bZ}gE>2IA|!l}jz)0cRgg%s)&Ar!11c zSfPq9E50m6=TxNuIRS8uQyoD?hQBaVeyWyXiSI4CXBI-7I$j>d>kaW=jDl?8E5ruBKDgRQ3l@?!wn>GWFr5& zFop+t-iwHKf_F4z<%f)^%wKPmfRx8-WC4Uag4;w>pJJEKNmB7CtR;}(ZI%`r z&?l^Y9VGGsq`p&4IRQt+sD5|pwJAWdj{~I{(u~aT{guJV=}a;I&mC0`OxgHAg(iQy zZm3~bQJ0RjJh6z2X3|tJy)$b>{q8u$k92-k$z#i+s^~R#yv=+^_b93LVwvq8CB@Cn zJ}2!G{WnV<&pBe!SzQasJhsfm{_1J{`&?L92*|e%=}%fG+V+ULjwm==mquu*KEePi zBP5w`ee^~Ar+F!g-HiN8fX0{l(U>pQt``IIq&)qaB#;;d7(n_zsW+O z{HYJJ^pJWR1@7{s_OGQ>OhR0A(y>T34PLpSB}IyiPiH!SQvn7~rNrh9%bJBk&2Gls zZuTub{QrCu>P7a0f2Bkp*B4~IHzbO*v(#c%`*OE9*NHfiTZh7SUOPFLP4rk~Z~}b! z5fyPp)6vYB`+vqG_WK*zJo1_HkU~Vq9+SxuVmKDtox$|6@LGOfauDgN$N&Cx{I`FN z`qk<)6t-Pw&v{BYuwCsc=!rM%5pRg9C;ZR8^Qr}57u0(I9T1wm!&F<%I=A!EC?ctX zqKcUe(GjnIz`a24Dy0O{+AqneDIf4Iq^F!VlPH`$Ym0AXE8RarQL;W0&i_7ii!}t} zD9n(@wnby4Aa9!mEdGaAN*);ThZT?ug!WiPK!)>;dlQ)eb^p}kUPv|eIBBi_-ZnAUzMBLaFy@xDE!`jBvF;uvm-DjHj430-AR zl-Jc~OAvqH3E~=dlT-vE;Df@(lUPTCh1zxB-EmN9%i& zmxQS)+LP+`0@hR9nri`Xu1myp-l5)oS5d5%9q z2SgSs5n#}8X(D*W5CA}b-$hQ4ekgO!-qGOn-Mb8;96`zH@;;q6BwWmp#Pw~9JS@7t zV26I9fZ|ZM_1K&eK&4XrGm6fv4Z)(@`HWAoqgOvF=UPSq@A)p8mE2rqbEq+wAt}|qy>0kpxGu#Wmw0M?CK)?2@igB5 zxA2~;BkQ6AL=j+f7y<)j6H%>rkbNC)UiG}*Z)~7|b3$DOQ5;G7O;XHtfD3Qqw zpN)Dhwam~?t=Od#!RTb8+juHat&m<0fIm+W7pW!S3B!Au{(BG}zw^Hz>?P>+5RFhE zAiyOw2}6%BQz#aGg*2f!{_@P0uk|I$G!p55oZoVf_SG`4Ko7RlNN?>2CC6T!X+FpS z$NbT6Ly5%$1eHll_goAZUKMsoPz_K!?UziLqQgegk3Z@Mo@6$Yv$)}Ey4;e>9BX8e z+ISBc80vrC&l}|Z)V9lsW9VwQ1(w#1{G;Gj z7<*T*zcs%+F3dq5STEjIKeL%)*DuyMQL|iU;hB7H5PhzjtDMdmW}cZ9GqrjYPYpMu z;`*N{Kq`Sy@)tm#J{8cws)Ye)kIBew(nfy|A;Z&*59B?YFNb#PdsM_#NjMB+Bn(xwSy2VT=IBrp4xagGg9PNXzu;G&B%su zLdDw742(5$gc`)*@^ZDIc&Iz7n@+wd-?M?M{176cD^~q=`G8?)JOF2TOU&n_)E^%i zSw%(hPMIKU=K?~H*Lr{fZ9Mz9P?}g|D-Y~igj;M~#%z|Z>Yu)1k7QB_^C}#PM7|-- zW^#1Ryr)}Rdd;=!X+B$X9C%tsGTe&R6l{&k<6j<&mg1BPyQ#SrX`56=^@J8?U@H}} z{B3LzA^&Fvk%M&Do)?-CJ}NwY8j3Ip>v)M0|Mn)&-Q~+ruvz6~Uf91nVAsri{u$(qt+&xRPGA(mLh6@PL~fr#HW8Uw^Rg5WDo?m^0g`m!=pnt&S{8 z6A3P}6$`z;7d4Oi9rn=m8EOrA`Mc(i%{IfOLv&491)ul=cbFo}4-u@V82Cm=2F9RT zsftbQX~`eS^nF#XzsM!tL3?d~b;^%+y z@x=kNfeM~hfw8rKGu>emen+W7e&oIgtBRlk7sP?$o_5Ij+~+zC zyw2y+CT96`%WB!IyXM-rC8PnHKBb*Ur%f*OwqvEt$C07yrJ}O$Qld#n>T=5zK*Hop zH_;T1MM@6b-Rt(@*L~x4Qvp?+61FFI;eT+1F}b;FL`Ja^^I8X*D9+BNLY`dvzwhxC z7w};#`B4y;n*2C>!IUqMU_v^~nHmDqGz*-vF|B-0eXSOX@~&iR;gXHs6K2@A-u909 z^$NsN39lAt<#Vl#s~XTEk~cGTyK`e_oG**50BN74e-^h5+;^(vu9IIvX2J~xxUnkb zu5=$DM7;!f_jVt~f;~u-5(s7u(&y3`9b2F1JZ6zwJ#BlL<;!=sC4Cc?h~_=9L`0d< zqrJU-9LPurL7hz^g^M>nsRzOWaz5M#6A=FAOss#7lF#nCgtrZQs|TPqyRJ8TWb=hx zHf#0d5}Nat?jPT8jx&}7?a0c`9#5g!7vtL4ko1)A?}tvJ)E`}V0(yO+bkv@20U^Jkl3)GCX@Xb;9m+h2O4>&jL5?$&awuKlT#Q91ME-HDmTm zC3}B@M#kTp;sgV#A2dOjB7Pym<=34juSt6fOgwJOT1UHI_tUG}TYAZ0yI?L3-mm~I z&zUyKPS>yx&MT`Kd|3?CQV6W6vUvX+hTxr+gWcJoDaHG51|afV`xh{Pv{EN`XEZTY z{V|*DuN83EVoas*r~?u3;9Hy zR@5HMQj~Ms!~`v$-VtsovA-Ag&dntFx<~i{Drve8hUy_2M(8{!WA3e2u!1`8GeTPV zYd*W7p&|RTm)J`ub)1m~>`YPMZx;dTN5QDyCV}NpXj^8;nr2$NVD>_Nxzm*oN@qU` zJV_XFN%go_M-XLRTbn{XOVbZ;ewq^cDjz_K+w&DN6&Z{4;!UFc{2U?b@-WPjMTAd1 z0JSbsV}uI-IRaKfC)jJOlr6Cv+LvSV_srky^X*3QZ=?gHG{OczpM@}hztB`D(Y%!k z8qQhi z5oO;P)QW7#;=Q;nhk;t`s2>{@xp*vgd<%nlle89ohLpe0a{i{SxQ(a7O=lFreP z;A)sD;$G(Iia-PHY}Oy{92ncdX0Lx-gg}c~Rk#&=)?}>lrbKdMD%@{>j>F{ryvMWT z+06~~icNX*;M~_@7f2h;Ltbng!fi8klEH#4CeK^+DKQvfMv#A`C7XxlzTL;0^pGjl z(b4IHCQ>cBzA9^MZ0y?qUb1KF_pcVtQvwH3YgD$WH}h|Ei}ElOJYg4V|*Z^&2?I` zm;U=BL>|V}yt2lgR9PX7GglF>S)c*1MxJBKBE0R8m>jX{6mM>WG9r4h%GWcj}dt>Cq)+MQ&r1HEZUgD zlw0x1CB?_h`k?cmn<$g54@~QJTPlsnjr7E027C)Oa-(^QFXOt3c06 zh0gwU*M###L8unpWp^7jAe3PEq6|Ai)y<7nqw6<00@x~(OnO?f71`q2s!m=xU+%NK z@p~MR>7i4a)NmsP580Fzu1S8N8L^&}ALzGt+gxT*iMPUJwLs3%sxzB=noJ5Hk_W9r z1nERzmJC^TAgz(5gVPk&b-Wq3hZAD(dGixZ=v6p{k-EL`+PL3_N%+~$S3MS^TQnAu zsEL|M^S+h$D7Lcq?b?_VP%I6CjQSbW?{jmi6Q`Rb-wYEC7$Z{Oy+ ziaXjhi*lS%L(0Ao6{w=s67}0M5Y;(vNiuHx=N=*0TW|_59LfE19noYcgd&qP7rQ@B z#RLX3JR{0Wz`dUcH#n@Ea+a!Y6WErufg@AcdAdwfvL_pt|M80ABe#HY#Ybg~ms(Yo zIjZSYCge$%C(5W~(;1|3)W>>&hqRfAh}=de(I+U#>Af1n#OH!O5*bSPDZp3cerDp? z__v!0xJPQ@G_{z%MUabt)$5R+lAfQ|;<1g-WHzV6&2e(O?%n@6u4v0%lDgr?#&hyt z(X8o@w=V`O1W4+*KY9CB9Et+dMC#YxJqtu&=zh)yHf34pluIlZeyU!RXLlXIH<8UJ zzqo)%I=A{=;XFLQOL5U7Zw|r&vT&_U=&sW_7@=NyzqdH8Ox7@}AzgWivDth2>eYxg zGvJ|`jcwesfJ2>SGHFU@53x&5PF~_?uk84?N-(+-LGR1A0BeJudcSF4lkU&+_390) z)a}R2^z~yv`)*8X!L_ZBltNnrghuG7RBS(NVE7bd$cI~-kBF*Vq6IENnwTq(d)%j} zlD#~F&?&{k*K0@#Z%Zy|U#EL954wI%l_T87&D*8(AgWN%e*OA&7xU$_;M|Wbq{VGe zci4#FpX;6ak7i@-si^p21VRLQGMeC>Lmw&%aRd|{A?N3{vG5C{zL51F3m7(CO{gkB zBN1N`-^7UfBz%@-Y$v;z;iV5N?@EZQ;<(S!Am_)L&=(TYODg-WJ3FH*3`E$ED4=46cxAfM=8oWIbSfS6Ku6p?7)8(Sihl?i# z*1YV8cuk@;IEwDfLK9-t$bubc%X;H)9{vERLpRhTw6>GHV9e8b?hLf} zylVBw-Kj zg856XiJGhWb`4kdU2*@yuL(tukw>8dTp-E z^15PJx1<>4#jcwEy2o^KHN`MXhzyb>qouJrPf;s@xUIIq(n+QQc5 z!F5N^zr&_AsgbVD@iCz28+z^V<&pmAZK@-iw8O1KX?N&JQ$--Z6+);O)Uq%l!Hv`G z(^<{pqZ=h2A3a4<&m-;TS(bQlFQWZwOsVk>3QB0nvFSrnRs((7dBJfRFAQ7>!*rut z&BvFoFY@?T*%O4A3j92l-Bk~-W?S}rvdP7xX6PexD2P@$(@;}}6q@Xtlf>{wPQ~y( zdRK3@X z(hy#SV`X=Y>nBfzal6{dcooWf%pmxsm|xf7?^KkAo*zc`vw7B>2Q4kF!P_(gYQ{1BFEjYo*n3QXNV^361ydFet&( zAGgAu6LgG%afO@$=6Qu8PKkyAYXJ;2x#QuH5XcCtx^#pD5q8F2w?c^1zxJ0e8C)QG zte85)U;%ZGFZLF3NlDWFJSLlx9q(1YeY2b|hx!=urf$rKiEp#Wsf+hq z9KBzwUrQu4fkoYA(>3u7#V@$hJSYLfTq|9i#V!2$)w_vW(zC~pw-;QFtX96fAA1Mz zG>{HV+B7b6K-UKt38yaW!DeNPhj@o>8t{hkw(pV;bEBO|yKoi1la$-!b_Pnj@exwN z37duHq{+AkIz~qOm*c2o5J>jeShZ9vkgkxwYDCObOC)uP$pCvNp)lwBZCF@0FxsPE_}dyh_=3ww;81Ich9)Ujr$;NrvAx)RWo>L!)E9mzM5ENV;zZC}k;r{#KviGs;PcL6z zO^t^7>M@CGp11`N24T*FIH}Qc2MXH3H9pA0Ga2>-c(bzh;i*6|aq*4uX7~Wk^PnC^k1YSF!hTM6?f^QZEtULP;eQI^w4RM#Y4N z3)YYUeb|Lpmu;$picke4w zTCUpeZKT2~Wu_s$qbt1@{d`}5HrcJYFU~X8~a9_&rDiqSPIs+wt~i*@!zzP}D_WEF@m-t>;HkDFi2vi>o%V4jc;u z%KqhBFunybzQT#!@P$uIsvMV zhF{S~SVgeygV}u?n3`ijz_H?yl7Ze{Ub1dB5G!_>DONZAH7tN_@sG#+xK}6gcIG@d zYgEUZt%#i(ShIZTA%e*$Fo*2UhJqm1<>HM{sJr%acemCUP^W15D3p;QiG)(Epsd_e zmf2$Lh$k@vC9b(Tzlfg6bC2Qs=0?g4`UnE0O8T#CHa+&Ct2lwG?Le#_I&h$5D1h4M z{%xWwUK5aC|AHy%CuA>Vk3*{7xtXd;(N`Ey!=56eVWu3nn%52vl{hi+H@9NghC1px z9}7r0#d)yque2)j+o2u!hv`L#8e^i_Vb79wn}xHLn{km#hwfYQ1^cjt?BIT^aOwt_ zvgCB82jR*|<4!bD-@$8B{&?|2+ss49lPMsGo!DuI%mdQjOs%A)B7EZ^ipm}QR9AwO zijoR)7!e^|-LQUALM3vMT0MoF5`ZzqL`7YY9oKQhirOSbcJal?u~$*Yg8KKbDg3;ndn?dZH%7q)jDu`S}Vv zY6AozdJ9H9c!LrvCKac0##PtEL4 zDFby#$=4Z$>aR!520}j$MIilCZqp2`DkoY~M27?eFyv01`V%Q>4V*85ilOdCX=caU z7@k6+@ygkv(zt`MX7OBy&Um~{r?hRwQ)15~aWn$7SwV$iOD(^MY@4A3GNAr_{PGu? zsz8eVL^+h(4`Hg@QavQ(&l6)sZ5Zz3%VIOA(NXT8DpA~~Qbz3VU%`bRt1f#AM5vn3 z4C?Ht<}`@jduaFWQ^3LAhAy)p?@kYuSgeSpV@aNx{KWYS-E2mT!{kiJF=*?tf%}4v zQ?0BL{zTEi=x?&j;hD{wsVHCp*3Y`ccGy^0rR}R80gi8gxeLpz9E>GO3yLrptn6ZX7XMv0QUA)GXISUzOiprm_##q4n;lpQSG%uzT0BuxJQc`k$sYP=3I#^sq z2A!{=S$QlkWq%ke1S1;c{1sIF>viHl17o!nSgG0OcR!-O0zts?`QUr9$^CR8z;wg{ zG>2vp)bwEv+xd$#$RyEQBJ~cI0zek@Awqny7w`Nq*2PgF*ZMX?Aw}!KXS3Nn#iK)) zp^p?@BSSqHqio-1i=5~eJ9ow5J3CfVMRu7dZ@kN8NGQWKHfYd;4=;_qgwL%(F$DbP znfPJ5JP3+!>0L&Ty37zpbq5g@PxpX#xE(A zpK#0^*{s`^BlTL&+u}N1L_m|0UR#hm5>Jz@)d`V9K55B3F@W|W`K-HmAV&H8zCd0< zadmP^QV43RA<&g(*&`dTk*7jON9U9%H2U^7F9IEK!}*|NQy^r2#m?uLsTQ;0Nn}?8c}8Ie%`WJuTzE$KV-a*TE;2S=8Lc;k=87y1zFDhu)@kgq^oiKgPCWDXt5fHk~+y`z8>S-ux4E# z>ATCm|F;63G>=KEIKR5!QY8n6T;t4-tBK|?oZFTuIou;*bv9BRee#K7(EUa#C1CmZbAcl9aFG8;ub))e-J-}%=a{7;ff7Rt}!05Ugl@yeo zKp~ArW=JO19Ny+61$PyaY)an&Y-f6i#ns=R0G=3QIQkxpexn%~v%pz5Z@eVx2xhd$ z`kUk{!=ihA&JeSgID@G?IW{H~3x&!J^Z>HMtM(y-;vfG`AJGkgQMk^DRN!I$0;EW0 zm?n|klbFybo#+Uhd#UO)r)PE8}4-g;l-gu+J% zVaR?aAQ5)n+I(>|crgw`BUN$;DRt@SJx(GI>G20eFB~j?!>^=iq1lPz&xkUAUYpp&XL0C+M0(Yx zUXRuDly#_-Ii-#F_ddkhl+s9~X5?feg#75rNMgUgI%aHIZ6jg3#vp1xGw|~wMu(GW zMVrJ>D*1XWMOQ}|F?n-Iz)N`5qx#96=uoIcl+c;(k6y$Ov+hnNy4t6ytP{rTPcQ~^ zore5>$Slq->IgKZJ9)0Prs>I%L4I2CW}uLgDk2dLFuCu9!4%-UBEwp1Kw^)jqnDo) zLdfxB#Ut+o0N)xiAED40WlGL#&iW}6I9W^p9)#&e1G^w5ZnnF*nw9$hDnUzez&Mo`gGzu(QYojFb8q}K{PA{-jdL-h8Y%RX;246 z

8y1r$%x($W-3uW0FzW<~&3lY*p(lw(zJqgWP0C!Vco^klM5{A8Vjg6-}$KcYn7 z!9Q39PG&d^QJHZD^%6mh;}9;?PQEzjfhg2~qCq&-$>qg+Nj-1r@X(HiQmFJl%9u#I*MyuO6fBGs3k!aGzMrd-VWWp24&aD&lUpo?F-bq{YdZJxK z4u%_86HAFWNQo(m`q15qES~xLH*9#cl@zyb-P(-+SrIuG<%KndutiES&yV;P)DR)G zb_(e>K#gn4wb3)*0}`ktt}Kjw?cOFwck4)6NnUa2rCqw>7S(?m%o64Xi2Gj z0l-ObabZ6Hg>}yt=^5Luz({zHo&pHmlgM1%^utF0!KBcOk>z6E_Ar>0wP|6hbrUOzzag4^9yFd3?_tuCk0e--d%A5Lh z*U7}Sqq9>VdUo0PmlTCuSk2y`ls$Bba~jYNDh+g&_Bv#s=0&R9mkP{4K@rfZ8_Oi{ zYRG5GO$WJqQQ5KC#oYu&dwDd#7prS=$A_G)LM?X;m4n%!4A9j22<-{dr2Fo6)J)z| zhT1>o7PTqZYn(t>C6~{=eDX9~NWF3b#rijWOii2A$$0GLV9E?Xk%jCQLd>}--55&tPo1{(@ z%w~cUf7B9vBGVaAm#ZOH`?*Q_X|HV)O5_AV2_mylw}Eke(kaqBB!K~}k^%r41Vd9D zabO|s@BIJx*Zv5&&8+SQo3Sw<*KqA_-$Z zjLAO9k;|1p<6>}f2 zw5^0THop=MjgzeHI^oBb6^m`ElBfb$fPQU*49P zlJ7ojN_#dlGm~Tn-F3GFdPYV@?u6LbzN&G&#?1Crwm#%d+#1Uo81 zMk23&u;16}U4BG$XW}b2M~V{? zyB%U?uA7)xMMh@l`Rpg+SlQSx3_je?kKy;TXAl1Nn+%>PX`f%Z^oc8hbTY}|(#J?M zD9n#K?!{Qr2(-R%V-_L2zCN-4mh87_jTMuNR!>g-#`C7fLwfG9zkKq9!Vagzp11>9 zZck_3(^YWs!oHXUfc(QMzHI43@t+Ve3yr=XToPEgxD;?7d~4>cUSSe7<}1phuA7sP zdTsd9Ktt+*{yz6vsJ?yv{MlNaIPyTL{-o$T7lw3Zt|TY%23%*Ra&fLw`r!ku?MN?C zHI&H-AU8D7zpz85*s;wg(ms*f)2f)|V0->hY2f`|{KWj`T|Sk(J)Y_%yUpR0S)q>F z@05Rh--@~_to~F2xPS2Af!9|3(`^v>BUvq0Xe{3(bPUI#J*G@UL!&hcLM;L1Ci4|pW{x3P&V*p73~zt&_HxUHWC_Pq1vl?mC{Yzi^lCpo@LHvYqZhUDxGoQo`>mgbhhE zYT_p4h)AhmRPG-zFfe=`ora+4Gj!$Didry2qpC>wI3nxx*BvTV>YIbcyNT}U+x zidS{SbRVku9OUmGo9NKNMiwlnBj}4&v8t-8$D`Zbhdy^>j!h!qBvJUMnCwLh`?~wWh_I%am zC=C92KfT|k@F>u%iHPvoEgj0v{00F0Gv@h&{c7}rM{|<0z*onRpgyI78J|z>iMjj- zzJA;a3qL=txE8YZ!>)*|uTq4!mI@`vh^&!7ZaMf4(wN|Z(C+ny+|<-67` zThG0^``3RO@mX-oPOS6gWkTnNSc&df_dDjwpT50WT@6X{Qbz_@ zVML7U9iM$F65{CibXjF^DDZ^YX(%*D1zr2JZrUN=bNbG=Q(cj{fW>b~CTx;zTw|2c zQWq0CZ@#&((e96{+g%COov>wKb_c!~e0!7ek8Ycp>vV)>m4QKFjZ2ZJ;7G2J& zqSoBMfZVy4v2DtA&S|m4R(bh*)NGom*|2AKZ{L0gO1p*QC)(hu;Kex|0v;P{^s#ox zmM$wy#+vIT8$fXSjZ|s-u;s<_uOIN-Jq&1gatV0E9MeX3yigV*O;8$UK{fPyNn7;F zm9XC4UU^m3SZJ6q2|8RvTr7WdyLVWXt%_eW8X&Pljzjh{Z={??hBaB1PmH>bq4`fw z5iCc78$$&auqHip_ZthG3$Wff{LN16>}@M3AekqDJVX5=g5lG*oBnw66|GcMQqmVM z{&XonP7zF2Eg+giw{G3yu2jI8;1`;tT?hH6s+c$PXdx=%n~bwM9&O6{o*E_CVEr+t zlG)PTRiP-zwk4we7Xut6Onpprw9MJFf8m)EU198qef#%owBPx90xk&#l|ce6IQx$C1<`{~&w27wL_gTK;=(OO26yD-ww3_j=j zx4}2Qh@y{qef`mmsF?Mjz)yv6WkPQ=!LAUM^CONuV)}-L8_VgpZR;h=2LZIRLf5z4 zZAA#1Io!qajn3Q#kRpVIcQoc<&H0bFaNJ~Z02Btq7DFcGzFl%)kA|@eVZ>>usLUc?Ki8We%4~VmW zU|3R~CZE9*hT&%!ezP@^g0;I1hzxCfC(yo4yGa1NbeIZQXu`!YzWaY~{aiT0mx3De zEKaSLe<8R;qm2yG+PIffNm{z4$-yJ$IV^(*-D=OY#cC8gNx zY!!6;8}l7=2y92hi!4DY=b35(;reVj(m@(6IG)!+4NI#Xh$owR74#0U9S|jKD6g%l zv8?}|<*Oy?ny%ryC@1&OX*^bw%#waU?K7&a;t<*7_N=zKsAS;(!Zf)so>o&+tIvGK zSaIXUAN40#S!2#nmuqn!>|SwK39ljgm_*--faMXeVoDMDU{A5EsqJVnZFiLnI1x(x zfz-+2zZ?YHN*sRwdiuiD2R=S@+zE+^N~jyS#no0-g&;jk%0j2k>b1((7a=sPB~hMHz7z^q050&Qa(_6t=QT zYdXf0XnX1+QFGtrdBD&Z?t&?W6uVvyPQ%fng_UroZh5tSu{&Z!i?Vp#f&4Fl*%yvJ|w>zW$T6cFV|D}k4!CM9w zcjMGc?%usy4VOr9m>#JT$iV39%9+mxgrcF;VXfYGlU`%(d@A~d-iPGSbbp_)Y?)V7 z(Ghd*LdFl=ym`~NIoT0mXEvk|NXz;6vuQ0yiGBRPvr3i%G?5dr-R=kI3}Z~jRpefn z`Q+ND(J{747tb$--tyi>4LOaS=~>B>KTJbV;p>0=!3)M$UjQn=Glk3xfAlT{?ttw` zfnYpsc4U_&-#8`FF^13rn~2;-oY228y=w6yG|JX!;V%jqyU)*MZ;1+s&Ra|>A=#tV)#G&}8f)_$;FV?k;< zR#Y&e6n{-{he%xyCL%u6+8#P<1n~bm)X%MIYirfVr+p#7hJIK{s0IJdO{BQycf#xv zzx;A&CQL;>SXDvjQ%S(t0kr#`Ae2!4YLBUyM{lMV+wtL3z^FS>`x?i*Fpb(Qtg@={ z9p|Krh6MNR{czmMAte2Dc-cbYjaV$M%!yr2Q(EMkv?K<}+-d?U0RXF!Pe)xnkho{Z zKGil^crC5%USY%SB}8}Fq;h20Jax-1xluMW)l{;~wRI;a9wjn5^+rc>LR`sO`SP+U z6_}{MtknlSHb(OBo3zP&x0IkMu_@D3HasNf>=5aoP&C34VI{4AzXTR;cKWg^JTkJ6 zr(oJWtkd2Yc85SEy?uPb!TUZ>a7d7{=a?P1hf*a`jaH1i7>djyCO=;=PEU}XT>>bo zB-Bq$VvB(UY{(}HX-h`}J;{U)9yoB`-Q8VFlg9yI!1UQ0kzknUV|A$HSR3iaqpyI{ zw>b1Y2eOG<%=YLNV2g9R7otBACp*%=rm^5xtT)LIpCtBTzy!P^U3%6l6gkJyg;4VX z{>}T*qll@gYv@3}=^BkrPglfiFkfhMV5D}*#G}y*vcQG!vi-b8)rxN?S}2yU6_>rQ zOW!(@EAc@EIyOtnu~!a80S&RL-o6Ku;OF@pXGfnQ?Cj^`l}e9HjwoqVRrufxEq4I~ zwXP}Y>F;GzFVESK^sKbfWWioRY*3b?LVb?ZzL$;F;px8wL{ zOTNNgcj&fOT_c@~vg6lR+MmjSh=)tx+aj87`oWh@TBG)52EL8q^P*ij&1Q<8b+P zkedcayPlCsrGlZV3D}?RBn1%@Qo$|UR7CyOnj{cVKi?c>=o9axd`>Q}NBpdv(C_06 z@BdW5NvM&unwpKv|9Y6N?4oe2=oW>$-0N9F%bjs;_!GP*v>mnh#r|obg{dFz-BKLs zpJo41O*CjS%YzM!yYI(`JxdD?rUN~1pQT6vzG$fqD=Yhc&>#=f{6d|rPwezNrhNy% z%SJ~MDj+Lle(5av80(xf?ceMjobNz- zF{I$)kmdj7*UhxaEq{WNNNJiTmVmNP+gWADI`Vl2HH3Kz%vfBNvr< zYAHhlWaT2MSD|u!#=U#lA~DZ>SVOSw9Ts)9wLOURpAe-%5}z@H0=LU~Zg}D_Idh($ zrOYEvzIj5;M(y(NLxkj0ooj@q{>0elaZ(`jLIALS{rWLT5Tdpv2GE!%MrMaW1NP9K zJ)gX~@XKoSdea~l3;Kxs`1p9JdJ|2dH0T1vU=Fkuv?;p73Z*O!r26}t;41AAMCt0l zr8(E10A~&x4Y8q@A7hJD(8*|I7+qd0zGdNQX`H}IvSC#S21`*Wl$e+pS)dKNPqOEv zX9S%0f^8=!S07XT(G)@Wne>!@ehGdSJ|9B9hwS=+Bqy!ocK_J-mA+xp|JwH7-u<=S zwMxC&#pxqQKRtIrMy_?VdSjwxei@SvR{MV*A;<9@-M=dOSC;QI$q4-(!hU;I<}Tvg zS6E+I4zQQs9k+A~{&P2d``d@?&&1LG`}h?P|KGpsW`U*p_b)Bi<5~XumwZ3{9a4Y) zTi_2ggWv!0?FSdhKfed>-~T2YDNL%Y|9OPS;nM%}SJ*v=aKZonW%t(q|1|$`PyRo= zo0I=uur40ItX-Wp(7bDa{bbx~&1X-WA22-Pldhf>m;bA*`s%{jX}x%%JasyE1#{kj z-YvliS@V%>yxFS$4W+KE@q$^(T`?Ovcz)>Jwj;5}algLl%Bc#rGNuTEL zyK5RaJD=`5_P(_sL*Lj$raiv8Z8Q73MdLZg*!^SdwmD;v=PB{e&sLqUqC>--Db|25~be<;6ZL;T8V9{kmma1#`ujgPO1O z)(1|{j(-X&a4U{v9U1dyuT)Rxoj~_)wnEY(F(` zJbRZ<(fYl7ARNHKe{T-U9jz`>cP$hzmd3qRPwb6Q5qY0;Ua^#Z%)eq=%{BvzRt}N( z6BhP9NgRPpIcn|ATU(R7WE+~=r%Q2&PffGdS^LPv(i5MnUjErY7WIRk8|;Z$e|$L1yR*D2N&kYVv-ZC6lz>&JcA?Mo z_hQ0NRobu47wajuy?J!(^6~Rg=N+(USrBU_T)YIYJa>{31>w;Pt zxHAT8w(W4$Vs*x&Vr7gGXWFphx%>5h*>z#xk(Yy1I`6Fg79w_fLv0}j*Kb=i<%nBM-e};=|U#6r7 zwd`|#o~UquTUo=RA$e)3&D31A#Z-s?y*+LSe7XWt-vG~{LDFSe@$?a{BHM-}SUe_ilL%X)*m z7JNI+`F5sLt(w#_Y>iZ=!8dsk{Jpxm^zdE484xVj;NXyW!kzjq=%99S_;FRtc-=pXr<*L?dOgy%o*Qw{5%w0In zdD!ZH{Qk-Qe7UVX9yI|@)rWQDE<<_h@|3pbBQExaB(>Wg zn5g;m*X}|~>sFU1 z=6o+FW5(CaHJV%dK4Q|0+#8-1I;|DGiemaldc+vRk&J4q28&(n0-@R^RDH2lj_K=8 zBIWL5qif#2$NlmCna-qRgcN@MZILqLMrK6kD`(nzu4rq-QY95Tdm5OW-^I?hy=yD{gzEA@>(adN9HSMI0daR*>oI5enL!EI|^Unrr)C;#!_^#p$=dJrT=&!$4*g1cy zfIF}uR6@sESFLmH{Ak({wnkbyyZJKOT~+W5JM<$8e#xkgKYw8U2KHoF=l=0{9UHc; z>%}8%)1SYn*0B91=jFZ2H)i%+OQ_OhfdMQ3uUUy0xpTyD&`{w|r<8>Z)@U{ZtGSO} z?R;wHYCUFm#{-o$6+HjCmqhi)1Yk->Wuud^NvxrWW7b0UB2%83?(JPqrj*M|{S0Hy ztym#wT#^2rsqobKy&%!m7 zpWj(?wb~#rdr>_w;Ut?#%p`YrhN|Y;z*u&epT58Vy3k=}n*{|}xrh|^m5ENN<5^YL z%HNbXDkQa8wm7$r^Uyih+}C&~9WFFD7u(an@N}<=wS$rFT#nI^nBprf3huQt^Ao;j z+QZK)892*$M91wuQ_wb?62oX9PF=s^dCARxn+djBcdo{Oj567Xr1Z1)8#ar`UTja_ z;kuEXzcsgM)=$pAw%a7dTk}bd2HbiPCA?AH^ttQ=0tSyqLHAkM`LD)f@7CP$?A5?a z7DC!&ou$kFNe$oUx@vJaWMRiQwSK>+L-Q%kgj;tGQA=qV#fRpcLg}*ltaAIku`iS> zoba&@D+?3@>vehU6C$SbRP@^Y_URQ3TQw?KUi{rEye^fS`s0d_y;+H*W&e-ErQ$#$ zYnvh#aQ;Zl219Mec?sAC1t+Tqd6d`<2~P)q2uywwuNR}BC6Qdp$ZFIv8Z+XfWMnds z+xr8IO1ckwG@IPB0uhi5C| zf&=Q;PE0p;el`#%)a@(uhl!DM)dH7TN*=Ntu%0&0F@+dT-Y|!Y0yk*=y^7 zM~aWcy*n9s)|cdSe=*WP!BtvCEk~nHp{F4j&jDMg(H5j#m-}+hGh+ijt?Hte1 z^Yc%e-8Wu0CfI4i>1lqxxAkL&s8_(I$X(m#*HtTvWZS$lg4em=HMpHm^Y(+`h}6CB zR~s01nu@%CJ+_;{m-nS5H^&~u;O*(sUZ1VAtlD1lv&*v!9POnw=T-L#liE~J^nP%Z z*52dY{lQg-$JsgFehH@gXj0@{1^L6i0av z4?E`|Vo7KJ@u=wilQKPL#-!v5boCKF3L5`AOyMvvUhJ7!Xm+m4eEYz+xjfHVmf6v< z^vul2t2HWlb!@xkgn|}LR5(r3VVL7Jr0$7U9dK)lTg>iJ6}>0A*1o)bq@XE$?k zD`VY{tuF^G4Xy@@%nVI?l3XZ>N_Q(RmiS6L zql>-2&R<(-FRk#~<5^bSJDyg*)zSKG%Z%g%&uM{}h)-FN*6szEd(HW_ zaPP+~?1Cwxu3C>P6uA`*T6*GDPMD^XzoyKruSQh7jam6!%qizfmB0DbTimOV52{A; zssDwCwUH@YX2+RYw%wz5y80j74^5P^y%5Z7pO_xp6xkcWkQK-=F4`UXZpRskA&$)} zo>NZ$Yu7yY#w}rI;A~RlE~O1uR(@!tjcVdKos9;yYn=}DNg65KD0ugN`o=kFHgl@M zg3FUepMo}X$1=}E>dQYF$A?@%=Bcb~i;%)?(DiuM|e34HZf9ZG>oF2e+r9NTD|BQg& zeMn8Ww?Eirk_IK+(qjFlhSi!62f(;fM?3jHo+D!5Mq2G7T^=cTrLoMqbOgc|z9w-? zp{U>{jYK7)p#(VrqT2wxb!-b*BXE2Ws*cl8*Ui2{{aEZVQ?a$2*blD~4{(X@ht=XGK#5X!UdJ|_9l&O_$3 zyhH5e)YOP>A4ike7j3%P+*q(bt-5*$E}`B2-g^%Vdv^6EJWdu84c85&=jk5e=erzr z>{B(zbmNm!3qEOwvxwt=&w0kl>KJ9W@2U!)5bE`eaQK$W1iw#2NFZf!u>#mz8F29H zfY6L9*<~-zq13dv_uJ_|7aUwtMHQwhXlO?BY(7#uQ{7baVS@=DF&DWD)mB|F+rwuw zN>^WB$u5w74vS1d%Sfc&U@@bQOQMHMF?grbUAqGlYs=5uKTSjSo9CbU($byOeniE+ zSb98mkER`W4&GRJ)MsFuPY4o}(_OX$&oBAZDm^ac`&`9zW?PzHo0)N9Yq@f0!24#! zL>eikFn%|Vs;OPi#N$_@;ZkfHzX865@I(Y4`Jm*mz0>pra337Ac1O3@3^^~_lV;hm zc_FO0r6aE0X{p3*sjd^dVQf)x!4v5UH3s#W7>3yK&d|+c^P8PRV~Tr|sJSbH5pCYn zXdXQm+i5K_vSz;V+EuswoDq=$wv#(28dp6N4Aoe-BSK&Nj%ZCGtq?84X83P@x3@e# zR(t_7ksDverE8k^ED`c!yb`xYHt+J zCU%*swXU5SLSy+q(BDhEQut&*t9+KtBazy+DOZPewlqJ3GV^M`T*(hBOa;&r5%wJg zEb0QP>RJ{=J^_QO2$8-QYy_ZhuXY>Uf#@T_h!LnJnR|uNVa>e(V7~+a7xN`~84A~Y zAv1WX0Ig14Q$meO%WobV&gzJybo8S}_2$k=Bfiu^%k+0`VK~DFHO-a_RL7x>}3=2AF(E7x7t~T!#XzfyW|xvyW^WL^EQ1pd0#O%-{`I5R5G)n zAx{Hm!bZ+yhf{$jn^M9?e~X+JBKC4P*r2~Y84>}f>(!2KH>CK38NGDaFQ0=dlI8(J zJ;$32bM6y$Msdk`*7%kfh5>Cfcg&1#|8TCVwNaurCOykqL5>m+P;np~Tu1gj$hyR) zbI%$05d<1oII3M>JF3KHVO*1H*Ef{L&mOZ#2}qL-m4>E4j z3=g<3uDR=}Qd-{6uPhUEkbV16vC1K*7Flk5%l?V&@o~m^q)3a3+@XR$o*$+WewQ|G z^zz$T1w>5jN>p|{;4iq4FJlvBlA+-hh78QnsI;r&=o2RIfN-ge>OV6$YrkA2dg~sK zk2}%}M!Ec-87g~tBxvpK9aEpAFL74UOFrZU!0lOqlf%a&QlC}3>A!p45IU@MVDZMK zlkXx@%(nbycV(nY98w+6$4S96^Djd70(3;nf*@Zp%P~Rb_irc1;r4AY^8R$=R4r$% zpJ0AUXm)M=(I@efJf-v}3JmOSB+BHwQ042GH%8T|GBd2XzOq*RsIi#sncCmmMXMWB zO!6G)`zJKI4A$m&unqq-7n31<0G@pVw%&(5z}FJwzDju;_$L43p5)dAw#EqDbQ5P@ zd@;<$C+mmmhhbdZ2K&~dfdWeEQE>4z?u%)oi3n7ml+N665=fo@eaATq{`ryiKJQT( zrmMNOy3r#sBl|>tr|h#cTD(-Zr%voXQ@ngrvfQv~lV<0`&*jNK!3-u_Vnp-Nr(c~?!e%o6WMkwXh z9WSBkU6@=s^X1jK=^LHa$4rvpSRCy>GoeWEF4XJtqm-YxiW)V&pCKcnoU{oHkE?0k zx){E0(qMYn>X`Ttf19E9;OZ7G!v`pr)by05K1zYdKnY7_mDemGX;eKSbwB!RfXIw} zbYo8UTU?kdNPPVGv9)qLsJhh<)o9^ZHYmndmQSuvzDT)4F(5sl$uC39s(q+BhL(|C z#~|0L(c0S6!#6l3z$Xj^>Cyqq=#Yqdb893CGyRWqD4n0LmNmSeF-JoztX#)hxkB`P zOfwBh;Ig+8bi)e1yJV)oOv{iHReyo7roi>Fq+$JL(M)-lPar<2&hB9*scXfy7T1`U2#F0ae|+Uk6w-Cu8Ilw>mUmfQ>qNtwI3KrX=Dp@Ijd zlE-Z`s5XyL>xx&dTycw=zj?&r6eR2;o91%?f6az6R^xoG%MQx8Mtrl=xjyS)Ic=kd z&61IJ;Uzttddhw$IMpR1+fy2ZtE$p({G^iJkyhbT!}>F)_fF>U{$T+wlS|A+=j;WG z*}guAz%7%b#CCl6Ke+l5a45Gwe%(su&!f!y&dht>bH3ltc4$*>H!B`K ztg;-Z=jM!oB2raFQmM}D_3{1@?!e0;0OV-yXD#%7%rOI^3nXd3c6y;Jj-)MKJ#V#m5?<65QrS=Ol~>1djU_>^|3yn1oiR(Be7-@ zY`;c!vZ5yfxz@x&B~$Z6`@|7+zPf%Y2=NXGse#lpBt>Amrm<@6&0f`7d_&W%;egww zDOCcZ2L2xJni$^?v2|&=#E_5;M!4-oi5O#<$S{D8{-wk=J%VIL8D4h9!Z0*nGeeT;_(8MM?$ zYp=`Wy!Ik@EsfVRa!fbw7gbiV`c0Q}FgCtJm!f0|Z~;vetKin)Qc-~!!ZEDCc`M$A zBWnw?NmT^aIhDuvrktN@9aTwk$zSKhNwvz>nFit;9 zHhpefA^&XLImc>HU4Y{wHTd^J;1(FR`472%WI`WQ25^1_(5yAdF~mIN@zoW~wOt~l zbHMDNAx%VFMo5}}tPxk&Rx$pDVsP@}59!O+5A4qgaOd@sn~UGy?7k54#7^h0q|Rl9 z5wHH8pB1+k&ZKbhMBe2s0 z&f>OTHPHsKmRTLo7W-c}&TTByPUS{WX@AgG*NH|G^HG9Of*-a2Y*nYgwJpsZf(c*$ zrs}IIr{CQoLEztJ@%_1e9hKxQc;J%_i$`qp;xwPd9PGXAcTG_YZ#BQnJL^r)^i+u3 zM-IR1bgl8p091Cx4PRCJ-Q8sZ)X2pD)fd0PaWjSwG3;!z6V7z*f zl+lV)kEHB=+VLz3->{GasQ?3jb1CT{AG#Q*V{gQW7h-$Te0B$!B&NCE@X(=;Y?Hn? zdP)#u(W*L8Pe*5PC1^__oL`B?V|3VjV%#*ziM*ZYpJu%BwI41;cWN2xceG!Fb>Qlk zUtVVGE{Xm(`A0r(@%uw2>qey+;_w+TV(1AOAM~U=%8$mE-c-J3<=D z0~O<^j0{Y2F>^k!4i`MJpgX)#L-Xv?9{>uXMt~G)FNaSL^(VjrCAo9W`OBLV{$QKz zr(CSVZZ~jRa(QA`=VG0eg}_AlDb_Hy91$5eZ?1`%0dpBRYJ&c)A(?Q(q(iWD`HGFs ziqvXZ7X?-Eqo$T`Kr-6IB3%`T0ETnAg!6Mp$73q7PnH5X0bPs4ep0#t% zm`_9@0}u?AH++N1DHE_m@6wHDi>n)eB`k%TS(_K#I-icDS0np@rEGMe5`>wNnd$5| zZVa>WluZ3B@PO4yy@GT|VhkUdHqI11x~ri}gq{8MHoby=&jc(L*N&@dbn1ew~bC8ao*<4@ssLItfbI|btO7P{Tlm2w#w#dIJ3ZWn|Yz;YG|_J~d? zkpmM2(?-I~gu~v4-XfgfrIe;nQn}zr(iNuG036ToVZWz4XlwSJsRz=dU)jK9a{&T>QFh`2Q}e&7CIKXY6t(@aWBl(TAO;am@v#+?S;B%Md$2bO5zN`D3sWTXc+++fjk5 zr6O@Z4!LudnFmKmznJc%rTK1X`ULlA1MZ{2@(?#enI@;Lfj4^4f#>R1ee3=q_V-eq z?)ht_eg#=QuqdZ_;+iYDl{98VPt>G#HHA9UkeJsbcYZEayu{MWNTnJb*3 ze>il1x+!-J&~y$adj~*IdYT;C14vj%!5mlZy<7J#QXEx=7! z7=CrIyb@@Tvf3D^S*T4!T3q4DbDV$2HjmygDLNTFhxp$Vvfbkq)?Arp!emPrLDy6r{Xc z5KMBTimsSy-9An;|y> z-;lw`7#seDH0=HiQ85Y(3>-EGPN2P2;Mn1T9`dr-`o@<}2{}5$!Ic}al5_%FaOsAi zW_j!8fRk8+C~jb^>*b%-hH1%CJw6!b&1OmW{56`N$w7_`6?pU~t;I~g>N0^_Tr~+O zJ1IPl{^F4KzIn1io%4?x{_Q`M8-soZ0;H!0y-LS43)tWCunKhiLgAU1>Z^a_DqpVZ z%1^rmfXY`mH?J5}=BY~i@6IHM*N0^M5bi9fI~D<2>16Wh0Jr+K)U3%SF3X{@ZBZ&~ z#lXX>x@R|kBZDWpPp_>*H?d9`JRtS2#ZiKO=KQ4VUe7H@wyFw>1iJ*TY5yev8J&=` zX{wr~pd{yIW4hjH_g9Qh328EMQLspM6m|e~P0oS_7^7be9bk;A#@kI@>XwPD6WLdM zx1YGn3Dx>jKGw%MS0Ej_lM+)P(5=WO!|SQ@K;s2525)o4eky^o#v1Sl%bCcIcWm59YLc;ru`VdmlQjth5mV?F3+Jo!te)s{F zVng84oBxTu+5~bTsQqbs6{>_1kf3=N>^Om$C17BAU;|hu{Sz*SoP1`>%b===hHF;L<3EVdk4h1Zi+eY ztsIG)uRIt=G`9mh1Z`*o`;s!73Kp%j;(g3QAe+fIpGeIiB%Wbs`z7b~>`}+i4GKq) z4Z1e~jP*e84waW(f%IU3g?De&*Qe)QXkGAqp~%iti3s?9J&m4`1Amgjo|hU=*J0D- z`#VwLevsLO#SZQ$*K?WmYPQt8?ns4w@h4!piWJ{z3SHD9etXiILpG`2y9J{ErK_n+ zE)4(mv>DearNyLS!-*t%cSdedfnNwi*m&PS4PL}I6EOf(7Hq^1N?gYm3dE5^xeY1s zp}?(@B{)=?0RP=$ylaf1i#2Nj~ znpE0|b@}H+qL4^Aq9|xnZzS=0U5L4Eo6x!{O^}S+bC>U;{CZ-%ZvR?*>|xYYXfF8u z0tvhF4&yc7t1NMwKy5&Dc8N>${l3>eIsEBkR)!Ix%o;tRSd)1obJ>&1u zECrXT);4emtPLvLbb!#3?sy_cchF>u0YchHZZc}DXFJ&1=^l6?vsf6vStBT|4BGFl z$RK-BUg;OK{$dkAP2(edn;e5*w2YSdd52G<2S&IAy!izV{Ew*hgrtr znLZH~dk(;$m;s2eQUWwP;k>9^chx?xX|LKLigI2@;^kVBE>$b6f44m_`m})eh_lw? ziao}9l#%gZdJGZItS|mJpsM-T{Y0sZIM&UD%~gxvO8f2MU*$$R{PhWG;NZ*jC)^O~ zs?jJO)^^oB^t}~;%*jBt1*bg))k^CpA)X|;A6dwti9UaTlFmmpyWR(lqPQF_10b`x z<=_*Ky7?!~a>VB}3$+2pq|FPUl=GNoZEDH@wo~Bvyw0h5td)IxF9#qc4u^t1u3k>; zGY^I6QMXo9l|sq_;!%6BXz)p@*vc;gR#F##gVA3hSpcA7UrGB1vQw1iPVe>f+E6#Y zjoC?#d&u**P!Z9yj#j;o!rQruyZq`wZS+u{_}ys$px#hhzed~q$zK>~ zPZiBtVFoK&dgkahw9zgH^<=F7y4ryn2>=xjdCc06{FQ?KYG?~~Hh01>EKgs1VU|#T z+n3EEACgz~z!EXC>Yb?aFgBL2dhgRbKzEFcV3}iU{Q%jiiU!ITCf)$JV;$aZ=jw({ zAl-sAb{`V2UJY_ps@DKo6@XS?c>;#^khMdwJf<$mi*}8oSlzug+8KfEkAF8=6_iq> z(x}4`Q414D9kwqhwM2C+h*exdrd{6Raq_cZxkboY$3 zxE`kD^mNJ<*N=8`i2UhzApNMU{#h~uq#6XEECMp7$eE&n-4!4&5_@<^+|GAq#l$r5 zRYXimMKb)StRs-#P^_%M6?1^X(v9gim_NzP72=cgm^O?1UDvaGJoKxuuMqEfKrfwT z@v;CSz@*x`!f$4-K+JpJN+d1(^7?G$BGk^4V&=+#4qBL*NT|Ne3rx4LyJln|1;syWJIR3i7zyJCyH^!e-`^KmE&_}AoXWNyns6S1jL`VnLdX6imvP$wAbTh3EdX@`9^W z(#a@hQw`?*QJ6vjmPQP~(S@m%j1@EhuK|rXATIjJW9UK%O?a!65kzEE{>3s+1LK;7 zpdw=`6&DA3#NzF(scpU6-|vs#A| z%s~V;G2g#8l`|TYuYbftdvN;LgO2~f$N+JWSo?~Q$`8P%I@mAVqG~QV_)$Q0IO9?0 zWw_5BTYjnkNFmVNo?%ah%PqS5NmoyJ0SW2H@K1q&Xaq>BWsoN3jO)#eL4`FV!qcV# zrOO?dTCn15CNKuX#P?7mH1)JtSEVctnY4jgR9#O)|AlaY#A4!;js7o>$Z-~k&gXwL z;#RXa`NcjwN={oz;m5-A>>T#8l|w@tHmpo_&l)?e(oUJxFBb7M&LxdbWhy1g7DT$F zjp%WUls=gNi66g@XS&UteAt=~Bj}OxKCjDVZRgdf=f;3*s)nDbzA3ogE?OWdn__y+ zEfxSHV|e>6d}8KI8zBL|2{fCkhDWqeE_~7^^=n&6_`2j`eQWwR<*1D~z&Pg?40#3h zrjGz=4geAI9U5Dm00Z?)TvMo5J3%>1rdgK_R>r8(mUl-oC4e+4Fr7muR!C=Qu7HuZk6u38xTHDbh}Xm*2M*0 zhCgyjlhNNzu%8;=H6Hn~<{!97SlmFa@c-%L5|^ERfpXJ48zdj8>EW6*KBb@7^gsXi zfaHFi_C8}wh9bu^4wguZ2gP=poO%j3aM=znw)f zKYhoM@=c^{&F9}cz~aRtvMzv95NRGLjrhuyLt;qsnV)#J_@R^BSN&u+E0c6TH$oul z`aNH^dO7L6rFcC65?C2B86igJhGa-9fG5ez$MD`lK#?7JN&rZH(1J{8&b9mL1OB)+ zqaZD;dxpBZCav!!eNf>-zmbfPyrxy!n!ddvX6q2RpN^tpnpR1>e%@hP?*&`bzAU8W z1p?5hcBny)k?Y`tTX#~D-|^H6)4BeukZz9RKOR0uP0L6CyhsP2yaGLGCO`rnE12^| zknCirEE&=~#=cg~-lPdcQGbOCByFk*sR<=^Fa=IbMR|es0T$WIfNNl>c}`I>&J?y9 zmB326wM;earSEOc@Qub8o=Yq&*jhj!hqKFD;7GHek=TCPl)_|M$3BG@L7j|fkSWhQ zil#E`WDA>m&n6N*(r@8tixN8rTRBk%s)n~zf?Sf=)1+~y{x?AbSC!qQn1V1eymsy! z@CPR1`4+#2vY2DR)YQ8*w-;uB?YT*LuPQ~?9m3%Qj9l`>qy<3bxHY>Q)w;#y-2(9! zvRMdO--B|mIy_qEc(?bGsiyKvj@z4c(F_If8?PZQ9eiD{x|r|WQXm~%!mR+ZJ z52)zTQOReeW7^ce%pZ{rG`!STyxVn#X$lEhZ^A^!XZM&lR^P6*%`1+t?-~EB`eh&9z`;v4go|NlXorC<--qL0_uva#-a<{bIh4vID?vAr~mONxo&7ig6Q<#s!Ys6Gup9AL=dbM7!J1 zZioSQL%+XX&*uZ>(Ps#ZP;UWAg&d~(+iLRBAf1;JjF6In=Rp6qDa8AI;%3c1NQIK^ z(7A@;$hrL_)?AxcT|0j$12KW2n4WV_?ZTbIFAfO()8eF__SWp$L*oaAjGXD{bA+-f zC-3y_e1H*!`e-=X(Da$zD68)Zvc=iKq88Ncgj^{FBa)FAP?(LsO-P(T#sZb3WcA{j zz)kx#L?w{cV&qHjgX;DuYp_hfeLK!1Iir2+7Rll;ov;` zr#MeMX74hNjfE0|_#1%Kar=fx!3yeth>UsQ2xhz&eex7#gUtH}4J#fK9Xg$wz)I8P zzrw{_ab}i|Bc79>gdQFb&z7b-P>d!C;es4{l0Tc@jA|3(!MO za`jJ4QWtm{Mr&jzJgO?t_Ysk?_Jf;>ou-;qz{c^vgK&qk2if$X8&^AliZE*gaE8Fl z(OC9orOmYSj(%~HH8ZB6cP;8=U+t^jq_#47!p0W5a z5=w4MJjfy~hLNm}Sw9?rc0@bOIfAF+I+IcS$kuV84QhjZOe*}V(;e#lU&UiCyQF+_ z^8Qg4^PEDzSiCD>hubU&PsNOIB;Q)&q!{redJ*X#Ru z^w(9j!*ohx!o1Y3To7$aDLlaPy%mIF0e~Om0+<8@?oBIK;T4b`0y|w6>g4Jja5JLbAV-R9J@2e%>cue zTYChSYYW&J`yVA@q`OjfVUz|o*0XYs%LU;*n{fs!)9 z(c_ioY%b&y?Kb-nyt;`U?DH}C zL_2BOHiZ=SK+5=a{~vm=)5ohCo9||~P+jE!gm%a~KP1QPgiYU>Cg8U@?C$vO)HmYMZsI4JwUMo7m8zV^}9g}YHb-*t2 z`{?n8B+KRhkVO{XvVaZ;lw_zw>P_;WY#nW3Pstrnz+K3j+pV7WvD#KkK}^=)Xkdd& z{&35ucX4!1%1<19%=Nm%1XqL>U(sqk+zok`9*|=PoB)TRMLUIc6Kf?uG`brX77slu z{xN&ovqH!M}eeR z;Dl9*E-=nwmka`V*%;y-g*?=6N%T8YzC$yPcDk#aC+Bt!z6M`i2v1TXp+gMaTkg6d zYq3?osB7Ogd9lCk-v{Vfam!D-(e7+_Gl-|pUfnnVbqNrYmVoWq9Y$+?!^}7tt-^4} z!xufO&;b4EuZ#`)sj(yaO@)5oS+O&t06rRB-Mq2N^u}~7iYXMIXJK)<#?(Q$@xf{t z?|2gbh`q7ms(3+D^a`dQf6l3kfQX2_g3VV)ZH&K;iY>FWx+PWxK?V}RS1`?C9+dZ9 z+s{?ilhoF2yZ|UB?GbVMF(yp)u&0Nfq-)wSB(q&X%bKMLCFv&aUArCDA~4AI?+|uT ztPGK%4Y;lB+LK%28mY=7m0(mqH+{)-vUfJ&J0^6NM=rr+cvejoJKHwm2?$$ z*niYx^DFsi%1x6T4vFFC<3&IeP$r&Nxd?jb&PDOLI2ZW>b*xpP@3bj?S=pfIbD2ET z%=r6oV-${8j(J?xhh@}d5uxR-m4JtnwCsoZ=!WNUJirev(e+>#pouNSHbQ+t?Dzbs%fy?$*B~@x|CIK z){4%IV(8{E9sqi+OE-I!>$WUtRl!8c_P^kgV#Cs2{@P@A*vQM_yFy>ohdWx^)Q9o%DeO6UU%o!VE=4Xx zR3ubd`5L{{7J1uSRVM!5mL}i|Qu26XJm)D%6R(Cw=L$xVpq%xR-GOwmH<1-vh-y`K z&~a6H0wv#AJab>vqpEEUjo)4<85=_jB}Ri=p2VV zBh_;>!LW#?j=OltoTpb(O;%?KGipFeG~c ztl@e|o172os>oS4VonR>Bv|{;?~f~`qs_2n=YV$_<*if$um*8k``c6T<*`Fe-u}3r zZcw|Lb>O)tVAt>SlcYd?XEqJ4eSoNI9oL6mP!+{ocKWX=;b>P#uw@*o){*!0ar{oq`F!OWA z^Ztx9Jm~M!|5+q(P`ru4D=xfV$ovjC;|SU)gQ!dhfXzUO(e;1RoZT>o77C%|TdI&5 zfw;-7U-_4xqE0K=gr3tSaF(lo#MWJcL6OcOFT%Y&K&t16bvnopjq3ceJfpMI#(XGu z2W?TR9=_TppW~BGe;BGBEdA@$nSv)<9@>O6DG-AbB1+Sm_-F+Y)xD$Z-H>z3f3`#> z2<-f1G&-dh4FN(X5|q= z;pDXP;Uu2vcW(^5CQgL%LSXneRk+*LlLJA6{A202EOMs3L@ws!{b=io%Y*qRnOdo3 zfZ!xl^-}Wb<6k+6I_{UAh{`(|C7FWMS;ER-tCT_ou=w%>h696@lqD~ zUQe}WN>ju<2{1EjK$B8T0jn$fdp@}Zg+~SL&nh#Knp-`8A}Gy#ep=cQy}@Cx=X2i% zngK;`&thQ&nNnGcF5qzGnW&Mql9Z6k-ie~mhxxvH-$tUfE-VA>%=(XDP$`0xhUy`H zLj3Il|Bck%g}_uzFf`Sq4K#cT z-H;{(fnud%=GJqv`uYimp|s0gw4g)B*L!RWB%QW3Q5{?BETuXG{+6b}y=V>JZtiT8 z*qQiZ`g1ka8QOgCUt8i_MI?=|ne`(&w!&opwQ1bm+SJI8wIe#&Ky zk=QR^U@rzs)T>5g#KRPG_x1%DhKrDH9Tl~Mrf3`0l64L{Hm}4GW}J;%>IkQ0ALkmJ z30g&k6F`bbfpk zg&;r&uE^1YIC1M@o~D|AMY*s+$ili!7JyC`c`!j6>CgEmn+npe$&Wnu5|746(6bgI zUE<#Tv=ghOD>FxRyQgwi&7_oBO82!F=m%SgXy1VJht}|6C+`s1f~DrTm}^1LQFDq{ zLJGa6uAZLy3rSWBeQ?n1wjzT z9sP}Q1}?NCEyokxUilunW%9T53;*>V197=Jv&!+h5&{t842aRkhk(VK`hC8By6O8? zCU9r`>d9A}u2tfJ-zRa{+N*vD^lITt9mHT@RybIY?=mn2us}A%Iw;_(uSj4C05ODN zvGP1Jt{|zKy5Q1SvEf!YyLl#j{2B9JO(1==3tMNY_1)yRD)3qxPsI98j*^D<238N_ z>isQF<+_0jA;!1W{<^DyD|PV$7te%D7VbuUTVhA9aN9iIl%YDM%>9?ywH&IhVB8N6 z`HdL`jn_Uu-Q@UaeJPiSV{Etg$BE2mK?!`p#b&1S;O`@vj)?pBUqD(=Ae@H7Fr8x$4mqCB`jxE0nhdRb{} z{5E4Vyb)uG*a>d-r%@X*iA31;!P}S-KjZz)4Sy)%)xNyqdl-6U*QXgcu3_io3^Vq( zzNrJ?@9`|K%l|&M9~|acjNb3tGOAx`24#1KwPPo=YIonLYVDOVHU{%l*S2#X3-v@C zYhHnNjdR58_aQ}xxyBEfrq#m^BX>SAPc1#mXS^4-pV3-AnY1C;O>a1t`ld=k4+W-L zR3`m6NBERF-r%2E7DH3Jdzp1z4YJZc!nvaEYkaw79ygN~z0xLbwOK(kch5Fu(JsNj zZ3~GgxWX(xjRrS`9<8fiO9#zKMhBZ~g`*1x-xOSbFxD5kP1CbIwEGCl%vn@(RU848 z{)@u{@9VYaQuiYQW_BJ)`gP((_IFnDFZfnVxVX4ZiYXO-CLqy?frXNRK`a(`dj4FH zg{Afb#|tnJHL3v%@``{(PFm4ECgAMu27 zOUJMsVq+{xDok@oPwYCc9o`7TEgSTFfoS(lmA=$dR}g=A z%ZHw)^o%>0afjuJnC^+)Jsx$>6d-F=qSE-eXFG<*e3~`% z_a*HlO*{Ff3<5oh{9vSOKmhOZ=a_#e~D-%ha#X>AIfv>v znV9|=$1vI(?Krlumvh_-n7h#m4W^Y$eSGZ>+z;Dhgv@vt7}F7}%*%ra(<}5~Ox&}z zJp?V=b~v20pu)pyv|TOGX=VGw@SG|bq(!t-AeR(c6bSW}oAtrCekEbbV!A_GnbW3C z`-&tHobDF<)lo}^EBD@P?m+rP;b)V5*z-EAQ?^H-YkN|TigwF8$DS>APjE=|f(7&* zUp>I^x+(Jeh}qRLL;tO>M-4}SQNJIS7DxD!26o~3c#c_yzpvP`e;bi}o$z$*$BF=d zl;F)-t zvb2pobx+ynuz-@C3P+XEjJ=h@$OIStxNJ`$@6igZ-;wajdOW&jEZ|_J%ENgKq-(`p z%{$8&u40|xNG4H*2R3>m$gTlTzj+1M3C^Tq`hbKLmCZ@S=a=QSdkrlfn+Lxns0rGF z(Hcoy_&+tWgmWg}v#fYs12z`BiolTVkh74`G^-;=FYrh-Ms?*3$kHmm{J{R#V#ymA z_KHBJm&>9HMt7?~c*r9z^w>shjx%F5W$lctN@V_MsnKh~SgQi+v~&LbE{!fKQy@lO z`XF<1(##R^hcXmy;Vc3}xCIA5ySgEw)e=ohx?6E4^TkcNnjolbn)MuZ;+!fpDQS`2 zpBFT21+R*X$`Lt#P`kPtL}hW}hl%4Ad9QGp`T*9{L@ltxqj63gpt z(l7%wr5$u}`KIO)=rut%Y6K-_ha)f$CG9?xPF^Cis`q6B-M;jw)?$StBDH|8QF5Ak zxWa?ZtUaCP9vzcCqH+>VY^68)A)7=Uc`BV39r_i9s`KGL9Z1FHpc2BU3U>m>z0H&e zxB5Cxs&Htz!!R&QPg^#nY~X>UrY$sl)W1akh+Z_==yv5yWt_932=aXX3``G(F9t$% zWn87ze<^}q(F-X85AfR^#|GRyusj~VFem?}hh5A%l5Py^Ubeh&iK_%!U46|Yd@ceA zV8UuszDn90f|fhI`hyLER;cJ*8wI(vfg9!2I$mAA_n?Gy+``68!b_sTJsMoH5JGw< zEJT{R{*4*0y}D#4wh-YGhij#+Ut&oiwn`D9bLE?e`{%iOfa?M6oZnaFiMWcb-37*E z;5%}2_~jU3Nx9w0PKx!EYmqm!4?02(D+egw+D_NX`1lX-2?4HGx$?9C2uG!@uq3B( z(5cMdt-k6!&hPQ_p9Ju~(TJ)Jk0F6;6d5&u{DwrG;&4b$6JUX1|W2 z!;75rC%^DRlFOpt#YE1i^V~yeDUcL}i&oILiEEg^OT~gBT>8!JfuRCQZT@F&9SM(&(!WgtEi<)bGqXq`+)JNViWj4fPKh1SR6kQNVL3On{PR>Uw$L=SVOTbJuwJK^0s|D56%+*LI z2o9tVE^4DiM6%Zv={{gp4npi2!CkAqQYY?$S?i02O$I?AR zy+-H^!45tL1tJQZ(j=0pst^pHPkSs$keor6sg|Q=yyQXDSCn=1hm(c38|z14_508P zl8Rb0{0W_US07Mk)O+ET$=>qWlMECVz5IbuPwZe{i7VnKO+_a^WX$G*{{OqOCXd`l zOHwmE$9|fn-aGG#nAGjk`$N2gS(iu)giD`>ek+ba6;)B4uiQ+T@#m;cqez*5NH_?G zgehcA&5*~n?+3mfF-OE_`V+rx^5^EK1`Fj;b==1OBF&Ivi@&C-I%D`qh+*h%J zQnqPwAg(_{&5(|EReym|Ux(#wMFBdqtDk0yj{rKdchL_>H~ZGOirN1Rm>|?siwpPFqm?r*d-y^WCuqt+lC3j_92yE8`w4^`tJbp}z2lxZ?W3wAcxp(6#T_@dco&%gT#x`*-fEN1E0@5USJ>{ zOKI!ap8|vr1nJ?~yjJAicy&cIh_E!PhZb(paKJxxs(8>MtuS7!?jgoxnv1Ba~Gj|b%O>nzf>nKL&`ix(b=P~b@zEz5Zw;5< z3)Vh92{uQm%5es;mWQy63SnMmhg}<#{V#rKbbSzPiA=p@S5ZldIwf9wudJie{*wyqaOsaL*EbFYhm(y`1FoN2;QtYFKXSL>C<> zR87*nJY_piT3_1e>VC%&uEDlcTt63Ie__$>?u5VFi<47{xT8{iQ+>YtiGp$cV_ogQ zT08Xa`kZU#-V`Y-I`%YNl-LNX0Q72n&(npk_r#MQyV$vb?-aSe`;VGhosgz`FF#|^ zPB`9W2`5#LYh}|s7A{clnq1eCM3?VLEpTUccXy`1X?r(%XL+Vc5+Qq28SNP<%Z4Yj zsKbF%_a=@8J)G2MBPX5XLDI`lopvfKMc(TEC-BMS4tBr6`Ux_eJK9l{cha3)Zxw%T zlrP=RF`2)qbJs=Ks=+gxX7gZz{BNG`vxw-R6!p;f($PIL#u%y_)PRRyOy( z^N7UvH*bt-O8Y!K8o72Ne#^nRi%UW4CexZ7_R7Enuz}d`+K8C#J=iMt=yO+w`&x4M z*C@v|zk6N{eafrd8SVf{Sdf{Dx?JdUg@Ske%16NXO>bUdjJN5?Znj0l7l5GXJ5$lG ztfK3aYF)4Uv9<%2IZQ81vq6_q*hG0r_h!LJ@oQ9?rR*#_TMU4h@^mLUZ2 z<^BLQ_AO3Gc*bgL;|{vW;YLiCWWnHame8ZAz&0%%TgCy^6<2vHU!Xri=?L4FIb%j* z@>K>sOo7F>31xT~D({6>lvYl#!Xz8o<}&Gx&Z=Z~0avBKSO3(+z`FB$7i9w# z|82Ylj`-g3rS9%Vat_*kv5j=EQ3QJi)iYJ$a_8n?7ZcYa3k!a}Ebu<=8tk}Pd^9|G zoON&sW?hG0Ac@%=!mDuPk5?)>2MDqGh0KU6djRJI{|#?Ut7r&DiJOKPTUEQo#Jpf|5}}8bi|0z~544@m(miBU4hW-R6?gvqeLoB3pTa zR0T@EX)p6S9sGrm%bVx2m{CNJ*cM`dLe<|V5_}GB+V|l^pM0=^RmHCyV2G@eF)I;%rnGgM z;I1Yx-*`v3E7;INToZ@`wVF^;a6!D2ysr`9xU^6KF>2`X(g82yan=|t0wR6Yii)y{ zM=I+#Z9)$>b|tYwR~|UlwVOM-7+_VZ3{e9{URsrB5^2HILG;+RuO{lzA!yZt8pz)g z-Tx`X{rqQ_FW9aNtsKd?PjU@3x*w>)MCLB`m7P`yczr`)_qo5yTJ%M!Bj#%X_mx=D zTbJ}i)}cRNve2uU^DaDy!(KQygvFaOKi>Idi(AE`_k95WgT*T~SIf#5^w zYjWC3Q&Q6B3z%t#K+Z=!;vX=33FBjhT=^=>42-d~v)c>eyK-Y+5sVP?1iBfpliji_ zvFR7lW?Mj2Fgq(WuXk~_ao({m%J_I@)u%kr5ijJvZ4{>zk$wPL7xKuyZhXSNNd(uD znBqtKOlhv%e_B8$5n<6#h-2rcJK+MTTn=9|*JnXMcF0CaI#(rDXDU{e(i<$xF-TLI z0}xGRv=Yp`uu(%hdhpV1UY+GwWQGv0-hzONoSC+B!vvrMa}cxaeP}+rfq6)Er)JnC zJ5eu1tifvOiBZ4dT{ioIorA}jztuf{NLrZjF8o&@Cq zUC<1CzqrI)g|jQ`yH;L|e+Eri(25*}6o?;Btj9a9l%9l|4Igf7!8fa+i{X8BN<##f z4OW2Le}WD+GW0Wm$`dXS@F5(r4mDgEtO|a`{AocR>oarOi6VjU#*TO!CvDDj&Q<%I zsuhA+lJW!Fw8ibh#CW{sZ4!no)JVXF4ej}HxQ`=tD%yaF$7rd1*j=6s%||1Z1=jQx}On2MNn zf^mnHog}fWm{fVNlJn@WInfIC2w~Cw9$R+zHDP@H6~MHBj0JRYJ={jpM#PT8@6tiw zC$W|X(DC<}1+2?c_K<0}o6fct5+TXD2;fr^$?M+}XyK3S^ckXfeD&t^CU$9|+NP>f zycPI7YMqBDUZZ&Vb0{KwpW$QCLJ#yd%`-Pyb^5maf8Sl+<8{m0W-_YTofFQf8+T3@ z(S7!uZncdkJfu^+4XP;MR-J>lKjcKjyO{>Ao+JoBTRzRu46XgULfw-$bbSPqPl51GrrX=Ncip^Uv)f zTQ=3_G{>DnZO#oD^Ua#=`<~7et<-BS&lNSfnLU#nFF^0jOW%eH)PM9C0(%DzPfDFu z@kzy4j4`(sw0VM5vpHUp9L{^)5cKat?^0al7DKg-zooy`;<8f`gAfAcZd*kG26YV# zVGzWWLim$)8jFd>)!n;|BY0Rme?2;DWgYGvTh3Cf2lVV{yF0IE#(>S=qkdZks3J!X zA~XL0-4_tT`2&i>aV-&dK?dnzrS{akpknq zn>sGjm?jAF8Um>_bQTc5_KzgxQDeaB{>+jjUEzxI&^3w2voDc!0QsVca!H8InVV3t zkze$Z-`F3iU)e?%(j%u<>dUq+JO7C|wR!UI6Yf98v+(kZ+YWHd=nxvt2geN6RaSaq zMPHmhdLyRM=G6Hj!9!&PKAg(M=beq3O%twnPJUk8d0Mfpv_+Sj8%vn>RNe~6d$%O0 znJABrQclC^C{OhdC1jzk>2`vJfsPeE6v-Rs6wY6&eR6iAy;)&_ftBTrU~?b!9@VpA zz3J&?*JWDQxt)y+{gC}AaP*3Zgt=dcqh5)C(?1h3TJPB61jDa7Tn6_jKI- z?t{uM$Wm}>uM2Dy##~}5Dt;a3xzf4|`?@-fYMgUBsxZ+;DI316f+GGs4x#)vHSzg1 zW>aFGKKX7V_c$>r!V`KeWEqqEO#jIH_hwJOsv;XW73EdjRV!>Vo(whh5Ku(zvo8+l zT~EjpE2Cc2dEKJ~wP~j>A-&*)jWX&Hq z#VNJzRr|xhky5_U6T~U8uccNv`xR#PfMoA0TGn>0#U{1*XGEY=IMq0|;Axj4^W`1M zd=N?o{07>}x>2KZ`6wh{pC$RJZudYJb4O-Gx|S%?<__d@$>vM|k45wTqy#Cb z_g1q)sjqHiZ%&>!R<3DgcP}(dCicrwcR8=EnP6MGLrMQ@U!y18qfxGHbpak6-p+=N zi-^b0H7<(X+r<}13SS&XMYthtzUGShlNqf|D`(F9=&^`9j+RrlGe1jRh<^BVX|bDZ zSbphgeYCxWTu$8N@BtDEB(DjPmpfV8XQVfsz@`k^)s{EYXSXvA>yt(y`$NZ$T)AB4 zPuN=K`{BK}{m%bl1lI^Qyp;_tal>~QUN=|v$wU5Kmx74QJ=s)W!BT%JcjJJBP=|gI z=`zWieEt<-Khwd+Z# z)2_bSkDqhBzn6^M;bht>hj?ZJwxfM;{mxajs|SbE@@fc;vZMz{K-X97L4Yb;O= zE-||``iOnTo6W|p>;@?3fzla7l|A8DwU}$Gc2EliWmM`L=AnYL9NBNsj;WoMQTxN~ zal(Li5iO6$s=ujXLQX4E25AdtVfp*qVX*4#+JGmT){+xE<27J0GoGc|5QJR6qV|%n zHrm$gaW?<{j(v{cKuUhtQD1T|uSULI+oe~N?DaYvmJ0VS(JKplL7vgLVO+{G4)Ln@ zg+qb=S!!0;HXnQaWM@?1{HLB*Rav_margr4$;_Qf{sM{%5HQdU!?@nPxxs?nzIc(sqWm)e6#EG zta`+`?|vIq{>g!yI?1eKyqgRAJAAz72)^HjWs(A9PAy(%->2J4A<`oK1K>U(0jvV9 zX+i!$>;j0f(fvEPO3y9%wiha&UEF%HqC$9Xiq%$jO_|I|0}(9BPgG=?_moTVfH*y2EBEx=-Wn}Y;t*fZYM3J(4jF;y7wCk z%S}0brlS1*Wp)Q_9MU^cB4NN{RfF=?rCjr1z3?J|z}7FY!c{n&|B*Bb%Fe}Cbm4_! zZC25&6yymHe}n8|l{~EF9@Sxi0CDquuOFw1tMiFx-u7_*_Y!UQIfp+y(oKQnmRr^! zGbNJ7nk6N0CFYVr6&*hr#P{C%Y2Qd@p1ak)CixX(!#P5oVv00ky_i#k3Rs91t7drl z={f(0z4r`jDhu02aU69-!BIh^j{-_Z6p#*zh=6ngNR=if^eP<-pj4&zA|((?2!t9S zDgpx1J0T#QP^H)4w>CKQ&V1K<&X4o^tRLc)?CiDnDo?qe`+0W60Q-vSCNH;_Q^;l` z&BFPnqLJu))D??9hM&_Z)W`y)7>9?BnpKS9&iAjT8=nS}%3R%z8805Ddf8_OD{!&N z>$x#@?;8!I6iW@i?DN_nv=Dr4UwLKCO&g`;EVR!TVjleDd$2Kg6@}%aFTnjA`@Kv) z`1~B-wHuE+Mg)~{HJ-V97CX4`OQ!WMyF`i2HIz!v;0xQ6CX8-Lb|N@jDye}()K=$A zKxH^hw^hQppsCXu zj{ii3O3jQ^lG1da&Qo8u@LR_>V|ih_UNKU$g^80Vjc{x#_lj0M{PwhW#rsTSYz_?B z;4^fo?&BAXa&2Zk{32c z{_{5d7~8{7KWZ+tdudbem$JfEy3@9&6$4GVwr$iteNcgiJ0pI|)U91I{RE?yl6crh z9@nNi3a_!Lt1a5@MSdgYhTGgem7oC8@~#qg2)PD~rT4 z_!f)3mh$KE|=$GdYFCbEPhgx$U}GL6s+7VKljl-N8yC z!%^A=(K~;%>6_dl9!9lrMm+PwY4kK&%!Qo7D>W!|)0``ZkEFZ#+Va1@ChB(|Bt@rX z$jDN2qBhuXk7UPxedoFFEWAi3@s~m7nXLTE0)>X`7@&Wt=&7x9Z%JhOBrn&Py|a_V z;mCuzSktKJ8Ih`SZw++*R%kcb?15&|_A}*d)K)`Il#Ovb`(Z}SyWhPLAJF=Yvt(Zt zi1o@*gR%%%ja}U(<=TglDr^fh@xhzX4C+8^1arJZShLRf179$0pV@jvjH4{P%_!S*9 zJGA>=NN|oBduOu9BS$Kfrm=T91ZtCvK2=?lLE%-crhZ^KP zw3Ob>b;4DZrLPqTBEPk2JyOT+shoEBJRdi#K~ncZ)*$r*s2iLH8G|XpVteipf$h?C z4yv}VdM>EG=*yr(HrqowPCF?r8_nEdR#{F-(Qm4b`(2;!rzj}BQFZcuUI?lM1^GAWm0;LM?dhZDy;Ey+gqVHy0Ip}v8tUnhVU6yWr3!5D z3NY%aT!#kk9<-!;cJM&E#wu8fDlVlanxgn@q|837+^38<7#XHG#lfTgKET7PH3U{- z{GMFf*S1(-i zTFfu4#=O7(J#wvtC&C~h&X$7`^d-H-4w0pQpWf6}Y*dKEPewJF)Ziz}7`WtNFs;Y| zsj#KZ=1H`$J!-(IpyOs0p+6YU_JrxUI1~t5UTJ{)-gT5;^N@%f@JuyeQgLP0YAVtR30w|2%ELc9(zMV}v5HqQlg;Vn4H~{6OD}UdSF5V6b-~-?yl+wvK*d81iWT zjIOP^3H}zm{ll5#i`9~xhqp`aM5auVct5e2i-%v`4O`gU6dpkd^A0T={OS-FIq{jN zK|wva!SQeC$Wor+J^ISz1b34{Buk5@w@hPEcvvYF7h`Hg*>gFwnrR)t%+_hXp{ZEO_yV3RW87K$s8u=;H z_G-OFkI&-;yIgFXyemE3g_!@2pGzxV?(@Q!-AS{Em>1J3dhG(-GHcQPm_e-!+iFf^ zhfWVVsHvO*Z&7d`?-Ik65k?&B+^}eB$u~Fyo;tJhmW<6 ze56E}oKEEgLS-&(=IO)7GekKO+%Dy>5BNVtOfOOQ*Tvme7flQ<3wX_i9OEbvNe*Uu zj?B}M52h8*-W$87@wn;X788%$bIkSIr(0>0OgQ^5(&m3nWih*ORznlFn$r~CoIJ6O zqE#c^{JKmI(?qG2$bE?qc5Te&tXcT0#}p#{=h8#=d-BI>_csGNm$8*i4+7_aZzdnf z;FeS*QCg9=S|n0h!63B+-X8hdE;xi-kU^}(2vj}#cE(ku|9fiV<)pW0W6_o9c>{y{ z`jiH)fvc<-!VLrGXUs!3ea(}KDhnB3Z%v;40o=1(Q(f2F&YC!(d4k9%2b-iXj}&DA zY4O+OX|7K4#D11a^ zgC6q0PoBr*8LUq>8FG6)+B_|Xmgx|HSu*vbBd%AQD@5M!sb)v62-l;xey}%0NE$_& zl@7%?%)@SL3^Gd{t|iXiw43s9de8`fj5(nP8u2fwJOU#<4{>Gz-xS+Nq@)&4y1iyB1joj7zm`#42~BsWTa7OZ&NyMHs-KB zoU6DSrs?wFQSINQXUQBs{Gqf^&>ONG$CGuK|K;JPnCx4Gfwr@adm#H#q!9;ewni=XM+Pj$x(Y17WK@Fzc*bA5g0{)~$I8e)A6LGH_Z+D=|FV9qUNx6@Re7vH?$ zSIe@~SS&6zD;2ZWH3>>#V|3Mz`%(02THz5&Bz#^_;Vok9X}U13`jPldZqop5R4%5~ z*EIL5M9n%`_G4@lipP9df_!BJHwrCFH?Pm5_V_P}wr+$r-^N|>${0wm&p7B@i;$RW7xUJs%=SkRr2ySX{08<%&hJSn5xC*@QoCu><1s% zox9*_egBzQid06D`sM2{8&N}%h=@AEhiUq)RGjxX6t!ujkV)D68wd(O@%&RTJM1adPJgP{B*(aX63Y(=O|2^(7Sho6RGIx@98T zaz7uMR^SCN+Q{~_cWR~Z1N7Du^+Kk7x#jYjO^mkZf!#tfQzj5?{Zr$Nua>LT42k_e z>+m_WA@1xqalI?$gSmey(GA}NMk;&%7s_pDBRYKe>&yuO%27o!|H}sEhUJtzdzx$u zv#qmR9os=!uCT?Zfg^T$AmGIJczw?5~C_)M69*xa+H#u*D8_;74fI7{8x#+$UTaE($UUO3lk1%_ObB z+bPWfY%;Yeg%bkU-7sN;1^{4F>mD(rZlKy*g{Z(QY&7iEzNPm7I_TJeUeFa^8)2cE zg{Ngz8v~J9Yl{@a>;3kuX#=VS5(4*^{0`j#j0fyes{yIyci6uMehhNVj^*bXW*!W; zxD{!9n&<$YGtk(@95t_2a%H5Gm~zXO4g$hGaAv5w+LvYYg%%8Rpm)D_HyE_elM?%l`ccr8Uy>x(VVw87yw zkxS0}K{-X02NjW zrwK2gLSjA_{`eEIXU@92wBw60sx6j=m(L_5;+JSBdLc}r)I)D`4FOkbpd`j1}(r>*D(=M6R3ub8t>nodL6QJGj@$DOi-#dk$^PM2mJ*V;ntx&-mS5crNgiySe zmqHzzYRuk0yP0c)=LGiG)H-Zsgt5!@oeibw0v+{!dA`Yt*6s*(38Zsd{{rg})`rcJ z21v+PJ;UoscQiAIv}IQsW_?#LP!}fK=8n~y$fY8_ywwI?#_c7q6-SLDapKoHHdTo1 zY{!lMsXAhi=63fd?3(-%=4U-Z6WF|YgTRwux9i>I)D=^yN;~Y+w6XNOTUNW=oL&K0 z(cm&wmnz+3OfmoN8?{2XsOKwT0w;!RYplUx*lZJo)BLXBx`J|NCwXC?N@#OT^C=g#0H_RO9I>bdupV&4 zHAiySVI@Sbb#$u*huf3~C+5~lutX9J?Vbe8t+SPF)JfL|{NLv6N3&wN1fE(v&$JOr z0@DL~-c%PmVQ|)VO2N{U1Jpqv^LO2vNd4#A-2g|Y2UTeW+Vikif1q0f( zViM5sp(d@7H;9GRA<26jN4xLCW|q`d0)A%lrs@rg$yG@p1+|RedX;5ru`xzf%&);-|}0M+`6PJ>fOV zE_-eStC~jB-!5YHPz>R2+T#S#Jm|`g##F#hBJ(lE$- zk_u=yoAy6@pe;`RR#D^mtnZa3Cd(ryg)ICbWR%|G0Y1Phubjm2B++W;O_SRO26Fo@MdiH4SrT+OgM7Ojok!?jhul%pGt7H6|Ov5^u#l=@9E{fP8S^Zv2cIM^WtOX#(pB-1;~v?MEF^X1YYQeQ1fRidM%`o z;uc{;sa-oetZ%GPJ9h$9R)7yjA_y!=cfNG$T$GSwM{dt0PFAY*P(}7P09A2aOJ2jz z(3v4|Sbo)%_cj$*l2Y^R$Tcq=v&{@b21e1BN6zI##*f$X+FTzN{xSuXh``2{INA`g zN{oF^wv7ZISiQY?&%R

yw1~#;jOVo~@In61HifC&{QFZeZb#Kzm$BIehFz`{W|wc8uGuJyqmzRloE79xMk581pqU_P8yXu|qlF{%1HU+~tFLYy~DxMl#bN zoyLS@(4*bIQFHHA&I}qnmkv-w&g}+={s@+ zGdUpd<9}bq7$%fzG%VEJk$lrs_-d>cArvRUoz?+`Sm4&-rxXtngX0#h7nurQGE2rG zvOYT4Odl?B4i)RD`84)pfR_{F){N40wZsK$ebX{uR^AndIX(EoS+Z>j{HWN%*a_gW zf(;uCna-V0g_4vKBs5}%?(}u;8gUQWd4`H8x)T%ccyWnG8yz`&(ACoGXW;`f#!H@8 zMJpVJ&i9bwZ1oC}2en91j1hoDlp6L%VmNg-!%PAnt92noa+-Mcg?dmQNw@fjx)Ty>(wn_^`QUrNJWIbIC}OhedPt5Z)I}$!{lGDv4HwFcNQ*e5HX+# zajoWVUEh-8sk^OqUm7a7z&?ctxzVTbhjS;w@Ue`HwtM7L`m>iSZcX>=;cC_Q6jV zB5zTz@V030E-P`4)jnCCkSR;0x%0e)SS50O5@ak_emL_untO4A34C@xa+sq)#=ZyL zMQUnYK7ZCTsiNiqwO0iaY%V0_@|`|Z$AX%9d;5HomtU+mQw6aKnmS<*9c(I)8qz0| z`AbSA58XmWn9|1MOB-Dz!|(hfByXNn@pubBE;SI3(Tu?%atKUx89-=K0~h4lTiaKS zd)|gIc6;{#{)x2Nx0aVGbRJxUBD(RP5M00;9H4%CH^svvFsu8X9;kv5 z`3Ltj#hd2tMVUDZPlpC;04JK$P^`nj=8?jg0QWf-;EdmfO^XfChsU%P0mt=ZVk-dA z$4mHNCB7Nn%PlOX*{-n1GiI`zv|L!Oojxyu>=_uwB$iyeJrco=%OOBg@&$quzy%_v zk)a*X=K3iA0;)(S9i@}5zxwrH8Kf17JQDMPyg6PwF9#S1&=eRVeO3N6k^Oyc2{Y0)I_}xo_7z<7_2v~y3|b?rfm08 z@iO$2Zpg=Na)G)~Ek1fN+YM5f*|0OyyyAa$8V!ZJw)hfx84s2Xa1-F&X3-4Y8K;=7 z2c%ZiiLujxv%sJt`#vRov{SE$ZBf%o-kp8=wuP%olkM*ZEY1NT@g-7+{WJ$T_m{27 zP4?||8qJzzY~qcyflLzf;gf8=SP+0~uHHS0q^vV?_@lnzd3I|8XNbHU(TEx#J~g}_ zrLJ9)LDwM_sxC}3h`4Fz&42fmK}TvPV0%_}zQ2rc`GIv`h-e+ksQpPw5jU5cF+f{{ zY}M|c@mNT}qDpG^6imQlep50kCJDDg4|LQp z&vv0eP4l%^7W>h6C(S+bIa%c!7H0Bo7Rc*OV+xW`C53(1NH2wuXsLaQdUWb%ea7T{ z<+jxqD8m@khu)_cm8u@2=#GW=tkeJt4ql`PY~s~DjA`)`#UcNaJ2QJY;9vuTytaef z8R6~LxT$^OYQB4aD(AG4U)PG_kp@tzO|RZii_8EflYH7-ZcV@ zh)1_^yDD8RC|GK(8q8y6z*NCkpVeM=NX0a15`>$Yb5>xOmII&ItotF3P!GDy@96rkP~-+w&2snc@I7Mf!RED^Fu=q z1xmr)!R1$1nBmav3Mr4pV#1h3*6N3&35GrnT^F>m`aG-gO0<}6KFXUSsdDp?QT+t; zz4V78X^#fpcU5w~?b@1K9&~x$l&j; z{YAi#1Keq!ayHJ8=X3Oi(~1vm!~-)``={8PK=bk~YWg8~7Q;n;a;2rL&T@&z4Z|!Z zRDE!ajSx25qv@G4$h zU{mts@{hF_f0UkY5(QIvcm8GKWLA&;yG3QwPeRyBH;wp`0t~jGb;l?lxPm{44U9Aw zdMoeQE=ZtcbTPhOlkBnq*uhix*LEY`Ajr)LUWsbcgT9?C9qal^8 zj71zycw<3;Z>;F+vdjV_WJG*yuKzv&-qT7(7uRDv;G=D3t%-B-K|jUz+qA7?B_uf1 zEkfrD01u4)dMFe*I&Ph}jF-HS1d5K_r$iU(!bBE(tMT{rOUkla3`K+BeI5`As(?jY z*S6@nCeR$P@sb4Ox8^mh1c)1&+*Z-n9CHMkEQsxKrTTcvUOu=9P**p0YvlIA6;uJS zDwx*0I$6!}1R5YXM@FdwF^*H0R9G|JAXqWPz$?4OR0#DmeB+08Wqa=PY$H-UWD<<8 zB>-Saa)zIn4d`9LixQkq&$uQ50Pv2TIxwQiV}0^UZ1WFhmO>%Kz8S#lPr`r9`J-99 zD7EofQraC}ZTh>Mt>GI>07Oqi2Q!Mou5mD)G=Ww;dBjFCtz%#$3K(}IhopT$@WxaB zEsymX4naY|N56NLEH?A>FOQgb)JQhS1tGnHo&!r`CKd9q$-ZBm`pduZlh;{bv`sr} z=Xq~G^k`Kua}HoVV9z1pQC|n;cm0g~ARWh{b)QI3@%}W^{1hIQC6TpjL zlQRSH7q<)S!6?_!7;|8{$=3xt4c-4t6`KltqO5WB34j0`!5>EyGRz;uW;F$sqLq?# zXyiwY!os;4I;hh-otSpetqn&%Z4^7GppdPD<s=MRI$kthE@A3*=p{T-6%|5xMr4U)_MZT?q|?B)M{ zC>?TSY5e!YblD@5{J$S|UO$p^|NYSN;*s$E?}wN_{{LbAYexRR&gRp^rUea;0BjZF zczOM`8iz(e>4LwTg9$szVF5oq1Q9jLmpI{+l9KfwbzIj?6WJUjNJ{4b{*hiQNHnQpEJ zSRWBJHSFn?B%S<)gJ<6U5kw#`Bmf|NGAc&CPBO+0K~kxyWlaVd5w6Ts!_L z#`@o9A{Pdzf6B~V%|CXPgOs!%6Fm-Y9P4R+t+0Pjplh|6x_dy7==l^pPOoIoRY|n{ zmt!XlKLUz=4a{GZL>yCuX^r!{EU!_BBvuJ8>?r>-ybG`VTNYSvPHuS@j-}dj&VX3S z*V%PO1nu!8r3)Tmjlb?FT?hg?cB0Qz4Bu+mv`A2v9$zF4KZ+Uu-K}onh)toY5B1+Y z6#M^s^ktm+4tK5o_lbl(f77F`uajFQe0;Cuk^io8oxx?EhRxEe|4cLf#;;DnpEfha zt!uU;j;ho#OtOJu0QP{%JB|mMT(}YgC+?9rISbX_v=)WBInEDpd{VWE!RKd7E%zKA z+?H2Y@U8^W{HRviN~!+dt`tGPKBh@`1$FEDuWx(hoUUDxzLyYt7@rwg!WmG#IN!y8 zk9KMD{HC7Tbk~K2ZH^VyDjOjVo@@7IJhNNIZkz6iJCw*~^woCRHfWyEARTEAX~-{bDeh$BQ|sjIU_&?Z-6IFVu||1i-gi zmR9!&{cI9i7GcB!Ks`QBr>C!*2gT5yD7ww7ItGl{qSdYeN}Zg+t!pxB7v+NM_Fa|K zLHKeQv;J;;-+j5Vs0458Yn$Z8)O*HRXaQ6nm|EQf5wX#0$`%nz$kkW)Q%frV^pZSy zR$6yxj0jf92UOiRXL~@bOwiU_TlRI;Zzi>dY0tRZyJy!c-~)%(arpbmZh*5`6r#LT zw3XKtxbmy6Mfj0R@oRDXZ)|i#XoG+P{?+Kr<{swxk|Ynw5w~3J;voHLdwXG<7-7!? zGmp7xc~CBKY7g(lRrU;?>gz~+io3pEBV+EllN~Tzh7-25x#yTI8DIJ&WMH{(#f~m} zYKKLv`RCevM)jtOv!)@f_edtiVr)TaliMmhsp7g`$Dw=G2$NA~ypq@jBC#UQN=B;= zA|H;~daWyLB>D079v*b3qjv+QJuUhl`rz!+e7$-eHOL0_kIZa6hlEt$2SKk_jat>U zd(WPfUqKNNMn-oZpR8sZ@cMcDa1P$ISgl_V4LRx~?Vs4nG@qqf=+eHDSMb@OXNy>48wgl7 zR!imLwuA4DoNKH#ic)t~mY^S-d~zdM%mD0jqFX^?t^0#+2tK0RR^^57_PhzKDq_+4 z=fQryHRxaWNr0Z;bDy^*TUYwMc#j7g&i9|Kr>d!&2X>d)jyE9mRpg*hB8S_d6i9L8 zb1X2@#&VL=$m?;2)rt_{5KgE=PtPvUQRs8s860Xgm06ZZMcYvPRX(KL7ul5^_ z_zr@Nm0z5t9trURx0u-Z8L%D$*V>HA^dd3NMj6k3x-f^b=l__)8QJFkd~iG{2JL@K zL8YhtktsRky=+#BZZCwE#B(J;@UBc`K(k=rW}8kjn>YLv#nD1+wHGgM_Z&IBz)2MU zPsiV}F+;HvGeuwf-MQRbEs7cs5QBtabVX;!o* z=k%sdu3em_s=l#@ex7H0P;hHu!xcd4{cJ0;rHbD4n5Bu$2MT#@@OY*yC85;4znj2` zp!(tNBs!1PU)HD28fcquCW#moy5( zj)QRijrSlR>R0RhJtuU|QnZm+4Darwq`RA22x3ZC8W*zw^N(U7>Y1pUB}x;x-|&`4 z>+6&kT<4?j*}BemZaImx@yRRGcF6-vc|PsEnW)>hkL7@CM07b9;jXWl`)~tpdK`uM zn+x)*!}PP~mr`<~U;m-OpSh3V;uX~#&rnuk=pNOyae43tkdV0KML~j%23oEulyOiC z2*n(en`Y%258@TkY8iBQ{vv1s64rC2d%iL=KJ)J=$uGFZ2TRyKKcjeR_qYp7aWjj* z9}l2HPb=^ne%fX QSL;;3kf=sOnloW1*wGb;vlgot%qx2Y$Pyg!&ad7fB=@f&jc z&djyb^|HuDPC1FXtV|~Wxf^JLzadAQ&#Q%pqX79^eWISCL6lL5;4YiPAQdKv^sByM zR(?l(CFG_npq#8mW&wH|BmrrY%6iLe3wT8egT~RvgL3fxx6v)|zJ$EOTN0JwOt3?7 z=7%TiO>ZH)ZMpjw@|hMa0cRp`_KEJYpB)eflBf5 z-p7MsVE)g!ecCl#+rr0vmwKI4?IWtHngi6d4|W71F2}@TH``SBq1XoqT-NF6Fy3+Z zD9J8bO@d-cFIoxX`>o|JBi5nKkUB<7H_;tX@~;$)W}Z!0 zQaTFMLMQe=%l!gSN@FKKT<7FzT9#0~eok;^Z8yv3i~^m&O1G1<7>=0{?y6tWlutUN zfLZZx@R-#-LZkr5Hd%ak`yb#3*tjnS6k@7aBbqEE`r#7gpG>`K+MLqZnwM6eaL&iE zMhw6`eg%XDj*?b>J+$=YM{mxSU7?}Rc^!W%#8fvz; zk1w_q{*S)7@yo)~>^$*khZ8^#gkC5_COF5Z3@8xS_0kH3<+nlLkKTLD6> z))pLEfVdkGzG@vsWhGh;VxMdc0dVhUVm)Z(AcG@L<}W+&zw$MGSDciVorv`Yr{d?< zS5<`iC6-=37I};C`GSq9T+w|F9#nU7HdesC!4AB%{9TWg1`vWNk{_Z@yQ;*tX?eMp z4=nTmQjs8_#4ok;!~&1&{^NLvad!E1g@%qLK~Yz1o7#HsGj}20O?o=UPWE**U@w)l zU+sI6clM%d-Iwx1dc53~JNK4$15IUQ z7(`ty&kWfJrSO+T8SamXI=-Q1~FF##VzHqzRuiE6*;z4SZ5fZ@QR=a@= zFtNOma zi*eE@0;eM*W&hl?+ddTyBa;7Qk1G(jK*aZnY^9Ev_*Ah&G;<_or0~rxi_#jzHY5Al z=cLyG!W$p^WCXIbbyL=lx6w`Jqz;Q4*(b>?^S}$RQI3<1r!XByT(i8kUx02W-TPN$ zbaIN%`Py_Nvw<{f>8uh;5-4y_T&}Zm=zKYRVaBE(TPoDATS*WSQQtOvp9g| zxVUz2XgHm}$w_3%b1_y8&^py3F+M6Un0EHPLAaEn!RU4#7E0=11(G-uqBa4iK!6Hg z=#!jUWBXX?{UQF2&|JzBdWwd?08#Lo^QL~P8T+p-1E`sm>0dQl+#`N+$xJsrA z&0(&p+hznW*=L=fclfT@4B&E5+VUPhX1Up}-FG(P| zlFU-~8L)PnXQN^Z@CfLsfj083sNKT30&P+4&Nh~!_u*(VN)Fst4a+#Ral5mhMb8;4 zwi5Pco8Z3%=buyL+-#kl9nb|YkTOgYaF;D-I-I=@)7*by~ zlr+L`Q|*-T8Dh0@UapQ%285=jZZ@tCdq2&mq7UV>_|Zl7H7)k5Q&6v^>xx5`f2FBz z=+w6k^Z9|5 zM~v@g#3^0OjpvTo-kKGnX_bUzit`vEu;W-v7Bc_skb{M|NqYx)6Zmq3bO+9l)eWFM zdpmfZK$BK33D3n%HbHCz4N$*t@8Yy$J{i=GrK0b(-eutU&36me8k3^owYt&;^wvOr z8WYEFsa4N|AU()lo>icL^RsB6`_l4#P-&_%BVtyu6WrY9X*MY+!b1H|I zR_D=e zhaKIg8#;_?<<5||u*#=>6V&>{O9yzbbq3{%kpl4Ma8dVi%9$RIK5T}?ES1$zASuTL zav4$-4%&r&1)wYW5!K`M2*>NA~lQ&0Och6 zLm>?`$S>(zbojaZaw+g!ZT7rDnUqnnf%+!pH1OUM==Op04G5L6C(~VV=PHtd36+!S zLW{Y+$&&kadMQ{0bAIgQI;xV@XR8OE2{Nuq{RXW#0Yi@gI6x%f1fMX- zr0R>D=QHpI3Lq$ah@wt1s7VZ1T`OA4MYA@3ZM&(G!x6QwyH{0B z448VZZC)c0T!@W*s3JyFELA*n^p7w9nDZR#JwAy7HYf`#(#ahJ>y~TK|qO@F7 zVw*y2ZFADi8Jo_$WvW%jnO_rYa@TAcZf}Strj%vR6FTp%i1wy?$jQCd2`8W{9+^|m zxcBqs|FGOo1#GEyW{L6`M>YU-xPB_fn;z~0Nz$7-a)}i0`f*}#cet*i)5!+#!*bkG zq_}V5G`%iFTjEoHYc)kx?C1*~NEnz9C436Pu8=PtIf>E>GXHY*9&?~JazAwIj+d}f z$7l*!E;^kPgEPM^6S4>Rfyp_s_sm*q#y+C}e*;n683Q$9xp&%y2*Nv$IBgxDB08a! z$P$GriT=7aHPT-BAszgyS7z~-0~+>&Cdt(q9|0~S%VT|C81Zj_+5fVlS-j#!W8T)) zv;5;A|0(b5Ex4DkY+x0YmE$Nc!T{Zs5o^N6aeXB3s{?#J{111I+atp@^q2G)?MbWQ ze>ih~p7*i)4(ArVtqHPJ8qg`hmLK5-*VdIo&&IVq;}I$mnPr5NBzy$oqNa}m*km6m zm&ueb>6P1b(HMDWOt;2yad9c0I(5nkO9+1ZRxOB85c)t-3&^Mew3fGrT1KkX9a~x~V?g7q%U8{i<2eYBk_**F2o0{Q+PG ziS#<%?+iKShlP~wz0srhZIInj*JD5~Hn8+_OjtfALxut%a+SgT(7R}_9Cps@4_5qY zhror^m@wG=$GK~uhEfS5u(1HT*|L~`d@{BoAms*#JzABU)1SE&(Y0c1?6<$=MFIyQ zq(c74qo*Lod+<^gXqg7}MBt_DVOEB6mf!zYYNE=o0qouQC+#whD*RmZbGN>L8q<5J~u$TvL zg6^DX2r084lZ=Up$wML)&QLOR22*ow48u{xi4ea2>^MVY8GJx!8*_|I_(xsZt;um5 zA`_f zj4L#S#XX+Ofq+ShNOdW3Fx;vOq-@E{c;S{K%`vRE72lNuSZT zFrh17DJ6g`Z97hVfdsj;{n<#wKtItN{EMEW2Xl4T`1o*YT?LXya>?DH7!& zta(c6S&io{;oeW>XI18I?5jkq0xJ)srWSjZ+#YU%9FQUTu8X|&XizajiIf+QgJXp$ zpz;!n=Tr(0uLlt9dIB!re%uf~pH{Rn#V+4HWQvXF90VDBeOC2ik0MXIC~5%*FVNJs zoFxJcD!NonRwu@nxy*M`D!e%x#R?LFuf_H3sM`R5UYS;(G<+4XeMPfm>BGzLw$#{fM3yCk!VQJpaYnv*Mh6o#oLpSzJh243I0DlFOXrf?!Ueyb zSB4(bF_R*)$J0qBbuDdR1Ekv5WLLf?4bRQr@fu**UQW)%^U?jqvRT}`I_^0Yc+p81 znbr!@RwG7*@2_@k(u9Zs_{MqnsjDrGc8^<+2kAVGfeL`3P{Q7iP?`h>Wg{8cW!os0 z&CZU%)~%jqwTst0clIs@1~-6ocL|40)iP3^j$S0lVNUmSRk$Uv0>RdJ2_KLVP1oNv zNQno_K=2`^Cr*M)UV?+25ujnY)K~e$T%|X3J_u1f!y(>l#qI|B3S%BAn%N0eOQBdv zWTqbPW~8CW6;W0R?gq}xZ75Zy!tj=K*F`xuL%+G|aqGBCFuC4~kgpK9CAqd^D2z^0 zrtklxy7+Oq8I(2pnK;=_L|1RGJ(kg?dlN$0mw7i_Q|Hm<y3K8%52S;fQcyXCLEoof*h)U-3bcW}ZDF2^w*%M=j9>72J2#>iig+({Q_ ziZJrJfB)rj?Y5!MW}mih>9a7cLfvdW+=06Lh-1*i#KdoV9(zPY+0#!iZzKvHFOh@O z^|S%;VMOD6_L-Y>oF*|@b8r4M5UL9D_1Nt6C#2k@SjY|X71C#f4>=ASS6BfSuY~Jt zCHMxP{a_(atjX$m8b)`vyUd_~sn$5Fk#b{fcVrr~aChLsz^Ti(sc5g%{1635;y~(< z9bdA`g|T(YTE;oOX%}noLwJC6Nija!EU08d zrEYLJOMSAapLZZgq$FF<*153z&kXpn=2aYv?BJ0}k#_Hcgc6D%9ODU$-8 z(w>E4NcYDf{U{WDQFA>B_3V2w-sLAu#$|Vk$+zK94i1U3Vb+IpDN@N+i)Kel=Ad4@ z>n&;ItnwQfT?nx4fELIFGJdb@0`2Vwe*5^b==iJNLGh&h?S&%jayL*12gCSs+k9dV zf{UA*+frY##P6qX82w$|bf3{04+SM9ic81Z;VF~I9|AYlJa{H+G1nISnS9LA3N7JO zr-A~6dn*)cOg?<>lVXuKJyQ;Q!}Xkhs|!jes^Thvsp?-t5Q^OLx)Q}}UX3Y#FKce* z>(d@v=>+DHM~xxdgCHvaE^W@~{Ir_|piY}XYN0EhGPkBX^M@(|)K0d#`4+v%2?5|w_R2sy+yaz8zbS-00Iw)Ek^eD9XHt;1FTG*dEp2%a1C9< zZ2Q>d?!c5YFg2nYFlc}RvId(n(EuH><>!}#0ER$6ex(bl_yH*A3-uyNP~8rt21ALm zI9|~*Yze59y^uEZ^&8S8f^yY!zG!}6r_e7k(_la3eADofQ0-Qy6{s9Fpw~07KthF4 zS2DXToFW0trv1dysRruAO_H)Lh$aFT2UJ_21G*CwDmmkQVnW9*LK_OQmr#g+$Sjw@ zmki02%YwcRVga;+L%x&Y-ac4vyhTB260;?WbY;3*PO)~r;XAo_(!6dNjo z;AP=aU3JRe$U*@FP&$9D`DWVOi!)3=;H_W3c8aakWX{cf7Yk$1($_C&<;6Zu60%)` z<5ueST_(fs3hn9B)8j&qY%l*DY0BTi-g+~wuwAXNb$_w!IiuI(2t`WiJC+bhX~~5E zAysO~VSO++edZ>yucLpybfr9jX@3Z-qV}Xp54RVzo6n{1r0Z^QJ1@w0Yaiv3Tlrbj z1|h`nxmtFembCE~` zU;*8*p;C)8m=x!Bk(~VmAzNK(JkXz3R?5diAbZJ@b|!w(NmsA`oTCT`YH&x;Pn76| zqnNNK*4>^MwVZc+g6lZG*3uAo!j^(F9cj#+LUtpi+Brn`T0E+6{JwV^r z*%LEi%VQ6raL{B9fP#Sn31fPCND_n~&&>O-jbD{>Ofy;T3%EUnLNOX3wV%+72%pcI z+HnB3GKgc{f94esAga`KEQZp}0Ut^_zZh`W{23Ff-B;|YaG{~0{^dZ*=`J68eqN41)-12n5tN{@rr7#I|Gdb{nJP>IY zaC~$|0}aq|!F0V6R^lQ$MX3Rta*$fne8lbq&!u|>G8oDAD(omM7kcxerVmBk7O!@e zJI^Y&l8y&SCj1iYytZt_rYa!+1h!M0bDYy2pp2q5(N5`7ln}k~ z2ufmSs(BVao-(-aBHwEs<<-kz^~gaQDHa`29TeFUJV1$MHyTi-?G%+ioutV)u`)A#?bBSNtPjN)`p# zUo8Uc+y!wyP_HavOjMUJ+_Yb2bPJtiCyGkDpIpXwu{zm}@Z8SGzy84zI>rVMt zzL9Y^6j#-dOTe%G3T*L29L00OuJQ5lrSot!5Aq6qV!d$#lslcB)%(vHE_}Y9yf-Z< zQ)X(PQKwT0Udpxz1EHGx25!LoLqG`n*E(BkH#@0*VB*e2e_9gQ-)Bq&;iG8=?x>EN z*HE&W7Q*H!FJioZ#5LLZ^8E4$+i(~|N z1@AO0~#70K6O-NN=>&>$^g;J6B31Wd4W7&{-|1oTAb1G&{;b15qt)U*Ed!o|7TeFP?s#?F;ul zE>C7j4h|y5>=R1q53-x_EiEnnLWrI{_vbGgv|z9&|5@teSt2Vt+R2?%=S=J>@J@ce zJ`MjX?HEl3r64FE!FdWR@niDa!lv#rpH4yjc=5{^I_;~P}H}6>4SXqnpsC8>bM)VCFKAk$T#O%A15g8SgWc-lK!Rh-t4O!xa zv`@nCLGNH^pTW4VjMmaVdv%$5SA5Mw7`=);PbR=D`RYWv$B*5R%e1@VWH+xL$rdyk zeZrQFjV*Tn+!gxEmrbj1nLyETaB?Em_C&Szx0WIlanjE6%F0^S*4EA{C&`pWy$^qr zULU`6^=9zK#>PzQZ^{l+>&W*VGVuD9+hm>IJLgaP&wQHYQ>Fq7l5DxyCUJty^8D)R z>Iqu_u*B{I@F{o3tK4Z@9OAE#mh-);xYKlK(IWv!=u5`U~}>^|Z8Nrw?B?xUGy5{?}DHTKa&E z4Hvc>H}=X%JChM>p0%-idRVu@F?8EA(|f-dh?cD2DSx%&4aINv^-tVnWaOnny^3}h zDIgqAh)He|d*r}WQzZPVrRSgduH%=mB>Vkn^O%lQI-amCwdfEcbQC-(om$^L7;X%u zHT5w3b@$)i|KGpp&XOmmpxA`(e}8pBQ%mbv<%Ni*%!)Bzv2@aibBFDZgI~X7xF`8b zTao>F{>T=ntP}>=Rs)KMk55HKii8=L1pYF$Eup#(Wjpot{d{+}V&=DBA#rKJ|Czz3 zkf(N$>m9p#ZdtDhNBPO#Cv*CW#!9wvS-byw>!4l#dF#`HG~on{aviHA8VuRq&ET2# zNEM9-{`u#hzu9gT5~>rcl#BNGmZOYlQh%mpO|0dor~fXq{`IjfPxk|2{d(0;dT(hf zws>Y+c=_|m=e_qjoN~Y7UUAu<56H~iUdzR|0NQ{en_xhGtPhYe{$6I$$S@z}2 z?ZbbCWLb8s{ZFCzZf=M8&(ncr?CdeRCSE$BhG+bGogMg{u5VPU_L&*vkBN!lefZ&@ zj?IPT_v;d9leR@hR8-VZUhA|vaBoVi`rU+=FJJ0cW_;}95<3}S?B0cg@}~w>_U*HH ze(RSG`9C%4%6fAL4eVpiLe#$JgL$ORi4!r0Qw-x#-M3(HZLoPV;VQ9j|arfe<-aq;p@iW!S!ZP)ys|6&ne zs^Ei)p)VO(*;L<;`oA;9zrJa)=D)M0zy9(6dnxs^KNBnZk->^H zdMLA){+t~ar2cN|L)Ckic^iuo}(c*o

39B&UDoyYI~aN*cdADrWw+);blR z*;n&xT#vH+v#8RK|2(JR|4b3q|MEtEean~Q`9INm9)6OhzGX9lX!h5JiJ7ZAXxx7_ z-D5Iq^=-?lOe7M}>FD>uhhBEgvDp8zBjXg^XEG;U`~Ug+|Ghcm=RiGuwOLWo#JWDI zs?cjv`{2RVbcEiRYe`8-Jm_Be%a;~IBBQ+@q8D>Zc0T?0Tp8Ez_pmN+goVYWr;9IM z_1BIyYt{rRoHTo%>y!xg6}S81lK4lD4r*#@qCyawT#~D{IvI_j;&F@yfw`D*N|a4qlxhJn1Yhb8a4sSaDPl&_ZCF8_XN z(Tx5bDZ7;6{O{jSFXmS;3^j7TRT|817uS!;Q|mT)ZmB}t0)EeTseQ>=E!E#Yzv$`n z82tLi9h`dTjZ`b$HMUH1a>g%Tx3{xebz5DwJ!8=u*|4v!wwEto9zv0`gkGeddFmGa z+8x-{l=I}R+~5Ht=MN`T02IW9-!)2fw9Vo!@$8bD!1b%*T%p zaZBQ3Ws(ha4j#PsG8VfNF-)3L2VzZ#& z0el+rb>yPB4W87|(TTVD zm|6b%wYbhc?ITCxu~N|w)o1{lY_kp>Is|lRu$V{sQPsjnT&kLyR}ZHeCnqHdva_>q z5f|6S{Zh%NnQ-w%Rg+e2icwxV&4cDVT}(8Lr8eLJmE3+cy#N23gI{ zcT7G)ze!Y_?$U57<*h84eW5VX8ST4g#;K?NRhOfHtgOLO`JpQuLi#I~H6$BI89BU> zprUzh<3{t!h~!{}iG8GSU}jkJDz0CzbZ-9Q>S8}Or)Tq4ZkCa0e3u{T@ooF`bidE2 zwMU!ZCdZla4(`jL>+v}43di^M7mP-52ph&>&gxg%)Win9Rh;!?&RKPJNx9OhB|Osi zfZYsCJO|D{e*D-4;IeednOUu_e)~HEY0xxEa6kuK#j5J!`7BSnKT(Tc{>$aTRW7~q^!x@$}d#@3w znm=_ap-16=b(J3dg}(<)_o}O@)#bYlS_Q2X(tprk;$yUsL-5MSz7(exx+n~{b@%9q zStV9P^4Hh5%%qJIgpa#U_GL+!l?J#gmX!r?MyqZs&}Q3s;4g{NW2im#%KTmrHmKgT zcyVFz4_7&-i2gG<;*OmMja)yUzb$$~#a~bSUo7c{Oxm(8@?!n@aK7yYM_+c$Q&wLp zw3sNBOd3ka?Xxaocg@f9g{|AbdI<-givv-+Ra6oZEdDC`=3Pf-u*7u`+VWHq+w5h ze3;gnge|cQ^g4EhX%}c!VeTa2ZI95P-hHJSO*uNepIj%teK*ddJO1Hstd3~#^&3JB zqdwZ^shRjpJKbG)4B4CYsy79z*fiwsYiY>q^cT%~pX;zKrrZ3M)6w0bIGa;A{`HQ` z%I6Qd|1~*SshBGER(f}T{$NmiT0%m?5E}a)JoM}S4m6_hH!Pq1D>)X2qJ*HvW^8K{1JMOwf%uIDC zP6~PQZ9^4x2ak}jZ&NB5YxBRLP*yZOV$clMlZ%NkmqVrJu}i;kvwayaElx7IEt_+l zhJ`QeudAHKH8}xzb>ewPXaMUk@R6t*!Vdh9I-gx6#-OIc2_uqe8yu7josNkTXVYs1iD5^*Li3$!O z<9zDh-W{PgZgd98etU`HUwtv50N_N}jdp_^C^DH6GiS)ujcyUmGZd|_}y~m$p z-ueNWcs)iVecRQEwA)072o~r;fS$18+<&H@&ZcpS~eE=@E z$>O)#&!;V(`p%(7!pg?R&c&5bU45wi%NL8j#*B=Oy(X@o=iPPhj_-y(eV6fDSq1q> z`1pi>O2LSJ``54fTv_+-?VvIbc_nrMpX<{@{Co2; zA>H9j2yM{x2f%o_F4&@{K6#=p)mx|kgwvBJPnsUQjR<9u-On-AJ(gNHtH8nj@B6;EL z+24#@nw?@5Hx(GC5?=?v=u9i)lU09`D7+*GX$*9Rjj98K9hD8V$f=Uzq7w(3kZQ1itT8Nhh4JIzLhIi_KbH#HUNu%Z777FH;wnHQj==d?r~kJICc76 z$s+)luFQ|NTF{ctmA;8oGy&y!(5k-0I8~SIV(98AZ|}-3C{EH#i~3r0&gko4R?&3w z{fZN|&AB>oKQwmidhz*m=i>_D8k?-1Qvn69a(7lx&lZeGbJWRxr3`Md(pC3fez`IbMvyo&8Gj+AO~jjpe} z2@)L0C7}Xndhpb#B%0kJTXiR<4W)a5h!2^XM%m`H-_$Q_%&-nk$^W6!_c3c*XP>>_6%#&G37{F-E3pszUjq4MmvC1y`Ph#!5* zGThUk0Tc@0q6NgjA*go`Q>n;7o-cT2tV~frN~)py?AN9ohsAxTSDg}Jk=A$c3X-Zd z3zk3JZ@Lda5s0d@;j43=Q-x4g?Zk)XR1?L;T;luaC9&dBRUGR}8bZ`3ftF|C z(vz+QE%)ZlEpQ*Mrfa@&d zTRU-QF1jaA#$LO24IJGQx7Iy+9IHj0Xg z)uov!L-4Nnd>T5(zK>aUBnyRvhOS(ug}QG7vC198cfiPskL6u1u^g9G<8tYTzktwP zt&u$&&ZjQ^WpL_h<&z7Lg+3`Uw?LJ>A{ya6?Ov2g{jF%a&#or`MWTA{Qn`C!VXLOw zxA_d@^+g9OBsf*Ix^_!?!@YQ)Z#U2RP^yAz-t+wM{oAG zQ@_=21aR#LcL-|Tu&&uQOJR1(fnaXzgv^L&7`!!*jD_yDTEa68?ZC=|vV1a*aqc6% zTS6;zo~RnSyXVed!lUQ#7FCz~5%*qrKEuUq8gX{5g&9E-9wVpZf4p2b=T$z?(BX%7 zo%N$PhKC9paXBjI<54v`BhfSUqhi`QRpu1x(!_A8PcpyHR8{IU-l}HH!|*8M0{3~v zH$p>u>J97`=Pr{x`FhnfaOk4kg%=SpfGSG3cfR3o4uA*lz+gRwzE9df7jyeEKc3xq ztWu^&kou5{hQ`wDHwXeTf)(pYR0J6-`e^LYCov3!+Y(t*CNq-J@KA%F7DiQ7Rb!!7 z9)QK>yyg@jpgQd$>2dLf4%gkMK0Mw7buo4Ol0W{adY@)i7q7KR=kQ^x;qE%B|8J!k zivYMMO7Ij1Nhz5-!Gp)e=RJ1JslP@3Q)YNL&-8euPdz=3nv+ghQi*3A9H#$d!PQ64 zP8Q8B%`S` zv#FwUSWbuY{``6J$7_7& z%$;g%07C}(S{0GSi4|W5T>M*OB)YuJ$`?UYFbe>r<}5U!yTF<}TPoh}uuf;wO_$#H zpBw72j+@aDFO=PQfYFp%ou;Lyr`I2&{clDWru!m`$)Oqzwc#}KWsL;sVb<2x`Z`z} zO!)xi(iExBUFMu!i6yrB=z=RR{AW+Hb8x6!tFEpdYVqjrg2a@?=ia$S{`=Fp?&IyD z5_TP~H9JAqP68QU6Su5hPi@9K^m^z6un$W>epGR8FgmQK1AM_{ zsq*sjMg)ZcFB4O8PCwn)K{sZ zc&CSnjXd6cD0n?cS5_0_X~j$;nldysSZO^oH9qmNbtV>6UTeDTOKoi=W3kiN@V5Qy z_6EFzNF75(Vzkw#h#o}&+WBn-uUrImWQww(b9A+bnk?z;#|t%pRB$?iz(92vLUTU? z@bu39LqT~Gv5i!;r*|cP#pj;>eE%X}H5xR>>5tuYiF5z_oeP|=@Xu_)%=OK#j6nCk zj0Q~U{dGPbO(+BtgORg5-?QI_Zx`!qZ$yzuDDhu8iG$t$?gX8xMW59ra6auuAg~AR zg$U8v7T6f;f4J?vLbJC1-^AKpQ1O1@cab!R3nUXtUnTkZsXc4&wIgN5yRw9x^Nh^z zI^86-Bh9R=`$xsL1{CjQLrV*8iJ8y$tZ;w-=vXdbzS^4)U5?!iMKex2CUNCf3H;GC zWWJe$Z)G(=wnXbR5PEe2rI?>yG|`J!(cKBRd!Ox$%X7`0!9%LA8 zK0Gez4~G(1@BX3G%&D(Y2bjfchld%5kSECEoIDA7M3J*o4^ij!?L3bke-PpJ^_FkR zB*i-fTRJ*AdIF_de(z-5woa+yb!j?gQHToX-X5ZRr} zUO7-&o2a{u*wN0FQq*#UjdI5_s5Z?hS{bxTWEV8B?E81cQggc#_O|YMoAd|U#?A?SFSPk#X+)}XyV5i2Vdvxa4)%5GwXp}``pj^FyNvBj0K z7)iAkUQK}Mx3@dQ5_YCeHSwX+JNC<$FTR6kH*^v~&>ECK1*$Tq)z#$jaX*NOg2TFZ zV9wn0xw1fYh|3-=2L}4vR3RxT-9+8gCDK`2BDv#b)(lXpiE7{UC`dPAOb;Wyb3dmA zah&S-8&Fl%Yfj(>z3Rd18VWdddBAl_m~D$rzpwbQ=YRV;7__y`5?WWkE5j)>ie@$^ zZ}Y7q0ih3wWs}Y-=lY0rR;Fv>BKuh2{f1sloUi&WyZ(rUKqrIpGu4=HZ1*&1HB8}S zPdjuUs^49-NptDKg$rwHG!%KStezS9XvZz|Y#e_qm+ z>@VU!9nY8ucW$)w_D|liTfDBr)hriNf3EXXk{Z}n;nWY+B3SD2s6kD&!s^f)Jd*R? zNu0-I?6^?57--Oa|6pm;fF)2|-*6x9j(K%`Qx9yv24Fa@M;|Y0J`+}RJ9UQF!pc0t z?c|O_KS=z(zvnBO+GYUe)IK<@ArOy6ppWh$*^3@|1nrlzIf)1Pj z+}cw#JDoZ+^iZ*jSo))5FBX+G#6YM$`m7wq=9;RoNOJ=KZE{@PW}@pk3Q@8%MP{Ys&c@HZX#NIYIY!qlOqpL8eeQ;bHHiGX6=w?fGyV@r8@KxXSfSwi< zthX?Foj>9`!5lbuV8F9U9H(&v0I^X)epBBCchMC z^2_j{?z*j=?HL4Ew`j#$G^SgU4wGR~6*Yf)P9|hpU%Sm&cC9UkLUR7)Qhy~ILxWQNNL8!NbS|8>T! z2cAS%*wJ}IeIKgziKkJBXe3-%#2H1D8-`6S zTIngvBn$-tE{9AIZ@kD{YMjXBZTjukSh%d(E}xDNLjd>?Vp{-xrAKDB;KaLxR_G78 zKgzexEj%Wyv+eg}lOp471w+?%?cN=7>sEYKw6Zn04P={#pG6>8|Ay)D@ua{`>*BQ5 zFLrUgy}iDYVxzKQEd?G6((5GqV_j`ue|ME5ruz8FlaRZ2lL0d<@o*aR-Jan0yAND@ zviic!Pe6F2JNGt>5IPc+=Ed6BhgigjHTPdfcf70EBiY{O^GKC`6<*%@qqiloAOf4=}!T>$v>HjrAS{ia@*9YrtGTz_qJIJroHlG-aj!9CdC&RbzW0xe+`Ro^wr8l z-f=k}XnkYy7Wvuy?8N)wBw+P4wm)6v)0?{ULg($7A9 zpX5))+3`w9cr{ql5+}-6z+uaO`?tZ)ozDisChYk;sDs#`7%%P?6BZV}*Z2O*_%XGC zrrHg#H)!Vxg#%zGZIP9gJsQgXNl6rO6{qgnS9VvuA+EcBxvG42Ac$EVOh9<`k0aT!u&KG(t;W9`0FSUY$m#@DVnBlQIaI$5tLgcnjgF>*b zpmk))d4pKq@!TmWAW-gj;8Cj1OsAKR35^?(CH-%P8eR3ddRF#%T-Mns!sjfYLPrFcDu|T-spy@NR64x~!1J zoE^KFA+IAj!H3JNEHwYtHdNzRiizmj<$bIGF;2_)&?V}+bGv^g!U{&MJURU{T zPY0&xc`M9?gfZ1(eQgCBTg|;p-eOFc|nA(sCb;g*8Tdq@2I-OX);uDy2cTCQQA#W| zeA;gC@W8D@JwY4*+pSh@Fly9Ea-v-+FaCH7RQBestS$+`fDMU&KPI@I3~_Ipvqo*r z<+&4nlgoI;nt49zToaAkjUD7Omqu2aj}14}?l%vY3+ezq5*_4QH1dIC`SPmc z3@MIv3)|J=xA>gosetr=RT>P_JJmWRXK!l3$nBegM@(HsdR_Y?erK_ef7vl_ZKOFk zcDTjMF3#QRc$SY8UUuEj!M3ld0q%w4`OI)(lIa4Z9c~|lvP=qd7wFj`D0qdF-(<;) zYxS8eAXm@47oCSFNGG8UqynuQ&rR?2{%|6+i|9;rWs%6d$yjgn^>Y)8IQaSaY&Va% z%1J3t!mCV0`_8LZXk#$yK+B!Fs`uQLbvcYTtczA&iq!SQ-3GnT`*VXXe))17N$j_F z3o?E}AgNCU_PxSu4mF29OR^a#D%@lD!a%@O9vyV;&tqMvo5;qgtQn}NsM`B>|X>Q!DH=FVMhbmN9q?FysV z@#)XH*6uzhZ)1yT8Dm?4LjR~+WX{-uL7B?8mJPySty%9O<+MGWyEFhoe8zn9Kc0>T zdbiAWc7!~LEE_!^VLaZ&{JJVR;np42XRuwESWxEWzZe9Nmitl%JiD5q-Q?v^lbC z@X4CG;fy0aA-cw|vR7q}?E3YjGSry=gqiwYyzX@l zVjh1$^VATGxDf-T&>mgB41t|hQ0g`q8)R7N_??f0tRP}P^||-M6EnzGArbvkZO#fbRw?ypBE0$HP_&u5pT;TyF&i z6aQWMpw^i)XWB3^g)}F>zgS8y)-yBpTCDPhYXOL{pGSRGyzq?f9>jzgn-s_Q8^Q+@ zv8s(*CF5w(i*o4KgT~B&5taI5P}D0(5%RlAu#|mUaTwhGQr;bzh^#6lC)~dTm1NWH zG_~8}ud-k2E|(B#I4~#3Ci6qAirFrw`1sL*##;D{O34DV{N@urV;5uhU*G6gw6OA) z*d~PFdQ<|lTnE}{KwsaLm14BopaM_3Lepa#MxH`+{!%_3fN_hQmD2NGvuxfroxgrs zZd$IeXlN)QIKsH3vukHvSBFiQcZ4?|%bkr>7v?-U`Q|cAB1!1#s}}G&9(3%f7b3o> z;~EarT44n5pyc)W`T3riJd}?#xUm~k+#qubOyy?~I~*Gb_Tiym(%dD|tJP(?9#~nX zd+S1|Vk=Ve`TlG{h^;Nmfrf!fpBXXDR=ktSl$)8i&DymL`v;JjJxXH-FLa{8WmyA)rPPOJ8*s_a<%lcN3@Z7~Pvjm28uKH27}Ajr31qz$i4iend0(!nwuPAm`9b~{LO>+7vmv!LcQg@tkrFoY zs2a{fJJGhxx^f`$914N1dwz!KJZU&idNHFd7@Y2~t=gftUHMbh^7=9jqDJ7k9kzlK za5Cim;+~5Fn>KB7et+yDYX;Vo_C)`W=)HlL5j9c*fQ&|Bae%=;n_c|82O%@IQNYx7 zF#Br%R8)Ps$hW%l*GRP5xw~`6K79BvOF>?~dY59V-ZnTI(SsO5B4fF#u7$ z1paM<&{6V=LniiYttm2WIrZd?%2WzgE5;z3*P?o`IV(tmH9aHdLOF} z^?ndTPC!6>ue!SWqE&yb)=UkG_64f#D7McvD+@}lt-J|O$uhs4Pbz7`uO-EEOT}c#IqDi_RYA_zK>FAiM6FOjg-Z)S3BXX z;fB?&YV(xL>gSA|Y6eByWh|>7gvq+tnwn>ReRHSm*#dsU6cKBWfue-cK<<@b%!fQ- z)TEthFV`#dbPM2>&3w){t{-6H)A69(0^0LhrAPRlibSAT!9$?amJKtWFV|dLpW=qq zyES979vVwn+OrP@9;1H-hwP8dX+hwPeS$Nu9^C)-dzK-j}`&Xd=KP5 zm0C1#&CihbAXyHekst1;m9)H7_^lE_$@8WZY3yh8dq-ttWOl0PnkNv& zVCTtQjawKtXW9M8Eaz|BQIWcM_NTDb;~I8*46Pj+dN1DDv7w6~&w{71d%>fuUcz7s zizAg^dawX$@o@f0F{ejety@B6$~5eNchL!DN&$rUy!%x^M#R$2`TRvh)_<<)fz+`XWt z?AI_e*0L3$v6(Ap6RnW&QLQB>4uuy>Ws|0Xk4WKTRAt;4L@jn1cUmcF9<;**VVj3a zeVF3GQ&Ur{8R%ohz-)(R{wT}3?|Yziu54erR)&{64#5cf-3J3Md0`2!{(XB27B(0< zs6}~q-oF?-A+6^fX4U4EFL|PIOaBFK+e@$`ZuZO|2~ava-8!oy;5*=zK~*(K!uZkA zol{*JJ_+xnAw#yZMK+))?Lq#qemV!qWWPxQG50%G0Odi?V@EFFK>o&~^PlQtpS|1i z3Ad?7U0oY~LesSPca>ZBD{kAbxYSoI&{vkF_6mB6aOQhcf7XoD!U+NLpIvc*tdoX;jb$X22G2@zHsX~XQ}oi-qN*24fBu`T4JNxrzBj-c zwR*9ZJdq+vs{5sGlpCZn9Fike|MwqkZIE9BkwZy;y*=6IhS-B=C-2yBAZ;L^nFmzG zwlKSA+m#zJG_ncU3Z(E#j1=_0B3?lkkxSg^zQ|%!!MS|CY2BRk2xzRqx*!$ z2_1R79%_42z~bWJWL%hVZfDeHd}%7;j?C`ZWNy*4es^zYI22Sr5k9;|HYD;2iB^D4 zX^>jNIDQS@;}s@1tpk3%2k&LXMF*+Wl3;&^-%iG7W@?r6>7#9NlOWcmNIK~W4gTG& z&DPJzh{ttqa9(zK%z0o27UtVAvCnzX+$*HvjW7TOQl4?z-WHwr4*DKzu-uP*Ip6pt zthC9}*kJYH!w0{4uMezw0&VhUkGWQH)||(9IO1t$AM{&22i0;)=X{zZD7|f$Vlcm? ze8GA`((>|>>=SOY;3+axRyVvFTrkJis_Nd(bJ@T;jBtmyTQp5_9W4#f|OE5}& z_|u4rAsS2+76c_Y;D{NQ#(q0?k@u#>fus<0I6~YEtPc&rwO*)V_KlVgOJM2q;#M@$ zPkj)D4Q}@A>^u?gsWIU0rJ_MOFz`#U*>7^OcT!LPnH9@LfZaNw?>oXs$L43#s;E8o zsG`bn3RMgn@bI$RZyK~AW4CocWF3D3|wW}RUIROUgiqCsnXol zi5$-*WU(ICj@!OYRl6(W)Ml_o-Q5LYi`-Cw=`Bv1kEXBkd(Io#$& z`OeEwCrVC)8r_tZbYU)*#ZpaI27dqiLvTh{2UptmH=Ft;MB*PQ;nMAbQC`Xbz<8+P zmU|23Y z%!)59A3!!sgeGut51i&>=Vujt17kK4GeiY#I{jjC71TS{emfKI@e|>mKVDU#8A+og zo8t2Q&^gO+U_=`nGrv${_bpI+o*_%0RPx~=T2?_D!BZ%b_C_|)fClcgPHhBYTt)w~ z_7cZH-)J?AIDT*h-8SjZB$;75m|+wF#S$Pv)mrAd8m`r1kogs_xIi~aZ}~dqpx4<3 zJucA8_8dEQ%rsPt#oKjgaAO|>ePk=<^hOE-Scp1WhQOy|9GZLqq7 zaLR?S{p&VhIR+|RFsfUDp;;d#Weme9JSYd@%N`)?MANt_v_|a6(YVp$hG}@2LJo|9 zV?EZW9)$m^UWbFW_{CbF2C^+QUA~+UV-woGJu+<@f_9U~RY>pA>b(K0(w>>uBGiu5`IIzn9U8#MW|0nbj}YsK zM`>`HB{EyRCj3o5NXvHd28Pho(P~ZZuu2U|Bt-vGO`)D_;CqY`q za6-U=187FD=KX7rr-!FUEWGQwk$jzR=eF&}%c7}$y9CCx;Wtj}B5#7ly_n@yh?$SU#YPCC7l}vuy_av_2Aw^7HVkJr1X5fI9Z0`tXqa5~^FQ>+oU66offKm7%DlP=Au8MUwsz9#0HlFQa_!*Tcz_nm# zM>i%5A#iRqJNG?LR6?bp5p{(DFn9^Is<3IHW@`o(Ux^(Kg9#{;2|a1%WdrMn5$rQ% zMpd_6VdO`iGfd%Zm`n}R6{AadWo}p;C_s=6sMUlB=THj`s8;p&lU(<(;i84N=rGAOq9qfB(_WwN+73@f(DJVv%Qc_f3ktiFZ** zidF41Rh#QDN%)i{hT1i(AXj)M_f1(AdI# z6lxe|M+WSnD@>9$*apFfYb6z1V-pK?G9~E;;^Y<6q)G6z+?A2w2R*?NzrP0+4@YFg z)ta4BHCWVxSmzXKZ!l6V`AYIqQdx~1Ia@4IoaOMY_Am}NwU9n<+WS6@(?#E~m6jY$ zk7!J1zXnwGHY!_GGyVQL@KajBPGD}&Qfje2Qw)9vsvotB!eVQzgeR-#Kb2wj`G=8Z zORq;5?{{~{|F0M`|1IbWB{BKpY;?ld(uG2sXf zjkyG&QyI0QJiidL)*ho!ibQ%Ff=2@ONgqYZc(mFYNn67|N=h$?TU^HDaG>_#D(oyVS%d`)lyTUL%>dG< zmnlN{RT%j{TR-Aq(D<|V>&AS*jsP=^8{r$B?w*_y4ufJ!KxH+ZQ4N%eMLvEN^Bz5V z)3`miRZ@fuo5QbUV`Y~Qi!HD+AXP6G)ttH#1G2JU!!RO=!IY>Vth)yq>I!!D5ZCF8 zg{wK1({m!hE8M=6lYPeXxVd>5nMmZaL}^CvjWKSZ`v9yJa0+myA_{jp7&S@~H^M=c zv+XvRR>pJ2Z{Me5BS(cuoAM505<76a)px1cmG35AK%cgGbloeA2vrK~Tw|7bfab96 z4krZxk>N~n0CZL%&_E!U_D9z}_Ryf3LX4aCofLw7jggiI=#~c6Y_ovCWjye`Z~~%K zLxt-e8|=HdgtrZpApjdNHn%`Y(*w;xdRc}5pTAJ%=7#5n#aXkrXKotU`k@4qmPg_N z@hCW%It0(K(}@d~VKBc`l1CyEHjUy-wtu-YM(MVwmWLXV0>K5&1G7j`UWTNx8u_8X;(@<=tZ^qi zZeOn2KmTKs5(Mi+xr^nEm;wwGI0Nd(5m=I>239nQY-{_-E3rgj?2|P5ycza`G;JPi z!oC3p$ZJqXq>n;`Yn$IHDOXkr-E>7gR)n1avn6oejb2I)%l8-e zA|FPsy#KR+o%~tA6o}on$3!mJ(Rcy|$I6D0_1MFj@S;?2D)kT2u!xw$Mj`T$hAb}x z2c1)yA5QlCHjl0<#(8CeI_U@p0FgtQ9Vx>N88s$khr1SLbE|4F5SKXF`W zUuNLM%Ln>I-l8wsICfQ^i00jG#24xLV?PFeQ_t7i*RQjUkB>8r3`FX`w71udtoXMT zNj&di;HuO*H`$lD;zzA5_jXalp_DS6VC(_t@p0%>6gq`MwG6l^<&5-E>~s|&fl1NF zdj$svDSG0VuD7M^_#pZwk3_2C*#9^0Y7&pQyT{bjoa&r%Y}V{S5`(5-hWI)>CYF2R6K*Vzy2|7Gn7iqBsNDikTf{9Xh+AgEQujkK*$a%d zRiYkIRkjQ;w3LLOAA>%l2)?*_7xTj-eEV}Sb+U>hCrA7FNys^0=7tu=mI0F>t$L8T zW%?S>vTtuAPHeze?G3D7CAdj`jo8Swob>;9(r64pXgl|nkgSs$LGut`e(o>J*iCe& zWoww9iSl$*FLqDjc89OU*ild+UkYf{hD@xAVAM1!U=XAjt6Q7s9qu6o>Z$tc>M}^( z(99#Yh^VxUpkel-+DYt|rUC5lg-IF>Vt4iKU0xKlKw@pQim=g|vn&s>;b>452|4C@vt!2~DEsnD zLh{E~;V8OmA`yGDwqidWu7_Bt_RTn89l@kTOC%hTzL~%?`*cw#FOzvoED}N}U_||~ zq3aTSAeF#0NEgKjt67OKPa?4j!;_kN^x+xpnfK+tL05zLJ0ECG0CH%dZZ^io#=Vdi zsd^Pdq~yUa3~tMt^kzH$rr%xm2XiC)_j3|BX^dI9LDADN#i???k^Cq~lMec@KVTY- zpN$3^{qpaa3uE_}A)fc2uhs02t^e!vcb0!f@YfIQPyuoJ&kwU)`4f8X|9m|-3yAtZ zU-7H|>jQCEb_o2x;#aq4&{-BN-eCxzvtdN`)k1UCU-mxWy=Vte?*IgNi;+n*gQ!Aanra->rcSWW zFJHgbcVgpIBtI=MUR)dOCl`PJJyG{xOb6PQXP(L87?dw~0*U`VE6VU;bB?OlcdMBLSm6eO}@H6rltWkLp-0RW|Y5HVY~b!+0@2s#7j;739^0zf$|EMvkn2&p8jPIaH;iwt{k9*NSqtRsBz186{t4@Jgy98kaz^UfQhxl=*#pd~Nw$iNX z5(3QV0WLv8Ub_8;RumkScJGl3p6HVU*d$R5dbASh@NI*QM24}ihI3P-=b3aERgGV% zL%1UJ$29H1^`%gxjJh+hPwX-_5R@^!Tr`k!iJ34FGgG9L{U&gyTP0fQX#zO&kkdfr z?X@)`9h04PiMrvA)%&a9ysF6e=e2kazG1#RxXdM}m7=L{Dl3B#{{G8-^cych-jK+} z|K|a1Ry&MS|Bj%BpHjj@u?LJPCg4tcV!ltqQ1M4bc^xSVXZoIN*Pne4n8QZepQ_RC z6<>h;frcln>`F-SArL%l}?u9qJE`~0^zV6{}5g(2)ymyPLIwtN7RVHu=OKJ5RF z`(B{T=XRX*s+Lb3_j5Ul2~cKt#olRyY`WQDK>T`sem;|y5c_~QpxxPW=@Rg^G*gp; z5qZ8p@De};ZyTcUe&E=LyS;IPzKsulLJ2HVZAIn`U`Hm7lT@>OuH~70fOzKiR zpRM8-FT3LJOg-5_B#A&Nh>{Z4b;VSK8(dBXxR7OIg5q({QcIT18dugoX>#}53*!g3=Nj0K5?BEgt*g0jpNd%}=X$#I zd=?siF`#gsZ6O{%i)9Sf(Wns(0_tirH5p(1(I=79f@yJeSZ+i`Aoia*H;O&xH8ger z5(1hg9!mC>^(M;F5v2U;8y6Nta886YFrf@THIpU$C)FrEor?ps}0?BKfHpJD~W;n9g^G$aFKu z?EQ@`TB3Z4o;b{iB#sJCTP3BPJ9ok+*-manu{H529`J8&9zr+wBq^li70L{IuxMvh zS301OzW<%hQUIZpVjXV92`TORi~KK1W92h?pH!;XQih*0U$yz9lxE`&!0sPd7Ztg9@hv}pmYAp7i-r_emwOA*6P-_*_r-X)>JxNnYQnU z_HRQ6r$n)zJCIuwU}_a;?&5E|((4Wzl#p0XdBS{2lxNmF3!OSp%n*B#UfrSz9a8GJ z4RMvs0)`G|52a+2F*i*K-t_u%$028gEh;irL3dX_Nos90g=QLNuwZUl6E^j2jKWOO z)nwMHJxr9DVFmXj4Wc7!2G(4Ox@@2JefzgKO(CFcK`^&e%5w)aQypf63v&M%BWiM_ z60!}GJqngskw1ztSFJ_poEx+^QibQUAs^PBI}voh3E*6VuU=$!3+ktD)|@Tb=Di#@ z?UEDO8nwqi8?FS~FtJ1Eh2`?mk=zJPCI9j}I;c-zH(|Osom)Y_8Ka0N z8Rk6R#USSlcg+q$c8L@yYE@%!SUD&PcD}x1Yb*G$7K7K!@Ma*;TyHYY#CVK=kbjQZwhn8on)*%$y zkLbWFxH!v^E8C)pGZp<2(MdYQXm4*Xfr5G`P7zaZ03w5V{-&DIUYzQ%b*gvwlI`nB zp6!H2ZHSXo1}0l)6>Kqo{|u%H{z!x-xDIg#mV=z^lN~Sck9BA`aD1V-v|+awQ!U(O z)(p2tCqe@dFbW~tklayN9{~tG-i%|$6R-}XaCTE@@$jvn)Ml&1WJ*{j)ef#(i%cVb z3CW*G(QMQ70ZJj;VxM6VPL6lQaIg)dnQr8$FOP=)V^8)DlqY_R{%dT@2QZh zU9Mljm59C=cZp!104LGZBqUmlY@iW|U>6oSeyj~Rx+VSH_GKOwg(FTL^zUZ0iXxJ(%ZXeFWA5Le1lt*)55 zemcJz8A%qFkPSqjY7_9rRAM5ULv6YWQums-aTnMwi*NZaF@j3!0CFA2 zo0=`#%R?yW=Oo)j*dh(PTT96SrSpp`dztvNO@o4qM4Y>2A9-xq0IN~D& zkDONQ$&nq{V%D(K@SQR6_;&JL$w~;uSN>%zI07S*@ z__UAS#ow-ofmlj51CC1U>k@ILYh(i#c14Fs5otuv4)6>LiIB3~7a5Y|q$P@A|LCBSsVZc^V{t!^x+)%Il3u;jS zBpXba_LfHN^ZjQg4(G zdP|Dy7#%^g@X2^2%2_ELnu^HJWwL?>Fds^b5c~^6QOhYKd~JrkEFu_{_dujpr!(;s zS?b8EP9>f1pD7ui0U@WD_Mu>>;b91hrQ}aj5FJqpSrH5rPQnu&oS~C@DDnp^xvgPP zz+=Ua3#Bj9pN2$6Mh?sX!Iw~7YInP#8|!vlzgG3!0S6g%3B;&6;4`A7JLTse$ z#@e+Cu)S9yRvy49wh>z`@}8}`MN$EQJV0qWL`|~v1{K(Z5O3o*i2gy=1-LgRQRwN$ z`=I09Zk%m>#EU5(!t^a2*^+blj*>rh6d5tQ}U?T z2~lmj>JaPKxQddq^A;wEryf|yi%zXpOOF{+oZkenNW#$6WpWhQXgiCJ6q-ed=NJo+={8Y-hGV`Cb*B6KRI`*QYbEcw#nM?iX#ig-WMR*(I zGip9cQG(X^lsGL)@SyC%o@Z`wrJjwb31b<)={NaD9E zDN$3wkvn!cs~nmX8C91M&MhW1|MJzAaqFX&{s$=Yib7I!sFELi)lZQkN;r%r8n$H! zmt8V)qWEM+8#ezSXm6f|XI^dKbeR$eCTvS4j$Xd2y^<1SwbH`|HtduTpwmLO+V^2Q zKpV=u(dhI9sNx>9e=}ch zZ%5o)tbUfVl4Il6hz2MRV3%6Tqyu8%p3wd^A*L6b>J?`xbD7JWaYLC8iFkq7C0hne ztLSQmR|6W+l{m_!kYlD2OeZ#_7%V~x@874OsFFOeJ_Vdng8_{1PkGUkZ^Jne@Fge2 zsWp#1q-#>5?PG~3?$9@#d54>scPRRkgyO_Nj}2DXG8c^N)p1SASjgG)5tF=Jz7%zX zfscpUeLhkiwemk0@}|26I5X`=QLDv)WalY4BOpf~Rg{gP7W*dSgu4Xz$00S>;+O#i zT%E4#5+q;zK+?8p5`Nw)cX%T$BWO|UyCM2mzmAa4d(OZqUBxg%uEuqI`BJRm{o}fl z7sMs?TEL~{WDjFM#d4~=O36S=oGTf)DVFLTRJoBnB2>gwgROL8&)>$h68#ClC2;it zvi-f#kl498D5rtsMoLq|EZ~M847ClKb~wt1$WTm6C=3eoaQnTb4M=RP02%P9kiU58 z5*GAUhV2n@PbrB|J4r;DIA*QSXkKdxo!|GZVS#VEE?xW`AyI!e5t0>yNNX!GUOmRajuM^{tvL@aK6I{!&6F;KY-B_#-lhRwuGE; z+P9KVOyY#x-myHo9kSe5nO90SB~oeJ;XTNwF%U`ir#(K59vs!ZztrejJ+^53lke{5 zPMrQs`IdGW(+TqZNaAEfy~7zRTpvEvjrMdv8{h%4R#C&{>8Guabm$=zWcERe{B9+C!IU7L;JFR1Qk>}Bi=!}>%n#AzBe?vPAt) z7|k}hXwkjFrUGM0DKgt?WtXgU47y3Wo9VEt>mnq(sbvk3U2rnNva}j46*np~>+>9w z{TB?5@0=Gi=bYd7`aI9~d)SH60ukn|xN}!f6owbklR`=lDBPxVXcoT3zxS4^k&i#1 zvQvQB%#tF}w7mGnPt;X@#6fb>-b?Z+rDIXa27BNG;C4w|5AA_W7h@~slvrL;`mvao zYQN+g#Q5X$syaicj|_vL13!`Gpe8yChSJ*m<~2rIL9cUTezx3=@H3j7np0op@mz4# zY|(PG2-owSYF4RJB0b^%Ic%!~4`)>n5LzU)%5AuK$_X|Lv%jt>x4lwEdZaR`*vY(M zJ;OdLgQKe6br2e=m7&n|BCfOfUun+GLS(LIchkrPdgsOIa=C2r;A1K7y?KmWT)0na zkKWgvNo}*mAbBwkY5&`jd3jG_U&n@p(?NY_ftfox5Z4~s!wCtLfpuBlmh4mc_Nb;b zD~oz%iU>}E*ZSNB$eXSEC#1*5a^BPa9El$_fhI<*D&%lY4=WhbK_f93;yM;DJ3RXvzl_nCH)iwUz3sKhk$wc9{%wZf}F-L z+!fU!(XR!e_ZUGL8A~(4?$%n3F1pp|qR%hpme#OtxBKA2zB68H=EzNOLxajpo4+4Q zLRcw1MM-scU8r`&RzO%iR(|YC_SvOFMA8wRdOKl?6)wM^b|c-U-ls4y6gM7PO&p0Z zylG`8ZQQ+R=@f(!^(6l!82M_3%RfDIb4n`(dMYu%WS;(SMJDyxSNy(MlP)^GEImTZoxvDCs z){v^-;zCNC!m`B_DNNu}GkO|%>^|Cq7Cy}uG}qJ|U62MoWT7OW{sD>*{_L0SciOhZ{*5Bh-;s zOI*A=Dk0P!`2ChaExVcp&C3!TYY;7sQ_R^)1DezCyWXyL5T592{ybN*m``v(F!4nS zB#2VnKJW%9{AR}-RFeS05=hOudIoAM=-;oUUxJsFFw{S07tcC~)p@C2_uNP(9~E5P zJ&+h`XhhFbm~MV@A5Jz~zo_v{_!|xQUaPCq)mg~~db?O?>$~Cd>^aW_%#^r+6?gc)+}dq#VUO z9P@C7L@+iD(KJNU5C?4FbI>uG{%ZQG>93#s_1_P}BKyCcQ+dl_h@um$%VIAr{$bxo DbC#No diff --git a/nbs/myplot.svg b/nbs/myplot.svg index e79ead5..71da5a1 100644 --- a/nbs/myplot.svg +++ b/nbs/myplot.svg @@ -6,7 +6,7 @@ - 2023-02-01T11:05:12.042962 + 2023-02-01T13:28:31.436524 image/svg+xml @@ -26,7 +26,7 @@ L 720 720 L 720 0 L 0 0 z -" style="fill:#ffffff;"/> +" style="fill:none;"/> @@ -37,392 +37,372 @@ L 90 86.4 z " style="fill:#ffffff;"/> + + + +L 0 3.5 +" id="m570929429a" style="stroke:#000000;stroke-width:0.8;"/> - + - + - - + - + - + - + +" id="DejaVuSans-61" transform="scale(0.015625)"/> - - - - - - + + + + + + - + - + - - + - + - + - + +" id="DejaVuSans-6c" transform="scale(0.015625)"/> - - - - - - - - - - + + + + + + + + + + - + - + - - + +" id="DejaVuSans-6e" transform="scale(0.015625)"/> - - - - - - - - - + + + + + + + + + - + - +" id="DejaVuSans-70" transform="scale(0.015625)"/> - - - - - - - + + + + + + + @@ -431,377 +411,365 @@ z +L -3.5 0 +" id="mecc4d2f2be" style="stroke:#000000;stroke-width:0.8;"/> - + - + - +" id="DejaVuSans-30" transform="scale(0.015625)"/> - + - + - + - +" id="DejaVuSans-32" transform="scale(0.015625)"/> - + - + - + - +" id="DejaVuSans-34" transform="scale(0.015625)"/> - + - + - + - +" id="DejaVuSans-36" transform="scale(0.015625)"/> - + - + - + - +" id="DejaVuSans-38" transform="scale(0.015625)"/> - + - + - + - +" id="DejaVuSans-31" transform="scale(0.015625)"/> - - + + - + - - + - + - + - + +" id="DejaVuSans-29" transform="scale(0.015625)"/> - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + - - - +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> @@ -815,157 +783,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C0_0_b7df7a9159"/> +" id="C0_0_025d5f3c89"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -980,157 +948,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C1_0_08624f4a7b"/> +" id="C1_0_d8edd06a88"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1145,181 +1113,181 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C2_0_2188a6ebbe"/> +" id="C2_0_4bae061a10"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - + - +" id="DejaVuSans-Bold-41" transform="scale(0.015625)"/> - + @@ -1332,78 +1300,81 @@ L 394.363636 86.4 z " style="fill:#ffffff;"/> + + + - + - - - - - - - + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + @@ -1411,176 +1382,167 @@ z - + - - + + - + - - + + - + - - + + - + - - + + - + - - + + - + - - - + + + - + - - + +" id="DejaVuSans-64" transform="scale(0.015625)"/> - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + - - - +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> @@ -1594,157 +1556,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C3_0_ab1550122e"/> +" id="C3_0_0978d4e7c5"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1759,157 +1721,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C4_0_31c39ae79e"/> +" id="C4_0_2bf2540d4d"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1924,205 +1886,197 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C5_0_6ba82550e0"/> +" id="C5_0_ca8d88f255"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - + - +" id="DejaVuSans-Bold-42" transform="scale(0.015625)"/> - + @@ -2135,78 +2089,81 @@ L 90 382.909091 z " style="fill:#ffffff;"/> + + + - + - - - - - - - + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + @@ -2214,127 +2171,124 @@ z - + - - + + - + - - + + - + - - + + - + - - + + - + - - + + - + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - - - +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> @@ -2348,157 +2302,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C6_0_9ead9f085d"/> +" id="C6_0_f05ab215b2"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2513,157 +2467,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C7_0_882a1a559e"/> +" id="C7_0_bf145c3623"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2678,186 +2632,186 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C8_0_2d49657909"/> +" id="C8_0_edb28c39aa"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - + - +" id="DejaVuSans-Bold-43" transform="scale(0.015625)"/> - + @@ -2870,78 +2824,81 @@ L 394.363636 382.909091 z " style="fill:#ffffff;"/> + + + - + - - - - - - - + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + @@ -2949,126 +2906,123 @@ z - + - - + + - + - - + + - + - - + + - + - - + + - + - - + + - + - - - + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + - - - +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> +" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/> @@ -3082,157 +3036,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C9_0_bf0e374b65"/> +" id="C9_0_b8f75817f0"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3247,157 +3201,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Ca_0_3cedba51af"/> +" id="Ca_0_da6c2f30ed"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3412,207 +3366,203 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Cb_0_cb7ac4ce12"/> +" id="Cb_0_9df4833908"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - + - +" id="DejaVuSans-Bold-44" transform="scale(0.015625)"/> - + - + - + - + - + diff --git a/nbs/sidebar.yml b/nbs/sidebar.yml index 9346ec7..7517c19 100644 --- a/nbs/sidebar.yml +++ b/nbs/sidebar.yml @@ -3,6 +3,6 @@ website: contents: - index.ipynb - 01_Introduction.ipynb - - 02_Quick_tour_of_the_Notebook.ipynb - - 03_Data_Analysis_with_Jupyter.ipynb + - 02_Quick_Tour_of_the_Notebook.ipynb + - 03_Data_Analysis_with_Jupyter_and_Python.ipynb - 04_Dabest_introduction.ipynb From c807eb169e9aa4454a1ba3c6c9bfe8a40a7f89f8 Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 13:51:03 +0800 Subject: [PATCH 6/8] Version 23.2 --- README.md | 10 +++++++--- nbs/01_Introduction.ipynb | 12 +----------- nbs/02_Quick_tour_of_the_Notebook.ipynb | 9 --------- ...03_Data_Analysis_with_Jupyter_and_Python.ipynb | 9 --------- nbs/index.ipynb | 15 ++++++++++++--- 5 files changed, 20 insertions(+), 35 deletions(-) diff --git a/README.md b/README.md index 09737dc..1acef57 100644 --- a/README.md +++ b/README.md @@ -3,12 +3,16 @@ Modern Data Analysis +By [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu +Xu](https://xusangyu.com/), and [Adam +Claridge-Chang](http://www.claridgechang.net/) + **Part of GMS6812 2022: Foundations of Precision Medicine hands-on workshops (PhD programme in Clinical and Translational Sciences)** ------------------------------------------------------------------------ -9am - 1pm, Febuary 14, 2023 +9 am - 1 pm, Febuary 14, 2023 Duke-NUS Medical School @@ -24,8 +28,8 @@ Please do the following preparations before class. to the jupyter notebook environment. 3. Bring your laptop to class, and we will go through the examples in [Data Analysis with - Jupyter](data_analysis_with_jupyter_and_python.html) + Jupyter](data_analysis_with_jupyter_and_python.html). If we have more time in class, you will also be introduced to our estimation statistics package [DABEST -Introduction](dabest_introduction.html) +Introduction](dabest_introduction.html). diff --git a/nbs/01_Introduction.ipynb b/nbs/01_Introduction.ipynb index 1196a35..f72081f 100644 --- a/nbs/01_Introduction.ipynb +++ b/nbs/01_Introduction.ipynb @@ -12,16 +12,6 @@ "---" ] }, - { - "cell_type": "markdown", - "id": "e97fe986", - "metadata": {}, - "source": [ - "[Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", - "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)" - ] - }, { "cell_type": "markdown", "id": "3e5aa939", @@ -47,7 +37,7 @@ "\n", "1. You'll need to get set up with a [version-control](https://en.wikipedia.org/wiki/Version_control) system. Go to [GitHub](https://github.com/) and get an account. Download and install [GitHub Desktop](https://desktop.github.com/).\n", "\n", - "2. Retrieve the course materials from GitHub. Go to the course repository (\"repo\") at https://github.com/ACCLAB/moda. Click the green Code button and then select Open with GitHub Desktop.\"clonemoda.png\" You will be prompted to select a directory for the local repository. If you are using a PC it can be something like \"C:\\\\Users\\YOURUSERNAME\\Documents\\GitHub\\moda\". If you are using a mac, it can be \"//Users/YOURUSERNAME/Documents/GitHub/moda\".\"clonedir.png\"\n", + "2. Retrieve the course materials from GitHub. Go to the course repository (\"repo\") at https://github.com/ACCLAB/moda. Click the green Code button and then select Open with GitHub Desktop.\"clonemoda.png\" You will be prompted to select a directory for the local repository. If you are using a PC it can be something like this:
\"clonedir.png\"
If you are using a mac, it can be something like \"//Users/YOURUSERNAME/Documents/GitHub/moda\".\n", "\n", "3. To get set up with Python and [Jupyter](https://en.wikipedia.org/wiki/Project_Jupyter) notebooks, install the [Anaconda\n", " Distribution](https://www.anaconda.com/download/) on your laptop." diff --git a/nbs/02_Quick_tour_of_the_Notebook.ipynb b/nbs/02_Quick_tour_of_the_Notebook.ipynb index 91c2a16..61de3dd 100644 --- a/nbs/02_Quick_tour_of_the_Notebook.ipynb +++ b/nbs/02_Quick_tour_of_the_Notebook.ipynb @@ -12,15 +12,6 @@ "\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "by [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", - "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb b/nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb index 20659c2..01e6403 100644 --- a/nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb +++ b/nbs/03_Data_Analysis_with_Jupyter_and_Python.ipynb @@ -11,15 +11,6 @@ "---" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", - "Xu](https://xusangyu.com/), and [Adam\n", - "Claridge-Chang](http://www.claridgechang.net/)" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/nbs/index.ipynb b/nbs/index.ipynb index 3950dff..aa1acff 100644 --- a/nbs/index.ipynb +++ b/nbs/index.ipynb @@ -13,6 +13,15 @@ "\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By [Joses Ho](https://twitter.com/jacuzzijo), [Sangyu\n", + "Xu](https://xusangyu.com/), and [Adam\n", + "Claridge-Chang](http://www.claridgechang.net/)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -21,7 +30,7 @@ "\n", "__________________________\n", "\n", - "9am - 1pm, Febuary 14, 2023\n", + "9 am - 1 pm, Febuary 14, 2023\n", "\n", "Duke-NUS Medical School" ] @@ -34,9 +43,9 @@ "\n", "1. Read the [Introduction](introduction.html) and install the prerequisite software on your laptop.\n", "2. Go through a [Quick Tour of the Notebook](quick_tour_of_the_notebook.html) to familiarise yoruself to the jupyter notebook environment.\n", - "3. Bring your laptop to class, and we will go through the examples in [Data Analysis with Jupyter](data_analysis_with_jupyter_and_python.html)\n", + "3. Bring your laptop to class, and we will go through the examples in [Data Analysis with Jupyter](data_analysis_with_jupyter_and_python.html).\n", "\n", - "If we have more time in class, you will also be introduced to our estimation statistics package [DABEST Introduction](dabest_introduction.html)\n" + "If we have more time in class, you will also be introduced to our estimation statistics package [DABEST Introduction](dabest_introduction.html).\n" ] }, { From 972ded0fa0476a29e9eebe3ab36b7825d7715699 Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 13:53:26 +0800 Subject: [PATCH 7/8] Version 23.2 for GMS6812 removed moda python source code folder --- moda/__init__.py | 0 moda/_modidx.py | 8 - moda/moda.py | 7 - nbs/myplot.svg | 2510 +++++++++++++++++++++++----------------------- 4 files changed, 1255 insertions(+), 1270 deletions(-) delete mode 100644 moda/__init__.py delete mode 100644 moda/_modidx.py delete mode 100644 moda/moda.py diff --git a/moda/__init__.py b/moda/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/moda/_modidx.py b/moda/_modidx.py deleted file mode 100644 index e21df7d..0000000 --- a/moda/_modidx.py +++ /dev/null @@ -1,8 +0,0 @@ -# Autogenerated by nbdev - -d = { 'settings': { 'branch': 'main', - 'doc_baseurl': '/moda', - 'doc_host': 'https://ACCLAB.github.io', - 'git_url': 'https://github.com/ACCLAB/moda', - 'lib_path': 'moda'}, - 'syms': {'moda.moda': {}}} diff --git a/moda/moda.py b/moda/moda.py deleted file mode 100644 index d94b836..0000000 --- a/moda/moda.py +++ /dev/null @@ -1,7 +0,0 @@ -# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/02_Quick_tour_of_the_Notebook.ipynb. - -# %% auto 0 -__all__ = [] - -# %% ../nbs/02_Quick_tour_of_the_Notebook.ipynb 2 -import pandas as pd diff --git a/nbs/myplot.svg b/nbs/myplot.svg index 71da5a1..919a539 100644 --- a/nbs/myplot.svg +++ b/nbs/myplot.svg @@ -6,7 +6,7 @@ - 2023-02-01T13:28:31.436524 + 2023-02-01T13:50:52.522704 image/svg+xml @@ -46,10 +46,10 @@ z +" id="mff67d350af" style="stroke:#000000;stroke-width:0.8;"/> - +
@@ -200,7 +200,7 @@ z - + @@ -292,7 +292,7 @@ z - + @@ -412,10 +412,10 @@ z +" id="m966cdea2ce" style="stroke:#000000;stroke-width:0.8;"/> - + @@ -451,7 +451,7 @@ z - + @@ -490,7 +490,7 @@ z - + @@ -524,7 +524,7 @@ z - + @@ -569,7 +569,7 @@ z - + @@ -623,7 +623,7 @@ z - + @@ -783,157 +783,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C0_0_025d5f3c89"/> +" id="C0_0_81ea32e9ab"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -948,157 +948,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C1_0_d8edd06a88"/> +" id="C1_0_3ae3b01bb4"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1113,157 +1113,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C2_0_4bae061a10"/> +" id="C2_0_0a81029c8a"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1307,7 +1307,7 @@ z - + @@ -1325,7 +1325,7 @@ z - + @@ -1347,7 +1347,7 @@ z - + @@ -1382,7 +1382,7 @@ z - + @@ -1395,7 +1395,7 @@ z - + @@ -1408,7 +1408,7 @@ z - + @@ -1421,7 +1421,7 @@ z - + @@ -1434,7 +1434,7 @@ z - + @@ -1447,7 +1447,7 @@ z - + @@ -1556,157 +1556,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C3_0_0978d4e7c5"/> +" id="C3_0_d05fbd4bad"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1721,157 +1721,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C4_0_2bf2540d4d"/> +" id="C4_0_7b99a9cbce"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1886,157 +1886,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C5_0_ca8d88f255"/> +" id="C5_0_c0ca0b47d9"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2096,7 +2096,7 @@ z - + @@ -2114,7 +2114,7 @@ z - + @@ -2136,7 +2136,7 @@ z - + @@ -2171,7 +2171,7 @@ z - + @@ -2184,7 +2184,7 @@ z - + @@ -2197,7 +2197,7 @@ z - + @@ -2210,7 +2210,7 @@ z - + @@ -2223,7 +2223,7 @@ z - + @@ -2236,7 +2236,7 @@ z - + @@ -2302,157 +2302,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C6_0_f05ab215b2"/> +" id="C6_0_d3fbf8abb3"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2467,157 +2467,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C7_0_bf145c3623"/> +" id="C7_0_f2255e18cb"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2632,157 +2632,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C8_0_edb28c39aa"/> +" id="C8_0_f5b5957d7e"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2831,7 +2831,7 @@ z - + @@ -2849,7 +2849,7 @@ z - + @@ -2871,7 +2871,7 @@ z - + @@ -2906,7 +2906,7 @@ z - + @@ -2919,7 +2919,7 @@ z - + @@ -2932,7 +2932,7 @@ z - + @@ -2945,7 +2945,7 @@ z - + @@ -2958,7 +2958,7 @@ z - + @@ -2971,7 +2971,7 @@ z - + @@ -3036,157 +3036,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C9_0_b8f75817f0"/> +" id="C9_0_65e86bbf6b"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3201,157 +3201,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Ca_0_da6c2f30ed"/> +" id="Ca_0_e54ecf9f7d"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3366,157 +3366,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Cb_0_9df4833908"/> +" id="Cb_0_4d56d28164"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3553,16 +3553,16 @@ z - + - + - + - + From 414ff968ba3f2e2e80327d8275fa5ed2d834c58b Mon Sep 17 00:00:00 2001 From: Sangyu Xu Date: Wed, 1 Feb 2023 13:55:22 +0800 Subject: [PATCH 8/8] Revert "Version 23.2 for GMS6812" This reverts commit 972ded0fa0476a29e9eebe3ab36b7825d7715699. --- moda/__init__.py | 0 moda/_modidx.py | 8 + moda/moda.py | 7 + nbs/myplot.svg | 2510 +++++++++++++++++++++++----------------------- 4 files changed, 1270 insertions(+), 1255 deletions(-) create mode 100644 moda/__init__.py create mode 100644 moda/_modidx.py create mode 100644 moda/moda.py diff --git a/moda/__init__.py b/moda/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/moda/_modidx.py b/moda/_modidx.py new file mode 100644 index 0000000..e21df7d --- /dev/null +++ b/moda/_modidx.py @@ -0,0 +1,8 @@ +# Autogenerated by nbdev + +d = { 'settings': { 'branch': 'main', + 'doc_baseurl': '/moda', + 'doc_host': 'https://ACCLAB.github.io', + 'git_url': 'https://github.com/ACCLAB/moda', + 'lib_path': 'moda'}, + 'syms': {'moda.moda': {}}} diff --git a/moda/moda.py b/moda/moda.py new file mode 100644 index 0000000..d94b836 --- /dev/null +++ b/moda/moda.py @@ -0,0 +1,7 @@ +# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/02_Quick_tour_of_the_Notebook.ipynb. + +# %% auto 0 +__all__ = [] + +# %% ../nbs/02_Quick_tour_of_the_Notebook.ipynb 2 +import pandas as pd diff --git a/nbs/myplot.svg b/nbs/myplot.svg index 919a539..71da5a1 100644 --- a/nbs/myplot.svg +++ b/nbs/myplot.svg @@ -6,7 +6,7 @@ - 2023-02-01T13:50:52.522704 + 2023-02-01T13:28:31.436524 image/svg+xml @@ -46,10 +46,10 @@ z +" id="m570929429a" style="stroke:#000000;stroke-width:0.8;"/> - + @@ -200,7 +200,7 @@ z - + @@ -292,7 +292,7 @@ z - + @@ -412,10 +412,10 @@ z +" id="mecc4d2f2be" style="stroke:#000000;stroke-width:0.8;"/> - + @@ -451,7 +451,7 @@ z - + @@ -490,7 +490,7 @@ z - + @@ -524,7 +524,7 @@ z - + @@ -569,7 +569,7 @@ z - + @@ -623,7 +623,7 @@ z - + @@ -783,157 +783,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C0_0_81ea32e9ab"/> +" id="C0_0_025d5f3c89"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -948,157 +948,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C1_0_3ae3b01bb4"/> +" id="C1_0_d8edd06a88"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1113,157 +1113,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C2_0_0a81029c8a"/> +" id="C2_0_4bae061a10"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1307,7 +1307,7 @@ z - + @@ -1325,7 +1325,7 @@ z - + @@ -1347,7 +1347,7 @@ z - + @@ -1382,7 +1382,7 @@ z - + @@ -1395,7 +1395,7 @@ z - + @@ -1408,7 +1408,7 @@ z - + @@ -1421,7 +1421,7 @@ z - + @@ -1434,7 +1434,7 @@ z - + @@ -1447,7 +1447,7 @@ z - + @@ -1556,157 +1556,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C3_0_d05fbd4bad"/> +" id="C3_0_0978d4e7c5"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1721,157 +1721,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C4_0_7b99a9cbce"/> +" id="C4_0_2bf2540d4d"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -1886,157 +1886,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C5_0_c0ca0b47d9"/> +" id="C5_0_ca8d88f255"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2096,7 +2096,7 @@ z - + @@ -2114,7 +2114,7 @@ z - + @@ -2136,7 +2136,7 @@ z - + @@ -2171,7 +2171,7 @@ z - + @@ -2184,7 +2184,7 @@ z - + @@ -2197,7 +2197,7 @@ z - + @@ -2210,7 +2210,7 @@ z - + @@ -2223,7 +2223,7 @@ z - + @@ -2236,7 +2236,7 @@ z - + @@ -2302,157 +2302,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C6_0_d3fbf8abb3"/> +" id="C6_0_f05ab215b2"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2467,157 +2467,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C7_0_f2255e18cb"/> +" id="C7_0_bf145c3623"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2632,157 +2632,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C8_0_f5b5957d7e"/> +" id="C8_0_edb28c39aa"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -2831,7 +2831,7 @@ z - + @@ -2849,7 +2849,7 @@ z - + @@ -2871,7 +2871,7 @@ z - + @@ -2906,7 +2906,7 @@ z - + @@ -2919,7 +2919,7 @@ z - + @@ -2932,7 +2932,7 @@ z - + @@ -2945,7 +2945,7 @@ z - + @@ -2958,7 +2958,7 @@ z - + @@ -2971,7 +2971,7 @@ z - + @@ -3036,157 +3036,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="C9_0_65e86bbf6b"/> +" id="C9_0_b8f75817f0"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3201,157 +3201,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Ca_0_e54ecf9f7d"/> +" id="Ca_0_da6c2f30ed"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3366,157 +3366,157 @@ C -1.565609 -0.909265 -1.75 -0.464105 -1.75 0 C -1.75 0.464105 -1.565609 0.909265 -1.237437 1.237437 C -0.909265 1.565609 -0.464105 1.75 0 1.75 z -" id="Cb_0_4d56d28164"/> +" id="Cb_0_9df4833908"/> - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + @@ -3553,16 +3553,16 @@ z - + - + - + - +

TqeJk9(jrQc^d<*ei?K$6k0eHtX>XH7jy4 zfVeR#!yTXsg~CxZkk+pJ(Z&`zEKSfu0B*F)c;V6HG!QFAPI22RDZO^**~3ukQ8;$t zK&S1SgA-rFl6J^xzdmbF+BD-3pc}vQ0|45)TEj}?@y}lP+erBF&ScDTLln7`8C;c@Jk$J4^IL~phA?oBy(SaC|~{qq+AL@VhW@M5<2 zrH}2wIsO6>tBkG|9GE{#2f*gs9JYr>zFJCSnhw@Js&g`(zKJUyR(xg{s#LAt_hj%1 z_wRCl98lDIUT+5&?ckePzzdz?X{P`_apse|M3l8 zr@d3r1c~(=a4?RN3TOw)lF?B7Jv&ofcHfz&johY|3-b-F^W}9{VgVuWPpHt&2R(8o zrDYx#ubwce!qU~JLZY=zdR(O4+r>4xeB4Fg_&bgk-Q8?`XV5%hC2<0gQ)GjE`tNaM zg8#KYH&i4a?Y;-X1RjfS5D#-x-LC7AS<6 z(z#&t(50ZQ{BnG56~1QUL*phxcS^Z|F0{w8oyH9(q<}#);VPz-(RW0h%5-Okea-u6 zRgO>&(Xml~WQyRP1gR{RdM`1at)Y!5z~`hI$VykIa}`bttt=GKN65de^HH4Z0l*#&9RCE)V2pYQYP9U%2m5a(F7}-Z_jydNO3$0W z#ONx!?d|xRv!7~c@uyD%+7dDO&9vR{m;up&-;{5@m7b9!Q}7davPTy@3+inW7jYwt z#ql~vL{pZU78fRnt3I}+Cy!eut`ZmT07P%gBHvDMvd97bX;{v1&qJ-4f#+;bT?JFF zXfwrTu7`9J(Py4Em%MMr+}V=gUrBahhV4$!NLTFR0Tmc!LmBwJrv`G5suy+<2_ZUoFoXm>kmgi8wa2HDfLJf*N4rXF|4*8GPSC_5t~+ZDd|-g0z9m9%$SmDSvi zWc8@o_^8=;vZVqx)Z(lUWt!BgtTl!jcG#l9!d$hVkuoBIi&rVqX{6ey>JEt7@s-3& zd`5!UiJxm!YdyiNNsC1HQ#%?W_KMuX)anr)JysBG8B>`~dXJ5Zw%T-enouF^rBCfv zhnwgm;Gez2aeUd`8ygrCtn{sv)r;l2lF+9E=Q+gIc%9dz9{3WgyJ;@@jy)v8ztllGqa9w0u))uc@Zy$@UGQs)u%srLmPW3*LfcA z5IIeMGMP@13bq3AH3d`>MWdF=AQ-9l3QcWAW6zaIBG-n=WefIvuZ7i~)GP zT&DeGer<(}yJ2DxYs8_Eaj0U{3gGak6ic7qG_vu%;`YK`av)bhj4mQmd?DO35nd98G_?aL2{S7nVeUb@9obauyMg3nT z;Z+65I^x%WP2y9G%F}#@2k96a*Tq?0;)K~`(?Cz|I>2~*YA~mIFb?bRqBg^G6C6&T zV+iA|oC`AL7KdI5_Z6GpWscZq*GRoxeEWen9lup=9 zVO4SK1ByCd0K?btt&In^8<2~}W>Yg?S=c*Ix8;k9N*EMZ+vBrl)uAF5>O-u8$a%(a z12y(tcHMmD8{lp=SKTe>l`OS3UHWsgcug(77`facIG?5Q^jKWfp}50Na|PvzRdzU^ z+jG~Rl>PxF#@gMUL2g9X^DgcI&(YU$iK*wT03F=e8lDR5v9z$;^9-L?IsIp=5TB2I zR>(55u%BE?K}|aj>ibz9gPb|A)H-<$IRXo{<@I6%83<9To4XY?Kzy9rA#VIM?Jz!% zX_xrL?^3rLt<&tT#}j*()YoxNVsSRe!fV89DLreJI+Kd(@McDUyY1Ki3#`fM5Rq`$ zg<_-H<03YE=jhtt`=!ov$#s`unfKExFd-{A0uN(fg0cjArH=p2m$7&popA`Orib6W z?6es}+8}l{`R@$UnKENRbG5t!{0cFfc>k-&%{~o9e7iMn{SawH4pYtv*PfB_5k3CF z*RcA&F=;xX3s||%^O%PAJE6D7%VNq5Vpx|hg;p}m?{g#< ztT(;%#Omy7nlj8GaZ0V8^FMKTwV8WM1QT~&(Asdmun4s)bniQ#FeX&E%*1&)K7jrQ z(DT@G8}p?orVIRjNpMujm=zS>t)$k{A)4M&rorY}2X8KWtt7QO@o|CPyDq3OzyOW9 z%kQ#vL7PMJT^~S#Y-ZLjfv7l&yaxu0`=>w`21_$%i5gXEB^oLjw zmeZMG_BP#e`cs;J!EP9D#8r<}&qNtZgFlk$%qk?!N{I(Mud_y}(hwj_yKu-n9On~@ zI7Dr{BMT-|R+_K|RJ8c>31zZvczTY8lxh#J$s^cyhWb;cMH@VNT509iBPK<$a}H`f zH)9VT6QY&Z1(T&rwNk%Y3_MY#XzhD|o@k*L_tk0LA8eW8a6au_mFMQYOFsQ&Mz^q; z7-J!&PRV~@fv+BMt@k*V)yYl?a_vBL=bYSb8e;FwTmnS`MoZFwlmDNlYja?|w5{DH zL%1-jMoALFB440_h`d-c2uc75v-9Dut6Zn8 zv$Cx+a%_vE;>LX4`>j;c1Dsv)G*5ky733z{zXa*S82nYzc`?+xrYiY{KaIoK8IuN>W0N}f6 zXnzGFiz=Odb8oeifNl74<0AuWJeDzR6YJ0CZX_=8qW_hE>sFmPZe1QEEl5u?KyJ;{ zU7FKfqEE54biG1=k9xey|AkSkVF1|!4%RU%DO%*y{b;#*t$>gcoDXUmEtV?A-x^|& zxW$F&&f*~D+i1VnCoB*~f$`B2+=F%K3ns~UqUopd^7o|a-#%Lm zXBP6V)YzFZ8-1I0^|Aml=20W+@4;YEPkX~GTBH4~FI#ZN35*^ZpUjYQBZ2fWq8V60 zt3t9n3lm3r=NB+Gxw1c`FnK7abuf%gXGU3{lihy;&9e*ONEC=eEum3rRAFD5<+irM z*aDT7E|_6}iZcBcP_#|lN^Wx)BYg77O+CkZNrTuRgyYGwRF~AhkU(MnqW?PiqIBsldFCJ3go3RLtWR_OQU~KD*G>EYs$H&PaMgDjQA-1~ z>;!bzF~SP=q_{4to3$#3yOp2i0lnu3`^p1nxP)cqjhGuK=g!QCI}$>h2TmS9S3hnX z4)s8oZCx8s)=jTg-n9!)XRU-&=*Qyk>s~@^Fba2jn*7D%UK7&j5E_KTTR~B#}WduaE zBMJhG7Xi*pDjeI&fdnkh**TNr&DLgDh{m-#&W4_b-ZkTL9ndM0&dE-OwYq-+*p^*= zWroR0kgrW7$X&!*#pVYP$~Bf&S_FOkWO`&d z$@7wv8Le|iGjt_txU(<8veaETCtK7>dqQGQ9uOmr@t>v<)$vO#*;_hsHa+DR%)tia zNh?B=U%3aCke8gu>;~*QDRDD4k`fyljC*qrNbmZ{MYZLm8CIDoh|+iNZAezksU&3_IUIhz+Yd|>XEakXWbM@#r!bz+cP)D>zK z{2d1`+YLiVZh6I+dBJ*{di2z_xf5^$uvQ&g+dSc?Q;3=AweqC(lUEw+LRJSk6=Qur z8PG4x?Eo*Zt!M$*k;GDmRE$fuSq_vrnQjLBWa+&>1aB}?l7yrspm~J{2Rg>8maX&Z z5QE;1ZQgweB~kIN_X5;+ugmy6fn6*9Dm>Y1qqUM3Keu`jzhF3tb4S~_BPG|v54O*a ze2$i)T7Ha;C(H!kH&sMdJeu1>oEZoMr+2YQb4@)j@VeBhu9aT5zW(2xx^oHRxdU+# zMYE#`1o2lHUS6dowf=@#0#1|_((6e2IhgJf2(`u!8(M6$q9)&CkZ51oDqArN=Xhs8 zmVy&bFS#U*LoVp3OqF76fabsqqwczoF;&!6u?UV_p3CrcwR>7sn+TZA0+YZM%}y(+ zzP{PlOrQY|@eAO0yVwy2R;uXs^ZCoF*P*l#0Mn_BKxIqxM=Ys2{_O=dT2yogsG;qY zk+lrFDeVJ?-H2`ytUaym+8SrR60MiJWU-wDzHSn$TaRQl~+G%91)l;!MMW;jet^nqmiyT6mkn(ZG ze!la~uBS7F<+G;_#U6~6!S}pVb08j`v&jN^(X5WCOb4Sgr|iOH9bCxNWh}1P6Zcsk z?)1do{gtay(p_nFz}7-sZxrt_Gt98Zd?o=Z3iVZayHD`g;q{OfFaV@~LioWmn}ZNn z!ST7#om8*e7490|LIxDLhOa`aqLtiMR_r@NEj@*8KgID{(s@~>Mkv`6|4ibX9ks=t z%K_m|w+89B+HUGm5#X>l_|YF1&wy%MYD$&Gx+h(!(Y>W>rfd$Rqz~~OoE5H6LX?6e z^r4Y`cVk&#X(!(PkkEm_E*NX^&ZGh8`!C7lg=?q7rxGX^Mc z`5cb!F@tO8$IUVk6hSfgZwtttfkCRicP>x0lhC>2B>e)j3+L7MDgvrC#1iv8=zh2> zPk&1Gc9yZJSUH=6gr9d#1&3MmpnjH37UVOs|74tCp*bZ-k3Yf|p%864&TVE>vgG$~ z!lWp(tSn~mzIv_MFl}9K>0uW5;5!2fKx(ayWj6_O5FHrMb({`?$JV@a&~6(P~6pZxmpWfqb{C14}Kt0fwX<#)7lZ zuy4E;B^2ERFyeDJ(I9F{_XZsy{I8Cv9R)F=qZ(z)et-fIvT;0;>b|jxQOHDWaRP0( zR!~9A#-HeZN|#N=mIR?tcWUnL6X0EX6ECqod6&Tc___bpA|e>Mav+kTs&^@IG0Hc* z>@vkh=jjwc({?FT0GRLqrNGd|Asl-&qwI@(B%l_&yb&<|=7!!|Kx@tgAf^>{6EGX~ zfd7Lm#%q-F<$tQyjC7K_GPpU2D}ti96nS$1Uq-pH%InL43WWnd+AbI@=ls{h0TpE$ z-p~DQMgxu|iF@-q04iEcOTd?v-ZSVI#NyOA^hICI_w~No#{x4C_V)VY?22NgTUIJ( z6%5v2kc(4~JFU70wgOM&@p`_4AY|e;Pe3N=(wz3r z)ZuAk>n7w2iI_qLy0-f?;ilF0&pTzF!Kj33ioG`sU-*RhZWd z-0CafJ*=+{2wlFC4|WOVNw=YiZTTvmmcIh|PoR9PGg0Rk?JrB|sU~ScZ)duKnDa5j zCTh7Opz&)(=}PiM&r4hLol-JytlM25EAvVl_y>Px_y9vy-s3S%*s;3)@dj32-l-nKzu>zEzYC$sSbjYB zI^@|#_%{2y^WQyEr#qP&E}<)n(F+kAMaS{`&mYc~A21IbW+8=fHrA^tpW-vMlSm3M zT^reItPhvf98htRK=@-g=aH;Mfwn*>ZTxU{$tUyRS{@SJU6h}P_Evh(SOllh`RZ^V zT5R)_)uJ2%0dq8>2w4?6w1!--GGESFq^-Wary~FDqKd*yL(!G_1IRZq(z8e>Ji1SC z(UXx9%f7I`4GKxX-@rT;Q*ukp*ygfSf<>O+bxRXu%!Ppn)|k4h60X@m7T_fzR%?`^ zg|%gxziSO5z6fKVeaw9IIjD{W33yDc|JQXEqg(N&jl^OGU%qll5$PSvUe&bv7QZ~| zUZ!L-exk5u(|pqY&jVp#+R4>bzFwjx3nkpS8*szuMywm0pk5diYz!t?yz_1l*A@FD z9r=%E3WHU5J5FjF=tt2QjH86G`QKLH6^9{zzO?^Ch!%VpjXdep=1DJ_wug^zSw~!b zet1g*EODvLs=`1SkR5MDJ!b+k=e9Qu%~z#Bm=?#m@^T_z#!A$6>$+%T{KjPrZhY++ ztVQ_LkcQ(Q8^5@=bmi??KP+4!Yyn0*4b%xhGbBu($uYlga33U{fd@J5<~|t{CqE~U zE~*W$ogTt*iFHY>qCW$l2`ge7GrD&5mA`jiE_c6u8CY3pfLj6zXdx{^-xY!dupa(F zHPb*{5h88_!2lYgrBw!me?gEmL?hKs0XP+)bh$9wy@?PPWz)96Y6bpD=vfs2f?KQ! zG80G$u}AUbsh*Vy!D~QJ?o5`0_wn&iLN5(-j`jS=S!GbQq7N0Ugyf>W>;Q%7uYVwv z19U=E-H$X?Iy-*7Qj&c=u4LxWdiR4|Opq8lT?x}$VxDPo3-AmI;g>^B?r$vC&P$`&LY!?M-FM@cc+d9C%(JOLZx?jIt$% zr)~fzFlPpvNo{?kCMi6{V=R3!kp=eNspR z5Sgn3;K>51NLPqiih;)*RSeu4nSU>IQlI?DYJV*5cYEmK*f+%ybvKp9c?S^D zS$FpCxO=q4ya$L?vM$OiaqeB;BbLQ6{sk;T^=6qefNy^AN0aua6Ve}m;@^L~UHipXPMF4lYtL97xs4+-)A;vSIQXYrym%&p9+BL!e z-vc-38ux2_8kni_7Ckqc|4o~Rd=y~=EdnXHpj8HGlP3N3@Ot+cABH{-2h7tQgY>0c zZZAGqz^&@KTIm%R@0O=@_T@x(P|ePZ!i?-dK{oEZRXRS$_o_QIj(e2eZ0A#7p@ErV zcXi!5o!($|y6FttcH$Km(zFT6iQoHh03LkAk0BN;bczjM)9*HsdLesjVef)&I%X_o zCSPt*4Sq_irkC+)|H9ai#RF>3By1_O=dWQz2VExJg!R z9?B^&adHWNXE!{+wi*eFwj}J5SY#=v7KUN>J;&VFcw7%QzDTlsdE~87(-a$hKiP9! zEfcsin2lK#cgm-SFCdbc2QKaB0ew2CFy?gC=|{M{VBLE>lQ~BXR^G)$OKqWy3>;lk z`n1uPd7A2hoec+tLrdp@N@Qcb-%-+9H@WB>#!gDx+MV&b>lmro6BFOiS-(+(-hV7k za`S1eH>^5Uw^?yAU%TG`01}-o`{=u;$E!jL!uP5eO|Bw$X_p8gqA}i42YK5l6+}s% z%<;_WX%!pFbK&tglXf}1La#gkp!+k2D4i$XT*j84A)bM%%b0IkrNr}hfwkacorB{K zs2?D_0usNKRE%tp0MH$2q)IhBKY1XK{acDuyyaZutMm$>IB0H@E^GlHAE!p?fz@0! zP5W%xMrriA^8)9Kc*2OqKn~v$Cf`QWsxFov(QO3+a;KGBHtCy#ItK6;2T7N-xP@qm zqI({i*#J2YNB%bJ^HQknPN!T5#={-!$pLg~^}T;Md-b$&_uS08#JntKceT9(MBDKq z?Td+kEw&DLI@&!}IXBc06_vZdOZ?f2SF@I)VwK;oyuH<(i=504vQ`&CX#>RFHUQJ% zO)q+6Mxq`yKuu!~74`swRAeG5SB82n|8WHtdZj}tqtw5C87J-A@LrG_hixLS^Ghh_ zNcjZ4eoD1QuapwpD+rTGnI_I2YBz86USNO5GY#S!Nwdn`7=qYo2IM$p_`IPg+5!C%iHlrFUqGD+iRgyEu%`rxaEWDf`%g zi0fDxcf~)(9TfVW78!qDW9iIS?9>9rn`NdMOg@OWMQuiYT-xGRym0#Q8vVn-C|&tE zP`m8m$2+zmkg(q2pf|GPE8FX|+E>2>R=v5O-808unw1n=0YViHN@H1u2sv z6EtleUh7A&-Mnc~C<6Eb==eUd)_LzZK+J`FCK-P#2?mSy=01bWHd1_RzQd^lm?*B* zRL(NvHJ}MpEOZVi?m}>dC$6O}S;8|m9(5WHyc%|Q6-$s?BbVp5#@#$(x74Fv(w!cVl3i`+sc8xsU53)i3bo2+w>GWdRWPiq7W)PLy_vao00jhY?nG{%%_LdMz0=BO08<&U zr31_n^5>D2)m^`$DK?N5)c+<#+h(I+@oWMr@{uJ{|8-oAN5fr2xJbijwnz1IOE(_v zp6mlK-AD*hgVgRIK6#5puw(h$#+vSE!bk$2=TXU{*WJ$`M`RmYUxl%ivrXrF2dgQB z>kcSeg)kPR0IHAp97Nm-=v!)50qjRWkaYdm-L#D9VLII{P{a{6(wsVB{82ZF#kYYH z7&z-iG;MwwPK*gEGnq7WldDH1N2nnur-)o6iFc0*2H)_5`*qEorU^S4j ziAgy^393#C>$X$T{toR*@#Dal$^L6aQq;D=q0HzJ^V5lwU&gS3Lf%p#Sh@ntBchT>3px~gxU2Cq$bSO3d$xs|U(1pQiLyeD=g=2cIB7X{ z5(k(Dpk(m`92%8?Jej}oIrh~#ou_h_cL4eNf8BzphA&)ctfv*!{4_Q_zg~G$&BEg< zb@g@0qC|r@7G<-5_wva1x`AQNP+uA7r!skA(xKfJ4m~aC@k|6Db3!ieXv%~S+(~=h^ULh%I*2K=xjA=%MREVqn}ObwYX(hzOq7xlhr+<6}3q zJ~@9s?1CYXWB$ROUNEi{^!{{MsgjSyE?IP(;292(Z^Y%}#(^_LbnS4_yN&1EY-TXK+;x(VZroy&^L@{Ctei*DG-r z{oYqglBanY(A|}lM{ZiZymvEy=>xNd*2`$k4*Fxg$QIQ8PI5ljI$rvS=TUImI2X`q zy4zi*?ygxE0V71r!G-DfK!r59I7Iw0BD%WqFe1D%a$Lf!Yn4;IguknBenHW6j@nFMBj|CeTDt~$YSI!aI z0py3)a>Pw7yXgqRGok9%7PGxnQ;850HCHmw8+@zzCJ`wc;;dFNBr}<8qa~TZ6o)16 z1OidHAd1w0*v`ocw0g$N#jrQ>8AT#V*?6mT@eA1~yqY7Xn5gzCmZXnGE{rtPJpE&;6uRyo^ znnU*ia6K5z@sFR~L+OVcr})OM!1-EyQ+1Rz7I#xyulUBFJn&zy8Sht>LC}G>6USXU z4L#+iF?)KjVk)KYns$b^w})EHI@}7-TG)l28%BS13^1z^q!Hn)QAlK64}ig&>F1&A zUu#v41bmObTWC9qf|v?Xo9Re;>I+J)tud6%HHLjk&slS#JTYc3?x{1Hb;nof4!5!n zJh3FCoc6h#xEw@V)xJE39Ah^4%Q{tdg@y?7~C7 ze^hy39a&`^xk?%NUu;osirJuw?5ZKy76M-o><4Mi75*l=JG8y)BSnCC9MnTuoeG#T{QPkE`}sT+k(xZj=hbSu_Tpop{svEEI}haZO4!6W7?IF)f-iW-g{YO zKS1hPX*SPQ?;+`3G=_PEt&ZsdPXSwQp_)M7FjejUM)2~$VqNBLIt{8d)xTQD@Y{fs zSCJ^unu3RY10Wrr(7it{k)h7Bs>s}Uq@Qc@ z;p+q{AMA#|0!3-4TBn$4G5N{IX<{*0tg8Kq4$%E&UJ@7t#`f8#QmnK7F)?r0FzKBx+l>37=1r&RspMSL+Z|TBM z`jRy_Ibeyg8*C2cyb)_c1oj~D_ zuZV*Zmt6Q?rcCD)H_wCpV7y$>E+)lp*D1_5a!V0(3)^Dhf87i8TRvj1 zAhqQoi@!9^BzJGtURcW+raKO`@5u|il_agarJLg$(>>nY>&5S_?@+Trkt1A=z(P9Q z-=)A(GWLzzRdXQCc27Nb1(1hI{5fybo+mo{L)ci*jZ>ttP}ec1ga4~&IF?-prgG+SvF2XVQnPn5z!rm zQd6XA;~mvUKS*gNF5^LoUBvYu%pg&OKibbA;&Ex&^|#UsA)~|SI|c*O`PW6Q7Gpaq zA3*v%ANj=OGm;2pa3XWFG!B$6W&?3JkaVA_E0>#U!00ss(yGYs&>j3}zGS8nj$oWh z*$lk0LL!&KeBEAyUyPos0nPRcuWCe)W}slyEipDEFEBag^da6{Hy^v&J%CmKD8%$< z(yNm2D>Mb)P%j1%ln$6%02S|@AXLR8`mM}8@9E@wX1XS30FCY-)*PTZH}fOKKGdA% z&VzZxnOvADL^A+vR6k3CeFLa`u3K@+Uzy|1k#j$m_4WesO2I*x?kNBzaS@AE)jUzl zv%}lr2WzoJSQV*$MGGT18g3~$IYb0`{n)Tgkl9<{le0813Yh#;0}xMda8CAOVLvju@_j1>`)j zfmp5mvv%a>cuD`OjS2#@mN%r5g05*XjHZIs0cJNFH1F4DOW1p_W)u<30!#h~D&xfL z;%9q7Na26`(<%0Azk!99e-ro5dRF}#*i0tvaBhDQN~9%@+^Uc&GdpfVF3RY+?5PCn zxZyNqFx%Aapah{H#*Ql)fHQSXaI@~86To0!evO**dD&xJDh{iD7t{^$5Fz=Iql}|8 zOW;WV#Bm4D$o=pEUsuyz?}nYQqMh*OVBfxiFCT`*1L ztp~Pzqd*1(kjnB>b9aFE_@gNV_Tch_H4Fx>e)v3(OCAT|E&4=$nDA-gI-j{W zI4+S-2RdNDEAgQJj7O!NSgz0qTB>%)I{1lZOxH1kr2F(DP@I5X0O`w6El@E75&$=p zVKJcTR0_(~NWnJ!tP#WWe1o{OhfFpx16&3S*1IfWu*fdxajPba2tTTUG z|Ki3wzB+&>&xeWq0#5U+x#!`Iw8`^qH4@qB=sBc0JmR^L@MIQx77428UiI8N^u3p} z9wPvZ`?W-NC^%bQ&wRBtar{x87NsRV5i6la&Omu}Dv_Q|W8Tb66^B{iM?|u@Dp+=1 z2>NA(lk${{kflVxUk2(j6nS5eSM>LqNYBhT1H6sjfz=Ncs5$eyfR)JPPI!&LBg&bo zjx)~+1yq0tl`F7UZq2PWnc1~Rw3sz zzAO;6OnmsbABgClGTsM@*}$6(El$08WL^{Bc;%zSPPi&-FpLoYMu&ZV4=l9Bz9rSvU!1t#AzuC z3^0nS(AG%HLt~bwo$lW}a_VaPRo5?~-|r;3S_Ukn9%B)XvjOshTmo2reIm#-JKG%z z^T$neciDjt$f2$@m$xlk!DNBqQeFItOq?D;Kgh;M?gN)&$;ot2k5~I zJ>7Oo+jpl^bq_32*^rcp+zYs-6zS&ioHg~A0-AAt3>+E~)c6p5>jPPKmABiAymxluma*joofJ@1Y0SZjNt2xaC0xhbGia zgan^EW>#6j@cT@u{=Hyw2iUu$m5Ugo${1~E zo)sG5dvRDK*tX;QHPd`7+kyM!kWBi0ay_K0DbHWKQP=h5 z_isVACYh0o?qVIbMOr&0|J<1#_Hf44M%5cq!xAs9SN0ztg`TcDdkBg+zFxIGQg;uo zw$(5=@G9e#e(Ur{P3N2E$*)xr&{3cz{%LqeCwdyV@@f69j1Oj#qn?wMEYqdHo`TMK z1jWrfVBbH%$z~MqrU5C0=SF#jfC>pVzwHizDJ`QrD5CYwOsRq7rWRiYOcNA;rxBJwH%4``u^0xG=f&*ibl44tF>EoKD*&I zlRo(*7+4qB*=im?U&f%19pd1Rb5F=*XD`P&B|0HVGq>4l9Mhbk3xg*;f7#ZmeHe;I zvwZLW24V$_U7=~K0NaZpe;G?1=nxOqZJ1x)>S)++r=1GW5vaig!O2_g(k60R`p^NO z<QZ{6TU+?lqB5KIQbxDN+01UFnDf zB%x{5=lIAtqnb=2U_SLNVh*;g85slg87wk&kc&_~S$F2yaX3m-vGl{BGCUzMqde;l z@M^Z(HNNe^e_G=XIGtZTs}!jUdgK zH(+YDrr-r~jFQd${Wh`NBYFE5Y5f9dB>uZS`O#PX>%(fN577I#V0&Jt-ErpcQ<>KP z^YHi|#qhqL(Zl@5pyhvm1cb@|k2>V*R(HkHneLoLw=NZ)jtqyF5r-FM|G?DewxZPV}&SW8lmQ_j9dMkCBUopzj*&gbh|38n(zAn06#*l zuK^?RpLRh?_{U^Z8rQ)e0(97y{j5LW7_f;wd*=T0O&DzX&z=8>xBl<4|Lf$x#>W4K z)IW3Ne-r4RzWATH_@^)aXOsWa7ymOC|LKbVt+)Sl#s5q1qU+o|47OH~ML)J3!cBu(x~+fa8D* zM5^Ccs(zkBRcPReQMMm>?TM@u>O0;&jx2dy@AiCT*4TSqX5ThVSMwxlJ05-en}`QX zSO0(jU{RQ#Ff)~`{szKM|UinC-*1`$OcUQj| zYi#3H;#X9+WA7Ue48C%FQE<7vwY;xY&Gz<|Z0_UjfYLPa?;gTb^K~ufI1dP{NAYgb zAND=N5o;SyZHKUjPkny@@4yStq#p$w)wfp{1X_-D6I&W)!!e zuEuK6rK~RUr;pEIKbRKi8&mX(wjO5o`QIB~ZWpq8brgCEzx^Y;J}DZ!F6Mtd&H?c7 zWFF9$N*s@^aDS>^VflDv-SWu*d~v4J>)W?*wLsRJ(Bq3wR|}v}zQ4L~|Mk6GaEr@S z-6alKS~!&(aIQhi`_J2dQ_Xk0-0^nE%Aw`6{wTVz|l~~9nQTkIah4R=NZa3tn@**v-7g|r039G@~xCF@>BS`w-%-@ zX_+G&gcJhyWCq{GQo{VQa@sCCl#q2(HN;^_Pu8WXH_BLwcLWCa?|AFfFn*Eqp46^0 zYIE;lOM{zDdyk`7@_4rAnjZoPN{?*3sA19RYJPueJu_eVUxNdhy)D_N*28u0Z8pbG zZV!f+$G%TNcCGtL7ska-t*;ze`ItjJ-!Pl-UylgUphqWv?Ohk>K3B5EAX7O__&~k_ z%;h6Lov05k$wwt>829;q_KZH-9Wrfn^5@}m5gI-u^9q56eW$`v*j_(l?HL;vk~8&IU|#QT>+72F(|#>3>D$xd_rGnBa}yxK zPP|gny?YNC&PMlzFOmd8t{bDY7h?qEwC|1!$awXS!lRt?gF@JCp$QY(to!$j0(>!fqjw7$38VjM8g+9 z37|~hO!~n$MH*Z!5L*?e-)~Q(p1&W*^fTyy$7Je0xNcTXQijEc)hlrN)x`$_4yPHW zzkx}Q9nt_8T-|fLvJ@l6~pAh@MM((f8 zi-(TG-ufGR-$J7L@B`+#4E0^r_Qu8YW{|F)UgfA%Nh z(Z4;~?FBis*0|F~+>!sDS|wemR0BQ&&v7SFka?CmQl&W@2uy2qXxWpJ^zK39Q1> zBM&WCXd`Qoy`l{};B@ZgfMBG%0K*6|i|qW!k!Ni@8$WUk&Y|TSo$a;qzC9-J4c2Eg zw$RrDsf4MJnn{|o-Xw$bA9f-NHn_6%1jB);j1b@wR1j-83fFbYw~}d==Q>|j%J*W< z+ZLg0VXGk6hcK|XNQ@h4nVhSowBjh~#mK-CtWTR!YW3~2uJF610&;pQ74JN8Rab&5 zvGjHk8}|f(m8&Zi_iDUsuBeq`=`BvyEV8*dcw>CP74hnLD6e$4_(1QU4LJ56P zAyNei5SmJm8iJw35JKL4qTc`e{(pGZdcVByde)lbTH^@&?6c1pH;-q;j{< zU>Q4o$VXG#+)DaA^#`CqHCh$XE@k%Q$c2GG;tCGZz1PpZjB!Y1-cneuM$>jdgZPx% zSQ+`++htplCIfrX=H{G5*JYj^)TH=qeMD`b3Fi|b>SD{Q-~gysf!FW4tha~8Rtz$y z{_y!im_s~M1~aR{9yyxom0=4d#jbeidE6F+Iz1tU9PD28#;oG57uwFS7jB^o&)~Dy zf3%)6NMe4#7-TS~))mapty``<0Y#iiDzcxI_4lRr#yDGU9!Tz(F2D>QeqF)ST@=IBw$0Wz6s+Cg;?Z>OC})Qh!)$M4a>Kc0;#Y5iRzR zo;Gc~WNvzJZYc*H0Wt3wFO<7OMoK}>)O{6W4ibi`%+HvB4DLv@Xg%UPh#e*Unho1{ z)!TS_$e#fn27Riwrf;NmUzp6{uB9(oP0ab%eC{zf=8Ci8m+}PA-cxgc+8^)}s&iLQ z5Qd6wi0TTf3f0y!<2*sf+2yj+^QV9{1u=amYt?I#hq}Xl)~|#!)XiqPFJQ~fwvQTj zw-G1_x;eX^FI!`WoLX0f`-ddPv%A}VElv}3OH%cNQUV-}lj>J133AM&Vg=esVrT`t z>V2r>N6*tu_h$@!yEeg7xs#jk*`_mWbUotBLN4}9L!tX zSF)fy2aYvPDy=r6rl=+Aj;~J6D%GVjgPrZ%;s}M?JM1y{T3!}gVQbXwuY7rWFv4fR z(Eh?A#d$$6N6>gLSbbmpYUUBM0b_6;E7WV@yJ7`qRFc3aH&xqJJ>*G9n*fiMsrqYr zNZB6$C9q5KUPEwEE|>Li=V0A%yz1~kT#%XMuyVv6`@Qv7yi=HR`BN+`WiZTl3Z7bz zF(4N7T}e9ih?UON#thqH`K^Z%t8$c`_(_Cy?kzR#L#p7+StMSaUnblRiaV>d;XQsf zjd>I^Y=Jed$w1Y&icXoLJgIzCn-erZ?1&0S)^k_vDFdlU|5KcGsO2%C0>uN1rFkqt_ z@Yub0E!KY=&2Edm+u+w7HfN|dBr#f*V|&&wKLoA)3=S`&ETtcBz;Lg;PTYPGC04X(htTZ3K<2vBO#&XUdOo6rv2+k67#^Ab&IA8M-uB}%*1z`i)w37TO;NOh>rFeSiAZ^5LV0!2k#vq+3G3hXp zsQly2O6wN>(ytdGt2||cvt?~Z7Qj=`Luh&K$jyl6SauT-p>IZZuL#?Uz21)}bxZz0 z?(b^AE;bVk3(1Cc8r@qV`v(OT?`J1xTWp7vX@+^qgw%k8aTu+Eo~t+e&AYdf1Wt28 zer|}0_Vv~RBgb8;CS1n#0EmR{R~f4Nz$y_;kAa#uKG>lW)1dw!)Q+f7VBI6uKPO0D ziU!2=TR-IgPrd+hx@fgEsuj+E@{TQO&Zvdj&`l)Ylm_W%(e}sLb7Xt@65hBxpB!=@omfc)suQcO|P<7Wk;z#ajR{+ zD}N_NAM_RK8_;fUNGox?Gc1v}YjCHaD%=8!+I}o>!Qgs(a}Xl&pK$YhBq=rf?Hi68 zbF$EeCCB+g#FfRh9b*P9cH_zMOHCqurn*aey!C|P2G#5|@1LioCx4RM7B)QTpi%dL zDO9X%+ss-zqczQ%C~k_-VAuVEEUs693bN$-U-V1+>A^8zLx}!(*?Zv#BeH^2ZTwvW zsY@SMLqeJJHq3cXO>mPjPQ_2E9#P?%w&gjtWw;rs<_&3eebF68u?u{1j=@u@^uP{J z!~Fp^PvsrmUAmYZ*)6bsq)p~@xj3T>P7w`jD22govzt09xI{IvW`pcI$f(b zC*6MBp?t!t#Os}ky?XuJ`=x$Nfb{%e^t}~(Qqh?z!`&X-esu4yY@yK;Vy23KYIKW$fdOo(sc5#iM znHMGz!a!zPJ~ZfkcS*E%cguRuY7O*W=L=i+z1n(myoSI`izzvNA>ygv#fBB{v{YtU z_ew}{KmCerHh*biq&41nA*gvDcSPvZnq20>KS51oDmbTcIj0Ijnm3Q%3yauUDx|L! z)M?7Uy0RgS%atErX*$e`llF*c-Ru=;zo#Hhu|Ket6sS!2@7d{l}ZsevaFG9-CD5vmE zvi*jaA)+lVDONTgKFb+D8C_t)X(3a5?!O&rGHTa9GUO?1VTBFJ#y({_Jxh84X7Omy9^nX(^W6!)@{#CUE`9U-lZa8C>dw0wPnQ8 zT`}l491C`B4{@VPW6BuvGz+EbB@J7gW6Ip_%W!=1`hwX3lw1wo*JB5$~-@CeIqa+7T{4P*-T6Ol!2kjo9|ZtPh-)6VA5DqxFb1xUwGnWck4M-?{1gVP zS+D3N#{nCD*AL@$dP8_uTLI@^S8ST!P9`o5P64MvcRNn+qr#+HG-K)$W>)`oQ1=&J z0X@}diLITq-)YrByIA;g47jR-VuAjoE@rsocz08-G2MHSOQx{ZI=$7^cJ`B)244cn zl$Io)vdo~N>~NKVkvPM5HX)4(%d7X}1xe-fTCGo&5qibKKA1}1cqP~Y$ND&CwsT{$ zV6ypxvtq?;U{@Ps?R3vU_CWWX)|S$+nda5`rXAPM;#hyJFVv7!+nI;Da_HFN=d6=j zFziuNaBtJ9aPrtGMUACcPeas%{!!FCnxq8)5NjcGJ^)QB*XQX?YzGEoH5r)@EzyL8 z`nw1V;VDM`%>4N2rIBMaTGXXu21f}K2Ko2g)w9K{3#GX)PyGFHv1K7?=F7Z52v6M^ zb#TvtuNh-m7FY?(p1qB>RM*}+GMdvjGULQc%EQ7YIy>Uj#TbP-wwAv6Rup=HL*~#m zcGSq3@{1oWiGva&1}6sOB+JOM=dmT!an-Rk^87;UqMkR;KRHC;p$Hza*GL; z1$kHU$pt2dY41mbirVg=f)3U{TfIY2cq-fxB+q;f3!#KVOtCGcbxoZ@$9N`rOBz3s zz>TGFMz)md`@2N+h+V-_d?4LTGSoe~wNj+JFyk4#1fWHgxs2u0m^^Fv84k4UNtxWNJf3I#G{VnC*O$34Z6+^noww>WAq;Hil#Fjwi|L1|uf+#6avNHR zD};62h7ah0wx$pro;Qw_HkK-xalCxy^PE%bEXKeZ>+=+jHqSbK#V)(VCGFUKGYMk_ zDd9|bnhcTBa%suIFsrd!kXEi!NeTFH<-U=mTi7!5C+Fprir$;DsXbsWYmdzyx5WYw{_qdxSmb5+R(XPEw5o$gauKY!{i zc99C}DA3Hi!&J4Eb!+oh-O7Z43;!{-28jA{HHult5Y6&>0HY#RRmH z%Ro}6cQVsld>}4=>Iqs&fp>-~m6@c{*RLrNI}>r`;pN!`7m_DwcgCH!KA90=4VE#x z(%U><_>>AQA*tNd1L(=kVjVj?w_EinbqhibA2FTD6w|uN0IU6_WtF0~^F!ZRUAL-|B%k6a zXQCc@Ks+|Uj5E;yV6d>g1GDGlGOl}ka+Ul^Y-yJc0i0e5i>Yv7yr6sAa=HEM3huHm zd5NMlc_nyabC{}|LY-WvR+IZ1F6%%FlZ~s37id^ruklf;6#Uel`fdW%i!a#GKjQk6 z`tC!;5uAT551zp4AE3<_kK&pts`JF1+M36`j0~hSNu% zot6MYL+N+fgy0|vCGD`A(OgW@enAW&N@x6H4=(@OvwnpFt;IdW8n@2zx$@$|-Jv1j zo44PaQA;lJCWq~#)fCT}>X3x!rGFL@TduI`?XH92S#^HI~d*!dVS$^>KR$_+B&P0?{NVEfxDUHsMhXz$?8@g0p)pqKWyCgGY zl9(-6|L9A9XuPUD?WpS(TqtKD=X`6?jlpG6G^xAUXC1WYL%6nonJ#8nVdG3Vt?`XY zO1u)ZA&F@@DXt#4E8JZFhGPxXPenOhW6mS$jtDG@)IUOHTS=kAI-%s0eTc|3fle&=<@X9{l5mw4SR zwFglhIwNOGnjzJ*9~v=`TiH0Q+jjvgp;#G0JwfIxX@@cs98EX{Ftzvn$fuoH|Km{J zMj7fsL^-pivSbH5-|Q(YpMOMWT>Z^2-_K~NZrG-( zhwxiEna;3+^pt5O@HGI)7;|@CccJ!1edxfKpXIE=%PDk*mX&Y+TT<^e_lr9NhMQN< zCZ?uMI2hhBc>Tk4TPb@0=e6JyKv1mkHJNwl4>SZ?cgZiJy?K?Sz{^)Rth?bTSwD#E zkp@KtlGYwl`5vGF0b>^b7#k2SK_DL4q?S+1sqc18WaXmCM)($AD*50R)EI&2G6ztPzVE zr`Cod7hBGcNC4nhT7L87jWfp(A>VE-Z+AFum7dy0X=y|zq80de{SG-YNV`Nr?Y>jdP{z0Mw zNn%%I=nFoO6l$9 z_}86TVIZXOilKG|<}MRjTsC#6-WY&)hP*~XsY51q-S^hhvpq)2dt06Eyj24#z5&h6 zg?033i+Qrv5$Or64X1?^?2KXf;1-GXw6`hiPV;S_jfL0J zVnFOBv&nvQ8!`@Mf;v0$l+# zU%PT^@v1l?CW1#&nf@QkbEVIWfEp+UT7(H5jI2h^ELXZ;Zd!k_Uftp^aP9XjJ0Y5F&H zK^@F+t|W@r#dXMNuT0%${H>_o#$U4GCwUsiyzPds^}GI+KeY*yp;Pj7d3sEq56rJ= zv#gP=HF*WF{Nb7t+9+#f#JDK>1?U2E10Sk7IPY(Ox|9Wxkmt5wJ7+4vQ=gTshd=j% z$g#{YnBx>?hY@4N0xMH<>x-;4R?GG=4FnFI)kuRjRflxjQFCu#D(|rRkg~2K+7bLL z_-2_@K1`C<%Dt%&Q7h)SyI)ur^+V@l@u;v4(jib|dN_?G@j{lw{LmksDKI5dKHOYb z2UKMm)5mBN=^U1ufzE^(m2hkU9Hyl0b8D4tjWtpU6zoQ+}mfAJ@D=nt!zPogxDJLpRkgBNd zeJ>}=F@f2BlAol=%RBJuhv~QPW(U9tTe^=f+@({Bg94@6Y$#C;PJKefe%IF@7TWm#hDQdNIZ*VAZfD!K6+Cmhk{B-xk#(=dE{r)7@=cCiVw>dnl$?Kb~~p5d+yJF$c%iVTLtI>&&4o z`BP(9|NK{GFl-M`WndRq2(&sarT&mx(`FwZ5K2bU&tuhg*abHH;E45-ZvA^<)>D|` zZKJVCUkea2_#t`5o9b?4g$(S;9TLAS;q#`eWL96DHg=K^qGe~WLtZxxxcP9BdsE2g z4K_H(oufeqaffj4CZH#ArrglL{TH6WQQ{q+rRAjrCvdD8kC$K_H-dF!Nn>gaOCz$; zBr-e-Pi0~Kzc__l#R79e0|P8(Bh0X2^o?=1bJw}a1mhMT{}D7PA9gH+hqmby!rm9K zb-?bp&>;V9beDe9 zhk3Qu`O2PJ^2jq&Ee&T1ny{~L^O!7 zx1u|q!xr6=KRY~NGNO{DI?6~rDaH$eN;o(evT_-48n%Z*AH!zm+(&_zs3D*1OGe%4 zTt!|dFX#qm1jPCT5+N+UV;2E=!tWq{u?RR8sD**WuCS=!16GQ>7COW6Al+$yB`+G2L1al# zm&}vC*tTz-6dz0EOrVA7vyIa)#pMdv54}%6`7m~mYtDJEU?#W-MFY`U^n2>!>sG3*X9AVZvs6cYk0BG4rtdxxWkq2>Ri6ler;IV zs_Ii%p15L4P0_y-^OLt;U!ordBAErVuzg2|Py(4G5AF*z0I(9PjN*Wp6u?v?D)ZBM zc_}%~K1&9-&a#Jxad^lg0_VN#)ru{YS4uCio}?uGIoSbE&7jp*{B}*ru*!hm1~Nqp+Y?BvR=5A9(XvXR zviB$c$_=c(Hm%Nue=EUOvh2K7PO2}v0$%Q3Co2&d1PqmJ+5ZM50Q2lb9BthGByvI{ zGZ-E`MO6LHpwrNZv6eiI=UiHM$o?^B$yoA^SC5X`87=2mBQAHPwePIB{M^wE?e4VU zFC6aua+>;*RjA18K>4V`k zs{dAb1mpm5uafosi$X!Jz0i_69>&<*){fy6qod2|270GA7WJzn9Ix3&t1Em`LT79x zQ-nlj;$$LY_qfA#Zz}(_I>sA3f3>U4YDRxj{7qa7hgTdJS_A{eHIQ0N)QVj7CFk{uouWR89z z6uyY*Uj`r61m<%YU2|nd_0Y{{!{xoe@d1`tha&G4fn8FUF)NsRH90(5qcIf5Euu4& zB=T4qU2W@dTUaYVWSzyw5J;D|r3NiM`h)>-<+!dIIfv&Rqun*LX%)XaCgoH~jezgN zON|{SY4J@*i4KAsWqoZZYC9ep&Rf0nOsZxRw<8r-E9?l1U(X+t%&l8N-I2sNeer;%$ z^wQuNWvK?c5OSUB6Dyad8t+RclvJiAdGBGj0A`+Lr%z6*3}8YS_U3n~Oa^?~^XY|z z#LfPE7_c1-hBk)qpX{oyJ46fY8j`3}k6RN5Qyr)uBU3kB8IT|HwAh}z>kuCxw1Y=u zJ-BG@nZS`jwE>5u+EgZ!&gix5W1CGT{#5Hv<$t1dNkU;-G$UIa&LHG0z~h+SlMXRl zW37{Y+LNQhRY@B&M#7^a?ws`5fcYJI4^@8p!U<&|#? z!EjVpo2-8}p-|gBkDtbQ5mc>-s>cJo9MFK=Fa|!4lM#`EurUV^0z%+d4vW)oQ6Gze zjTsz>V>QhGC8G0Krvduib2Wq)hFsRs89K!gU3QN}|9TBW8j+;4-3E@}M$>B7)Wl;h%Lkq_r#d*rY^4$h@v$04rUfRi;;-RLCBCVdWo zKvdrs#90J7FxL{>qzI^z#?XotB&Ec|LvoUj?9^!K#N7{>;qrN;B<2#CQbI>tBcthK z0;}6;bO0ftf-6&L=?o{iK{Iw9(i{BRd+Tj55YKbp-zB+Z9x|b}eyD;5fn180ekr0e z9YmN|nibc)x_X0=e)_E8sn-|~yvo3M6PcN4Kvz?tothMHGczwA{5$}V_DAMVkcN>+ z=brz~2D+UNIDr3gq5u2W>;I30p#N7HM4rHEsOJEv7-}Q}CW2P!VG0v6dl2zN*~iuD`_D~niA9speQtr`_4%`bw_oy#UMvoN!%F1^x@_$0!sd7#F1F$FMe zt_VVlsW!Ng^v{b3ea$KRDOy*m%wD`{$?k-q6}CsKn_Pbb;MWQ~PXH-A`~7Q5?{uW} z;N^CB3Xp>#rqyBo<0W4TTF#8qff)vlMQHnHfn{{nRG(wW zZ%~JHk*(499C&2dMIKu2ET?ZFuR?#)Ep53UU1-c1f`iSl_CD?E$e8Ng{Ik(<=A2x# z;d3}5ALd(O+qA!C6DI4dn=N_`Pt9T%v(W6b_$KXWjaU#J3W7B9r{X@zY(yUBi4Rc< z`VHcOZH?8Z!pvn6Pp|I~y5{ozi#@W~#bUIaIesLlsbp=4BJXyPgy{EnqjPAVGn|KT zaBFpx=qHgLAeRi63C})c#$YlMUlunYz1JU+Nn|c!7l&b;8^fZXpz5#fzaA}}54$V! zu0toscZ0L}yb{*Qg&Cazt<}zJQGNBY$pAH59GKtq11fS6Fi%ma39)svhvc!892gJ^ zV@AP8E5T*GD?}ma6t;!}FC_;ej5IKH2TqkA5<|F@f#{$&)y|@!Y34*L@y=m~t`FZ7 zHL6GdtD-Rh+oOsZPGdIA$BL-JeeYt=aPGo7q2C(;8gt{nus!Vv=V|*V8By}`aVUxy z3W(N6*~djaIqeqh)uPK6dyI*CVZ*+yozXTpqjudNkzZRsgLO1%CF3$pyF-;|HMY2s zjKDpj`-&1&0GC(uFF5!jy{tm;5luSFd4UGN-)V@wDb_K~`}Q4u@c~I9U{U}}_Y6J> z9j(;wDmf||>8J5}G#dmY%IWQ-Z?9dn15D34tbYu;iQJG=V8(GoMqLMBC)Ms%4%*O+ zQ-db$3eSX>Oz?FGw)g?#eR#|onVrb+N>^x&N8&c{04~2|vB!5>(S2W?6fLRynykWadpyFL?wq(|0jU!Tj1x z+(an%vzP#5?(qC;%%(GVYiK~J(hrL2Rcytr;IRS{oe@L-LPepJ_mQ+d`y=`X9PA;B z_nY#$PtZoKMM4Xr9-!sDxMZJ63Gj!wfDrK|4zM9;K6%D~=rmNPy z^c)Q=A6I~Lsm^_QfyvM(OoWpuz^Ocqi8bXUA6!}290N}s#jFBjXZWX#MpaBkG7~V6 zE~wCFOVMg393L`8+3I?_7;)u1Rn2hN>27Y4Wsd~0T8EZui?dSc>{Z7&fY97}GG(;s zo^x(TIUKG)1HpQC$R-y!iL1Ia<6Q0cKLUv##WmV4Sth5T?ObY#1>vW0NKe!Le2>kS zX?Pg`p7S_@J}UAqZQPUqsDCm8Z$KVEy-rzowOHh$=ONpA$F{l6J|-NEl7rrIV6{Q) z*9Zd=DA+{1TFYK>RPya9!1|Mb^!B%GydybyY-qc*oOXl%Yzngllacnyidz`~<)L}k zfXh2rD&sC^%7eqcOGrOvK(HK3%M- zrak#Z>kQAbhXPOifmT9SS|v(v+*J_-EM2@%ov{{mk4y;&#<55?IIb!FDwL#@viST_ z6*}k=_Wr!Vk0>Wo1o2hrEC;F&<$2icdUOv^*8;b9T;OzfJUTzpva|L093Q(Vg>gt@ zUY`GJ9m?t9sw4I0z01I7xj-Gere>y9DP&*Z$8z4w@7Es>xNsl1Vv%b9r*L28D7f zpah(T0KMB$Dd;?8)G>$Wns9KK)v!CgK%}fkjL-8(RzMLA$kDAZ9M;{o_Rt2kGj$*`)xYId5^Bkcyd4J+4d*9zEDFu zg)z3c?NW>2j2NMVFlB9zO9P=^Y>y1EUR6Ku_9l8~Ub}I9B7&$_MOk{bjxpkKJ)OUC z)6g*hPfa!7PTVcac|7waoNbSZ^&*D_-<+OFV9rh^`WU#~4OcomJ#LFFZ(m}Ms$t6C zEdpkH(!tH$rrm9xi+|8azo6=wAW=Xe$OK!XO8Y$dSGn5<9(FM|XE<&x>bZg_;FHZ7 zL(b<)qK!p{pcWhUJu{v{&Md5O974 zbVfedF2 z)_2Kj$ZDV%ki7ec$~Vf?20~40zUdOKO_yG*0#rR_gXA5_0zZEoYm`g@yYn3NQkJFb z{S3AmKstf-)&-s}-uuN3#~LG3R)BPvskIj{58 z>P6KnKBISbMR!F_ZcAY}j^)X^S*LJq5=P$m=a;{{t3wS)dnIq1l+2^lyn zNKc%Nff_R|V0&$t3E9NKfU817TU^H_)dzIOLrl0lt^Z`Ski9u?h1a~Q49^q=#StWygEkY^xv)&riYt0){K`u~X$HeA{bJ(NVwQEoyZ~{W(4#2+w9P_=v zgg7jP(W-h|DhR-_lr$!`qaxcE-QTgtFd4dLjdX@BG1PmaGaM7{8~>@Xw!%|&vaH*JLRoa%@GnCWZv3^G9zYF6 zw`V${B0U~-?AnVU4j{wn=Gs8(6rTxAc-Eu_xFsH{@SST3;xJ zD*6NrI}9fu#$B{GJ6GwoI6^jxnfDn>*g7^*XKLYTrcCBcIyisUfj5 zq+=hB=DLzI*tXD$7esD3Bli#x1pMuwa=`CNnR|pn;c_WU!|-w*+B_BCTXzmyMFAEe zz7B;VLjN(Up9U}ErOx2f4{&*asy?CBu?A%gl;rn#x)V*3xI%N{`(o1*m`~7h7|z|T z+ZIE^{$9$vKciOqeDM63x^U&84+$qfg6 zvRvO@`^4+uA*hL0xb5%Sy$AtRB+&X#w2FZ)| zK7SiDz3AQ1s~sWUE7N47KT=9}fC~1{@Hgm%0s!2cbBiFBWB3$~D1dF-_80(7Mxg@^ zJOmC*jK;(kl+zV(n&LZRL~C~%nI&#AK4Qe2lW~B%9#s#H1%RFt0eA$g*2Yth9CU|{ z)AHb{5fJ_KRa5sktHD-{P&iw&p4Pw){=5a~j!lLRwA?acD!56T)N+}Bi!WP~LozY`4 zy9MMNM!9;7=z!2_bguHpN-KzDT>hL@r1T{9m#GPLYF+yuA7(U)>pGoU<4!LL9dWEe zrRw%$rwdDbpc1$1>6p>vp81;7I93;c^q7X?V)oHFz#0mKBwYDp8GvH>oFEn$aj2yN zg-S$D6;@ylMVr1DXoRn^>5L~ODQi)!e}oP{{$}tr&YNPBTQ6gl((oj91|Af`zLzD^ zv4%D{a}V;69xWZJ4u8^r9t+}2)T*&RlIlR9uYW_Sbo#?sEjC|8zmfAAb=+JvelF$*|^lDzR9=`5QP~qX#j1&*JXS z$Z1F6?m2_gWNkApk2uBYC#AqMlE$}e1(5ZsyLgzaW)#?+ZodJNfKmJVoui_xL$}j6 zbxl4!IKT}A+znmPqVxoTz?f;%vGEgF|C;p$pDW@8aj}5KlTKvLpN#fSWA5Ez=WNH` z)gNJpWgU&0KIj3Y$nQ2d6y(OK)Qn{ryM#Z!22`kSOQhF4Vhsi#0reksI`H~ zt$QtI*~%8PQmDwDD!hv@&pE9G2N}xb&BHps($b?h3HH+>)Vfw&<@o>)$Hn=j`vQo{ zjFSZdhf2I@4+rP98WFY1rO?QFR3v3C1&qEqfiDKawn(rhTV%eb1M`)ref5nXrA7wj zbO*$~u>O62RvUo zt62Yq&8DkYT!bFj#R$a-p$?WZfL2$z@(Hmyt6;@2$GR?L2$%S;6ZpC}-U!y9OaKSt z(e#^fuMm^(%HmMUv`J-MN$#K=3N;Yo0ul44qOgmlKn=XO6LlhC``2KRQcxQ>>V~v- z%xVd|`UGCuJsC0%oFQsXjL)%!&Phy0xpf|yk`L+aqumyv;l|j-cR7i&Aebhi9xW3b zpRd#?6wKd5tL@ZY`5Rs?gsCn21ni4g?o&8v<8s}H-&l$-PIqvhVQSA~*-v4>{8n3Y|<_)3&zwVpmh`~q2`>C36 zDu9eO_8+v-twap?_5Dk?TT-8-YER{07smjgy-;ohg@KfsPPfe+XUng=m5+`UT!0*5 zm<}1>MB)^I@z}KTI>K>G?+kb z_}dUu+|t>owbK)K1y~nNLVuDi@a18=8VGdF0gPV_C zL%$E}sL--3W;mEy^-ZWEO@R5R~X@K9kXT~#i-5OBvrCOQQ+ zIHgVcweC=elJ+6m>ZJH+y9xdZ&g<6_Ps<)}%xog_J)y*!mEwK((>yUPgZZvUwZ;~! zs{l-KTcv)rp$m1}^LC+^uR&^nP-)$ERPj&ODR3AA%(T7)#t@A6fgpVad~TFm%(Viz;f?2Ic(R;BcS^eaHfD+6`?80ab_slEPA5u&Pe zG*}7|fh0r)9DM9QGOO=Z)V6H1-JN>-^alG;fc`xCd=wxGDGi!dB{yoLZWdUG??TlF zA7QP0EOq|_(D{J&+X{jdz*_A4`QPj5UXH9MxIAS;Oezh(0gSEbh(IirxUrOqJP+VQ zpM0|qaPz(vC5o&>#8@TRw?iWF0)C&`bOK1v!Eb$`wjd37OF;fyM-HW^K^ADx`ri%c z3H&M+A|t`287H4RI8rVWNZ_9)CWs2K1^0jiMW6yTJLPr9n&x7-I7x;Vz9M%M94$XR%%eHG$%) zx${LpQu{;Z=9R#*bP(wuYe%5+ez3t=xh+TONj>{DA_nQY9w56901X~r4!GW`kMJbq zhp0p9rznRi&4Dl#gH{F;_@c*Z7UU`Q2fYc)I5M^>YUOka^vE>1_(jfv$t_f92IE742OhGA5JvNy8oA?FT?eqQu>#T3%d8yr6cg5hJLyHTPJ{{Tc! zQ%>xGz$y#KIqzHJo1!WS;Hy%rz@BhL`~c)q1PmI>Pk%@+@RH%+`i;vXgo<9-@Y92) zwx|5w_NR`bX35EjAuj~sCFupe8kW-gy(NIi&@?_|=Po`Jp-x%t?y+aU%H4u#?rw6C5{`f?ev>Uipd+=sFToZq6~06_^_nZ8FA zHp0uP(u?}>u+9@0WbvtBy!F^OkakYl`EV+>M;EGAq-AJSzmo$?mVQ}?{0b}?=tCzW zo;fJJD0mJBhhf|BDBO9#M#k3cr&)o_IdDc$sMd2>84yuW;Mo9&=L??nXa9g`>=THu z^;6WPL7~f?q#GuXIkrdN{lQU%I8Equbs)67>$ye$ki`YGMp*u!UwEkW1jvT?;s}3CvZ* zRm_HFbXWjF1Gl(oG*_`S`wCK-r=wU!=yLNU3%%=`vIKziRpM9i6;(b6RLJuSIMx(0 zksauM-07re=q5C85e^Q4deK2vz{%ViXbnDPB2UyiMmvx3E?z!_yr5Gz&kftAdk3=; z2-T$r{){{kB-ta#C7Dua)k7p!Uw)m$IAE{7d>*4(0Gp$E))0{xDo?wFQ9X;NWwK^5 zKr1y8G)~B*F*jjAmR*^;g(x26sR+Ue_vs*Ru;+hzRRC_jWls&jW$&v3yi8&vaNofB z$Vq$1yh*0`jmwBYTGT;TBx8J6s|GRc5c})xcUJb(IsoPG-!QK>5C?yObE^L&+bjC9Trbe#US@klx&nW??5Fmy79ebv9C|26ySS|l<1u9Xv0c6nw0+H=k z-&^IBD^~j8Sp4s;6hU8Z05f#Ov7TX8_t1LgV@1-m?_a={7$8$XoH?mgcZcY?$)H3= z@(TcK5(l+tli%U&&f$m5IXa`RRrl*eTORj)0PQ z1;?tI-z2K!fwDXamN*_%+aOc&6o989)uEfQwc^;&#&gI6j~j-nf@PfrnGG%f1^$C~ z2m8XExN-$jYt>Hk1;KhX;_gA4kcO|#B28zFFd*~SfJ~_Z?mXS5Hc3{xnpG1oJ@j zh5+0Fzx$#nA&UNBZQ#URkSvXHfS3wc3UJiS@j|o_x-tyHnesr925oJc60zEl#s}Fc zW?zF)MVIXKO996$52Lzkh5HeSJ8cI<5}I}tO9BI;th$)?Yh-)Mr+ASNIv#fs=LL|R zmZz{iv^#?t0CLjtPEhK`vKr!yK`Ds2atLDXNod~rGRcJWcxEZu(HMckbN*ML?7yRU z|KA1q{wWhE+P2_7|G(9A6BTuFL}FMV;FgI7;gtO}E))vN1(CJyh)(gr<7T4c;v~qY zGpe0YJB+a)_Z8t_&5h_P_2Zt>Qpl8(x!2PLL_H;1HgTrvOi7#)uZqq{wF=P}9g?Ta zuf?Dd36t3iPc@^3j?^_puf%i9Y!;oYvHED*XH0?NrvreN2!v9Mm7l%nzWv|sv%Zgn zxtyc}O*om9icY8ZEH6xejLskg1c(+iLu8s^mUacNe8wylz<^j%;1F{RQ52cuvpcj! zBS2YRMTB$FZ-%D$*QFq*AQc^CTqgG;-x_MP#Tk{-WqWKw&OzX(ry=D#4B#@2n<nb@8E5k1G0BolR3nVnhsM7^svCq$-0 z420Bz24W2WvBJO;GPfv+5+^ z_UnJ(xyQ}``e8xUUm`0hGKU5VVuQ=m>8HV)ZQi7KL5Y$!NJ2UfwVdAM=zesK=(olU zcNfQRyHu(ubN4?aBxuH2K~2MMa;cm{00 zKf|sC#hW^$S)y4@mi;!XlAcJxo#YY&sXGE^NXzs_JDHePG$PBw7L9l&|hSZodFxwcQH7n8}ac0vEdhRvn91~$2!fH+`!l5CzpOzAsK~MZTEAIPM5(+G)>k|x zbZA)+bzze9pIy8IP`WuMC+nmwG#GMAH5TxDNjP)F&luVs|JZ!1w5B@n%avjo}sQ`$-k zEz?2@$Yr*Yl3^UBeFlit6_EPW2<_G&OmNU0DVRv)j{1OavOu#yB#*R#=XWr)j{2c_ zH4y+)@!qP}K)tuSEqc1ZtSQj#t8<6A*d8Ka_R0J;W`hY=rp26Yj{tnpR)uBc95GmZm%nb-M$=e30R6Vzus&r#S{+h|aqR>L&n8)*l+w zrmf27)oIX3_kR%y1B>ye|Zb*3?qU`ig1DJw=n>7Qg5MFfg{gwW-phNsP;gmi^H8t-k1k z9FhOH{;#RC^nJ|#=US6hjee)__y}@9Upi zzfDEvKhyMWCjQwH|7?kWq{O#9@Q*P4HW8?Qw!}YM;{QS=NgWtM9Vb4#@LHi?msWt$ zG&`(GJBgXa;60#e9GT)JDe@g!Qbc|aY6lM(OO{y)#SzdJA}G6;th6IIT#orjZ~3^(d((QI*Kt3~}wXD7`#Fk1M~rE$31844{)DE1@!x1ZD6 zfZQ>CZ2oJ7YMH0`Lz1W?&3r2z11;JIWn_dl(;sc7dx^UaXKli6E%>B+fc4~; zG8<5a?76;k&S<)LmdH7ATKxX*`_}|U%5JgL$>{lw<)tj+Q=M3Y^nx;PMJP7_6^`C~ zU1Gww_iU51?Nj@p88KYH=tbsU{#Or4=u4gBH+nC;sR*afmj8tlP3+00|LEh)1zgxM zTKRI?&Qzu(4pz>&ca~H3&@965XWRd^e&8kbK80btXZ==4ISGwcS``V0b!Z^nHLqiG zM1lAA0YT)UEc|;`{L8_D=RTzvoI9(Hrp0y7KfnQ)_~8YR8xV~tFg_I_*7OE4SlORU4BLZIirq)M7Gw*cfG{##cr`q?=0nv;sA413`;JzTR z{evG~*ksH}MGq`$hlM~~g?=U4Y0PVM|3TU>AcW)svdw6i+6!lSBNyImA^$82*KJ(; zeR$8RkiB-|fGZwiD@hNGFLXfF#q{OQvyE&sPCmNs*PPG;v=ofyq+pg!9DKkeMs?DK zXx@pKquo%N`j1=$c#M2~_}g$Qk>ONp=;v#y_<2D|bQ`&_$B%8MPvs;ycb8mvcUbOV zPG}81xPx)zo$W~1(Sw@EXzF$T{=ONet_6yrBtJtBV+|{Fqc69-vx!J$RvYBKR?zk? z+9`T<+5g-*^q`!C^^-wcuRGRxeLh@wY4Xc6G4@v`zRdSGGzGP?`>$>tpS|{Zr*hl~ z!HJB_912(T_Sg1rQe@(1a2{w;`Ny=fUg1paCU4Bv+laO){e1&AP2=0k?fqf!roRK( z-vNrY)TuF#N$U5>8MU;!ClW}@4d33ueG51gpQ9hfj=UTB`@$PHOsvD?LJ)316q6~k ziLjpR`~J4T?VIqOI@{Egc)_7E_wj`{!I;|gt&SdgTC_s(7h1?Dolbq1Ckc_d$Kxy@ zyW#N)G|%$D81urLPx-&@&)E$zAEToS7kZR%%tp# zOuISwv^N2R{|zdCcmYI1oFN`Y5!o(o`4#WfpiumTu4p;^lSIH6V0|ipYTxpV_Im%f=$f}~kZ}U_Hb8CChfLd?1j+7_}e|-;0 z9`yS^Z99Mb?^|#EbE{}_j{h@F-!{pSf40QenfPZ*d>0%4H*AR^mbYlQbRc%^t~ZGt z@6JU5g@^h5#Km>IA#z+t?^ zsg}S?!cRAr7hGS>(^@&AWFLGXHY0#AyvPi6wc}Q3`hVqIpjbecAkS=k-;xxeO%hIz zTk!=eujc)x?pe&2^H&oKSB9*fe-gC;Cc!hr1_syhJl*Nsl8i%x!@XFp<3nybw|4LB zw=N$6%M59Ar%&j>t5dme=uX#8`CNZ*@6=aP1L~3Sw+5Y#v#Z7hsbTgl{&}s(Tz{mB zv^y%&4Jd2SLF8V->~p_p%GZaZP9OdXx$gMQZ+pAUxuM1la7_w)acM^oTl zujjm;*L~k(<+8;ex18${I!qCf6DgYxNW6r`TIb1@E*}!?*S$HHlM(Ti49AQ6+dvI~ zs8DayZK;1S3Vzh$A-V1qpBd#oK^yLavFq`T1u$S2j)vS6k-9 zu;Vb7mMcKh%cs-X?^6+NEFXd6lyXL5$;+lGWV#-_*&Lz8Hy^GX_7=uHB8K)LCPkuK(y?``}4|M$j?A}S80>VbRP$Y1ae>=i%b zvDuBfCKTyI|CT`>v|YN`QMb^Rp*3FK_Ei5cvdg+AV05q8RFz|VYjG3vW za(YTNBV9X7&}1Du$Pd3Y_CAc^JCcSN=H{N6fv%nbFQfgN0(kWfKKLdb!^A9p#a`f_ zT%U^b>Bv>(_OQn(jw{t|8Tw@?;)7(>7DOiB!nWM?b4<7}D-el!V!A1W)X|K=4)T1U zuW#N|K{}-+V_P8m(~Ar2?gLQ+mh*xHdUlzwPAy)@Cjwh_f7+C{;_Zm1+&jtWy~?(a zj~5~ild5Kw>A&!Q%icn`OsndpiRS$>0``pU%ES(a<7LU+i!xXEVyjnRo22!PjqlJ<|5&4 ztV64C@J01M^)R&_lCPQn&d1B#nqRpf{`&tIBAIK(fNY_8oa}-1BC=`7gGi9-Wt+2S zVPXoY$*z{zl9{l;_dKMQNvSXPB{(%3%Ys#_9@|b&%pyr$P~rx{Coy>3yqMquP!GfR z^*3^*-GXRelRZNQT`T7_!V*jeZ`ft&Et6GxLy`*Xf~Hd{E`JY!GYuQ%jQ+K3F~H+? zC9a{c1b$RfR?-k6b)pe=fM&N*Naa}&sjMD5N!E6qvnYm>D)(!M1PuAlNx*7GMpZM47+|`n|vc$NcJ*=$}48tgWvY8NZP9 zx6ZX}sbqOlWOilc?~f5aJpcZPFH?l_?{;4fl+TRfO|W_j`qvh*u4k~m3OdiIH7v&7ag1_7fNN*Oth@|;MUnU=Tqav4Q( z3q;wI^RM?b=q?Xf1&(D(uP_V}l%rs*)6mRXnZwINn6F zTYN-{e2K?6M6o8T=dxN$DY(e(c|r;(Fq!*+22Awfso^HI>92|F6}VFHum^@AG^f1V zDUs6xe%p;#A?WMPZE3pslZ@(J<_Ej#690T7EC?p^3$6Brp~!bz%q@#(?u!z_<7t?O6IB!yD(? z3aeG@KModCwhuGkKpQ$nPB4K>D};p-mfyWybA-AOQOErVSb#JR3_GPKIIKO1qRpKQ zE1Em*mVIdMXBkgC*if2*a~&+G`oim4`f0$zgxzh&$Q0DO6PDk?Bo(>#Sosxtt}b~U z8INRtf!Qy?!|bq&#_*AgY`PsoAj$)KR-wKg{xtObPLgHFMX+VNKGD>y^bGd1iW4}D zP4d751VK7y2F$58yHCxf>UdAxM9bDL^X#W{&YAD$y^47r5*~g9joRx&It+G_M*wN$ zI}hhjYfh2FW_FflKb@#X##;oqVhibfk}8>iG|;=s*_4y#e~wDXy~dSV0CKX<4R5ui zJ*ZTOGcMjKwz6TUm0cCq5YkIye|s0Vse#8U!`%&n8sjuU=%f|2L;N;&q6r)y!+vDP zc=5c>mOxb0IZjT+<7SZS3g9LzqurB{!qCE5eP`9VI5>VS604Ro{k*rd_xar(@XoU> z^s43qi~l*Io}lPUt!qr`h+D@$I<`fa`nd|SPZ+sFjeLdS+soX0`)!~vRuXLRAq12C zM(U`i50e4xEN^DfNS8eXt)R$ZkWdCawrnX&jDRN)>Kf+ue44yJ3*LwsJ6?!!a4PS9 zzh?dTmL$4RVSicbsa`KG<2+z~$c7#0T=9C}~}U^kbSC5Y71-j6rY z=a_541p+P&KAD2dN_Vw`yJg!k+~%2(ak$7#k4DkI7Ho!=Ti{8b@gx9-as%gE zBMhO8_v&j(2F*BUYJ;FLBY4qPrMJ!Tgf@aSGY#^H&foDk8yGib=_e>GF=1(`k>!v+ z-q&jJoXxn(NI75kTwES8Dj&zbf!#0(xQyM0$EhiBt+8lNf@DP*0yKV=mJv3dYFq63 zHchN>;==K0T*}-U_R!ZIH~z6SMzYED_ik@jj$tDd$^ArX?O^ZbV9P;CB2qX%hfB zoeR<0)DyEqKu>aTY$~jXr9XGzQg-%4EG!VK>~jtcx-RYr?~tI7r#E=qWE)q6XWUC* z$e$gW;`Ed9y*Dkf;rkuHd>p|)G-ton+v}x{1u`cn7fWxlqRiNnc8owYA^LY8D3V$^ zeQiWa(|_qhRKiAF{raKwhl8#=bhqvwO+fBlX0p0Fj6hewW+8#84xFO{rEW807iz6Q zu4zdFWI+8l$1`~+L*`zWgsp^74t|M`3CSmdli=wdZCRcwAM8mm*!-*7aZ*~s7I*FHN3 z%;|JhEoD8@n*nuy^)1Nn76oY1h-LfkK%Y=6Lt3q|G?4xud%tpY}q#U##LfbeLFDjx9e%V8E~ z0p9S*a+rrgwIcZrGP&YbyS-Sgg|I;xRiI8f9VQgULv2&`#=sDy;hhXNMos?G@E(qn z#-~gXGi$Uy3CFI3k&vbSSeq3e(He&~flx%${|SanrC*PoG|YCTVbRP4u6Dyk7qnqm zbU_+%`dJP4!L($65)>HLn834<0si6iwyTLa;*hX==MTU6#dWa30mne)?WIEeC<$@gvjdzS~2V};**wx#aX@24*kmg$x)fgrGPWx%FW zES((D0+)2iip2y|A*Tnq!R?pDg6cquH3$5B3Sr18vCTBV5vzmTTSUxP^`oZeD-SYoOUp2u6)6~+GizLrB{e( z%tB_MWfjJ1b9oDN_d3?1$IcgR?;>oy(;f0n>yP)KP<3--eOu}W4SQDYA%Q|qnqlhT zEFF%%;9zv;6)`tn&dj;KUpqy_6l@U*1o}FQNZq*MYqHr)lu!kJ!&9Q>1AU%B2Bvs# zeBb)Nbs%Tppy!zBb6FO8<5K5_Km)Z)QOPh#u(#-d&@F&^Rq@f|L0P3;P}QIp!W>>MG;Qw=Xe1~rKTE|1iL0YWD?Q2@EIAw~}uc!Z@!S|kdkFRgs?X5C$jQV+9A zk)zr9%H^zpPd$6tW~;75Gw}0SVtF> z-`$mL2U>#BgpvJi-#0Lx0(QhhN0AJ#=SwQ}D-!cC09N@PwG`+=}H5aGg-bbcM|ezn5mJnwY9H> zpLHSz-!HNqowDk4=jvMqAUB_)Ezrz$z!(?Sv0C;t3!66Tm;*J?z#ZY4q3^ zmKPb1#$vO=>a`0#25;M>b;^|J&HvNEPFvCw$p<^tLGswUtH(|r6j~3H2Qe1)s`q0s zSj!ewG8ZAE}+fa3>V9+q!tGA91YcrS*u(mZAx< ztfi!6-8eCaoyt#)RT)QbKg-=XnG$088EpX=(zIjm0~ zL!Ihc8Vaj8|2g=x_Hg@mBU+Jh8MuX)&5~;uw$2xOnXB1qd~>p^YAW@MaO`djzW2R0 z_ymBjr~iVxnPSiJGETb%yYR>OValUXx8QDa9|4f?y-=s8(QEG!Q@i3K-x@R318_+Ow3XA06W@!!hqH4X zI(1e|DM$Z8YF1LiKifGlzQ81vY!T!SbTq0WWd4yJ9tXBvUB{a7G$Jlz1zlzPabnlO zD$7lQz-z)PCF0G<__S(TI%SP}oZD5_fP+CJp~?8L7&)X2-1PjnI-0BDSLl*LJiXbk*{8AWd zlP!SX@vHy!C5~OFw|=dUlNeD)4WB&P6spjVAU^<`+CLotq<-ffcgTXj>ni_)&&_07dpCkt@>T z@0NK^E}6FNAX~G!5}~m00;X0(T=xq;Nu=UIeHvJtk0aK=Ur7W_*XfE~4yD!ALa1Mi zCo3y7l$jPv0|6(Ko-hQEfgrsf75-ePR&d8XBwJu6HWr?~)Ss=pgNCl7$JwG<|Jzud zUR4U0sVKD*D~3Up;zu@?+Z}9L8a=HvzuCnE$NZ>u!$u`C$Jgl;tZTxVDyI?jkoFGR zft^lR*Aate5`h?1?+67rowD}kLji`t_NGJEM~PAupY}>s$XuE)#fS#|kH2#fXhw4q z2-uF{=V}L@pgZjcIq+4YDAUtbCkj8FK*U3F#s2ASx(&}J(+azirdg|NdZBUCuWIu# z?c0upjhU;pX&vxNjLa=x&t8Qv2T=*C==)q;sS|uMHL_w^%Y4DpMNDj{~=m` z0MYt|NJV3ZGILh4cpPHYkQjdsaS2@?q*8eDPn>0lX~3myD{UoiBnGN~Ji7^rC?vZo zy?QRK9zI_izIRMCnIg6 zO(|zPC<80DIyds~P%kY!Jy&4>i}Mb=N@^DMUVh`sl}|1Lkym**par}{Hl#IAZ9^Tu zHGeYg`vaB$GLt!(IAdFq_iFkYRS5)OYIsuzt7~w#v+zk0VDeZ9UVsyj-bI1UsK?|` zPht4xF+8p)#j;Qp-v-CG9m5X+7L6HvG7{jau_P#{j~$dazI)F8dL>{>Wyda&&<>U$2c#%F8rI@b0!-C|LU3sppkEI+cr#XH0H(3Y>fA1PsAAH zn%h5U%^dL90La6-pk#mlkM%raQSdX3Ls5`r6x@f!o2XgX%jDrRQrKNbnI}V&FO|$oHI0E?AmEEI&m(|^$u)2(JOJH zcxg>E26U#jWPk%Y{!FyjZjl*C&%BVLH&C>ojR*=f;HOYj5$oBcbqn{ltj|S4x0g9x zcl<$$s#BB?DDOd)C!LwmM0QVmcFj9uwt@oRw;|g6^h8cZ&?h8#vK85+pKp}aCqA4R z&UQrC2RxI0Lj)UwZ`0o|hZhac{FviwVI*H@$GBh&2d9(%eQ;N`@8gM8x_5B0{yx-| z#XEM4Xz^?LW@TLCW^gD7HV4tlcx28_hVfG@vjAooSey>R+-LQwRpb8*t#!7m^sWJe zHT5CV!W5L#q9Ozd_HXLZbVshhn?xzAh@`Ru9r4HFyfIfL23LxQbT}PDI;;+yWhwV= zds+Y8cDovb&K=zlu5oPpShx*Lrz$jh8YV6I?qvG^VZX(71bJa8ieZ@WgO63LuITHX zOxQMP0#K+h)+Mbz!vln%wPn2(buT9@NTA)quhe8eb}a%2s<4*~PV&KCU-%?QhhGrA zU*j|t$P;^8UlHaZr0G^&w|fRPpdD047eU1(ZRblRSAZv}(6UdD_w3oqjPy3}U-UBY zpY&2ve`h*d7R~y@p@?;oC&fNEqh(Z(0%sYsXAGt}78HcU>Zd=-SCV1! zvUeFk>WhHV*0pXcgJ`tQH zHfPxaF5@<_=!{&1r7uZTg9DX;(PyXIF?zjkmJ5ssQ)?LoylZ^{L@EVmSz*dfh&11D zflubxF^1lHf#g4C1p*yn7)D9G0*~p=At@P+gI~)=X5WnDcZK$@P*DdoN`Lq{X8=%3 zye5Jp5?WwN#OfrYH$)IZ0(=OKFEZf&CHbDWY8dY1TX&7M08Rl_Ux*c zjjDauBSqgF`1&*R0HN}8%xuiB<8;U~u!z-{;CNWS#~vE<;t%hZ4l%RBkW|#nP$kdm zDmv4~7yuSDz{c~VuHWw45FgzSxN;@Q5L)T15a)}zRT%w^x25+H>tJ?~12<_)?^e0_ zQUiXXFurk7-%h9g`(qVBvMjoEOZ}L^FSWJQ@W5Tm(rzEcuGbcN zpCeK+*r9G?Gs<Y@{GfFSC%HOk+`P-K02Q{@NBj!bEM|N7 zAlF+D_y|@co><>N`tvpqXB1#!qe7euiI`w$(?I+V^$f*@(3e5Ky zeyspkI-K@101T2XJ1z#C4gY5z$-ao)kp0i-z^5M^Jdkn!`U1xeoo8N4wQMoMQu&ar&ip^F>Tt6y9*0V{T=B9I#p9NZ;Tuo0;yfrfZRF2QqyQ7259@!9>uPyp zR$COL2M+%MuJjq)CnL}$3d8WVf5YWjqbOZ9Cy?ykVB~5_Cc(cGM1|25sX1c%vrt>1yl-ILnLm(0nT8GpB?}%DQ6sikw0Y>o2 zo9}}``C~hnlyN{H)z7c^s>Ur{v+0Q5sjxfQ9Xhk{l@}`u(SpKfGfnpBYzGHRQ>Xp<3dhLqxhz)-N$W+akGWa_weWHLq zuZuKDn%IU^1cgW&bY}mnko3my>m)Yo6Dn%B0b&LvXnj%=!4>S!!{&lNx^yiX4ThT9&A48Xn*uUwzy zw~T{`=r(lZG6{m8hraEwLJNXf=SnERzMjQur&xl6Vld(Bw;Som3dg*NYuJ=tJKz2B zPT(oa81T)8)yk$iJga?1;Cy$Gws5JvBl|n`x7@n^!+Iyg=svteq>d9h9Kd7(!vgNgx*0r*sldQsIR`pSnWL2RG=uQnkf%RYi zvNvpC%EH8E#%}UfjJd}Tx4EP0{SF&+y&kw71t*0ChZh7Ug8jVp9B|%vm{PCZw73-p2$Xo4z9Q>MWbRzL39Gt% zH%!s8=R&p`8FhNw&6~W5x&?~utlQ08d|ys)k`6;81yJ|qef@f)C6F~ zRga8I_nz08=}JtNk7jmJCO<1AtkkYEqWR&>NPq_j`F4e2qiInzr^t<7F82|F#kuAD z2{82cfD-ONFYqm8mMvstp>cp=Ee~p2B<9K{qq%WEgbt`|>q&$tNv#jX+$X4UJ`j-5 zX$c{7i-7B83N|K;Zhxz`yt_`+jfc+RH^&C`M&N2c*^}$ow{)1t}p^%~tgE{Ra zHSpWF51rC0>J1K_l7yvZXFU$Xnwqg2U^dB?>sO4qf59jF@woe<)o0+7zz|m^Tbf%0 zScIQlikm2Lj>I~EO+0|TBDt0;?4t48zGT{Ss0`6~k=lE*IQUP9Joj4D)0yZtN^G6I zy^=>%HD-UdY|+L>93i8z%KYdytSb#x3k$Qr+8I}Ckdu%;NX=v9xuv_~(n|YMT+d?L z6TN!vD=)CBm#W=S+AuD_VsLNQy@ehAuQ0#6V$iu(Xc`z5!_I@IGWyrrMQs8p-r9Xy zAW1P{bR~P%8rxL#JEw0MmX>iKQU??3N^tCKBt3m%5=k|&#KbAvdq+0Iy6vihMhr3Y zWzlB9DRV;z!3&0bfVBZJ2-(-yWd;4KSR!npL(QieU=6xzeGA*dm=cusDyF{*O}=bV zqu=YDyN>e%QMYL3>}Jqny}m=932j3dhpp2TvS$*#8Hme_cnV*GJv`j%>By2@;z! z&n|@|4si3(APxYo7UM~fFCsG2TuHEvWN`M!uF}~*FsR7)OmJj@lK!!GzE{xt6;xjS zA@9vHQtTOMlLIuzR|keqo|cc~U09qNsnao;#h#4MJ{{#rU)-RVt*y%O8xBj4g!#L- zXA+wR0P2!pAb1I358wtbLRPBu-0DA&iU?+xKkC+>67vajCN*uHw?@}1lieWjdB(gH zgPlQEn1Ebub*XKfV!^(I9fWj&ZO71`|GLS+i%r|a*_Y0R+Mum&I^xmy1eRGh{+=@M z)O_>MZh?;9;4m>L=ZV)uRdY6tzKPCLZL>lkThO>)*{S9fOP3WXu&dWcGNUG#5wnzR zyQl~@UTL}_&X-{`-=*Bn-&kE&zFPVRlHEMG@l@W4^FE5hyOWCebT8DQkF@|T2GE)B z`yPt7lSuQN>ggvKyEi)gsj|h!my)i`chx$JO~>uuL;~a$!Y%=K20+;+L{Wm!CW*u- z-k7g%f!ZmS;ElDd7d>ledx3ut(6sE~8o^m@L+M2uaw2A@EZV~=vuOeII%OT?`h=l$ z^0-o^0|ak@*F1pKpuf?6-5KfI9kipCRza>9WaSh2m8wiI0ZdNI6kvsX_k2J8!1==r zwEqXZI)i|V+;?dh7^bpYGhc4gsJDAn^PwUsc+5|XzLON40cT9S%BPX&qD@wG5xY`b zuqhG$hX;AM5&^(ENa%C|Y7bjk+7%6t>7*Lm3=bK)(VUFV_0`kY^%)A66Sgc;ZvR7+ zZr^hKd{~HvLs+i6+S5!8M;Fb=uBEylp2=d4S=Q2BB9RJ(j@*S{L`OlKhXV3de0JK) zS8_?`Ds=#j_LzBkyZhh#KaFel**OyV{M&B53#V{D~<;!AOH!Z^Z%! z-&Yd+)&ZDGmUkB%vT8CTW3t)wwc(KH%C*`@O+Gkn=0a1%SP|;0O*Ehc>-djIrO0O& zQ+7h+F`nGx=-x!9Bv39<1P3n8bGdKZ&Ck4?F(W=!9 zZ1W@1M4?FlB*fMh;nwsD&Y-0+Bfnkvutgf3q37P%3CGI9m?@*B`woHmjY%V2t# z3(5<&V{1^{a{r~$N`AAW(tMiW6|-{f7RM}<0w`^>HuJ#nh4rhd*+=OC;gqdiED^jh z!@7hTXpPr2s~{R&m~vqs)tpLN{P;pv-G3|P5?02* zXQ5#I8px5*|7cshz)U)ijI0f6+wYHFJf}S^S+@QdrsLgoGnI5JiiDP?edKnW96@5& z<{L&FXcxt3UYV$wy#849OUK0t&SeA+>Qn<56ToGF zr5FbESZL`Ap{3A_URcWjAX+loqdhYT;xi^gfEIW;s|NuBx$~vS7o0%bVnM~yPjpHF z@#i<-8LGb!OfpI0RZJjj)9V*lzSSXbvD>P_v!Tt>$7`Da4I^_>^57!dH@t%4jIF{v2#gTei$hBV1aa|vgjCiUq%lQHUYul9e&sG&})oC z3vPhH{wanf`1Iw1WisgoVR_&-UE8*`L0VsPln+HHK=B8@LMrpDpTsH4QJPry6uRHj z%(U$u?SX3Z{c!%v#IR2&45kB*&Cv6Jne$08&}Zvg+iV| zqq8n3J8!>S38?8F{N0rl5cS`v4gpD1Kf1-KKYCF>)4O$&LyvxNn`Uq`QOWJ)vX*Cc zNLL@S->pkkw1Kn5UVJW^CLEqfaRo##S&AItE^l%>Vn0Cyc~A_lpR5^wC7%NPuSh>GD;)SxsrK_r zqv@&{0!JUPRk+dV0@D9`h|s*M>M855D}o_EcJAwLOx<(*Laq5gF!$(`8lC%5g%E21 z)~7ClmZF4w<$Xd0>du4{HSbf@4p4eHeqy{4yWm#_CB zGdl?2EI%AAG3KFHVsJ`Jd@Oa;b8sp6OF zmb}2CafhB~Gii;E4tShD9!E>EY;ZKLeuE1D^i{Cs7x`fDOUMR9Is;4&p@ae^nPT-(B(f9*cN^EL zgpTt%_hq#{o)Ray>IeK=O$!TRXM3f;XAe(DXj>^2oN{NuG1CVwL>z|pybx(4psK$( z=@F?D=M(t#=V?;JWXfXayEtC&IEp1eulo(kC(ENEraxAHjeo$i*7aSeix?|aQ$|GH z7&`|MFqk&pX6-43tCk0yR==?W6PwIiDihX1ASzu@3e%cuc2HY~6+O#e>=4lVi})gU z@^K(r(8WfaB)3Ax-o8Q_<$5#}^=`&hMg`W0&s&YaJ+$EJxxbO%fK=4rAQY2`KayrH zy^{rD+uAj%e85V($MoB6lJ0<(klL`YBnu+pV+GC)rH+d8SeD+jF0`v?ZM8<;gF0jj zte5-jYMzjBZD6$$=FkqsJuDPo5XGr1S8bnG<3~u)d8070^g8dJa-jfqnX5$Gfcf@~ z@9qy55EjQ%5glM_1uJykTXH11y9j_U;a&O3*@J%dyBG8B7$jj1Rx3fyyLxIJUFuB! z$Lo~)d)b=#=g_)q)}Vt(tS#bMmMzgrVd#UqUeV|(H&qIp>^F}}6?p`LF1Z{kuidg` z5nFeP3>+z-n5~x%L%QF1Nv5~A%#wd?P*&?1Zzl28bapn6BG}Id*4`68T~O z@qm8)6gLp%IfPI^=}#5xav6Bo%?2x;YUPnJVCjv8w$?z%!7JRJvO-YwBByi016ygL zu>c#KMAE64D&=QRSY^|IbJ%|5USh5;Bw`{rBtd0RuLw!We~@4f!H7~w1ADM-fZzxX zZAZw8iiczYbE@n(@Woqt*LlgP>3`=FK0(yz!g}uWbSRfJ%{~!n$k`s-9*04s+#3Yv z#NI)66cX>z41`@6iv79?==!RNlk~`2kXlg6Lbo-pRwwt)*e>6^d5lv?jJnnS5`6qw zpgtfMY@vbOMSh0FGWpC*F?qSZ$VAtbfBHoWx5YZa-8eAa9HpTw7y?{J0+6qjV2H;G zB3mU;SZ^jxm&7>=h+dPq3rLCi;q7OkxHKks;Ax?TX#RndiY`XGqrEl1W!=73hGKaj zOOKG#?+yyX>pz46&*S`?`Z6TbeQiddN#~papgLj>m0Cnde`{*(P%p0oKnap533f8WYfFU4J>ga5_A)Kb^6$>^rwgx0^i<6C|mlz#%)H;88# zA5e*utqEqRx#|K6OW8u-BYTk1^?otnSC$K{6nHLAsVUK02PPkb%{k!3c$4ePUGgeh z*Q#C~v*$Z5X3S?N?r!pW3=12JS8J;*T)#p>=RVBFLJ=vF&2~g(33mfUp&D9S?e|NT ze=IQIGl)MLm)R03bI6l0U0w^t?^kVtlL{kv&n%{`NfFi{FfMLd81yOjrVA!Q)eupG z2EMHjR1Hc?g(VdrMa|avdVC*9>yV`*JpwidvliJ9FlocGlJ}PMXzLS z*7DTa>{Ha_BTQY%2uEc9m`i=O0+~cC+uZSY- z_j`pOPI`Ry;#tW{lBYs-qJ$Nl94S(%Fl(`6CzY)59qins_~0e^ogxhMRC z3~T2hhiwu2PO05hS7=&IIZIPOVqwrP%R|+7YA^qFb_a3hrQ%)ns-25oi8?k0XdLuz zo=T0NeNf87(?w+?l`GH83e!e2sEQpU3sZ9Gk)-mRo~e+$QxSWr{_9a?+Qj|h^YbAu zo6$63!=UY>GNFDc|C!vtgKMC{&w5_flhy=70j>1hH+4sI=P<1!t#GBh;2nn?Qq(o& zzwXYE$T)cR>9)G<%3EiDYm;($I1O{K-y9}3=gRx-p?Rwx&Px9w9Cpclo%QJu*l#ZJ z{jz~ryGLag*9%m;iWffkIbVGjaglQEPVM($5%j zS>(q)=R{69cW%);J^i_$OwL%>?_GrwOvTEQp;_L!?SHN9?H^UW=`xErlh8P~l`0&Y zW&R~=r;i_NQEhG%r{vyMbGOW@Tbu_pN7RXxKNTZS+{gEtl(nEvO`WZ=38COGBME;! zT*y326RsE-j-|cpo!XwJyT7bZ0=_yOx_fBnE2hYjn1q;ldlf?Gt*me&dkFr5rq3k> zhx0wJc>B-Abcj;t=@RO%TmRS|y05Kgn^omg!V!XV_7?sL(8Kq+!}8io-#U6?4k{7L zcvC-(CMy>Fs@dU-ey6wD<|ALd^+yG1gInkhYl@_7Hl{&`nJ%(6nM88!9g?`@Xy1N5 z!STbe(vTVQ2)Wwn|23<^meS0d|M`GU#Zr`(*ohOJBYRvT3b;`}2|qFrdtct%wduva z`}|HKW8-0}QGU||IH$d4y& z5-1j$=WRzy)gK8|6I&OLAnl_)f#fEyT?XM2@ujVl*jmM!=f6Ihe|>EBo(>_bktzo3 zKzdraCk}Z1x%GWaXkdoNFY3o44=(hRehA#|#Y2@nD-IQ@oG4t>qej;4kG38AZl9c4 z=)R5AXiCzdDnb2Qeoj3d?b%WNhW#d^w0o~9qzmn2n)}}NYIyATrjRO4K~VaxVe5t|P(fx`=%GjO|VRjZggG&|6Xi|xuN1&?eJm)JA)K}AwH3uq#OBj2Te zQ!QJ{3imh$b_CBq#$2(i9bMGhYzT?f>>E|xlX9o4`E6s|w!-t!bIW<*KS~vw!s*^% z+)2YFmla$4;9J6EyeqGx5Sdxo0Icg+G{n!LT6xhY3od&TGU9=pWJr5_1gSDltR zd*hUnYomgPJg3r+ zCF8vK@u%0C3u+Bqza5%G+=y1J)4ukg-+VH&%9Uc0X89)P3heH;YUQ}B-_JhHcAk|m zj2`uKW{lj*%zZHvXLnmfkgXC zf#X}CmrX2*b;k~(v8T1qADhaskydOpW%Jk2(A}^fD|hsiaOKWEO=_O`vsnD<)`%UZ z+p`{NfSmiJ@H3uLQ_AV@>&uvCIBx5)=&`D?=3mc_suis%{Jrv7CxPAcLc6c9Iplr- z){fZufurp%XyPJ1$|y~$C;aGx5WAac>A&yn>^Xvif%qVfCrLKny5msW_9!ujeJ(>? z9ah3A?zuPUK4diXWqaGB`r0|itW>_Z^`v#%)f0yo(#BEp6v>tKGhZ@tuE4V?3@t5| z^5}muNL z(@CK%Dt!9*ng}%gZ}-fGBpZWg7I#GKdYV0%@#|GlZ+~BX7*SEH%H-pu zml>gjg;r;RI=z-U&-=+UI-0#42bERBle{+%j zdF}Tj3cdd}?62B;YU|fME_3@`WPf)V`uX)wAtDW1>rBUsPSACm`qY}P?)2J~vAfRj zJ(IbmZ_n!aU4mPiOKKX|C80BU)a2OArDXdG7u)8H0PH|U@#LZZO-mk3>%8LKZ=$0V zL$T2?=UkcbFpZ|T>kl7jHaFpBG@1}iGR-2=TZxSgjURq_cV))E?D|9P4>FuTd&N-~ z&L#504&7}~SrIjcTD&Zx%c1L3I%H=Cb})M|xlnJo=QA!cdA`;{KMrP@H+<|Ekjkf zVm`>s4CbkUv8Dc^HDt=2c%l@zF~^tcrQ%=g%9iCJTZ~)2TK7NLmM;x!$<|{}m^Ekz zuV0>0&ED16*df~goFidN(GBG~IH6Wg_Y!-9<~x&0BAeao&k0(H$5Pn~zbD(M<(3v; z<-+F;v)>rl7OCWw$c*dWD?IakopY#=`K(%d+@pQ`uTc|Z+92bj%*L;0S7rTV{4VVn zYm^xuXYA(7eLL@5yR^IoSU?b^RJ4U{$>JY2C5g>awT6nmZmrGOig6ODuT*h}#FlSc zv}vE7n$ZsAr&nrw%1ZvUa4 z$Qk9s$RK4#6?2^_2=NG_d_M4SBqP!2M4NxhYpd09ljye7x{$q;tMYw`L3`5tn$tto zqnd8f?bfcmDzT0`&{Mn20>n{Thj&t_;WJMhZTS8#LB|gIfrd&-R2qXLk zzIK15<&7AX1txclvAQ=p9FMcEa|b3F%#?eY68j^5@px!(XPC!KUZx10kZ_^AjsMly zTeBS*_RCqBt!<{L2053u>I3k*e%t+|@{G6#TpoJ(y0$4aCUm>dA8N$61nW;)?6@Z8 z>?v68$+POe7B?5VkO)K0e+aaBe`n;*!>Oj-xX^zReeeDnM|5z+;_x)-hK`hj>%T2t zX&;=c>Nd)33SC(>e<{~*Q|L&BJb#(IUTy!}N`1w2LfqODCpiqEmIH$RQwxPswzg#f z4^GCcyVO(=1$UA7GGBLW9XjL@qRdFHi;M&+@L~&qt=7Hhp5N27#{6bO5_4!vD z@dm%F^7@Jbsqr4(A-ne^-0Xf;G9It%P9M-{Iz_m&e9=3JvM4lsmL}iAvT`b3<$#E- zC0)Z%ptNEpm~`=M;`W(6%wzqu!;qp_2v#^Jnf+yC>^94*p<2#){%4tJBhTDWr003M z{mQ{H02nq?xAiVRkI+qEi1|N4`ZwTAXd_aEH58T<&1q89Lb zdAG#dPK~VPcGzFpxEXoXmu@QWo)PN%B^-#2=T5ZE+h{d%R7Cr1k2wq5^Phu&-K*?S zug+MYS=44#w@z>Uwwlo##uMb0bu?6rp7e=c3=x66(Q%jOnp+l%3 zA4&4;nII|Hm^S>Agf8PB7Rl?o_lxJQpq}4(;Odr5)1C+S0y)Tq=7)>xW*NthkN8Wu zP+c?l&r_jrSbaI&LZ(G}~5?~7Dx0bIT%n&%gFm)`jugqU19QQG+bB|mp zObvCb$6)HG5fNFoChiMw*^;-|^-5B1`HVNTleC0v4THb;?vJ7lj?`rW8&IiUQ_?)G z*Ky&P!56}LUk&a{^8M0Qn(B0xEeFU910j%KBD{8)n=%L8aB4;IMV%Jx#O5BziUepyi)=3c*v`}E~dvx2dP zO4fLxZKy)WR-KJ9?0=WruB|o2dyV{W@!B_?hPx;4rBxpzH(UH%Y-XFv%baJzVtU?5#?VFUys*+CQn#BGEGF- zaeuXTv)1tlbd(+)Pmv!`Ck~ ztv!gb2~fHGKcoHuNan>4GAQvwb)w>mz;1KS?oex%*+`t1J#;s|k#yT>xqEA+@AXxu zebc_MqO0JGDykE!3QpBiFgWGx4*P@U_ZYB+3eW)y-$w-7^Eg`z z`EgP@CvEWXC5g4;cm3RUTx*;gcw{5xZiaO$|U|)9yi$ zAa~a{*lsf>KF2^7qjdM%UpvOM58W+_{iQ?VP=vN{=sdbkUVp(bMZ0 z>R;}D=x^yVj^7s|o;|Q)r8D1@)rvTlSO4>&3?omakQnLP@2@`$ENus&;Wh~~4^cnQ z9b*sMbH6JP(sLM6@rw^Nwl<3--nbDUnX`Wwu_a>9>h8RvQw=|_qDFsrZVVr1#DEY= z())UzXw1%;@fDfz9(Nv;CE+Yy#>c9r3j(rt??&th-|d?f4ud~`!#)~+Aj;u|X&91Q z6U(r=kePO?-O4CyYvZry;-7iAQU2-|-7aTHG8cUPyZ_GNSlK5>2J`Bqnk5i>Z`cht zOCqw~l)m|^AG~pJ)`SLO0zgEgHF^)@<17t{G$ZtdzrG~HTsr>+`5TzIy$kXpA#4S1O; zYs;UTQ9GZXs9i`J9!uPy6@a>8tgQd~{ByLquN|c&D*~P1OQ>zQF?Zg}nrMBc-*8k6BZzs!zU;y~bVm}|b7Gx* zD0|`=L2~P}!1Ere{S0hDnds@=qc2LN3AO9ggCi|9C8QI$fPRCNzn$!|mcuPEd(X;j zn=_j2A3C7XbicX-Wba#U-RW7ZcRah}<)Rh-$1_x+0G;0PQO2fOhO~X|Cx_k2*WbSi z(PW+<4IACnXs*%ZVOQ(`y^}ru7H=K*){l5GwRaw<>`;No}O>8}_3mc30dDgx+r4(CQFgtgddS7*q zBh@ifm1Ua3R!v8qD6B{2MllM{?O0;y~x zul-kAXRQk>m{Y+lJxP;|+8vqC^U)f7UM`x#iq;YHiZrAK8(#;0XC~|^i)hxS@?9G( z)3L)!AVANN84nt5ZA>}0%Cwk zHnGr~o(AMHDwF5W(5MU;Dc}o(%)O@e9H(5iIRr|X%Y_{sT9}2q=wogAQN}pn!D9E8$2A(lvk%l7n;)NcYeU-+54Y z|M$E1t~G1vux8G4VxJwq{o8w5^%R1QHFhMT7o3<0bgJAhiAOg#^Xs!(Z%-oZS4LFm zG>tS{ztizP@359K|3Fe=*YCoXw@x_U?N;ovsXn;)4`zeCX^VNR)M+wNFw@SRS~S1@ zwmP#5!DVSZYrcVEAPEg{1B+`@gnB)fDf|PN zr@B01M4Unc;@M7+N&!oNUa5bFSrUj-8U_Q&p`2deH5s03xRN_W(d0*)SZtL9w&>Oo zr1t78-1Iv|v!O!t4Qs~x_cd!kL?P9mT3H3qEwLONJSt1CHdsI*Rk-_C#utrGLrvoH z+rtqR#e0?iNDNEODO4$J%tb~=I!)=j@ieyTON0gEJYqCx_qmHJeDD4%h!)DlwSNYE zQg0V?d3%M~uXYVpHF`A-o2d=4ls#}Z1G-y3A@}YLCUs69nT#-nM7QXwrub0|$SneB;2zg8mO4{*GuirYC) zw|;CrwCNXrU-&bjTOH4veB|V-U2bc#u1)?c<Ldfk?q|qk`0^(`E@26){!RXl5=%GEX9JqV!AcPu{1}Q>RV_Qv>ePpTX2C zothp@#6+ZCX#bRdtF=_=38AO+Pk8~<5AR@YCok1%UtsoZ$VXq%EA?t$M%+82wDp91 zv~-Pa-NS!L((TvZ1K^g($OkAhY8ycxL`X(x=AZ3vcg>^r*<3)og^PNShH9ee0LF`guk)5d(s*6(@CHD(&r?ByPo(@U&>I>mHern-vP?3 z2V#6BavehB^b{2zjS&SCQ*zTQc%Hng`@T{pr$ia2W0TUWu5*lpfzRnL@*ew$e20*Q zyGL$%YlKp>Wg&iWhA$rVbjv{%OgZ}(nMmC@tLdof=ghzyVv{K?ldYP(gY@L`B+{_G zQ&tbn75$bLOnM2ov-QIJKb|d?eXm%#!V7|^{8r?mbe!SNJQ3PXe*qI2mhmJ}h~iR$ z+{zOra&L=rEFO5+ceI!IE^4S;HPRgY4ill~iX@!szzYf!RQlJo*YC{w{d#-#D#n=I ztRgSA>BI2>_kB2mQy7%C1Vt&}F`b8)_;yIBQ@dwBJ#%PD!B6d*wik-dImYaBS6tyZ zICxg_T(H^wqhq=m-PU)Vvw~+vMmWa{tW>NDJl*D7Vn1PMHzKjC+@5Boky z2yAzs#XWM{2l4jS#CKy0!zpaiA+u97wgv2B_eD&J4949MxqSX3t0*b_%$Cg#{EAPm zKJY$ZW9wp=uE0#lzlL6^dj()a&u}3E(7wPECI)hChFsPc!|*;vu0BRekO*mlkEw0` zR?N4*NA_8t3cD}nQsux{;i{9ro>a|Z)y>^>Tl2K1*)LW(5bwUeB30>nR>DQ%JFL`n zmgaT7mO@hPUC!!LknXJoVX>a2PIuOLH*+!1BMr^Dvu0VZ#j3y&+an#lcedtN zrE@dHF6V}6By77+)XPaui9x{VlCYQ5cAPk-pv*$Tt+hhjaYNDmAb7Ta_Pg}4w&X^& z9R-}#Yu2ZX-ioR7KM?~@vLbzp3k(#Gn6m0Ymt)ac6s6g+bIXIz!?piO+8rq!eD0Lo zB)?nZq-qRLyks54-75U3;1xhkl7J>XUW6vsQGUro>%F5wrO5*TfTOmxMX>Va7Sh@x zO=9t8>fvvGz9|%V-qe+Ko@ajpiIi|MELH&S;olJoB^Ck1A6CjdRrn`8)speAR!2TV zqEquEq%}1k7=6&s$$Il8KMJd~C;^<1zh4a;r(M)sb{8M>HmUgnbdu)kj3lhgp73Xn5{9PkcQy(6Z`=s1YOQEVi+bRa(iOsfFWgab~9uqr6ClW zu6#~C<$6dY=lv{yaM~hi=FdG!&8^N!@iuZ)FDz?EJ>Y4)-B^A%pk%mmofRu3$-@aw z@_6s`E`c-y=-~3fcY(m*-cKd)_fA!ew{VwpQuaMcFF$FQVXsp*Zcp;pF^N=Do; zLKY?BTKWUO%8$vY9(z;0_53W1dZN?^CI#;R`P~dxAHSKg=$O6H@vM9S>xV1FJqH-6 zdLO5uNzZZMb7Z6-L-X<&Wg4lC9<6?B&g37{AWVXI-XMCf()1uOh+_6?+?k^<%=hc$ep z?OFX}9NATTB$m&Q%=0u`LkVn6Yq912@mM~o8bVx9w0&TqK)AVL66um0@xXk9x1kFE zh2m-t*)Er^*H>~|{XRUSN{2GHSiddre{F2DCX(&!=toE%LS+MqT9+HUbh{x6ruDHrR@)I_ubdyr4yWK&$SK{2g-5}1d0>58QudZ z?w!`+f!^lo$N=4Bl+W$~$Tb{~r>Q>)>4^p%r?Qp>@Yn2?m9S@ff$|htG09fWSUy>i zqcKP_8OI~_OFX$UtwHh7vBd-4AS*};{ay(?%J8RJXg~Ueu+dxGZeJPf`H*_y{=@JA zvu_}1<1s%D2*Oi00MjWIBp@rkwn;$xklBTufWh#ir{0Rq()%_`?&jq8`VYhVOHGG@ zmuue8g-?~yd;-*iVu^AZDBHRKvSDN#>YQ{xU^qU96Ftdbpprs$cp**hAdpm(6Fxc$-CuCes?#m_x=a zqqqu56|3vX%*(OgW8Z{RhT=BdLpfZpJ}_^HA5<(bT#>j`C@mj=CGaD)2&A__&>zq% z!4(i~h3LZLsQ}mePb?6qsY8{EqdJ=#P@GKgc-Gh4t#{oS=0>~5G7J}AG>CCFtn0Nw z%8IPZ?3qj#3JJOk?9TuEq$yi(`NfbbcPRGD?vN$xqRzUyMBS3Fq%&v5jP#VMs=4tl zU1yg15YXYj>eGFzxRQTXDX3U+k=gm2-4AaqzL`iH`ZIYo-%L<)P2 zkN4|#W`E!ZAK-(BMz_lh^Bd>$6L)LwANFhwx6_T} zlGRjWpA8Pu<~>)Cb0OLDm2zL^WNp>aq1yCj&yhc8R9cu)%Kp(#NVS~Z4o-RC!_ld2 zc_@BIlj^b%=n=Sk7*3nUp3kCK(qsbh4(4*I%La7%igt_i%prBR?W>sa@3#vXk1iGR ziR8K&9^N%QUwFM`7)=+z8xY8akX0f#rsP6CtzkKqJgfUaD+3AFysKZpcCf)0v${7~ z|3jwaP#<4w+|vX=@$A_Nlt;H=u76qFe14%dt5iy^0l5@A8D~}5w!zS&lGP@Bqix6% zZr3Hoc_FIDXI-*n%=;CED=IpbQPd(+%)n>53;330eU6_zLw}cD%+W9QlD!uFM%ch< zOJaV|YpTUU_JiB+#+SKI025<8%|azxAL&Tl#sp_CA&j|OXSWzj)W!g(Eji;3cmuBF zqas`gEP~#%=w8F|eU*>}_s#V@phh4ZJjq9cxe&M@`WzarC%^Q-jZU>#Ub7#4xh^#~ zh$O3`YEn>5#QL00IxyVmiw#4+_0ve~>8kOoiu8H8`-Q{-SIm;bc_`iNcd;q(;-Jsz zEOn_dtS1`}?wxs5r`;luzM?v$IHFEqeq8=a?3f%=ZF04eZAW3OV_9M zLAG#-v=3x|mWw|fU>*b;`~XPRC+@3qaRVTj@^;z;AjE6B{3W!H{ZlI^BjKnk6nD8{!1wK}v5nC3h|azJtCtK?9-jBMpY7et_zgzGmO1+Z%cbB>oUTpxKXh#In&M0K52}7 z`;`IGOOy}0vi=2#0I>JHkBhh?^A11m_xZIQX!kq>X=-MGTC|n^>qMn3j1qb!rcRbl zTuld}tz-h)yPRgvp1OxIPjT%J>y8X;%^Uwc!p<9p|W+wFUREYYfS=kgnKS8tweQ8f3ta!jT(tgt3vVbMr&0o$H31vlG0f$EH_GC~- zI+p}k-$FO4;YOk2H6PtA$3AOmOk$W- ze=YxNrZNzO|1ml%ExCLj-rOcnIafjk`$zfWuG|O~ZFY?he~(dXpA0VH(<~7zoxG>8NshPine{qV>lkRQx5XsoBGf>SFaZ1 zXuTCMB}C^Dd1_Isol-SqCeGw3x4?`PsDSaZDlS{Y3hDeJ@uUvCNAy)V*kw1Z+XyZY zY;!m`w>T(L=$aE34t=gpi99jj<Vd zz3@8R?IrIkYcL}HrC7NE%X8Gd5}>gNH;RUm&nt*tn1V}=Q1JY^+FRobU4tA~X#HhO z&fuLiL-6uu$olUvKiuyh$1Z>5EeL_WfDkn4Nk{_v2~bs@F*-=# zpJ`%8y6vAD(+(2vDVjJV9d84u5;kTlh6xP3d=l(VS^(LWD{6%M3DK=)H^Y}AgQ0j+ zJGWla0aKmQ@lckpnwlyGHF~i^l?EK`kEw(q`Ru%MD!q+WeSM54tJ$>8|9fu#Reu6N>igVVlG?SQzNRfn=z!L)t zdnixWU~J6eEw>BU0t-KK{cK!X8WmYU%!OI+_QT+ z0}i=gc)bto;J>F(liTYqoYcWal$MGFhCAlPfDoj){0jXN{Q%8rhSb2otSJouDd3NM z3+31}DRUQ|rn=H9)z0;ycjO2UPxYRWA)q}phEJb~S%+uEkeRcaWd3Ti&j_*P!I4`> z?CqN(rgDO~c58#RMi+R)yWkT%@M$m9P-k+vjGpVLs{0rr%*DB`awRlxGukAVYGlaL z^p`A(rJUx4?S|UIJrMhL9&{eA|9(I7lD^g&?blI{fQ`)(bsZ}Z&9_I%SI!J$;=H?B zJd|9{q*r9W3_ol12J`NJv2q9IF&F0|xsDlORWjX5`T3YwPH!+v+o@pK*_`COd|+JucY2|Y|X*^lPz<<#HH z-WZQV`r2NQ@+G|&r(j$#JP01kANgacwtX{V>akFTBE@jaa!;AG$WmDE#l9|g`iU=_oD;R4x%l0Lf|-TMQuZo#cSADFglaDSh&eN ziC)QV#4ELmQJM%GQD(fsM=+&0yM@NVf-V8mg*R*k0?&=hW$Gn>tJD7;Hby3fiGPf= z{0`eCEGNPdaS%Ps2sW3juqW|mEa7lhMBwj`kLqwC>XgYp2pyh14rn43kD}IDajgPzs5XW(G@k7l^wvmS+g6FV&O7t$?5@Ve?8l9?Q7zU zts}qOIL%eo&+y+7=uPRNWs}=7X}sG=Wf+(GP#6PI!b3V&E3yL!*X@7dvysqpp;w_E zWCVCHaA|}CzXR314^@Ul^Y0aANk%N0r`qsby_zH9VwjuY*8#y*dG)%dwm_$*Ha28Q zaa&+ooKj)=LGSvv5X-3wg0TH_7Ha3$Gj)T=s;SIc{fVoo7!p|)m!4aFQSq7CeUg@S zaejTG(_=H+bSh$WLO;KW$ouzU8lY5e?2;lCFYeAuCi~ZTNmLa(3(KuUXe;}*%wm@0 z*Dk_*1ld-Ir=@M`wr8!h6nDQ{oAwQ2mejT`QL|Bzd9xPDUf5;1gbI}3Kj?tSDHU={ z6Ewqf9bf5^nYWo+2WI3N?|9qrqOOytD5BK(X~}3wcFq+YqyH#sHqb2(R9mu{*?qI8(b9?2Yae7%%Szu;FXB>iFCWty4F=zII#ujgdU1{ElJAuhTsrXvq#!}y$853Wi91}ubKg@Qqbt9nNI)Dz zlt42d(+b?UXHGnOoT^n^%2y`*xmS$dcz{MOG;5m4fM*P6o~edJfkRv|Z4 zB_AE&LIkTwe8Eu}oSMHjHsulP$F4^#M`)mARrgi_c=`HSPygDd@HoIh);#@|@9>Qn z2f^C;_4Oad1j3|MWP5ZDa&1zW5-;R(5UgM!63B&BeYaq6hF`Sc>i1mD@^{2?+jH}P zSXjA#s@a#{MPb1;MoNBn{>u&gU>9nYVRbaH`bjcL44&%M496FWXk|mSjlLPTy5QXO zR^uHqL0{h8`4u{l4MDBmDA3x@y5YXZM1i@hxmpgfoviF~-IlVvVk@7xt}<|=9*}b- zFhIHve_E7ci`jv`Eg(ed8<`0y-fKknqa|_~5E`+-EjL55Zd)CDPvQNHP@s1KQ*s5f z^%S{`fsNTeMpnNPGdgQlA&Y@mw?V1CLcUyN@T_^m6#<2y8Mm77O;gN%Lr;Rc+Rl3a zcwh7ZAutb(YWMUL1*x8Lvoh!h7tr`x_MJF(Y z=klqvm;lC6h0I~sKe4x;fP8O@_WRU_<1!=XKGM<9EW{Fta+WZ_$$DilB|gaIe_>;l zVi*P?oiBg&kBShe_<+vmj@8bP^yK0T=FRI_EnHr7g0WOf8h4TmE4jN8h9k?IT8C*k zt7%tpx04K`4m{#Di@6Jl!YWp8+m*UGHK|xd%(@xTU6a6H#9zB(Q)`^H~v zDpfM$P`GqrXCc9>2>Wzen)-|91U;>qemSboXh6v$W4sSA`mKV~vxQW$(STTq<&*j{ z^;u5m0;=$}*g?yr>#^jsKqU|%{$WT9Vu| z#Gk~TrzuR9tdZZOr(-l0$J<0JOW;YP(Y4>0-H>noL39$?xwve&Q%A6QD;AZO3sUa3VpGtpV7Jrr&~OHxY0*DWD>2VHC3KWgEgda zu`a+aZU5+;8<9^r%)!^(?Xz@~0l2ti)_$)>0oHYqYQT@*rK;Wo{~LF{+dLUJw%0jV z6s&|D&2zBW=o@N9y!kR;e^*m{_FjL$*;@%e0cEsBM*L$30qx)pdQ#wsZ+&zaR%v%A z4gFKUD^amOsen|VPx8)LXZDz(-lV#b7@VX*n5;H-7dMukL}zCPNMog{ihD>Lni=kOJ9d<|Q^MD-z^BVYmNo}Y zS2>6PXmQ)6c$YiDgDleCf<}ek|4ln(j>4K1EqlebqQfi>rP#yiAwRI$UlquI5*~y< ziav6$tc@=Njyku>BaO}M(LLVL1q#t+mYDr>S$awRwmw_eL7u1ABALcXV~>*2vhOl2 zemvK-r$ei}xEkb$2NwFuhTS`YK5d*Q*w>r5_dlfWxc9jp2wbN!=fI@M9 zV7)h#bAF%LH*b@U((uj6lRIaRaDK3{Rys!2Obz;@<_3Az=X<-; zKmIt=$KUF|1WNyo2RI(7kPNaF&&{AfvM=1yE5tv06Cq~FjU}4*B%OD^5cy#8oxJ@2HDdrgL8BF> zzTxkk`1U0B4-SFbPZ+me^p!*qdjTt{?!_o+~;AYz}@x%N|7{}*%Uo=4q! z4K7%Czrc9+9jDS1f@b|>H~_{Nf*d*Y{?Vh1VSMS~wcOMC9J{Y`YipvfR!O-h&-cuh zi$}TvOrZFzwsWKK0E%u6*6uK5OYgm?J}v3q)CclYKElma0G~XbWH|TVy{erSJ9RK6 z249J8^D4(IeTb~vNPbbU7+B{!xK$ZwUsq||$j{^wo^S`BpSL3*RQhB)ahJis4v!Ya+pzSgTNtFBTFNTbtU-yE{t$ zgylTRe@dACY{j#)f48CNaRZxf>G@z21OPd!0BM`fxIqXYA)TRt^v}2EYAareVVo$x zomgl!faE}nEMx$}kIgXzci=gc5eL@=*Glx5Dwnz4y8lle2JE?20i^e#&-2}7_nJ(~ zo{jaY`T|V%|D4Aqlj9K$ck9qY5mWr-HEsK*YhOXyf2Rbb{kc^r|6hfp(Ab+6YW~mM z(2d*o9uew?1c@cT6!wu~lU-zU_XDkv-Q?LDWozw{U)KB47IyVndQk`1(hcE#kszrm zx-YC-O5ezza@d+T$J~a}$=?BUeACf(lukQ3!=v&~=zk22YvrTwlhJ$3tW}#^B3iOJ zek;$X2Qx+wXp@67{ODHGEsJl~bL91qpjOo@O~VcYEDzuLgpm0%)q2JUR6S>v+Yr}X za~<2&IwT1@IOi&NI&@Fkc|K`h2CM-@j9cm{*2lISC3IAM3m)4ktOmgICn5TX3`D&D|#0L4v2j z%4cUYuO6Hxsm6hf-bP}^=+Kl2-l*Zfq$yAdLs03gZ0m(gA%#``)ShpUg5Wb|Y)0sv z4WHsMim-A>cDG%b&pdolcgVzpBls$*=eiw?-x+H2iSGbEJ#3FELwf+32u@`68pBwv?RT&BCki$ zzf|+y{M3r4Jjd~AN@J~RNnil0TT0}?L}zbH6zAf4ImAQNhKvv8kN3L&>fen{TUbwf zGFHA8%&w3q!@28mc`5Qd8^9wqGxl8(DZ9M-Ud7n!!L9UHCL10CPjl#f1B8YzfV_nW z09M{RdT}^h#FJ^#EUl|8MHA`}j0H%~Rc?ymt7pU%?KWzUZL!tOWBWNUq1`*?m(QyI zi$uYTDpDssr+n?DhG9!kyq8^V6%*j&u;yq~Fv@KF6fW<23SVmvnv*}^EsXGzyd#@B zE6mqoR{>6O*ZFkY+aSZoV^oDUn5dW=jC5u+ufCE*F*`H@GLCxV}Y zjhPE+|Cd9n{UdSwh))M}v^xrsI<}swOYa>v_C-xp>nh7++?RP+JU zc9X0cPVlg=O_&nTu|y}l?lZUU0a?T*J8){6yDq{s)xGkJW^%lk68?BFiTfjG(GXXQ zj^Ln+?Z&Zc?F$&%{+E#>up|4v0t>2<3y6lJDo$QQ)`B zM+HQ#RVT7o4)2LntUGL23%XMomGHP2RT6P*t8Db?5+7EkLO6uddi(q;)`;XSuEiJH z71=XNFg2^qjh)=dZQpijfcT}xjVG&Oopi}Z6Dk<=xV_VXF*&+5ws#?W*m*^X{G~s~ zHK{WPj(3sEuPyk#givs?ktJwO%YgCT&-Aiyl%02ZV%A>R&=ccLJiqDUzMhwDLb>vrJgoD_<Fd0*?#A`d zKDv)t7m5MW0U~l>fU0wtr>G=X4jR{UWQkdA9W>(ad;w%?rjJ8XC1d}sF5)P}+N0!R zqf|ZLHCW|q=G6?Bbn)BY?5|u?>?r7nmO#@{>4MaQ6;|olVqbXs;OZswQpih;rKv+OEL7|YQy8xro^r=0Gv2J_+XiBXR@Z8NZTK^S(-SPvAB)w?~ zHcwkBs^Mm#0iXC|jbvep@#tB{fpQuOEXr!Zo*2gdJ4}()jEx9v1$UvoHm8a4NRJq%>Cxwn?%AoU z-i51zBkeC90PymSzM6z!GFc|0^5FOAS?6hLSznp$L68Ij81np7grzbCDB>x!3#Qr0 zDY7YU$w~iTmU!Y`x-R-R*--{FMJ4zhpBz zpz1sqrfFFS`vJo?NW#p#0k?`mQ?@vngpFX23VsE5qlkeE;o~o2IVhtDZZ#sr$Lt$8 zl+a;cA|4}RKxT1~KzSLG)%F%>wu~C?NOC9w65sMtLwB$IzV+yiiJU&(-H2WmO>ae)Q%-u^!& z%ew9htwF%E0o592ih;OAauHlVT*`#n`*&tvZoxtd1dn*AP$sOmbp-}+^w;W_jdmgSiYsTg>fnIO2zHjBs|m1E9o7|qJCl+l+~fkL+Mf;^yI^9q zlYg$)?_%A7o+8^c=^(pOFOSnT@==2kovSw9U(dMnERhrw{&!lxfj6ox_g9~I3rBp1 z&H29-w=-;u{I@^vZovDQRS&cjr4EP}`DG-mM*xhREwt9(`LK@N7@=cl?Omd1)xybDA<04b9&Ysv0Q+fvo|>v8qVK{T*m z0{bihI#MgXpM?LVSDLtqNhQU=PsgauDt{H@LYR7d`Km_FHGgxA=kV=gBo*ZYKwINi z!tQYld&o4^oL(%Wf0*jWzCA7BzUEh8Y`tShL$e}QTa69umjIB4UrfJRVO!)2G25}n%t6K0#w(fPqp;4h1|P8`C!z62s5$6Bu`SG53_EPLRf0j+|so#eU)@H zAqxcJ0i0L$3$tUeYk!3Z3dtnpEAL;Gvs!e4LH@A9N_f{&cmDi|_(e0Ws?t68*k);A9l_gJ8YYAOcYhYpK z=#OgNrW`$@T%<-~HNNMG-qX*ZH4f@_n%h&w(_7Sd#cLTM$XH4?8t;F;#Im#aa%K6^ zpasxeVwj0<;{PKHnnj=sLI0~R<|)&QOCtJ9o&=(P;;TXp@TF+$`?hUvPoGX36B^w6 ztOUv=-}eU!ydG`2{}wo5pQJcnq%B>-s+DnUz^hHAHn@l5$vM>n8>G0g-CgL&>g!=# zz|^no0sLiGBh58jV>bJi$uHS9v-oj6a8V>LVBBvpnk4}u75949EZpQ&8@ukQ3Th;o z9a5}Y(hQZYm+789b<&Tdkq#1rucBiWbC3}AAn2nAhT4m7zVGjPrsZj#;5IP+`NA2c zUXBv(v2MD@$O0;DT6DBOCxe3zkUqA_$|QZeW!b!^lG?e4Zg2JC6p1HWe#+|?cs7km z#`zF4R?!r8Nh2-_x_2CTGUq|HU5T8}Wrf4 z`yIvlXbSfNW@j56WxFL@qULu#pnG-Gv|)D`h2e#paSdTclWq zy(Tr6^Tn=tnrq1AdbRBALhCf_ns?H%m*oNJF9VJXT_dy()N>Lg^)O>{E;)+%_^LuF zQE`MQyDkxuz_TMy=;^7P*J3$Vi?vjj5cK}lL=R^43;gd=J-inL8>>gxt6V{Gf-2TR zt3=Nl+T<5H7~ZB3S&@BD^%c_1AqBFuiM%Eh9-o%ydSjz6+tuH8LnSc`&Nl3RzNVJY zRZ-SOW|6IAuJ)9krk-ClSiz44O+XYOup@YG=JE2VQ^s-(Ev(o+F@>?Q5}X}vRB zv}R4vO3kHh_oO*GU}9$V_AHKA_MMgMQbcRFAHC$+t?LC324oV**b*Fle8r^J?t-o} zj{&X4ym-ET3I7b1XFcmZ{!7$-X}(~nC`i6lBT>gSkhm(=M=}zf0$3WHYx0+K`^WJ# zNO^%mFIluYuX1%FAhz^NcEtb+g!bM_-{_!GS(?v@<9Y)!;1|M&Q}+L1IdD%qo99_6 z2Bhy+gjLXzj-Tw9L~59hznK}biO(+DJOM{m!Jq`o4^*vQ&uNkjk7YH>vU_X`w2$sO z2VpWhU2y_YX0(m({HwZAgrbB&bW{zm@C#|Ia@N4gqw*x$#NDd~Ve(W-rDq-r_dYLL zqRm_2qUiw+Ny@He@mnvwOY;$5&AdD=B^-!s4N%~hzqMF;(Y_QvNSqHN0QaUd=|AJ} zCI&>8?_Y}zzyA@Fp#&-?sr<+MPp4L4+)v}Lh;o#OVRQ$OX+@0e;;mss!>y*F0jv!n zghq{D0pX*Q!=^wgVG|~|&g#C7yH_wA6j6B-UE*XKw)!#k+vvd?5{LTjKG0-AZrM-t zwq4sN_qr@g74qr zO@{0>Yk@Ur46sV23sqwty&x&ZyT?rAbK!dtJ+QRW!=&Cbu z)gwQ4vpq*GYjD*xIka=1J}UC`2<@9F%}tz(12X~KHT=^kWqTT~EOk*AvX6>+EuNd4 zDxxRz%nk*D{)dW#n=>7|TgkI0o@92{o`hxq%fq~jBD3$0rccriR2f6+u6xm;s$Abory zR;~av=#Ocp>zSo|7zq9skk zVz+haXdf}U`KV96w|8LqrC(X4WiYVadKg`(*a0_Y>pG#I>fdRHuRstKYlqO7xA{?t zP@#zJ?%jd+kO)(hZ=rW`@4L*BZjFrLvoG5G^ar;Gfi3Xr*80FLfE(Z^!hb6 z+T=}fZDn1g8PmeK)u&^^Y$G>mKGd2<~KZIe3>d-Ev<(0Y1`~AVP1@Dz3D27 z(9FF~o5|%J6)YU>US~g)r2}5=tpYYrYjUoJ91V8=1N6?&?XW*>$b_;Fg&o#%3s`sC zTkaL`_wB9X{PoU)iq4Rw=m$XArvcX4@o9rg4GO2Myl7ATX2hH_!Lm)};C>hQ9{fP# zoMNCB4%xrH$v($s<4*8w=&PO7V5=kf!mXYkOJprXv`Veedq0-zDzN|I9@wum1bq=v z=&23jAYuU7fnFJ-B!X&xADqev`Ym=!1`5$NSgEEgE9wdt2dRR|iI~6e39{tw;KnzpZ^5CSiLrV*&+XLP2 zqHJa>>6O@NIGt%i#Ht3aJOB$usZEy?g8~n^;;!kv9^jUwx&Ww-(2opw0**g!vi3{; zW*m9`k*F{Z39xleXMP_^=Sj9)&-BtuJ~g zm8Da>i-@YXcC`v-CgEU>$<~-CP&nS`M<6ex>F9ARK+qQUQx9?OAn!!=9k@?dJXr07 zf}qww`m%_A+sYT6p$mj1bnsKtr{>>JXuFvwa7NajIf3;YA$|=v#vK4(prwOj%29=v zfHTMt4~vz51u-(Oi2bl9G}&T%;>s&I)j)uNYo?2I6hftM+Q_L{)o&6|lXFowJ0<=- z5bi?QUu;rdZ-Wq&Lr4{QN@qRltXKz2EY#vc5F{vnc`Z-m7b0f#zR3X8aiaAhu5qQ( z@e(QjvM;PeKs{G06<4=~l<)ePlEe5GeMsr<7P7X*cjnBwpu^(exOwC%ms-LxVJP(l zA9RW0bjVEwMsAxZn!wx6P7~3au^FM;p{;7S7$j?&8o zfUXvwcv_3O$11GPP93iWWdb21np}tjE`+ten?Gp&6hQ2s=$~Tqm?;CujxuOoYUWFx zQjul_#8y+>YuR2J@i-K!$+WF`$UIfBDr&5T@i6C@{Og%Kd7* zu~R~}zW?@&D&0u0cMn9HCDPk+wJW_*u=)sU#z=6v1)ked=RG9e$~0wqA_tTJ2Sxn^ z4K;}uNq4e9EcOE`suDzN6~>Wznj83C#JH;>mqBB+N1AF&eeQ9cp-Y4?dZoNi(A;42E1-XB z#$++1L$1#<5B9HlFpX^SG_U_auHF#C=){Shq;W~i!92O!W#tn8|3!xZLJ}8*pmr#|6G-LJj7NGuHiASHb^C&oC5bK*KU|Z|F zC77r5mY_1B)Q5|>DRkT=eGam`5w)!)y0~JfKV~9jMWUnpxe`KMYPmRRQG|mZxhW5x z6tDKt3^R~RY;4o2bfOg~fL8eN>FQX8B;BeD7H*vIhhP2_FzVcr)uKFREOZmil>uTM ze&(&1FhMAR(I->h4T8w`R<5~B{&gLjwVr0igrTp*a%@T)Pe$c{Mm00Sc;MukrTE9Z zO^+^xW{O&cq=yA4VcG8ft4tpw?FqdIbcn6RagUZvDpwzkIr9Y*K0{%YIQIGI0aNCaNiqeA$Ww_hRugWKaW)j$T zPX9{)<)`ru3CfkJlCp;~45&Q*@?smPWu@8~Ghn&Ac`st+(1@(6H|qmfE1%n4MgL%50?;?5uqy-?kG~7J$!wl{)V+nHzMyhrk~+p)d1G#V zSK>0Ct!E{8#vMV#J<>HI&u~w>Vsc%WnSp*=?eW8{ZbH~;ENqNugnUGTg{7MqrTCON zPV6c{aK=*LI;M((nHXR=~5FRe&n1%!rv$>SZ23zoiBo3g{h# zBibOyA-&?}^k$Ad%gu;tk6{b+Kdy{IK_u|k+PR48k()Y`n-YmKm(cfybfzD6k9ny$`rU|}C#~Y?!fJJI&tlZJig*!Ek&1UOSVhs~z zj5oMIVOgIiATrI)0y-S9f1oZ#&V({g1U2Q7H+qwSwVcU+AL8{p>8C$BKIJ%_qkL1v zV!hkoO4Ml}aW zarocAb;(!HUhM2#I&gzjg6s;Gct;O6@v28Ws1?o`?n3=nJl%G>oK!OunU8U7tC zb@Fff??MLi52cn(vPydOYy}TWbB~HBD7n^1X?eS1XhCn13z#k6B7pSc?qbC*jctt1 zlpbGos|a8^`rp$l>5-?{A4!GwPK9@q3fPW9${{l4jO_3!B?{_Z2GYYp8Q$;1KJo%&(NZH)#hIQoYsDpqZ zc|^Mz=3M?m@BrKE&!p#FK~EXH^2d65n49a0jRym;)Z<4kO#>SAmKX*#f~_t<9sXm2 zx%vNWt;4T5W7yA25D`EXFywzlQ&!rX!+d5__!LhdJrA(FOzBq8BYyRYTzeM$B(}0D z#*-b+NE&iCYG^`xx>sKBCfLQk&&}}Uq~Pr-&?eDI)EVBD6 zX0T3xQ|jyoj*bEatrvoV1-_Ky#UHbWN9nco4OxjF(?{acy) z1VHKnw4VCb3{|D2W`!v56pHV5`a$8~sNkzY)KH(B0tqI8@PWKk(!y7oghRjvrv!;E zCnNt^hI@SsH`!>%S_89h7SCg$$lySZteLQg6ca?hQx8-8Y5p&LErAIeYRVH-za_UA z#~y75Bx-_?iCq!+m=Hv|&KuAH46r@_J3IGeB301Q|N58HzPL3u26S$KSzM_d`257b z6=y&-o6K`DP#OqXT}CDlGXt-=>9)_n>;yViTHVdVGnCvQKAG}Z()p1`rH6`281v3=%5j%5@>l`dUHdKCyIG%G3!C{;R0FCp|u381JbEf639LMS4J5CT#{2?WmC zsPoP{^L;|adwU^@cy`{2}au2%H0dOO}|KabuVB=TlFh|*j} zvCgoii9A+;IY&VyFv-74t0C6|tWIDGL}A}nFs$)lvRR?g$0Mi z2FKDGa{j**vlpOoo-i>*_5bYlj$h2KURTfE#Yjdg0ChJ4lokhsE!#42h;qxPpe&0&9{<@aePnGaVJ1$SA zdL}MkEDALh$4x??2bJ0uE0>?&8nXz4%7&@%aCP2M-v&g zehQ!S3it-{MmX5)FBCr%XWe+TKckTHb-@;=$>*W|n|B&usjm)jfIt$A@whASW6y)F zo^!eg#vU9QSeOj|;j5;&yxzq!_zUZXJ`lb7vwOCF@T0f4f5(V^{Pq14)PtY9G5qJ7 z*(M;x{;zLA=Pdf6a{c=U1;#%(g}*u(9Q29+g!Av;f{vZJKz{Z2Z$ZaD72^N7Gj{H8&9HlLE*pK&~HCao>j7UMnS-tcuPKH z^^xZ$CJFO%ku%hp*-#XK?ksQ)=v7xzZzY0y;Qg%J7C-}iVe3EIUk_&dB!3F`PU+=5 zW(y7Y`8nXQf1ajnw1d~%V`2+8`q?|#IzI+~@M&#Qe8iWL_@PFO{P1^7HW4GbIy<7R4%xkdG=YPKj zfBB!9x&8k)^Kaes|8j4>L6ra4=lW-djMjZ#0xJ!?GvjA%O6F_59@buvtzYm=9T^YW zsd(SK-9xOuFls3%d%ZPCkxv&9HC@uiw9M7bOf_%+YC1t9Tg^J_&GFY@-QPcWH@VJF zaq%1)-9Og_j5gt)Mq8;R;T8;+@CY`mF|N^xY^M_}(pX3AcQ{y?8% z5d$Z?*&BaPOoP1i<%5vyNvH4`o`7_vM+mj4rS-xf)%vL$!D*{CL)LyVBx~|gAyZ=+ zJWXh}?{&$z`RcFRV2+{xp1``5YYAku20_Kk$b0R^d)fC$=N`k_<)XkS=L?%EAyAH_(~_dl`X){$F{Hh*0$o)CHbr`Pb;YR=PLj!M9d+hs4W=jVksLqR zJ)O?;kGXZncVeIe=e*Imn%ikr>G6W!Y~czE893(4@|u%~8b}%Lf75!OIrdhdkYFeZ z_X;G}dXJ^HisRhR(w1r%bvcbax%E1^Q@_AQea`>GXJnA`=Xxh|P!eXX^@&Tl;e|kR zCgC2eUo~vrGw=-0E_TJ{D4Z#^phXuMwo{@l)iU13A3D>w2X-z{<6oz`_PpU7=!bYI z@av8dMVp6x51A?~@3z2Bc=8E&QnDP;%U7RpoUd5HQE@jo!=-eJGa5Qth@i=&K%`io!eX|G+ngZ98OZN=dgsQQ3Hoy zcb3Bb;Wp3J{V~m69mj@vDAI2yAqv+&uU}nptmJo+84Nba^G`QN|L|P*qU*%2_Z;}q z*Kee5UF-B^o6Y_5@fIU|%Fbo>&F%Yc6Tl{;{$-Oq35*8q^PNYvj$910&uKSU&Y$7# zvx}Wjb;xaxy>U1xQL4ww_sY=kIe+F|`(JKI=@-AQOR5s(v5C(m&y%xiwW3SZ$B|kC z-|l!?5!R&O_(kg;F0KQ1!lCpdL~|tpaI=yBy4m@sFB-4j{PR_Tch>zZM$?1cQ^c5B z9ei;^g|;2X5hm?jW8p>5-Eaf{>#z9}*B|qS)e!2R23i#_)TTR3S;AnthyEE32IDva zcq$uR8wE^LD-@clEKIm(+*iU}p3t>UFtjaQk+$JzP!uW!(V=UdAum=RYPx7v9Sy!a;p*g8&@jAQ zHNgw!C)dB`=lJ!B^A)SP=2+)O8P! zWZ50CF8+Vc1j!CMq9{A}&#E-@HnVhGUiqMuaj$XzU|p+KPIS_~fZ$=qSsv z#&%XY6K7yBp{KN4hyJUjFh^3o8v5X@MX{ojcV*D#JagB=MmI}V+AddoIw13c<*}Cb z*)xL$HBR1)u{2IvG6~ou*srurwqjNr@!PCdyX$R4+3)}(a(HMix4gAn5WX!ErlXTo zXvVU4@~4dHbk35?FqeJ!Gi7%ZUxoycPt>_+C!CdHzbI{JKQ-3JncS&~pAM-w35Wg$ z9_^D*I(0fO7#-W}s8m$lX_$wTQtKJ2tT9ioYuH#R)oqrk8*$aqNh^eDG@YIGzBse1 zLnpZihgUa55jQVCD7j%Jd%`YEeAc_>)%`4#iV6(YU>b&V*pM)Qog>*F{s4np>_uZ- z2VQO4u`A_W_*QS63#>%YOmcE_<NUHu7`4GO%qNucKsQLM|SL7vL zuf7J)AvL;Yl}}P{w6a)8UTPn1oZbNYXlq5cP`Vq5EDM}_NcE>V38{uI+@Z~N=);&{lg*V-Q+O4}F}=BRQVPrgE_T>LT?- zwL->FJ{Z|^8!&~!MQ60Yam-R2y-3}Jg6bjL39A#Jz)5SbGud|a5G}$Mx*cU%`SMpPcJakgBV!oV`|>oSTn8z5-7STDbJ(4u`HGh zk_?^&InC&=uIW8*2Xq30_&cQ5XNhl3=B zWCkzvHEk10$6{5NmfhXRaWk5v0np?jYYg4hWy)RWAQ+;5mO^*3{@krWYJLAp3*_D@ zrJZ29R$%-dv#=J1m}bw@XI1pYo9#Si3B7##vR;lJwir04k#T(c30J#qu$7X31~-M) zRn<;R0xhH=%#Xk1^>c-`fy~q}5w$bc6hBM@rfm%0n_Yk^3=Deff9aQN9xG`eVdy^A zofIwe-b?Ns*Q-zDQ?z=1idm=TMs1#;uKsiBk6ueDGn9`vx-S0;bF^4V{_VeJv1crF z`W)Nv9PQ`QR}vUC+TxG2Oc$|l=hG?->}6NU;T8LE29}N~rv$aHUhuz{Ctw$Xq8!O z`;9MJ@X=V8YV*w5)VORY=?4vo&gR)Y7``Zd)ItXqs_E= z4+gy-v(c~kiIVSNggaOfec;f(JW-~Mc5)QwQ{qXi#MwB+;l1RuE0L!>wy(Sy6?lnk z5TxFlIduB0R9T3sw4Hqn<(vP^5#J~fshwE0fku8T%Jk+-XD;tssc6J`W zSfG~fLHks=Tfz9YDkre~rh?OTDi$NtYnSb+?DpJ#=;%3go#Ppgqlkr>X@NvVL+_jL z`(E6-Coc;+8+;brsj%I=of)KtQYgKk{M5IQU{Mr#o)0Q0L6Q)qgn3nR!J!ejmnji# zb@9Bh-aONw!j)2gGHZg&6rqXsn8BI!$q{FhMl&Q7CO{l8YmKBS>FT8}7*$~CAVD%# zEHVOD?z(d|f-YsEs{Arp+s4wW7+v0Aa2|1YJMXqBawg`3FCS?-`9N0#xQC{K5C3wH zDct+s?uYUlive&VtKNm<7G}+oGS#&HtW#C;l>20XYtHTof>F3EdB6ICBf$=ia}Dp~ zX~}iACH9QuoEj3vyi04X4i<;`2-UyfvwB2dEv$`S<5m#LSGIsfYI*P%FZ%v*SHKlhXLAEe3EPqPy zgRh*-(OzHRlK+Ro@2p5jENW;{JWEz8Bs(Rn$E#YeMNRXWwvn@T;Y9JVi&^6u7F)Gg zjjr#1gK~G4(B<Huk{<_qldYNb+hvyVCpR-KRaCzf`_ttOl9izW&hn0R3tzMwjot zlCviMz@^<90*IOSSaAZB>Tn^ra$UT+bvq`NFV5YVOX_utZfIq;;%$@r{Ngv4Ln4 z-U_R{RHDv*@b}!rV27!PD2bOPa{z4-1)(L{r}+-gBBKF4!3fZ?v%Po|aU1>gB)kWy z-LomTuBXVQm|GskPL>=E%Zdz*TaB|GV!k3wlqgSC|Ba~a950fUcbn0NQpKxQ84hylSv=}keK6=c?nNMFE0LJRj}X^c`A`bC zK%mB8(IZTczACUkf*j!&D8vD0Ub z9e~3e9$xijDdip4n583eMg-czR6&HEY~s?!%7>PTxd816_2IR$a?Oe<;sX9Fb&ew{ zxmB%pMjur7 zniGa^C*FeU(FSpx~z@bH{(n-KpE_ral4jTUougoM_j_MYhJlK|uCv8 zGl{FyoSj9E%nv`JrN+p$crA@%1&WHRwb`T&UUM!^$Q~-R3{G6lnNS6Bqs>wXpz@A8 znEd1Z)!C`hds{atc6#vpeTyCE55dh{4}Z9oj!RfbHTjVtjY^hKp_ZNF!2ob#!g#{0 z6NR%vr-btcCv6l=6q9I#Ly0zy-oy57z|YID3_$`@P+ZdPG(#B#zO?HgRLtw35*F*T^@7w!W=?p>u%9@OpFK$)p7gYVdvJ%H z{X|(+jD)wSMbCBd-48x{SdPU`8TEDq8O8q~T#yL0w^! z32?gAt=;p&u&$X^!C*nBY#fE>>%!^=X^8DcG^lyXgVjd(qCFgKmU`En@fjS=s z8*TY94C5gDR9Czyxqd{-)ow@X-RkANKK(dNgM86mU%9R$rxTio>jy!uKo17J`xHu_ zoWgLFx{s6v)LEWyt3gp($hF7K#MJ)s?5l)9KeGc=&ix0CYp_q2Cf6sk`XGp!TFL}BTZaMLBM0f0QTR-2;~Pbyt%R^q6L<>ON~SIt72w}MGZfb3(bCRy>|3fA<8 z2{fJgZjnvPlPO=kee`ipwbMgEu^+oH^*B8I*JoY#_w&adYc}$|I(?L!g7juFF}5K^ zlcSD?;6d;C8&Y!;44PJ;O`&vMs#EQZO$0LzEEyNE=NVq0WwUz`WbY{=&=9X71sbDsv?ErQo$kC z#?~>25aWiR`NY^QePI@ThNbSu>~(eIgb zl!>`Tp}B_}tG2kh_!HCL8CxY%Bqogo&{N(X0M|A(h(=vQ&#eXx#~A#qVx)hJ{YVz) zQcwoKjFZ$hBj_HE0N;Ucd|i5EstyYAyjxLe1B==$=3Oq%{8uG!jjB5>@1=$0Og3d~{9TVU3rTC=+TAp!}_>y8-YOeg4jsMUDv| z64?qTTZ5{9w+WaqPS%4eT4tX{4oJX(%TG*G3hhr;9*!ka`j|ruO;OE?Sh7LsC5r{j zciY&?T0FyfpA`SF7DtVS9v7q~4x;$(u6SO z13S2OSIPty9L$y|O^M6K_%`HhE8788u;1tXQxGh*@ljC<>pbZ=Q~!IIT0=ZbXhrRN zOYZb^F8k<2(E^|z>bi2-DGX(a!k7%$4M4s;4tJ)_$lfd$>*|y%rA4=EqqWAF#TR@| zx)~UVc{NjvKVzW?@OqJ!PvRgcItfz#_{I4@9;wGHzJs6Mn)kp(v;8mwp+`hYRVv7W zP=mzrg`inb(Jv4NI;-tL`OOYHXYnT}m0sRDd^tKhO7Nk)Qpz!^c{+}wtZ4kB&lC>+ zm|>rKgezlEDaS5ay{*f?cy%{v&37+-9qVAVHvwR@2d3FKhL@|?ECDKO@_jHwB-yiK zvT-L*$|$9rpz;Dgwan+X_BvZ$%pM6x&MN2c{B9o#IVlhR8kNgozTAcGW8_MJf8-1S z`so1Az9Im-Wt(EK&cZy?>;zCeo>r7HTkz||#KvVqaQ$to7U5G0mjRX(Uv3zaD&2xdCQYF;yB^N9Sptb-^ zpbEHb-Vm0r8<}Q~*pQZzf}}RLS%MtX(CBLHW7 zuv}w_a}D`mLWW$e*Zs8|tb}o?=(U(S9g~Doaiy!bn|$PikHg37A~BT$AOfV0LqN4# z;*G=l(P}X=rQKu4SMyZdRKWndwS_hg6?BKLUf>L>)Ztl#TV8bs^*cg3sxx&3WTP!hr|9jMm2;t^YDqs`841tBu|6z?Sn7XLrRUKf~qg} zApi*wV|*>gCCw@`E-)!1i1e8+pmuE4c+kcmxZTwbrNJ3oZxw1&%6ibpzI9835lIfP64d?gAHGX$_1!}?8o9;^ z7{Uu+cFHtMK9htCXmR&Ude&q+f%3iYQ^6ib3$;O?a}sBCD8{vQA1S+jCI*H8mP6VNiq`t|V|BQ@IJKxRUyVep zrt+sVUtid9ffhwXIwNLHms{!H$%77nw8U18qnM25A^{VVfcOH}8;H!1x-S?84PDVd z7~=ER0r)F5K`W%-^VChaL4aFLNW%(cp4pD&-*}V8S$Q=0Jc}9CwwVvoPs4$fR$f-X z`}8ehtN_Yl6z<(Pd@NcmRwlE1OcQ_F8KrlU@{^&6-$)nEjk-2Wq-7S_=19O794AqU-QkEv1U?F=u!W$Rt0<7#!%@ z64YC~CKM(&_Y|_=>gG zW#KHDi*;JQq`^Sj;md9xN!OLxei-o;DfZ@*PHEXr5qpX7T0CVzOabyhrU+DvZ}n^Z zVBHsjcu z+Co_v2o;s^41YO-EJR6s$)5P6lKcvQgXg~5=YF> zs}5zm$5aAKLRq$qMw&l&XEkF_A(FGtTD6?+`Xk>QU8N@^a6tab+}Ip9m%3(=mx)-maMq+Ez`zC=S5|{aUU%2&Px9ERB~g?L045r zVL$TAFU%2?+-n469U zh-g&W<=3l7#&v51s+CtRPsa{KuOlqnJk_P=v=Mu0#UKRGx)D);3ba##$Y78c^iI14 zhA&U{Eb19wvjX*34gia&Z~38Gr}F)pSb=c&qd+wyd#7B0#C^W-+2;n1txxQg#Z$8= zV%DX#gHGf(2*7ZNo{`kvU#r`dFP;TpOW;)^Hk*Nesb0VCB@tYsYKq|ZHXJfk(wIz< zUKeQb?H(0p&YIR$$~V3>lKVK(<+eX?5Rg?rUZb(qPHBrB>N)jpI#Cjv=mXux+`)A+ zGyI>%6cicT6i)Ucof+>w2thM6(s@0^enDCjK>M7J*1x^%X;LSz6{HQXR{|JJWvUvG z1`vt~N|y>q%7d8|8O#A7MB)2^rvRBs9$K2L)j(J;FZck`pjWukkTrMK>VxCep`&iC zq+3&SitLZvkN7_o6z)2b&$DYN1HvyvMBz|aw)ND2<0E#s_k!#AZz3dn5P~a- zQqM4Ex-9C#{SsSidBw@G$QVK4ns2eZk2bKO_9Zgs#`S9Syx6@I}1314$M0GO92r^tF^f*0QVNEyB`kYPx|(J zd+Jv;Y9JCv1@dlJ7879lg?f+Fa?4XMD%0|sL(Lm!4w3cbIbMGE2$i$RzbLrgsZ7k0*PGd7uv(Ra%nkCq}hch1qs`r9AkwGJ3 zuqCPQJLJCzP=Q26wPx-UlL2TNq#a2#x12v+gR>;)Dq>g(zCrnRH;$9HZ!+`@C^v;s zlBf{Y^jC*Ct28%}Wc~QeLzsqZjl-b$T^4IVH^h$*=vQ7`4njl)scq&}L%9;=tuo+j zZJrKj`sK{5PVw8t+Ye~_cSF- zWj<1?ceyvr>h_PI9$EOAfCH<)BiBTWYY6E#x9{*a2pIM={pc5Dl2;HYbz+O*sTD)Li0BsT6 z$QdI#x~j4oFz=t^4;fQST#t1hMV;1RlRl&w4JlwcR+Ducid6fM?rq-DfC_It#X+-I z!AvNEQeO~`b4Qv~S$li@`h2~IkuYl`4mSt7Imq910%(Lb;b9Xm$Yp$p3P6i%`R0(Q zaQ@q;6RKn;UuyROVb5!^-(_wdd-gfRZfZMlGWWN@~ z5wL_1NHV@^oY5}j5_+&E*d64xVvu_sCb7~cuoU<7BESaq z7X}V&*g=Fk&|kHpTQRXHfOBB2W~tG`36lVczcw5=vs9zhxVDBFOw5M>^7?o!Na8WN` zKzk`&yL~lzUe2u3q}SN-{ar3pVKPX`&w2k-@yVN6IJwrb%@H##lPJ&`*E`rwi0>aZ zjh+`-Fd8o?!z{y#*T8IC{Q|gtohLvzMt5+b+o`HWd5L(r+MO(@%UhiB;Z29oyo>(tY!qymNgBeyuG`2mEWN;_teC@6@IXshp7Mn431Cqjw&>upIfw4zShJ~p!{p##3+;2; zD^+TSZz#xQ&9ZaQRJ4PYmdfgv0WR#NXbJIY@fBIM&mbXZb%QBTc0wA=Hbsyqy(H=kb^QmFVv!Vs*{V(dgw9u= zk<9)SJnqBlpGm@_d(JLzxVl7Io4v?9SvNniAj>=3BWy{GgcF|qK|a9UzpifP%X_AW zO{<479Oi0Fkdvv>c=*d?>loRmxqn78{5RP(nZN9*k}tCxpK%0Vo6zB~FHDPkImk~I zBwaf2lvhB~R@Hd3k=p(&_6VRaPal;$*Au8i1aN0=1;D;tt~rF>U+H6^3BXz}&AP3tueuD%0_oi=^5B1gh9`=4J+O%5ti1Dq6fI)6oMS1vJ0{W0$^|M0&%hKa&+iC>-p#&mD9A3<#fc3RL05iNX(_7r19=44BkA_=MFSr_Z_2Jqnx<-- zWWtWo*e_nM7tz9-27uEoSZG1;2Cjvo=)v=VO~njQc!|KKgOdcyBSIv|p{4q+ zElr0;XV9NxcQsIieodTLVU6 zKcrAg`4CTUB}UoUT&=`!!dZz9BxT@Nj8souK)7vT8BRpUhgDx^}N42E^h^`4Oi zIOzQCqSEeX9qGx!U*PUMK{v^!aPnjeTKfy$BdSE7y3hB2_*%1?7+sgGz>?=&^{ z@yce;$<_wbsWCXGyi;c+`?FpMU(uh-inQ?CoZNt5q;SrsXmt}4i(J&IMO3nKyHGl) zP{DIZL5;iESh1N0G$K)nKmstOzDt$H@O6*(wpE4trwLrNEJBEm9eoU*K7v-xtJ6O`$^(llUF&2Q9ugR_$4 z^8Gkw3ls9N#j%mXEvP`(gfiqzJ!OgqlE*}jDSKIpz(!;3{v}%NBIvLv#KAZVcjo%c z*-YltW+xD+Gf8MJC#e7ecYTu4?7mE3*t z!a&t_{`P$tATs-a;1g<=j7$_O7ViZa1p~;pV=WRznz^R1(XwV_F$v=J+r(9RbO*LT-`&y=bKa$OcY~Yw#mBVtCSf z0i8YjdO08)QcLX^-zBGLLM!OYqoz-x_&l8SK0#|%fcnD)I4R)8F303DzZNUM*7e4J zb?m!q41}2?XO3!T)jcDC(w-ad^znAZ?pDsp4nB`5kW=O7=UxF^3kb7Lms{CW6N1vV zr)+C!H>oLFoJ)&hEOlby^plPO$qvu}LW&-%?&WZ%6Qia4bJLy`5fUH zDNP`K8+?M=0n?Qh-CJBb1nN&V{Gt3ow~d&O+kgQ=6-JYjNZspJ6Zg>Daph0xEWLnB zD2+fi5u@>?klDal%&Px?&KMqjCRs6T19r}ZH@{S^R0oo&i4=>gyy=7RA&B<9(-V86 zznzb1mypFZMwoW%4{rL)9|=9An_kj&Te%x`>PQt2l%2JMtEW8qGNwgyDoa@^B#SlD~rFC z0L{dAA6sdtmOlF$gFF1fkrv_*d8Ic|_;&cyU&~XlH?PS*+*#u@H!2=qK~@TLv_v27 zIPBgyGwwuPb%wia$`1lUDz(7tNa?pCj51Fz#?6I61u0j34LDfz-IS&fyaCD z!C<^U^tM8m?NAo8#W(^@RJv;6I#?cs2Iv{0JENr5-L)L~{-L~Ls8N(7<7rgaQi@bh z;Nr}IlG|8YKxId0_uAUblpBp#*+!p)6Qk%Q0WM2skcFA;eUw?jL>OQqj}4j{*(oW@ z6x=u1|0+_cVf=ccwRKvFo*X5=wA^Hy?jvT4#^h8ty!O_Wd-tNGof=-3n=BA+Idx8* zvEwpnrNw+caUU_z^^29N65L8z66_!O<0WHYD(03dfeNs09XM0tlKngqf21ep1x9mj zM{=4#!f{0U>6}p8kf?9|1)J|R1SC3R3H3+al0@Ssu7q6-pAqJ$v*t!dGy<`N;3tp~ zf<*xQR?GQ0LtxU5=wAY{E(GFx&ncIBlFmnjIA(?{bRKjg+Z38dnOdjE+E^DIO30y2 zhX$c+>Z|k-{2nnw_Y-nNy6k4scWl$W$Z45m-q?UJ&|}bfLsI@URDU_7g;id~>FGSi zM~v4dcjlh@b1Lli##jGG&0QB0IAVKlylf5oMS+n=EzpVVd#zgQ*NIGBL%&BNF6HhK zah_O!SGl9*W<r=jrhlT@spPx@e6hLj=I0lA>6O!Q`Ki(L%w?;EK{1<$zOJ34~NQ< z597nD3znLb{gOIl`rK5cDPfAtu@;pqT3FnpBT<5vS6)cs4YdoX4UrA40Ne4|3Z9H2 z=52;lX@zchCKvn^b%C*sZ!khmNEIBPU7-Z8r7aG!f3hNZo{>7gC*mw7O7zcgI%%&5O=LBaRU0;ByzybJN+O8_eBO@CZJC{t(GahscZpnUKFDIwjhf zHBaxztq^ck%2<}WMMTf0)@8mA+i3REbXlzP!}OxlEy_)w;>};*3A&Qnk|)sEU>#Sr zf%Tn;r*R4dxzx^35@z~LNge7MKc`7X>TTi`kKv;M&h4q`8xf&+=8g0X1CdUJrPYW& z<0~HI-qPWvyOm!R7pg)Qr3*ZxRu{Hq@U4MWijcGkEZe#kkTmx>lU02y!O`vVi=63uD8*Lcf_NgWM^seX`WLlqkZR8sFUu1fYmYZCCjYiK zu>14E4{Z_%A1}lfEYgNTvSlT%q$w2~A4$g?cc_Rh8`@;F<`vsv-JPl)hWW!BTZa3W z!g3ZsB7k(ESO9kWKLfKg*s9%@XjL;|-cWZAG%6Nnj$X=Cm9CV_x(ap`bhRV%qrdVx z`(SPc+m}_(NH|H|9X^90=EcR9B#0zU}-42>oinY6-e)1X+D~8|>VENWkhD9?t&T^R^rPt(PC|DztUX zz`9<`PzoDpQ{oHTm(_f$Uv#Z&c-vBW=C*19Z^sNnfc{mNZ(!;4zg8LR-af`hpSWO~ z-8DI@9;mxe9_8-jGS2e%=$6o+@N-a|l^M}-W%|=2$Y2g{wAPOFxx~l_FNe>vrbU;xZ z89~%vu*!`02DzWft?OU>u0m5rfCvd#?o>}+cdGhY(uuF$kyCg(uYuXsn= z$jcU559IVgk!NISoOd+gV!?0vNwQM z&OMg-!tL~avzV^>IsR)@!gLG)duAep7P@i4HfLJ`9E&q~DnPa{J?R!=I9PF|P&fvV zhBN!K&sXGRe2aG(T&Sv?5Gzp8^HRv^Z@_=!$&MrgQPm8CnA&)89+~}3!D$p=XY8Yu z2J{kwP@p=bXEq)yx%yc2PayRmLd$v&b}d$|0CBrj|H1`m5tUY8yKZ9eajji|IIJKH)euQZ?KGU=W2n|15HC#L8X7`35X4tOHgEoU36 zv-Ko>%xaLDYJ(#tjb$GN0!?JCs!Ufw;)#8XA~vS*#|f3GB@f@P)HhMpPJy}u`j{hO zGMRqG8$s~GT7mA#5Qem9r7Nb!e(pIe@9T)7E~{>3M0VpX9?KlxJ(AR_iT4nnM3YW2 zVg>0c*K)NsF}*%ntNAnCNr5egkAxiqQMOIMrZ8enQ`_#ueJkc@$#0sGbLvYPjr|3o z!DY=pY@BMHjgYF}_!YPTB30wiro$88ukp#PAHsG| zWz`84df)P7m4U2_e`V4Fi*-*gq(zn-lT*2h(VHqD2{D|P)JCqw6|@|j>Af30mF3Rn zqvSJ|AsIK#{rhSRDT#T{FwWL#=UMn3^1_InlxX zyVp*w9q8E3O^byHqFGV4UdS=J&B%JNP(+;gO5FkVQtDiQ{FRZ0z@bORxId1Pzcs|F zbT$qz=E`iEc$>kwL(x8+0xX+D4sboacoChwd{ZeR~Wz*=P3zkq=V@Hh@`81Zd!`!xQm3EQp{0Bhc za>d=Os>J_hA`t6j41nSegvy+BY>j@D#9-f-*EmWKZg?oaQR0dVB*qtUQAOT1t9ADe zi7TWfS;N+W>WsYjb_x)DtYrx(g-B2@(s0Q%s5&@DG z*|t5n()?!2?|@GVWYy|Xe(m5MXy4gv|C%=}#7{r;$fHyK3VdN9fj2@GEnbF&_H)?Q z5#=#jc)pmx(+&DPD|6XCkzLQmI1qbvr!$`JMx2e~@KRh%W?Lho@9#)qPE>|SnN^2K z)|ke8U1~MQl!W*`w6;hba0Sma2l}|F%qR?vIP0o5RUH}7G`N{xk;Aydt*Q=nZg<>)BEDhwi$fnWC2STGrM@=pC_IyB2YC0UJ8@I<-9xE1_ zw>YGTFTwSJ`~K26B5%JYG`GVM1D1w|taeB+R>E46-P{wh0ZC}Ry2M4U`34sJa$DQ# z0BCqR@#KjsjtgMt*hYx zSKuB7$&a?%+ljWZkL5c2!B(zM-sGBoQL@c7R5&+A@DnHl(iC}&C})?SoI#^Lc9oMk zI@&lT`b!q?X&Md`zY(`ULG?P8%)eHvTNU1JObTS!0Ugo@k^d2b!d66H^4BedWZwT`Iwc+72F?O^U zIDDljW=w}oJ=7(JAdvT_z6=PUrdCgK2q-cEm=DfTGA_tHt#GYGprN`tB)GKF9D}XD z9Cs?0ZrT?BfuC_!mUhnHg+ahR8srx|V!Y%MmHk#ja}W~p#l(iwsFn1Z>AMm5^~?K5 z*_N4krFGz`()t!(JyOJRZVGan2MapCAeKEw;;I`+rPj>Jx#TIHqK`3Z>+ojgs0lfdd*<>3zUgp$!Drvc$j-`1!y+QL3fIs7$nIrZ_ z&+}6IL)uzZzabcIL8l`P1UTK3Xv1$WrPYS$Ed9P(Q7BjV2 zNUe>7*iyz$L$m)w-gkI4m3413JEh2#iV*5m0GT(!LXXo%i=!-}fJUXD!xJNbb4!lzsNI_w(!v zB3U*vw5oz`2GC+~>2M$+7gXDC!BxY!ET`*eBxCR|mq{VDkq>{4z4F63NfP>wk)5z( zh2}9Y5BY?z%H-oz!cSE~*xT-BJ6dhIQOV(8c9b{6 zW^LzQ$CQh$T?U($ke%%1yfApYd;?+=|AK`|RKF0=jV;N1-@xtp`>3+b1uex4N?nda zOcF%6Ng@kG3r(sU9!PAGOZ?((7KBewzvB28s=qni1q$h9N5EC+yTXBWuifM~J-%GP zC9EC^u3QfNUDCyZNA4>i{_b`h=J*`vB6WL_SX(oswV7=L8MqM=S?{iUqNbc&-uu}N zgExNyP)LusKru4+=zManzHTyP>QMFKc~sFYZ)1m~bW?;W)F=%v&zqQU_du%Rq*aBsH|1TAr{^(;pTPwxVj?ZRSqm{t3CY zn0#@#rkEM@W4OPinK6qfI}O z61JAXIZ4S-HalQ8}DF4A>6o8^aQeBo01A0N&`l1ua32p9ajkw02HXp4c z&HJ9N#QO(bO*tZ*Z;qycM7DdcgrTu*P6A1~G?hZjZc*7Vr@U=`YFU1%z5!pbb)6(x zG?cJv&^ZR;IGw%(bOHIjmaFHDhpD*BzKBn(Tt7y7*yosZ& za_5=-d{yH}tM{|*{ngt)*5S&BU>RU;}cs@sN9k1pASK zZOyy_+qsUiQLTORy!7fB3qWVc2jO-L_&%=C13DlUlDe&Gol&r|s#_pk zTw)kdMPZl4XP3L6J6u;ls$2qHIqq9sIbOVR3Jyy&#<)Wqp&e4L4pRzL@bL=fTcWBu zUz~;K5y+o#^y1~js;~5*|H9Dm=ckCx-i+EK`K|cUv%_)Yy*L61H#P1ixgrgD$kzQy zynR*)Gz>%kt*Ww3lKWN+zEp~IIdUR7e z*s_jnI3F$|L;uH`)cX($a`H`&B>tMG1L@R#Q;^Ent&WFtC9}NIm=h)|^KSVXdogbmk z!{OA2R#RDSj-_o#0#QC?Mryy>&OeGX}H*H2Pt^PlDF*pP4!ETY~8K#aX^~iYoSM_15z6-2S#xY7@n$;Qo$oqExD=nbw@R! zJOa<$-XF<{R?GItT3rjiBIIp}kjPDBE1|nyA88w%;J=o_Df z{X&lT&7&p79c&4;J=@~by=32+q@MOkzS`uKv;a=m_IRGXK$y?eTYFKTU;6<(PoOqB z`jnsM(HMDEW=$>4<~h|TuO+J~a-q+el<~84cxIudc)lm$R|{P-0KEyeJ8R7a(BQea zV@C^IZ;5x7`b(V=Y08%j_Z$2+|B$lwpuw45SJv*OB$zBe5I9B1Yn4<`{etT?4e#T! zQmrWzqedA%sHFJq+9-;doq3{Xb-5^IVKqksb3yf=e=9|VDm<8%!pY9A8(<@|S^V0w zX(ZCgfxopHCV`k<-r!nkL!Diqwpwr8f$q4cZill@21FhkGtx?OR8wIbXrHY#@f*oB z_;ks635Fc}+V@wp1UL3>1nC^*t$pwskh|w&2=)@yXv*nO1rng#n5KUvUpk%q=86VT z$DK;N&*WAFMQ%DucOL+5;KSpbOv7ysHeV3}wb@&xjt1V|(638Z>oA|&1mm}IlHVEu zF=h!X0xS*?AJFk0^s7=eV&Gn?i9#R$`8SBLn`nlJT4Il z`7>H}aC11CRh1RXcX}qS*>-7h9k-&ld^+=G@B>alK-c(PCj&zNIW^4V#KaV*+`{)3 zl!t7CT7{c+zG}4csuOVvm0R(39eX}&Fp!y#&qCaHKUF7bdg}3q{<_`(107*kcnmEQ zVQz5$Ep~Y#!rBR%wkuqhAq+JZ`{Up(P{sTkLT%=X#FdZZcss-@TkYblQ>qi@+aN*{ z{yCRwXZ$dWdBA2NBi-}GFq13w$k~18U{I9yMTcBaC*#3$cJF&)Zw=l+;lg>X#I5RT zASb!1u(xLCeNF`K*8Q2A5}LQY2Fhfe1T>EQ(;=!cOELfcz5jHus#>qC^BIt!f2#owmn%k(XoyR(u9C8Z}V?GU}Amzay6 zSQH{q-3(R^`5TS_c48h%pd?fymaL+AfCxUB)OajtZK&~7@=#d_bJR$K@8kpW&;BkW zx2II9W}i|)?!h(4)0=za<4-(l!OU;F%Uo)6pD5vxy_d|YwgB8J1ZZlI@FQXHt>G;t z;+XS>p>}W0jZ^H{FbV*{FSEKF_BH1uq2!9@4r)0~dp7nQVoTfaDXvfgGV2ORXZX2aD3M)^d#1G|Il5G(Nm zO_Bn*L6#V7)k9jK|7P7zSr}}3GrJutm&pBVY)SID{epp3=dK#mt#C^;&EGGSMUW6Z zKUHe86*t&&MX|MtnjAte;uJe?mjV=3KJIK+T?aw0CC{Vm+%MMzGB}yVLl^3l% zP-|E757?}I8Ekytu}d+T*sMf-=(x9i4O-PW>RZ}hr)A^OD<4ns4+b#fR;-4o^=ArxdR=vu&nd>d456cC9-RW?(K5=qjR;)^$TwmKrZcB>}lh9x^??aSR7 zFzObfMlcG|54UFM96xc-7p|9&vp+VB!m8aVfJNcj46O*m#KJ2A#cIhF%ANMZ1Czt_ zdq%{|!RkLY*>vOwj{&I+X#3IV;Aq(|kXl9uKcjmg+yNE8?J0-WcdxBv4Tr&WYb)2e zH(@2ge|wE66pg6L)OI(NWWM4X_~LsD*O{Bb<0^<(>1T< zZq==8ut{x4PK#Q7`^RT7c+usTM_QoZ$8x@RI;Yy*f?P5?+e0G^?9G1dL2H+Rcj-3q zD48qROI0B6);*?9cn$=8T#UUVl9fv^F}AM^`g&$TUWiGLOrsFP)yEy{%q);XX0LNs zlo9*Z4{1}AJ+34&bXUN%#frG&P2T${t}3Q=%beE2?)+J*xF#(g$Kpw5`Gw5QyKJnP?k!y4=ha zgmg*9kR4Kv31QI%VJTIoeo94xQe+&y(e74+J`5BrlfUHqF7O7WFZAtCb*xuJ%B+L% zN?C=Fip%b9=X7HcP}~pFFOH*cOY#<}_Ah`~!T1%LnE@!n;JJq!u0N|2;jqFc%Uwv_ zg?Gk30;~`fcW-zZAiugGQ^kg|4u(Cc+1e~UQ`S&4rzsH zQyHjI&M+W8JWC!@)Y}|!u)x#f7fzl^80t5k0%_=Fal%%AxB%~m()ZO1*Un)!FI4)N zH14)&zD-Y<9tC@Kt4-U0vf;Jq`Sj{)6<^Zs$876BI7!{eJT;>6OrdECHU5Lf!_Y=8 zS#}s#JHVWj_@v#jT8ZkF5ZKMI62VwEP$KhtYoeYFdFQi^?M_RJHb z+*-Ub#I;Hp;rPwXnc|J?WpD{V4aUU{mP7Kdc1}O^xT%|8>0BbW6$lc!xN;n-d!{>mX z;jgtEdOs*P(FyMYB^5y)quLNeLa+YJq2RsVN`E1-6h0gfwEJ-Irv`L?pfM6}g|z{j zLlQgrsq(c3Abc7DWuE#daBn)yW7H=C@2t6(;@?R_*F3)9K9OoK6keviiHi!Vq=iNR zzSpCaDo|DILeYoeuY$B<|HcYRd&24AIw|WL30veaW`|TU4jATy3Xsn>PqThVbn3$T zRjZFyP7jFxBG*IikQxCgvV;ndyQ?IHQcnM8Ai3Oo78OYg3Jnq@8yUXU^7JXR`GrYI z_mIv&95JD~%hPIVdHS{kE}ZpnN)Z)Qj$RbB+QzJvEzf>c5CB z&LpJIQCjl?TD>x_y|H+lZa+kdjTp=s-!NXCim3bP9ru^Qj*571`sDxStvni+J=|`4 zqPqMi9u4X6?xI0k6-nrmpSIbjcpp{2_s}G+@OV|d_XyXJ&YL1kuY+0M~dZ`OTF30w}X~?C5Fl2a%vm zmfYT%k93UDsZ3o4`7q~vD>=A5a`kX1*5w{juKzvhrsy-^G7!>_4asqg^8M-=zEeKJo>m zLDV{SsU4RXz0_K#&yr#n`@C2McR_&$p1v2)>P&lhv{&B6?fh!di|(|2xcKFUuJC}7 z?Gs#Hnx*^&XxiCl@}fDh3#-|UkF}QWGvVKrbYSyw4;$YWrDsP3wG*onC__*OC4=Rk z+O1rrh?`Kp{j3Jpj+kKlOyR1osBlQuu_?oq%k6>H(=QB6i@-i7j?J8RZgLnXC5klP zvS|AzkW-?OEv-@HbkJI2f7n=|%KOM6Y7iU<#;IjPM$jC3&W2?>vCJ219Ro3`vneR7 zwl*<(!*(jF`y6<@Ny6EbV7qd1c+iWCv`#$V)Sh=2Y>u-W937f{^4t-=BlnA+`0tI( z)p!8R0Qvc%1N?KC^Medi=m5+PDdoUSA|tZ_U~6}HtV|uwiUm%#7U0AHyq8e^tnQ{W z5ELq%4l6n7UhI+A+$SF{M1YAHda)7 zjcGcLo!uD&{?KyPfSpDTmb$gZO#EdzCo;!#I#!jOO9*e-5oj&`H8QrR<};h}WunMI z)Oo&`HGR-VbiX+x8~4#f`$;Bvi9~*H0IpmRnS(b>!QF3}?J5;u7%ml`@O?J#15G=4 z8#-6ypaR}`bxSxnXzhVBo_oONNDg8T-+H0K|+f6z|pxJER4#2#gvBz21Zn}j1bLgp}y`wq^M00xWWlqeW%fdW`B6i z#iT?$$xSH%F@>QiC&i%puNg8>Be$B`c3}V)n0AZzPlhX`fIO~K?px2-SU(qGz#6@c zR0ha{1pq{vVCv}KXgxRoJlb^0iEJ?H`EDSy&ugRfAtZQkhkPo1vVRMYZ74-BZ+x?U zJiCkaHq>!yqek}+XPpvz#|GEmU)#l$%>|Jaq56weA1OtKIBlM|yA zzn{CU0XBg1%TAO=;%l@DidB_U8gLoRrM!WUQo5cKSiQhC%>jfaw05FfO&y4ePD;qi zRdrKsyU5EL*H7(lED42HgiYZkiLS?4^BCK=+f9FDX5-?Zt_kV zPxBV#o(8hw?&#}&`>7)%f5NJ_R23I5z1mg$WeBC4$0R7S#%(jn=ZKY8E>GL|H3zz( zPN>0~f4y1xE%zxPi6wi}PqZi|?+EdodZ*|ikoA*Q4C3-tAYrvL;T{Gg58Y_UBj%WLc1sUOIr3Qo;8G9H5*36)y^=p8%T5R`wf|C9J1arRm=*5~=iN~{1bJu@KbX2LtLFh{g(3_Sge2K6vT z6U|e(4)okyGjBOC>D`;oaM<8i8=ZbDCyKG*zH-k#f(Pq^|e=ZxFi%`7uN0 zZjQsUdAzkhphY5r5QRK(JCKscfZ)X1cuC7Y4pc-VfYnGGVN(}x8DT7H&IjCnY?KzV z>Cx=Hwe#L;ybe3Gg{L+&K!M@_ncYp-+QQz%=sH2hkXan)?&W4MeN~Fpa*XL>4gq9B zgQ_u5N#iEdj0X|Yr-mpW zfd90lpP0S!Ojy6K3y5=0_kHVa0yGvAp0!+Rh@3T|Hs~EYiuZ@dB zMdr;(*5F@*KhUNKnYCy5ejKU!+ zndhA61Qv$uO zygEIKwn~;^W{5l*#Xw%W=rl&(OIkyua*Y=Q4F#vv=u(n*Mn8ynd7b3;Jj*FCRmDUN z(-Rx@y@3jB`pH}j?|$G|4T)a30Z~!BNll&71o?-8{LKOl)6lceEYc1B1dFBX&zH$c zXYan?1J#^L3?IJJ240}9*lXcV5HveAA$cpl%7ZU%q+|KgF#)0MYbKj(P`I5@!iuVx z%s)aK;}JT{`vx*Of)@u@w$5sgahtV_*Q0La|Mn&j<`9+x61anau1u-$Hr!f?c(vHwjfbVHoiyEmK^l^XW?Z-N?Itpyjg$5xb4c*_cXwC+lNVq%^JptDGJ z4$22V8VuWvwtZ4(=Or_xo}ahT;R@m?ckLgADu?Z__D4wPY49IjeGhn5cR~J2>jLrE z>6tq^{;%^}x1LPB-})B+jFP8qV07oMBq)0^`t7g%2TkA3{HTR^Rc+WIsRvr=A-& zhg)e7ZQ^@&i|?8B_04!1_ggztujfx+jSfqR1-I&iDUkS@IMYILr&)64 z6>((spx_IDJ@-KA6HA`N2T$#e-Cr04^%FuxIT@Xq6P9}6;JlZV5E}yT!*~OT;_;`C z=GOf4mti+4>cxS&xD$c}C4$$Z#{gB|+c+gvZs0bM1UBN6M(oel@u5&1LjzX(JI;To zOiim$)*h}BYN+xBC7=PZytw;(xe>ZoyrE3lFarUc)su}~i0W2|ZzbXm?4B&eo=ial#F?ZqH@h=9( z6N{V*BbnSxqV>9dEZPOoq@U;xuwb}~lttR~m-~6-0XJuY({`f?5(`xeetEC7GthTR z5{YSLFLD)b3^I;VNw|idR`2~YamP;mQQ!d#iSY67Tj;Xb9!2s3>M`-!%c#gQq%R@C z)x;w}vi!Js)M=!Nan=?fciu~4?DQ>e_f**UnZ9d4?5;|ExC7FM1;mSbjH~s2*0sAn z(WUVqW3<=ab$^+*l}SWv0I(ZCs#l-c)c*zD;FnB!iKmPS8nC1h+{OVe%$Qnv7=O-0 z7r7Mc>0XN^AAvtZ#wFtFGLB-#I)d`=qwg6#1YmV2%~6IEn)rT(%p6--AFX*C2uR1` z=n?D29%2h4)3{YqML=5P zFbsWmdZj3;eJwm-mD|*1lrA#t?xcla;)@w4IT7ba*Om6lvNojy3B^;(ZPtaD$X^XC zZ@g}Bt6{pm8_djJx}zl6N^SIW74o(()dmGfMmvP?0{`hU)X>^rJf*g0yCR&bb`l=$ zm+)zB)gi~Q(nDjV&+7MI0Y((h^w10)D#Of|DiO-6rX@Mw6hF47;dl>HPyE~~E=v4> zeObFt*>(3m(QHqa&_kX!oBbOn^M{_m2^6pt%7qz}L(c^@_Q~aYT1u{v3!L-UfA=wG z6M988jtnVXG0lSCu;>v3X{|40-1piypqomiebR}C1>6q+#@K^Eko_?4ZQZ623{aKn z@!3yg&EGT_tSAF8>!6l$$r9)ja;$CDT(2^FVXiA=^}D~vpwmh6H-C?OV<3Z0hrPJX zly;e-7WCE{+=-(AuQI#up~S+^9JI%7EY9bQNYih7z&Edy*eYhxV|gXJ@a(gFa#aW? zSk&*;ain8^W^W$YNtuulbZO{k)Lm}Z4M9I>rKb;u} z)z0ZNbsdYI0!XTOjZ-CXriSDE%p6kyJ}EfVTefKZz{qcQ;gKQ$SOyR7nvJi4gibr` z;m^CgVpIb+|98u)0bt%gXF?Z`(m%U+*=!15J}G>%$U=PU^jw16P2$eMG&vwKtzsQhK-3#9$eqYC2&)tnL0S|9ZLYHWte2 zZ209O!W!hmPOT7FUnF$A8 z350R-N5qKPsg)QYg(~pwz2x_}-}ywH`-9$FRHvnCsG9jCwUm>9%=;4NyvaGNdwZ5A zHX3;}c&!xf07US19FH-qNyk3UKC3HNYjf$6HLsO=X$Z+nd8>)9t|w4hl6(V|grN`kDtl6HJ1-k_m|A%mqn(Q#qZqh93FyM8+o`a*N@}th=(zQDG=gtj4q5)N?IcE~dOS zI(0K^tlwBtBo#`GZeF*h=nj_Zm^=yBTSwRkU^W8Sn>ge*f42JF-?-btrvFL{Ms%7r zOIYpjvWNES28gH5ZqoF8xw%4*f|^@DA*)YYdybXg+;`yc)t7v;^#2fZ8p_XVsPH5x z)=GhterK52(l%5r{)FJTTL_K(v)X32kd#(uJh~skeL4(St5lDaQNua7BJ+0ZiwT~U zghbrik}|^^uNzskV=sPDHZr%$lVvyF1}+;Y{CuXtxAS3?%KNaJ&b5Ia?bbk_hiYYK zKmN`PC%+x42ytP&8Q7HE8v3dh=&4Z+h@H9~#A#6jkod)|zIjOjZ-OW+pe(&`fbS{d zB@0}F`85WadP3w(mHsszbm zc&kSCw({H&_AlRdh88Q7QgQ(Hoo*Bli1trA`?wOZ60owM8zVeO*wCDPn7yqTV7UuSp44;&(BtD|b&?!@^} zmD%%we#KiEvj)&yT7y&llBb*J#o+wPRmecke$64<+YLR)R^})h?yXf0I9X5u{A(Aj zWc=~LHpod}43HH`VnO<8mAhta)Ke>6&qLA312$4oSc{0&aRwf9T&t5UNn&XkWbtPn z&KshtI!{`$6wiUPGGZoBDAW+VNSUiI`rFeJBF?bDOi(`{c4E#DaD#eQMxeHTFXp=1 z^BKF)(tkD@s^L4nH1Ib4vaVR8q5^$+!MrT5&%hng5cJM5Mr&YGdwWG+IK))~4ipK2 ztkyT(_-b*KCEyy}yGt|%0o^%xTY+o%ABI#5ut-qVgn|$6jh{&88GJn_r%F4)-xV`M z*{!rUX}t2gB-l%V9+0ukr1 zd`{Ccx(tvqNta_Q0Mfyq1MY`Xu*Fvm$1$b_5{Vq1|6I;edUpmqdt3|gEGQryo1|8a z8VY_|3+lz?$h`U8S4#+e4ByTc3vF7oVJmBW^pLPix@U1_{|jw3F>S#k-JJTU8hdZg zvD>J~21jxJ1AFSjDAm@XjRcWf;X>XWa62HAy2zmOekeKkj&FglIt z{0roDK0V0!SYe@#s=G1HNTASd*adP6Bdp)P8ZWH9-VT!DBURxirD@dE9YbfjCa%KO z=9?m6B3}g_Rf%{u1pCsDhTTSnS-UdTMG>;QZ(?V=uN=;Ay8$lzAdrUO%;k>tcQY3a&Zx zFpJ*fPFgqNi~tPaivgaHB!>sgb+NE$eYEGe@z5wJ)G|K(Zw8>L9Gs>k%GmF0)S8+F zzOGKv;_{;}9^IUg==+u9z%`YByPrsM1Gr#f?4Q5r^dAt6%k=m$e1zL`_6W4S`aSuZ z9`Z2#fAyHsr((<_Fe0xh;&%_dbccKCl(Uk+jGSDF$t#NP4+z1vs&(Sb{+njKH+|xj z)6P(mA9zk%J83uclxOG)$<(?X7K|WC!d9gzscznTZ|wq4bZ)PZf9H`b4f$Hn)P+e9 z$OfdCXlQk+8ugVwETR&^1Z3Fnt*N}}jx*rac{h8$KCK5r#kh*~XW5_M44h2V$}Gc` zhiRO89DD4P6n9P6F8-XyHrpeQOg@@ZbBw6Oxxm%Ex6?EwsEAR^L0vI6rY%1-_;>)0(Brz9H+njS4hWokqA%snNnfpuG>LRoSE8s6Q^3Tye`8Q z88%9qaB34bSnLR+fI#X#fi4Hhjcif2i)o_0wq%A}A|)V4hMYKA#oeYXri~6cLs9CT z=9*6ZAhNvSl>Hc@fZmH8y`51W1L!T(a029qmYzOY-wo7E$4}ST&=#tG_c^sPEMW;W z)&|tkEJ(TcZ1pqqL^HR*n6DkmoP(XYj2t>@x;Oir#|_;-)us(GJ?l`6RH$F{{7dn0 zzDBv+mU%w$b(ZWwY`g;2IfPfgc#C4g?A}t(*jm_!bFpMWoL6H2bZ}lc%F6Yt@KS(I z;1ds6k3G6rUg*=Unt$F3aFpXPx*J0~c`dv(mMh*R^Y^RIa=JSj$tgnA=MrYS)D@?v zESnRXziDIk#x@{^Ml6R-)0oGOe}>p_?u^r#pmA3_*qyJ2d(E-zDI4g13{!XE1*X_x z%80c{2d)>` z=X*}~zM(nmOW)T7^|*_0|IIeB=14H%Cw}^U@+Z(`M|LKgb{Te}?E4_4OnsKnh)j`_ zN|FP=(^yqJ8HfdcId>!e1Xrn9cZR&^rW3c+<-jIA?_2)=DFu|$$8(Td&BL_pAg`3~ zc)fkkr_2^$`Ck38pUliW=K0(pRB(9 zZ7{Zda5u!Q#jaf~QPj`+t*V!{AHfQ(P|HqUq%^J-*ppVsZD0sq3B=xlgZba_-hGTA zWI?c^g(J9VJ8QpBLMa~C_HLzVr0mcR$t#6;%Bs0FPAsu-A)LXN9Zj0&ZIZEB; z33}|ckf;)4_2^EyroJt`44X2^D(tcA{Jf}CiJ>FsKgEceux-j6TUzH-1o4%S`GxlR z<=~9Xbvja8J>GI-d43(PAd~?HU<20P?|FOC7klXl7gs5);;9N(=@?1XGZ0TlYAA!M ziqHJIv}2Hy-=)f7vn*F6Tm7;U0TsxP7H{upLmpB`GDgN z?VajnkJ<0|#lzEZW~;l6)e{(MnKxU4Hti&064dDT7>=BT2W)ivi3r1u%XiXMKe}Ue z)Pvl-$dGMm4}D|~uLySM+Q#f0QUEbZI{}2pkNb+PG*_<$E;x z`|2GnkgAiSbwwgu{CFolrjq9cJoQUdF$<&P^PMPd4^^jcAtlNxwB0rFsvIuXM`G;w ztZLi9!DOSw5sQs$Z8ZeLPU7Q20ICFaPW^{w0!fO_&S{AWL|`xTho^tO#M8~pfV`t&5lRNWiz z{_pa^kq#mzj>Y(8i%rvF9f!BGC48~@kw&d3W%yjde5Vk!heqtN6UIo=mLYDFY`l$# zq>7c?L#vHqhz_pA*;j_<<3$KaqXw^wBUPjyve-+4?fUq^fK`nVaqLcF6n&aCXHO~b zc`#Dq);hJD$=N-YhQL{I^L0v_ZgDxIrtbGqF#kx(-fF&vK0cjd$(|xVFjmDKD-dtL zDNJnajfCJC@MWjupUEDU0lwuA9&hwTwHHIyq_@}Mu|(`3{P2{iu=l!nY+VUvv=cH? zbP6#d+TM`p$4~#J3qDAc1`{&sA^{>A3Wa=yBZ~rw(}S={!I+Dk0g90N-)?9V_vkeDp&+?1bn{Iw-g}D;21DI3$Qm|_`(cDtNsT*B6zjx!x&tKe9_#8cX z>HF6o+kKEd3@lx9lyLE=h?(N6(b;Gaxw-}xWN8vGck+f}+$8wpFE})xn<#I2?zpZ4>H&s?j zf6R#`b^_?JK`S*<*@}mrydLm*7NzH_nmtxmMHocZVno6l>gb~{4P&3#jBi1Xg=3Y+ zNS|}>G+5BpWRlcnlva(V+Vs+5Pe1DDdk~w+Io$3SW^smR)f)bZY}JM7YVdeT&jPI_(G9r}_YY?^S{(}Sh9^2*U@%j5LcSNla@U0bGfn=ikL9cKPr zqR3G(5zU57%&7fbO-z6{a=>cUHc!;hQ4FpwKNi9!KOm43R_Uqa2jKiIPPlLxYz!3_ zs=N2fo3v?1uZ;Z_8)4#WwZCcpSPUUVw!Gvkze(0qdu94I=XoeKJ$BRp<8rn{H=D2; zr^-xAYwMX*SE7N^A`of@5;~|7gXn>X#pWuoA&cGZJXS^Oh?&UP20a%R1d%cS91Rmv z@f(@XN7Ql5lD?P@`C_%s?Q}LP_dH-L{>3@h?rtLn$nWc!x;0cTUBQ(Dq#x{3g=ZgO({N@N;e?Hcpd{6dDFn9ijC>N4Vu z>O#!Hn6xUpjd7Id#A@04sI;aiYB%VL!}edz>2K?2p0(SeCjH%3ist2Q+>M_Kcd_zB z@l20U6`!@JDFlDZ2A1%3L?NB?@j*tMHlQYVw4v{s#p=sedTG~vzaN)4IxP$G>^ zU2%0uM3cdA-;b@^T`Bbb_VFNENVx_VNO>4_u=?Ic0N178g)l0$-?D)97wr@p_Ye9s zKOZ`+7Y)}gw}8A@Ei?gUTfKJaXgkwnJH&1FZg<3Tc>UR=(cb!2DS{Y(kX-F79cqPH z-&svVp0mj~y_su|d)jCxTq|Gu4H4T3Ni6dBnOoVXwiMM)1$d%V~I}$CxQ?bWo8?aq83Za7z$W@KM@=5@z5HR zG$D>TJ&3p)go)QiVx+Z|R-r-&SiIUTsFfKi;dqmvfD8obd* z2WGc5o(H1!FJJ+eNl5@_(tlg)FTmIOZ+rC{*aZLm?}?)v-|*jdNsMC(|84hm?r>1= zkJj||9k3_=w$RI*!}-6>?&<$W9rsmL5nU3B&1J`%IU{giQr5Zh$H=*z1b>J{+4$=B zD6_XMz1O~qw8yv@k z%rVl_wHx>#LI>RYll8>HIh4``Zzmn0oV&n-<|@rexitP`=31){c?4WVvFBgtpZD11@c5?7sT*X<$d7?f$Or}bm1*a>cM z6)p>vACGknTY_b;XSPhC?VoFMdT8?hcM&a(fLjPVj`k(}8pAmhLf1Km>t5?axjX5d zd@womr_kOzmFAxOSX=LGWUl(;ooPwC@_Db~aI4~fyR!D4Bq!aei&XOMb>GYubo5OA zY47QcIR4OH+j1RocbYe9BjX;^+mC9q=F#bu-%q6f@lcoE`KfwmbfsP?%c>S9t3le< zs;0z*_D*LD$sfHnh2qy~o#j5m)X?6H6c8T&C5v;@_g(Y;I}u7RFY1-Jm1iG4qA{2DfT!WDC-MG!ku{qG+;#W)`Vvva-{ zAS16a!N~F;%6M10f|5819qgN|(vUTJP}n9Z!$3uk04^!yn^S)q3 z(b{3W^CdSsks=s3S+(9#M7U1U)@MqYHJm}F^>~s=45;WBY+_ky8G2|pXtlA;cz%*7 z{N*cOp{)DH=hJ0G1tt5$TER5GmX#{ndKK?HzAYgy4mnkw_9m7(p&l#dTU|1;AFZ0| zx@MJXN$EZgUo94o6gc@A~eaYWrt*rHmQy}6mP zxe&S5rJ-$133S6G8E!<_`F2~RSNkpYyse+zS% z=+WGqCg9_QZRpod+quY(FUOuW#{YGkG|*y5ZmESz?)JD*%Pd} zDFgq&Uy`f(*POU#NXx1ac0plD$KMA9k+f1cYdSKJ8Qo6emFad>5BZxMWKRn%J4luj&j=VSOMJ;}-v!oj4wN{=&W`>KJ>8$Hra_{k!bTYXHH|KU2(7wlVvt*tlO;8#|SxJbjYI@3^MWRb_7PK z)32mn9O^a4j3G#>^=2N`HYx4~V`kSz+Pg8i|8Zkr!LJrvQ-hY&)5|PF2wAn1%$&W@ z6Cb8TECV|eEz)jAnC>@nJL(NbE}nM9oWG-w1a)N|d4xQIhIo%;)qX8$tBbIza0Dm@uQjDUw9qjq<$wWCor z;#HVan_}A$a4%+Xj9*nCJy21-RAgkb;_CEnx0+QOE}8TBjbh2V7~Nz-P`hBH7d5LB z6Wy>Ct?51T-a%sp-d&fx#&CRSBhKmRR%>=Yfb4ti6^KWfDP`A$Czf=L!={QEjc0t@ z3(in6jcegT!e46=i#m|;t_pB0bff8Oyji6i zm~r!kF%wc8@AK&PcnNXTkY`HCJ6Bg|poY+!j3k_{wEMqjN7b9Xf6O6e*{Vf#?X{pR z0yor^sw^R+=8{eKfV;V(^T!4aZ%Ykoz)B5@olTh*-wKw!*(lr z^*>a2w*yDT;)0ec&s}kN;AH5d(w&xoRat1_rUUAcxI+fX35GL)vPj_X?p}s7!C!$5 zy2an}6{TWJRfSEHVnsNI7BSz^2^&i5GDJlZBD%P_a~4S8l|$on>vB61bhXCb-B z!bD|nw-}>e!55ON%&KxL2=&1H4;Z<^Nit@&fuaB4g**{GlDKTpxuh|wv!E(1>L}ZwIz_w?(n~~u+<{(k% z3){-qudU1mvzpFWN~Xt(bOM85lgdnqKGd>iUa7i9XTb!vr#DHin={CG!IqNZcFwhn z$N_H}DJk%cXRbm^{*xKI;Bfke(?p6yCX{qchcFAG?K}e?L0L>qMc+xzW((ET`0pJO zEQ1kbn@O`wY9OR;n>9%tjksuCrfh>Yj?&beF=W`$VW$LnsZ{>+Djb7_%Ns4w}3A~x#b|d-mNlvTSzaW^| zk0o}9khy2I^!^3f*B4VU@Rk)AZP&risl7wqtfFMFYFcsk>rFpFxB;$PVL#m0(Ze3W510GC3Rx!ybmktG*scyw z051ehbodp#EJMDQIh&&)Ox4h?uy^p2#G?ErG&;j3*9xkLUW9X@z&bJo<{j(}g*H2zw{qs;o@6$0Q``O77JKpgC zJrHbJt>5|Qg;ks0`F7w4y-hrPM!`9K^9`oEQ)r@lNqKvxp}JeoJCD#3?l(>47`LYy zzAMTc&pq_bf8kZr5^YY#I>FQOu|94X-$u|$d;4Odr|UQ1i*dl!b}GcXX;ZcF0gSaa zfY~ete&920W5ivWwBy$^}C}}ND-7$ z2)cf=(8Txj#OKv?5fJOK+7yP=UIxjFzt1WJ?#5P6e;XIBXj79kM@ykpLx^V_~4 zuS{IB4SwrRL?AT~f?m)QZke<}rF1rMC&_TBBIdHh0(E1nVzkWPZ78tOX{&AS&r zFxR|2dk~EI){sMJYBEHY?K?iJCmLhTtrw2evHmko70C;hZI2)rlc|8V#2 zaY>&4|F~PL-dm;H+Bz%`ZJ~~tr!>tx)p~cpW7*0)SEh!Dq^5?7)NHw0Y2Bdaky@ga zqNW0=D3zr{Q_2IVC|07Vs1zuK2z;;Gz4!in9^c3Bzu!N<#}EGrf}8uk4zKHZx-Y5dj9Ks*|^P8PB!E=%lO{B4YHzWw(U zqCCziB^ygZ@P$pgtaX3k18U>F4}Jh^kDIDDN}7iVc$9+mQBSHG0OfGL<_cUiRgbi| z=I$X~So(#1T1~rS(l^ct9naIoEzM(pe90Cm_Tv|HC8JWw@LV;8xF=nVPBlfrot&rT zS0`w|4m#hY!eRq}_6{U72gh2s|F8twy#ai$xfp{>jjw(tg*AR__F`dLUADocN+p<3 z;(g^tw*Y6yKMSY0N*OF&kwpISS_?Z8rh_JFs#8u?*#<|06P4kr3^03xjDv@wX09XG z%NZmkN8lqAf1d3M&)FFZf6;3G@MzQ}-C3;{vv9{F(G}u_^n(CEU%Y#ZyMkfA9(L@O zA2FdL-!RQlG>$=agL}D#tHP(f0A#9J*~Fh9jIv{&9OK~dXVJ?IBvJ?~F6gGqGUFH9 ztv1zssrZnCkyYVBHJ9H_@Avc{A2(4YvS9*IWj6YFsf48%+j!>1v~WyaQ5}-6`^fQL zu^}WZd2|dvNYw2H-SL?J!6cXfM)-q27Gbmxiav}uM=AQcV{2K` zUjv)~{oA5Y3Qi^IhwduBH-ILYi>L?ZdTQNm%Z(dq?g7HYxz#iucnK5%tF&j=<~6_z zEt+AEwHd55WONR@pfdxEUUZl2MwS~gdar2U5=7pY{N2_+nf`{&omT({!H?TEff}dv z{|=YfHzzMSJgjZZ4!d0)CL{vl0@zTdtX8K@G!AHd$p4^Q;@nUPaKR%u*pQ>2#fPe| zt^v|RD$yh?sr^rujMyz{{Q2E2fSRzTiCnIezcOUF5YTC{aT$0f3MulHC*HautqS;f2@_%F&iG|F7N)+=*yo>A97P3TZ$QQT2A+7KOW_ zGbmnbnSK77rqc_JOWjdc-HT05qZf2z&7m1jms*pnI19?16=nQDc@w2U^ts8`liZa| zs}5a#TG)~xJN9KxvbFKn)A!o_t2jaK$x~M}opUG1M9u4UEB-yN$kQc902Uhnomm)~ z*m*80vJZ97)yr;4oi4O73O6M9hWx?Vf z!{;A0x9yg@_FY8lH67g2E$sz4o$iW1y1zKZPrWepFm1NBiG&Di{Mh}8KVz=5oj6!| zC0(B3DeIM(O#Y;($P?zY=hEg9OMFH&ld?4FLp6k;IO`OZCr0p}NE-{*RXh%Znc!pW z3(3@t+N1UPL; zAjWO<=;h%XVZ$F!#u6{UOOw%qkZ)YgyRLx^GezCNVrgx7RQ|7qEm6hEsmB4dw+UnGpB(LQ{`|P*m^J&SK77l=x7{RzDJ+0xw z$T3D`cH={Og8(C<_)*} zXu$_iJf*@@dV(x43Ef?Ktjr%s5M3eJ6OffZE=&s0aD?zWXJ1ycw&g`YZLKvuE zD49!5J27VL!A8kllg2}`Bl?Ht*r5j2Avpr$K!?h>u;j303m&u0_>qA1y{2dcl%!bV z8FW=c@`syhV_Aan9Cv=-K6QR9GkqKuy-ue6gJ1Xf!$m5hqA_eFrTJiP68lf(q4|;L z`m{GGfc&@T8YB6DpW*C|uSN#+GDuxjv+AamVQ%()#*$pDgMCgP;x@&HbJMQBI)2ystsPBXaxk417-c1>Buu8DqGgW-ZA z)~I6NOzK`AA#rld?X1`-z@|z4sYq2IgOjPs*~l|M;nSC@ z&*<(FX(cS>l2>t`#(oB9zGw2Vk)r3#Ov&z~pHU^+(zh&Ot2#e)*K^8LQngD8{}ctT zOarq2nR42X%o6*`k1&peQ7+8E0OCjZ{8Zwk`3elXD&m zUfwP`sxLsQXLmWb&ppEO32enjS3eKVRQoJ1amF(%_;x;62Y0qhg$vWeYsB7MJ7w6- zaK(UwTDq%A(h>$TJozqhKl?bBsh_>=%^KWEGWQvHzf;nd?)pY0?{}s|Wr=A~6@{ z#7q}Lwbvy6#%PMn4e(|VfO9I1IyT#zJ?bit^qSk1G&j$|d;8v9fHi%z?{w^bIkSY7 z44rv)83Lb`R-L90-}`Ji-r)|8+W6CeFkR8d`cs@b_M9*w{(WR3(J-i^Ee_l%Y>P{o zE-5zH&FRby_<=K+6-1$10bewI+4f=}*S| zHk%Jd{t9dNm{zSm;C&(Gh67;N9uJ7^I{sv4SMt!6aFYvzck`X-bwA621aWfTqokh7 zw)EkWVp@SaZc(%}_Fy$`U^H9{3swrrj|{TNBsA^ZMAyJ$89-lilQYelms#(0i>lS4 z&1z}QDV>tik{lX$J_T`ByunT3NjskdK96p8w7NSDwalmDbJ+w z?jAz3qgw=bNnDZjGE}a%N-qJFH8kyGw`y8S`FQ!)5pcLJf1>U=5DHbA4IC4&5T$98 zv$!1fg4H34Tg2(^6nWf=DzBEYA~a}DgN}S_m;3w=l+pJm)8j{05RwNXrykN(nbP2< zQ#x1)x@0nZb7*gjx9q7&Fa;0{>@G$2XpVM0GO&L zfwHA@;^PL`#1Ge&#J;%c9~r!bG1!$@3OFk7A9c5dMTs)6nbhd>)hau=N%ij2twx{n zET|%lwexn}s9eEa3LtF6azQ__mG#ZCt9DuVXV+%A?q|x=7H_mq+)O`iMmY>c&9S#G zH*C~iDTM-0ObpK1)_T{O@^t@SMsb;gs!2?Cw?+0KjsM~5dJnDq*ujbH5;~4CCC=Cc zL(o{|Y?-*jj?xF8f>YOKPSp8SY_9su|X68oD zHWsX`E1!4)jI6Jk*0l_&WXCY_g-&Vrex@5l1#&H~kAoi~O^ETUrSq5n97_V^9neI1 zv4ynjPin=Eh@Q(c?A{sHyU7r>Wpr$!0JyYN;0XeNvD2$N#YazEyrKPCQcJIKjjHOOx_V=7w);^QxpL<7AC5}E>*cS zgnw)%%q5x4S|}yN!^pgns0wJzKkkyo$Ey|vB}E7o4ZISYb`sV8XuUakX}XyES5`v# zIPCoB66d-?Zh#n=+b*CCDa{Ru7XW}%y=#h}ZT_P!x~nn9F2Mty$gnR*dH>1pNwC2N z=Z4&yv`@DOH0-u3^XjlojVat{@+cwFYf8Oh1I?-_{0Pu^M(}SweWS%B77|A;oXE{-~T|M{sw=WiO2& zS5K506csuf2LN_rCGg^MbxR`H{NtDt6NC5!qT0xpGiJdP9n+ zbyMvCd_R1;A`r0enKWH?2``ZXzAMNAP8r#~hrZPty4v|LwwkH93f!$)Yb8ZEHXkd z&1M|C-c-MsCWLgT{vI5j(EA#+1m$2}wXxsupP&Fu*4};L@S!4eFj={Bx^*_0FbcmZ zCLaLHnE5IMDM;ad45K+fyn&&0l8SDX?)21_m0Sfsz5`}-FT@QG&fkqb+nWNfmwlXl zl&^~%(9hm4me|Mr{%D`{e;*Bjq~GnKw`fp5r8O)7DO(+Yd}kF1^If#jRt zmuLu|c6bJ8`L+asf;;Ina~mzUWFWakk{T z)u@DPnm@fQALlV z{NX9hQhXd~x&~kK$rzB$&LfuVVlf(Mg6-Z_>1FZjeJvq5|In7Aa28iD|a z5xv+p;p+T3LY_jZR~)xavQi5q4V zSY}{pOc=0AaK2XTOo-P?=C>V9dH8`+D_sH=s2LbvV14^hJ!jK2w#*c-yTZM&x_)-F zFJh?+t6r@iz8yZ9Cr?E3O?hQt_4O@@i-Akb3WfkZSD*GFIh%X8>7^ub$>y$^4ACp?B4cx?%O~ZD01=0k7ivN1M{y$S5aC zSNnLWhGAlp1Q?0P0_XJh^Oe)Y55pR{m^)}qGFPxa)68?$%e8sN(F>rGfTHjOc6pzi zwV=inmJ&FH&W$eKscM2c2Da+-*8Tw+Z)6_GjsSP$NTjJQz-D3qH%Wt!8JzYicKIH7 zdya4sbrIh&a;O{@&RsW`=EK%0Y%QgYLrw9@KgS8@!m>y2y4iej)05$=!8cIs*qXt=3dpu9Y6u0w7 zDDAn`-QZFZKE?_}bTEuzFKWH{e8_VxtdLq{33rAyPG+So^fV<%!#nNnl4lsR*Wp!3 z-g7UBGdxAgRQw5tk8H|-Pkd;CK5H#$@Q!mdJ}Z#UgjT>8zlRB4?G)Qu%`(SkSiofw zffb_^o)|tHsVhOcBQ`@9=PQEWWD+G<7?j<&aOW_D>l5wG{f`H`MiI(k$vH_EAULPxgSCbb{NVy zIee1~v&v1zpbmR2C*L+@Oh+!y7QHLJ%LfG+Jdg(88qmXVC;Ur%HXH4}Z2Q~n5Xr$O z!Rek}zSkrC$%*1G)zyfwsU4BWp?f5-jrJcAvfcOV;M^JMazCc@JU1Uip^x@y1vAT5&Y z7s(6EONz@{iB)Io;|`%{3zrZEYrmiW^{ryvy}RU|^vMa>nXvs|$N%BCj4ZutbX0nDRT( zvU&dGFCdx27eC+u==j;-eg^U9@=H{5K1$!{|M4AZY^<)->NKU`j9;fVg3eQCy8Zxv z{*F6H3&W2fB*<&rNPxEE2Ho$HYl)eUqUvXf*nj^W@t;5VPgj5#;Z_taF#xI)=(7`Q z9{Y8WAXe%4s{#bY-+ysK)PesT9uBtOIY?W`MVLf8rzIiBXQ^Z!sv0Du56Q+5<_yF1U7RMz*&pHW zx%lt@dc7bi$mLi}G$fY`p7!Tn0e|K7 z7S$#M+KFd;jy?Ym6t%0LN67zR(u#EWZeQi3x+IdC)0I3`J(`^hHPs;7GQS{F9z zIgtD?Mzgl?!TBhH8B1yZn)=K;*G8}D}u+t zouhDDKe_OaNdbTAKi6yXg9lQ~sH(9Y8e1Nji{{I{_~gWY!?1t9_f*f>zjxK*RnSZF zMK6ySxBU+ORakmmv1_P5&^G;FHKJ_kH;2} zUenVX8@c@7IMVW|AdW9<)F&;Ddkk80o}!XGb~tkOp;}I02r(CLkC2L9t+%t~jG$ug z(?e^g4i4u7evL3U8#L{br|jY+qPi>SRmQ)4h{+RuL^zw}QzjH$*=7w+oNwv8)mP4S zHL;x9miUKXdg z;0(UNF_&rHz~H4QzvQ|iIgd~Zk6Hq^!Ne;*2ny>D^k0jc-*%5&>kr-Qy&e}^;P^yY zj=x8g+HhShIH%CUGhELduAFO#KS;y3%%*t6~=1xC!C7u%4^JUfjfzqjRO{x9o!x_DZ z4N;~6#b;0j&u6+&RS)P@Mw~cBxp*k)e8K1zNqb%Tc7Ca<_?OIcLP+$NJ^$Ux!H??6 zIRv|sZngQA`KyuJW~NS793i^J(JXRI`d1h~&_C-Ok<^QzCwr0(mE06f2TGU+YfUy) z`E?Kx_|(q3qYvomG5->)fH5DWUwi`NT0Q>3j>M`M|3CtaSCLTV3Jnj%PxjJzb}7cG zM4VFdmyekesQaK7|C&lmbQBTdf`q&m5+>u@HLv1?kvRGGZDJiin0w2-wZAwE-FOfkEvdZH%|&KISkvLvTj=JevRmsY2fePti) zNjWQ;C&GN<_iPlq*3BB4FBpzGa58%W#$w%b$~H{}Wdzsh=?%>-y~6c543hnfaYt=JDk!&G4)$8Zt2-Os^*%h;bLwb@E>-~&<_-TBWL+P915{(1eGA^9)5`XaHB4Ff;3eecw5wk zKEAi{^u+{UFWIG%1m8`fqFxef2glPBNj#3x9Nsv#IoGd4ix&P%D%dOE*5h@&`5svY z1xhqVMLKI}DSQ=i9Z%raRVrvixNo^LvVexHi*J)BNHgVRKkZIVSl?Hn0jn5ans`cc z_6hqED#NK{*IvXXeiMUH`CSh$=>S(1*8lW@7@=xLR9jM6Entyz9GjlP`4yn(j)`B% zuiKNrwqtAaZ;1v``W_^*ku8-xhz_mxKfkG#P*6I}L4V!1qFDU`lF1O|xqiZPQ*=Io zCaHJ_pT(J+vYLko{3$5A40(QNI{+!Z@)R0T6YCp)tl)>N+1_EF#|w>%B7}}KAzi#> z+=)h~OY6hz{LLB=9D=J345Uk_q}lg8Kbh#QJpd-4LEB~(%e?I`@d5ys;lG2v4(&Vv@Y29LfbK6o8n2c;=hW;(3!jgc zO!SWQl43{`ylm&>_#VHGc|@2m$sSAJ-Bq~M)WbS8V%ybW3~CXDEE@Gd3fAs?%fI2* zaSN4xd*VhyMJ6e@NOa4dxzpLIi)PPv{+@#e@;X0IYWQZU+#DY!cv~Qvwr749S~TIU z8MbF`6I!kq&IP|jSEy8zf(3RH5ol<=x>VKZ9fMZ34?ceO?RASnyGMZ@gKivU@9=JB zzYLLQ+F;HZvj4m(y!OL}TXs-d16c+zuzBMq|DJEYulKnULWwkOqN0yqmE_#Cq|OwI z1XIOtJX2y%Q6?CZD7ye=RKc@LEwK?!F;wzz=;JlcHQAZfV9bo~M^|B+sQEV~XSY+y zj%5K4YBY`bgo09WZApT0p^)D>>RlUz9A_R(@v9`us_ZRZ);I0u+(4&ql;)Iu8Lm+Z zo+G3`QMXspwLWh?kL^EQG`EPE;BAh_yww?OYSI(3!YBo+>CH_%dEaFDfn9LV*C6ThFK18)o-R{u| z8}}|b5|u8rWBf7H=HSX1HC1)ywpRa0U5cVDY}~fwBxSg0!^HL8$on7eeYI6&vUkW`N;ge0_@yFT-OE;9Bq~ z;wF~_{#Kmqv>)>PO90o8NDRZCWYbyqfdRJ7VLd2v-1E{09g9))B8cvLntV%@mTY5h z*+EpK@^w;5LFoa>37#oF)C4Q02K0w#BgD*wN9}roEJ6_`2`U`wjw3?7B(G?Uvn9u5 z;wm#ijfbvkSgY1U!y`Pc`{H+=o-Y|FAJ2r&MqdNjLQv5JqY&p++q*Taj(CW48Ew>= za8RB4DssyWOHR;G`Ubaw{WF&l$&BY!9wtn?8MN{qBYkeJA>C*8o`!{xdfV+~v}j~& z<0T&%a_d-?j@jEji%YFal?N%27g$RP1c<=gbdk?@PRW2=3c3vpU5brv_~_D)N)oT$sF zcfUu|Y+g}c+|&LzJ^zeAANc5JGB351grvLAhV03?E#YPtRhrW?9Tc*#SGw z)hSnGQaJSaih6e@o$|elj)>kOZbm7L5EE$h@m1&>sX^}8Y%E6k;MN5~kg>`9PAo=O zXR#cL?sx>Fq1N{VupCX)X+rZ~K=@TWJ}Ih4!sFOY{p;+pRw9 zyt6Ahj5fk1YE_^9SWC|a ze$?K>Chm6T>&|t%E`C%k9@)sHYH;HgJN~+S)OT29&s-lXP0jw~^zIh7g?cuPrn!+3 zB29hA@Rq*IXj+XX9td)eTKh_oJTxTC(N8areJ5?tW89dUe{GlzH)I=sgUUt4vVBiD zTZf&ql;I`e8Ck81`@9=-H$IuI}Dc_-05+YxO7) z6wsJvoHZC4Gx1zY7$^{=$er0=`FrG(L|xcSVmU8mY)>4WM=@6k7_G$NgeF$fHtizA zH9aU#tUglkZ&iw~wBffOuUpW0?LBI7oEpI%IrVXiK;h04-VrOZh{E{EM~L#iK$E$X zF;V3K-somhYHYLc0fw}+mqt%|m6Q(UTdGGN(yIW=ZhBgEr1&Rl49Q%`lP6}APPj3r@Fd@57 z9Ohmg9IZEUyZ1-B)GHy#Z{UZ8Z%jvC#ZNjJeWPGGbj_aQtIyC9M}9Z3!n<@~InIec zck2AjRe>8H>GI0n#3ZPEHe#!>0uzNa$FGBdj`d~>!%;0Z!}6p7H)8NZHhfU^Rb z2Pms@G9k)a{}NPYR; zgcGp>tMeTBOj-FX4s=tweu9ezO?k4rqW4LOuZYS1N{acpQnR4Zc_5vWhPa1w{LFIv zCUX3eX2-fx)j!z?S$0;~ch9HKRf8R#8}5xCcH}?Boqw&kTY_!Q%kgvQ-i~1HDGcWg#hU3_D59si8dp!GbMhv2m$&^_dWF5_ zfm(Ol4Bs!9RXzTswD{81ePh>rh%Mk$5NJ*6`-0fxuOzAND6^|&GJ2688E zh*MJ6#u;WfHDYyqpnry?s>6r2^aWOX#Yc4BB|yQz2WR?q9Q8nw8fWT!sbnKhr1VE> zS`#@wwIFB31}f@4lO5;Iv>Yx>ZmaXoIe~4~ukxsk{}=x$?-)WcH!~%w0z5s#QG)-p z3!5Ee9$sdyLLP(p=>$De!c61Nk2x;BL-?b(YC6)#j( z(XHmdJTEy$vD)Ho)(9%5v%&?FjR#iy!+0)u;+0Ak1{j z;>s3|`02-O6myE>CeV^WZr?5!#OHup);zd==-q0)O)Y_vTEC7UsHpgc$uJJ0;K|xsT)`eU+-GoGB2_Ct0Thq6fI*cMipt!K zOY+Q)Eb4l^rd>{WsDhCZclu3-M(eXK4;H>DqFETxrW#y>9gQ&psokj%jH^3`)T{K^ zVn=e>)+HKKg2oH8rn+Eix>JvzR;5Gk+*jtUUlR*$vw+OvD=W_3Cs|)Xn6iJ==zTyd ze%OmS$w&1EN?Ose8&&<_yKhfyXuaFP^m+qK7e^U%#fe zthwh@b{8>nYI`(W%Lt?JH?Aw@#ZSIPgpFPfpFW_Ty^twO9zLg42znBO25j#5b#%%B zy8$p43yBef)?KN8qUpSz#)z{OiJv_A{U$tFSC2t3Ct3~KW(I~pTWo>27ZVLx0e!bG zka&B75mH`;N)e9w_6DFri$%};I?O$gz3Q`dNZ}nNzM}Cf`>%18YFD5k_t>Mxqskjr zMiZHL3kxDwW|%03OD^2uyil6rql0wrUUiGTN1>TpW>?*)vp3Ww#jZx191rY%)cC>_ ziJ=+r0>g4eHxW|b1Pet=7232*G}sOW2Y5Ke99$lPR%wj-g?D$AgY`rSnYs z0&(~0Zal7%TjZAY$&*NUo~<6c4L5=#XoPtf_uW7M(Z&H5=xtW@2lD#@*~c-2W3xz9OmfhqoL`eHZcMm`C(j zCY|TV3rzN{4TAg;s%(48PdMeTh|$@Gktk~_xfo(m$6sATaA|b6Cf=fy&I3Xqu9|KI zB)Hf$$~L2vEmO~@Td``#>rZx`JGyZt0tMhff8b~U#?{{Y*@p&{)~(BOmS4Yf)S8p+ ziEJ%CgCjN{*zsC*NT59&`&QUbZ&?u@=T);G9MD@fmAem!77uBI0O~l7&t7jz^i2sn zYOwj4lfLoYM=_tzVFm8zN_~Po1|7YRyh(AF=KpI;{i{3T=2q6N@7Cz8%~@thKmc|X z$roV*=XzS`*DBUmU^kE_6Yzcn3_aj8MAIlVdJC1;m<(-$((cj*Jr^HqVkOZ>dV9Q< zuJ1RfpLKuG`BAgVY4jpka(IDkKa3_LQ1aAOL)^t_%#Ca}bGn!P{%DUH_fQEufmf&a z&dGK@14B2?pQiH~e`+@WQDOL0po?{&^9};7urE+o#apaLIF~m3mLi!w&-AoArAv z-wm9M23CIX>-e*oejT4^=s155ryn`Leq}N+kQkbxBcuU$uJpM7FcYg2ggh^~>COJh zQt!OC8xCmIHQ(OkN(z_Jm5l=!Nha`gdJR0SCmZhbQt-5eew4Oi_HJJNtPU)7gN3ob zv^L%tdx2G(Cv6@TYX3ZS-IUJTf}!DjWqDWwI=hAQUdT#TyPR^_H1#}Ml6Wp2B3*HQ z@)``tQr_Yv1Q#XcPya?Gzinw(9}{R%tuA3uDX$S2ZAq{WCI;_ z7*T%X)s&b%>(2APmtJK1b2zvi(ZfypIhZe!?eztZ2bBxD&KOyC-P|1?;3#crixc75D0<)WwiU~;dP2dvwdlDq1_yR?J2LC zV}j4F_A4YO9j|uV(s(I*p^8BLE}tF5+vQl_wK|~}fD!FhdG|#w^jg*?(XcgWOYc*ch43n3eYJpV67(SrIx8l`Kx&q+UHm zz`P0C5x@R)Mso}2%Tbm&K6SC=u_FEqTT&B>UvU7>qMY_ zU%_`Txb-r03crplfR4ij+Km`mE1`;TW2)K%X}4<4v?@K#SMb(X*}tLfYIT{Cu9!zy z`$*ZV!JNWsQgL4Q=|HiUTV|FaoXV-2#y(FmYi$84(bEqTmGkMuM;NF&c{lR-ch2)4 zUVV#ISDVZv{~H+rTwTt`rQLcp5zE(1yOkCy7Re7JdCBlL_A>lfCNN}zw!`)D0NKyS zB0&q83fKYsG#lIefR#(d`_^?iG3CfN4ly=wsw&<^1 z%{WS%db#bhprSy@HG6ko2{zAM>s7ze`MN3bwn&((DJBK`d8kex$H{&jdtC)cDmmM< zVHYP0W$YmvJF-c7e+o~G3oOV{@=^mKAQM+xP`xA;RpeSv-aLntmTE zK)72{4M*D>%7E-zBw9kG&R>tx99)O-@U;wsd z<(W4$l4ZSq9Rd$z>O8-OTuVTXuRv)_$KN;FQ=ZIGd5bCp<*bvvDaRi`cnhjwzp#ax zeU(by=79v7T`)*Sl&;jxo2H?3hbq36adl3?gfW;~VlQAPDi}I-C-l6r+ zsbn;joLs6ZB}h69**?0@IV4i>36F;RQNijwKaa3=o=9N467xl2L&npXo!L^VGWwXW zw~X%BQAH?9Zu08@(bh=l0m^tLs?w$k`|I;*HEHQi1ThqX#b_()3_t8JG9n&1{@kxa z-BTI+p&yaZILX|SS{k64n*gt+F3u*b{KK!Kw5Rgfd7l(^`IZOYW(r9nR<6bgecWBe zZ>hq%h8OUTUU;9gmNhLbges#4-H{w?4`lm7T(=6iKH{tVcks&6`&7Q^7w*F&Y(dh; zW9Sm;`fI;FlP{NTB^aCu z&iSZZ25NzrT@-sXJGmZ4vD5;4c>AIhBpS*vH&t={I$BXxKJryKbODFb3>iYDgkv|s zl&GE(vv8ZwpP&|(o+pJx)7$~cD-unX>`Um; zJv`v&-cI8l%F%>Cad_Ct=_bKnWJ^#hFp32<5=|-2hm8|ap?y;h>?7P6PHNT6Ghul46 z2dQLCuh*Auxo3`ZZyR*9@uw9)&ID|57Uc%rAmI<1I$EnU zQGKy$!L|&y5ZtaS8-HI11t0Zj*ulAh;*|xgo4#+)t_UL3@)mF1GF%^XHJS#PyOp=J z{}m5I*}f$qn#M+UMgM8yS@-MfJ+Z#BjzGyuAhgq69VTK0EF?gfejW`LoV=dkI(}iU zh_lZ{TW5^o#>V;n z@U9RQh>Kzo3Vh!x#m^Ad59vb3J%ueVIc=hkd)%N2l8Eq--ohr=`a+{ zpN)Ouqao+rCO=)b-d219AlTy`PDqYBHGo!5zkl)+*Wq@=RCD8tG6&PH&opl{>ea`f zqZnF7$UW!dm}Vw9{^x>z=g=O-`%hd2hq)RymAoJ2mLK^uwwaK^(5C&s35upwWDY6y z!WRX89V<|7H-#&|%AAiO1muZK?4GSZU-O&#Ldk^@KuhfI+2mFM;Or%v_v?_8SU+$+ zM<4&b_@<}?!7oSh76WOCc;5jQqj#-@Ckq0m9581Hz2D%QO*xlV?DUNffUL_Jw94de z--T~NmyQm7F&S8SNM175Oy_xK+ML%L=mV*UtRp}N`bxz@$ndi;UxL?02@?+>&!z|} zkEZpp(5u=1BXy=k^c&hN-RDr<&%Jv#lm}Q&66ick(_~b;J?D)-HGmqvHQQXZzre95 z>>*u0rJ}~KqYq*2DG%01)ur^koY$Tl0j`Jny7(+6Fv?f?WQE=`!>d$*lE%Gl^nC?6 zw@dOSj!rtSmHm=i9$+-Fg3gn#MmM!&_x27K;78L7Ty9Ss{UCin7lsuGjx&XAD%e8b zJ+-DS14ss>w8yjWrx8tS#fnGEaoB)@t5Z*_RvMHCQ0EF!Env>=c!Cca4PJMlSh6kY z03eR|^n%ac?BTbRqPA;ybY0eLoZgC?x#GkqN2odx+?P)*J`om9BvEvNgr?4?-A!9L zVbliG$))rHnvbj(A+4fo8(Tk=^sTQG!iId(rlu%}?I~}5Jvv*#*QHBPwx3+ixwWX=-={ywi!vuBnW37ArE<;%vc90vLerLlLN$D8qDR^D0X z(O9%LcGRisi^B$``L~wHAEF(@zc>zNXJW;^Rq zM$l(CKhSEu!(Uw3TOiovULevU#DL##Zo?=0CSdAEdei)f(FOg%#;ABKWC0SvS3qDQ z@`v}6_SKRhgp%5@FoLJ^cJ4E>vypiqS0kM4yS_-3_aLMjzVRPT!%xA|OJvQ&k}@?pIC3Qj^U3f) zZ~CMVN(=Q5hrozl5%`z*lP9_R|K4uo`~$K~i-6_umw}QdaCZTmbJ?QVFa^b8*mCYMIL@8)=p-XfI9H7*L38G$5$>;Z6;b(fAys2bnj-U2V@{Xnq2G>j0 z8dJ2^6T;=Mg_Cs`yWmJ8BmF<&onQ-UQNAbyl?#Ifia98>`&_*lp7Cd(JcLt&<u!G&3W^I>)U<5F(KtAfz|2LQXBc1o!csYdmpH}qB&sTna=A1RsnZ<4BWUlFLqx6>0+_pf6!A0YkI6k}#L+mgEs1 z%vCWxYZ06kC@ZiQ?)aK8Kc8?C+Ly98U8 zQrcFIIY?DrdBv?lX@B5!l4fl7^p2y_3q-xkMP1O|0CF9i+!nXiz5uNOqydCDzAMc}p;~T>s05d^umVm?X3y}aDVc~&YW|xoafNSH+NhF`F8=dH z>MHv%c0M|`IBicsHM~QRUSTFIEjokhqqivv=s=+VX?`8U2x4#iSuDi%O$Zt~sJ=Rg zrZ5)Flp@Y(jNc(nI?Wy03=};Ur_!+H=CH zm}$`YgYI3?p%P2agbGPEKQM2>uFSQ!GG^h*9A$Zf&SD6bhxx)#IP}|g_wOQp(RIrZZ4>g9?CcQv=OgQ@TOYagl0Ia!@i|>Tw0% zK3MFto0_NER~XQeBWVkGg17#{d}2U>U``v>`L-P4M7Wq{-Gq0E1 z7$^awop|#M)4t;8b)AtZE!HstB8YIiFBYzqOpWmZC7Br7L31Ze4V(qldvcQ_-U*-@ z1j^0DxI^$7RH`Da5sU^z=9+9dQl?S5Co&@1{rhq=r^gYxPC75y zz~N?~qySOvE8Elg)_u!Xk#tDm?uQ|ap48OOE6>sr_m|JEu5l`no@1LIc!!58|0~C3 z@9R4_6KkWte6MyJX=ULg3k0CcNmuB+YSRXwp)Db-C(H4YpS*T<(UP70Fd>kL7^rXL z2UvD<2y*-t!Z+4w{sNQ?48ng2L|mpp;dCl|_=|5zT+Dw8$KQLmp2Q@D2(<1X9*_Ms zz54;(ZFs+$%bazmHt$77L_%Xh`XRqyn(3W!ntH760ihlrsUC=?{n0cNHQ+EN$LdNx z?g8{VPXi9FSA$*-MlGjw$9n!#FwN%2?3oQA?1$VBsMzh)G#3sZ3OJ5Z}6$jzE#^$BGs9K87IMQ(?AG*j-Oku2ry<$ zzo6O;!6LIb4%p z^{)$IupeRB)q?4{AqFv!>tHBQ#Kn{|G~m9h_QTj*aS)~%aO-Y_ju(HS8suDLLYOh6 zkJM>?;Jg5ct95zXBR!*=+|*Bj-wn^kydn2>V87>@V<3oX38vq0Uwf+@a@Wg6TE-H^2eQ=ZJRREH-NTxe$-F`)&LU^*)&3_`0)N$AiT-6 z_Uoxi0CLL7wWDU6OyEYwisUJ`xZs8v5Q9JX_a%qY7BW%#hX8xBHfvy0%IbQ&$UsC< z0qHHJJmkD{ss6k2^Z0Hbvi{I{b?||XNJ0y6%1ax@KS-c7JB{yWv3a6o5+Iyc1p~Q5=!EAQvMH3P6c2cf;2yX{+Cn%WFVJ=` zSv|u2EM_q?76-?|Yg8ODb}MBg+>Zl8%aiVqAEuebTbxGd`W3G{cmK=1rE@L|BVgap zb`VpQv%e85$UPj(t4#|P3=PR)uSxMhFqgTF{^1V<*IPE5n`wr?zn#4P1vvOckcDvA zg&L3uF}TARf(<9aGIN6&K6E4D{PaN} zp;}R23P01VJ!|JSTGjV|7L`58f1B*PCy>kxY~%Xd$V*S_T|M_iy`GNVo^pgK_;G~cG&&bmYEj|Ags{DR&NUeUK zv&j_j4VVmO{Gb&aWuOvhLo4_|kDRSun!v67d@qdNl;-}vUMBIqFX&V^o8)=B%164B z|1ZCG>psir^hq(-H`O~#S`S>M{<6U5_3yj;rWCzm@ckEm`yX&DvHsT4pTNe)vQpz^ zbvd7a6~@oKL8tO!`?6Qu2cKG3;%JxeydT(mkO#Hx;Dv2<<)qc#n!w@AJ!_|Ia82euxFC)W~(}4qov0gK8mc0XxLWVEdS^BY0m;dgRCwu?S-EwW0 z*~!zBbn-0!tWnvox%AIJhwXBDOLKsYl~m2A+@9}zKCv@@`8-)gKF9h`W6&vcZ%y~F z#s4^$P7(Iflz(OUzpr-d>tn!rV*mUnz~#8xy)=On)^AJ>Se9!qtx-Ga9nGij`{^p* zeDGP$cR_<{*^tsNVCB}nZ=kM%S!d9x>yx*vKlG(w((3Aev9nU#CV|G$(t=iBtwr+;3r z^({)BWL0c46@RZy-qE+`UybsYTF?*Np*tZ>XyaX5+rKt*QnF^9T<<)2i(kN7 z&>Hss&+{fenXKD>FChDGNd4m%oi|g?14m3MCmp`UcYk);(v|L$bo`B0KcB;{qM4g} zKPLO{4~NH~9Wx0TNX1P!v_~}iW|`+aGmqJ(p8xh;yH&UP{=YjDo=j1>?`7<0tbEd# zE#rT}B=IsMVEYX?Lpn96&(AoqwB)q2@MM{Ln|aeND%7q4#;4KQl!x)^Gw*!*aL)F2 z+D6NH`LpL%ZEMu=|HQ6#7-%ztnf1>-`+fswfo6cpx}1a1{W4|??R|=Yv*yb-b4~)T zJ)ZmIf*!Et0JJH7StRSrV9#k^F6VdxCsjAqul@Q*?|gmmq~yte$|lLHM&5M1vDNdR z^2y-Ib8b1xZw0nFRDP@eylMWOfKB6Zn^#1t{Rqke!v;V8NC|JioA+*P@`3hZ zL4ghg4$zJ`gx6r`1Uo4dEI`?90#l-1XY_-+a1hfOKd?`v z8%8gy0B0pw!lm!^9H0Mh&pr+wC2Ib&cKOD|7GO5SEfE69w}_1LU@k#Q*wKZb8BUdQ`}+{u2UXBmZf_e?r*umH%nNf12>0CTvOIKTY^g6aLeL|ADFhLyZ4l2TN`8 z4yYd_UESS-)dF~n`T6-rU789Cr_ZRF- zikBzj%F6hoo*>sBq6&wCR0qQP*B=W8z>x!^m>0knAEu;1G6zp+!_4W{QL*l#0$Vj{Kq=bR^FjG&~#+$4Sd`mrc zzds$M=OaaKKm~+DH*V-PgpZDmeH%)3b8}N`AOw{yGhZ+IRjiCe(P-jlg9l%n(MX)< zB0M6^vez~-Gd(^1EvK1=>Bz>wnR1W3yu6-^pVAX3#oxetSy2W51TmlrPZZqQU%Eb9Yq7bpG~$B$pj$hTln`07 zp@uYdjzLKst*{OcNWHHnwC&n+s3+#BDa_~SzZMEjzst(X`qikfuYYZY z75UbcO%1cL5JEYOf*KL@$kEZ!xVMNsG%O66N00UtrRt5Pei|vh1^H&Hbd6FT zYUlZ8uGP^vFaD#1ZqZd<1&P*02?%s`b=AzKf`o#HxRFaYIu#TYgwbd;5gE%RLqo&Z z^mInIV^ri{+)4aiUlge-uo%?NC|&e~_63d!tp9$?qAR9m`R#Jn!%t6_R~j+Y?v$4I znpt~X)~2}EMF}s9wgj2&u^O(U?ar!2kD*0DJLSlt@OAB?c zz>`MC#&tPnpobw*+>VQrb&dqRnoR;LrcW=3O=OL9Sse?HC&=D)_GG~wvfSL<%Fi#3 zvQF_$m&^@BOgrhtm(~U`c(EH{A9WGr70{vOPDLt0X(2Sckx{m4=-W!@si6Jgo)~XL z(L14&@udq33o@FTQ7hlU;6s)Osyl?9%&LCeSFBqbM0s`louJHQ^&zZRTgxu`a$Q*L z$85gkFj0|L(pxj)#o*UFi_k{#rN|2e?Il9lXy^JuLqq?5I0RIW1DR2A$Htp;bsipe z)x3Sjt0}F-<5}~Jzn{qOwNc$^z=xWTXReP~r|K6c!C{~RLOxQ}T$)J8@4#ZK#uB3N zRnrL)VL|q8paOb*Tcec{5fK?KEuJoO^nLSZphP^pyn|R(v-+H+IGPRp3@J69p#VAU z3XkI<4Ju_$_BU64y$M;|8ueTaea53MB~?|5H&-NT?8ynOT%&oy8}JEHObSlZx}2pt z*2c+&HLWjhmEgH&>av$lZ8^#Q*`Zq2Dco%Qv z?dSCFp)(joh+c>Q#syLTITz&4=p0xJbY=!BLl#{ob!cjLUd{wB?{p)k&;|<)S&X!( zB9l>7Rn2s1lM$%|WepyyV^GbjFv;%?G9Wl`X$RzGWye2&@Bcw@o-lXO<;M%|yzI5C zWoT}14>T|XFBl(H8Ubp&t!6Fuh%X*b$!N$~diO@s6Pz*Y$jhw(l)wOP^YQU9+v0k} z9Z9%;xN^-m-N|2@TU}jEOmA3JTArz<@w*!3#L}uk7zmqU>VxB&%b(B0=H{XkmauJY z6~brK<)0?~)!zMJMxT*LN5s)rIi`*M20fTzBx zY2TP08z*OVtgzQWYIZ{n%LU|7BJ#Q6dM{W`6db(yeaKj^q{EmKQ&LiPRu!*tWGLteTA`R-bSOmQ8-Jk@P` z*(Lc`eo?t>^lBOn2d;51h4<{$5UgQ}Io)m5$T!%j<5xcqF6S?AQ4LCd60;JFA*-gc zRa3Jc3d}NSjTiIV^5%u$VH<|)Lf+UT)-qh$njqC!VvC3ofYz05lXXH=hqK?wD%`q7 zbOyZ3wLFt<#j)3f0iEOAYx}j?471k#AkSDizI58Le@z>f+}icYH&XoEcYP^C>^D=D zvstDIt3XW#bUVEmSH!h8nXNO`mAfMtO8|eA>>M1A`&8=^@S02QOxBb{cyz2$dy=y9Ab-I0nXtS#Zz*47nFE;C-@juYeKo}R6moF-j4b&g?S zVLHvR!orP&{sw5?zklCpV?xvK^8FzBZHRHr^COj|B>;npc!@BUsf|$)0rEHzKSl?) zi+(p*`WDh{b^H38nxy9mut884c~eK(V(tTQtnWp(7LGbYIzAN9DOgCqmE;3#&F6-; zNRjzxnNlyb)P?nu=NSL;kDg)VepkHdHe|rHMdENcPM2IjobUm3BWz@3WDLkf!*MFN zv%o^<=H~j`OmY7PBQ<7y27z$R*{0x78OxRj9u$~s0qiXqog)k`y5}FxsRolEFtmcjE~B{OV%}Cf*cccwy=53dClADpkB=v&%)nazri;^BcYlM^7G#%4WOf6*W!z`&5D-yAFEN09V0tc(cNX#kDBFHc^5%pV77 z8kg19s9~DFQ&2wW6YNAFmYqYk!ug7!)|EZ?y(#6fyE_k#d~FL zL_|(b&gBlFT|qK{rT1X|lI9N;Iu5+Ns=YAY9!O09L0DbQ6TWRgq%r|ULevoUZum#v%Z>2$ik+^|iIU)jrKH) z&OZb13d7_`OG`t9vorIudU|@-HOp?!;hW<`M44N!t7*#FR}|CLl*gEB zl4D|GS}r0T_!w1v6C?UOa=*&yLj?Y~v=9s2|68V_-Q0)qiEb z38+oub;iDQh#SGto<_S#Ss-TSI=fnpS+7Q-LwNoR4c=UG2c{l^zW1Oz)SKJd0_-V%QvQC1+2Bf8CdjKR1dNJQGJ`+ zfD?vGVdXZXw5T}FEtzfAH{)wtkyT9{W{&~Sa$T+9#&%nr6F8hNcu`KoQz22YYO0rPlNz zOl^Q9gjEQL0$nCN{OaXLDjRT0H~$4>@U=wXg_Iel*PD#hvx~4AnVL3i&Hgzvh$<`q zNhxhdlwXBF8KSeYnCJQ+c0Lcmd%J$1=F|LGt5=r*#7yB=2+z*SDk+`mP_vToCTCA> zi6eAd@bO+-I|>AYH8eETttCiCgbuQ;yyZa~wqdc4`^p^_#vf#93va)@GBGX92Z07J zzmN!&>@*?s5AHX|a6?3x{WK!>=O-nli>}T&E;w&L@0k^$);1~9lOY+l5-7whE*tG0r{$pa5GVx>mwF0 z#Y%q#`*;tq{@6vS2p;wX(OKK|nd<6DM_kC3_CClwx2?TY>_Go4*Xi+}%f^Mncl27b2&+` znCby?yje{M09-i%^?H#w{n*EBKl^LB;wt~~!D_#Z`FjLWAskMpFR1#dT+Db|61Rjb z55Zs|YMdF3^Mge#Cg#?UW5~VTGFx1i**ZDPqkHm7N+RHfVK(oA_iJl!7gkqSM|dwA zpv=w!UKW3Q<9y!+&bAuAHcd0_Jng6hJ|Ymmtsctq3&7yWJ8T7;gsz|x)3;Fn)^DhP z&zo-{Rl@J*j&D(8+ZX-M{f~=>|GS7f_x}PRNCQQMx^O{7RaK`ZfHuozW7WfBd0eTS zTyw3f!;-rg)+U4oK_Wh#p_;&%*;*zMD=RBdpGs=S$>Y=ZjgAA$gMNOra`6zVT(q>m zg3LFOHEv5YuI+!q`|3HwA&WkopJ!WITTcoA5E>|&NcU3Gbk6-T5)l!RWi!=IZ}Yo*}Gy!w!!Dl80mPD>K0E zBs6k<&dVP`8kce&m&*dAt2Tl><@%%|g1|AM-d`|3NH-1(npZ7j@%0YY?yjzZqngXN zZ^ByL?JOZtzgYfJ8x{(SKKqeM@TFD}1mfhtURwv`?Wh3YeiPpUV_UWVjM~3oM}?7& zD?`E6gMI=UnJ(bus{AnPgLZ&dkyf&-$6An8e^3hlOX`Tm8sK1l1bUB-kJq3%koHC! zcgAJ7*EaeBf`DPA)5^)q8+O2zF7;6${wX6Dc%p*w{wGm{+Wykx`q01$0?*l`S-8c^MN|HR6I6ysp*m1WgDhCX z!N9mXkD(*GxTt6#YI7y(D3+;weKs*8V>8YX7Q4yi2HP^ZOc(GCLwGkrdD8sVok_j= zgjbp)MJdBKyMc$^v}|SAKO6%Hwz4bN$T5w|w#UL^@w?u16P}FqaRsbBj%lT<<0%L` zQgRoG9bH{2x2I$1iupk?Qvkp-OPI|ifK%Q`VEw7F+J_>z)@pTi{3j5B<_Qf1jlAPV zG?vQ&AU1ZGfEMso+pPq`q>9A@bVx5-9bfLO<|h@{Txo=OrT7PX)LPHTK&%%d-KsJ| z_yP|3(9s3#{@@*&)h5Y^?42lD!$^vM<u1<9|-266TG8RCP1x|7U(lZ(WH z2oDrrB@hNJp@@vP=RfgMev#leAU>|+z}7nTqMXI>si09wKfXic+u+m(o}qc79!WGj z$TwA2#uGrAH0{pgIS9HUQiG*a*M1I?Fth~GO_i5bn0}6orGJ43%_am-FMMkeI9bm4Cii#!oL_Lx*f<%M5(E88TbT<+j>f^_C zs(pRV-*NkeNATT4a|l|;=lF*KqnQ*Ij7K%HP=LZ zDPgo36wKN}-e;LF1ZUe+AgMK=1h-iK8(hR>Ebm$_Hu=pb@bWF$Lq|Uf{^BROr;G+Y zzlJp}o>I&NepJ3KB#hIH@j*AF_`G;dA_H39w`~)~ejlkumypQgDQ5*jiUJiI(%1u? z{S?ai1-bPc&0o^Fac&Y~krTPp(0|J0YIQysKmj+m`JNGqmqBBoq|44Uli9;w0E5*l2t< z(ht|N9cRq6*Y=?x*LY&w5iEi4*W;W0dU3xI!n6H9-}?LGzCo&KJCTfBWbp}NP_-Ek z2cTX6{>w29rn?fM0%P?E)EwTAmk)UzY84#g0dH8E=U1J95@+M!z_pR(_q#Y6_Y`Dx zbkQb+pMdNSlLJ3;b2R6+JWB#UQk}iQzw%A$E*d?J!I~EQbhE=1j@amL(r1*M0NX@= zT1^nx7*iWYG#%xzEv=8L;3@a$z(U}|+Q0=Of?f`IX|8JD!3cyLb25m%_U-YT#mx8AO~p#X{5(yTHdxtAg1 zdG;Wsxge!g9W%4b`m!A)-n3U{hmgRKzj3v=e684SskmP~y_uj0(w1Azehfo~HWDBw z`7$NFhz`G+v02nXp?&-~;yfW!!)oSO^*&ewSm(NH?H-6wK89@%=?5ACEYYX;Ry|ftN*+eTXBx zbBy~ElAB5da%tW}_&czI;>cpP@#G-22hhgy4=+H256@X1yv0rYiMR>9?oo)>r{g08L7C6CF$@tuGSt657yiNh_1h)jumAiic;bIv+>TkcZusva z$l*UB{3nF}%wbCc|7pU1n(&_{{I`ChF8%)$Cm>X^AUDD@P(!R~2en7q8>4zABN`pq@)GPx0v$qpM3z_7Vh)D|N`2+dv~87(N>8)U){ zFy*a1exS)=+H+P(!(P`3KNsbP&;id+5+c})?dLvDAkkE7Z!ZKneUA*c|Y_xd(7_ulm3gJ9%+Ke1~-TN zjk2SE!h0hcDNNXJgqh>SoV<9~yEA43NEnMx6nYaK8GeEEO2aIK8j;_azu)_@Gsi$K zRW(1oqYJ_XQbbI)%icRBE>9PLMmo*+Kc8!YeA$hMB`|&aji#MOc;kv3M({~Uw~t_9 z8sFM8B3+7pwYHrPBgBzVYVb7I*Vi|KU+?Ry^ZSi}HmGGIgyKz{gvcF*niu|YjOZ++ zt3^I_A)>|2hiMyiq%%CA5O8tAW+9Eb@)r;Y5>zx21AjcrYhyeK1!<*NU~ja6F5`8& z3q_AeDewLXq#(qTia=l4o&5V1*C2Ja-w26Bp^ylO#xT<&T5OtXhmpxZ#Y=?O8e%3W z{O>FOL%L2lt0*rhD@y6;0t$dabG0RS0NBu#I7iIvo2Uw6&K~JZ7vK?u(YY8#L%4Z=Gki8`loxhPL0 zTtp(Wsp20`j}8pdY}#>e68Oa%`rC5&kw&oXKBU0oEuW)}n#0(8M4?Nv`oOw7G%?Od zO(_JJzkhxq)VEqSa9>?ofoxbD)Wa-Ual(A95eOw|!=2u;!t|bl(&cGSNQXVh(U@W@X$i^KmqRzX*0R>bIj^MF>$ReFXRvr1Dh= zvcm{L%3G2FTq`M)1|>ozKu$T>{5CSPKhQg`kANuNT*GOma(O;MfC|YZ3p~cQ zx+ESlV1|aP_!C|b+*d7?EtPUj<+N&l|DgMxnozoQfPH(WOO*TbKcP0-rd^hbksfOU zPrP4%7m8g6p=``k$CvvGl$ZG>rlT8`UV?#rwNrAdU_)i85rO!270U-eWo#+ zYZg$x7c{qB1@d%Tult~!i|8!WLs)#;f96yP8HdyI?`52AIR#W}({^Ten-*6dz8d~7 zLYO*@-PiO)YP69ev9g&tu!91qGtvgRctf#g>@N%w3m@t8CEXJ#UMa;QK{-$&Yuac4FPPf-JFH+Xr7`PqHC|*E4|J@ z@jRqFHWs@x8l?mscn7O|ydVpZ`Ovwq#6DyMD5rSo4*A*7RmCxL3VvutZ`CLiLH?Ix7|6%h(|7*9ef{>4WkAbr2z2q^*v_DmdMd~X!gt8fe8 zmvYb8jOIr4M$9nX$DD{z$5Wg-Tkt=cLb&WtT|n;zt&||ub$yQ0y+$Sz*ffOEszcb? z8(g{QoXUaR`?iLSMkZl8V{_$<%|fU^kSk&!t_X#@?>3~*K6L^8<*%<#b3xl<8+!6gR6liPYJKrU z=up>BBb$2DWpVG4r#Jn|aXC{jOy-M@w!D9NPTe5uoJ>}wK3mY+vpU|PX6sjEbXJ5< z#xVy~I8AA%b{@TO@8B5P;C}ah(!8bb5jGgiD=IRZCm~wFCXLnHjy-FIQ5_p4)mEL^ zjw5_gj?wc?Wc7Ol?|n#Rc)!)TNn9sLR&U+*%$u z?49~DElr~mp3v`c9e%ck(7edU^<>N^D#4Vde6xNY9Zk#zy0fDjisd7y;&^N(6FWOQ zGcyh&_vwcXT%5qkQhGo4_-%=5I$t>CStB zE=4j34V}m)2y8CW1j?k_Uftb2kfN8Ngc6nWPtVpO1Q)^&5#vxQFBYe|jpj$2(N)vM z)BNpiZO^UKpw4m(%Azt@`5`ftIYA&hbJW#O@FZglr(dzSY3UoTF5gW)gbJlznj^df zeq6o%jMr6h5ULK6vL{*_B6y*Wz&5F*9JIesBSH}vtxWvDx41C4Z}BhZ&k zRcd_tZpNglO>+sl;?iQ`vKJNqK}q=i5!EUp<@U2T9=alYEYILk((6r7X~zzA2sK8fhza4lcgJCig7ip3L}S~1f;4huSiCO#eckwG3k(l~-%s|e{r4B1k-6E~d8my# zfKG!<03Rf~Zq^WLZJHjk_&bh9GUq2HCJPynm?*wTkv*28J|^1R&dDB^RJ+fW)%TAC z2b&QIzV!BPgVE>_)9|aoHj02FM~~hqL$bNiP?B^Hl-5W3JV9V-_dO-s0=z9G)DNK8 zj{eaXO0NU9s5FF(wf=TFcodSftw3g{*42sIm-d}(kP;Pbh6*|KpbuxVS$~;cCLDZ0 z`21<%9-^~D7cO3006g#jD&+kXWMpE9DL4|NqXjD~E0dFwWNzPn3J5mA+nY%D(eG<^ zTTMjMTI_1RAgCF~MGg){pma^fx5~XysDGa9j<<B^7-=~ul_v6rR^$0HgQ-!WWBTyJ>F*QHRP#I6ynJ=si-HHeng@qboBst~AOA0v@$ zu27?ezQ&gnw)%eY7~RBd0ihKoQc-`njXiemA$RIx^z80C1+DHraS^ z#cb)il7WQ%$3lI_fT|@fC4os!^{Lnsxz!|E%#PwYMANkS3e2;ZX3E9 zAKwvHPuG*+msj83btmi>yYrrrqAS)d^WHB*!}%56wA#J}wabsj)n(+E_lqeM(Cure z}RVKu85r7L?GSPr%4Tzf$&dPj<^ctWcM?Cap5g@79uk&c^BH#U#M7_ zzi|vNJEJHO#LrP>u#e&05H?WFQ`(#^t>n%jIOzo&U*Uu&A>^(Z7Y+Bn7K9^@P&If;26 z@b=vsJZ7g~C{!qYZBoMauMAPO6WC4F*`C8;-F^zv3hzYDY}^@QKaJ1I=fqfk9$wV3 zmxzkgTqxq8ZkYEoX>4p^y=q`8fNhygQ6|Tv+9&m}FGh5uf#_yj9KIx#87i)?KwnB}qCMETElr8KAr;*Ip5VOVW zfsG@r>wLAh4W)zM@l}4WfjQmxzObgQ|FkR!x4yenDBfUvqSxzAjo2*bR)&et7z6Qc zPZwtCj^q^UW4;!CPS&2f){}Ocd*ZW-t^Fc7L!&ZKfGy%@%!W2*N(kH#PZ_%g{II{6wgM zK%vqi>$Qn_jq-WL_$ep{YueUtX&Nfxo|KA?U%BtN@l@MN z2S1n8O6$HH(`um0TbUc&erSU3T5r`foEO>%=O%DvSE_!*t_ zN7c0)s-C}MZFQijCz@cpm&E+-yl%BMRZOSHS>djW>@n4euRa`pJwx8E`}UH7!*tWc zv60-rRAtX@$4)w2Mt216V>;%5-(OkVF__I>l>M?O*HO;Ba>3jn>tF{ugzzsC4zRu8+R2d$vk+L}Hpx zCf~c@%EMGCF{TZd&l#uA9CvInb|}UqdeYwGw^93bQ|2FzO)mp9gKREgs zY`mYs==H-zRhTq;xi37#^6wZvV>XNqHnzQs92o@ld{f|wz)w#&G&HE-YVXz_hW7`N~7@S>q z&p6N=bwcR?;YIol`U zt3#8Af9#1bwZd+}1gJ&0MTO;0yKH%D_sHCiTbio*z4npb?k(KaRI;PtD7M&~w~vUY zxNf}juGek_-DHy${`0Ci;T^d)eNCsbP6G3})mX0m@r9U&w^@bf?v1X)FJX-*e4<~Y z?@y*~k}X+PcE(9^+urR@DoWiXX%JM{y<2cj=Z`L}IL?lg3WG|KkS0y3G~hGH-vxej_A+Vf~>c8ED@dd4P18nLC)mQ3bdde^ESQg$rIAw(-z|y|ICTLEP$M?2K2tddcA-T zYRoOR!$eqRnAl0ZX{{dj#Gm>0cqs3W+IL;)quqX_!8OB%p^bi`FOW97Z%&u}bm*Iv zKpWD@_D%1#LQ0Nmvh=MT0>}&W9sZ10e+o<8<<;T9ei%3O9l z`LCNe|J?K_zl)vQ+4x?_A~P)@Iq8cETidsg7TGj+C&_0L=7W|m$x+&BiZl#I<`{PU zK>ju|fIFKOe>0M8b)xC(Y>KD#yPE=ug{Dy=s&h6RmVcX=(2hzqeeLU-e@)k;5L2I# zWcn)CbP50M)G5r}v&ZA8_dkM|2g)i22Fa>l+u=~#L>pYGm zdw#Att$3Q#{PI>$ksIbj{@g%BrZv2K#Wl};*T#>(ue#(Oc>gf#pYr9LN4ug)_{3KK zCX%K@=UpnP(btZMHY@9b%YTH;5R{fgDAI$bRZe6yrYIcb90f;@0BFVx)#k-(url9k zWx0|lC6?j3^78czPkya5L!-vYdGh0Vha@It@;{XV1O;f+8e2*)FRgHCY*cdkje{>1 z{MWVfEckg1%H3`^RqPJ`X->wnEB?d${-MqM!V<;6?xf3WN(SHX3gm5N894rF(n_w_ zjS&o+U3?z(_n4N@*=TH`#prcm-q^iW{NM4p`0SOF_Rf8-GZ#;VWr6+bw=p1=()!fUje@3Z7P2Th5fTD^@GKs*tH0+gY zPFF8pAG~V#SU|yQb%xuoI<7v96QSlDpkOI5JUrElvFIM;Ke7%GlUuJcZB0>|g=t4j z&G%3WMaCA=B<>K+7m-se@_gNB1r_lRvve?@HXafROBIagx2Pk+Q*61vBmIb?eIdji z1=g+|5?l*Vv~C1k1&c)MrtaChrJ4zrvEozcqeqU+uTEr4z%KVTU{@BJMQFYa9^RZ8 zBD52o{;jm?o8faC`ZU$sdJFfb(jupdl5H&;Uwv>RlBhq+V(%{MQ1n0B;K9xiPv=_Ynf0gl z!#<2qHUobk(S@PpGa_qqi}A{NEZY1s)SsV!bj6KGo%^@;<_y5_pv%t>tQ_XMn{-Dl z^pb&PMwXb5>#gVJJBKG@Z-QfT@9(tfsFnu+D% z`L}P+qNn@R)r+iUEG<9yzj)10kqbIUn)J&huYc<&#|l2)f| z+hXrV)XOy~<}=AsAz)+Uj^`=9gGp=bwX8wM8XqrOoV>qLopqdfwf8yi{MXNV^1rTg z8*p$ZN8o5M?%I^i32J{VUf&lS;%#|QE7)K!OXKwWi4(tOsn1ld4wwo#v-WeyV8-5h zb|49}i5HWQAab_%R(Ts~nV+Vrv5F6&^eo6~H(V3kwUc&P8pe0(YnYb(I;& z7KF?W!X!qgWk0ySx-c5HAUwO*xo|=iNE2*`m7-V?M|C(hsr@4Z!5x`z9i=&Qkit6i~4GGfC2&$bp_EqQs6?v=4^K?qPm;SLQ?_ex;r-uN@ z{(WlOXD@Fg?(eXKOM{bX450KDMkVwN7fwwg(H~K$5~4&Wv$@KkbljIgmmCA+C89H;B}&vHMqVMTvI3 z3QJ0jElr*&I5p^j{Vn;djW6qdX(8||#0C-dB6&u(%`We+qL=(Gi{!UXUBsl)kQ9p7 zW_Kh;CqM8HI1%xVx%Y0S(O;3kez5a%l-!m=aM;Uq4s4cprRp{+_w)1XfI|-6!BHKz z_Z=YOipyP?>Q-`ITWpuYtjbYwnF~faFNVOz16EyK-Ia*|UydRs)jV;;{-MyDu@`pU z>g7lhM5S^P>?~7qAA4%+N4bVx%SXk>f@qG}`xGjB&Ck8==pge$SLho;q?_?aO>+JL zZ5HpHnRt%t(C@MpL->U2i+qES78wGbp1ZUAXLhq-#r zg{l1hnu&!~ie4i_!+FTg>5sL%cYu^rpuc}hg#uv(Xeu({Dq%?Nsp_dakp2f`>El5` zB?r>-`&uAHJ!xi~VPZPnUtSL9C}5i;{|eno21{rvBj<+5Ue6l;J`$GBO|2r+SNRJ9=&V(_jlJJKEsZ zL}ykUez{s;9Jb-LLLwy^cvV5ueASlbjxF(!D?Mi~NhlL`3)$C{sm2%#OnAbxgCyfW zK0T|ct(8+y2;5qKbo0AUpF9~iI;vk;Rh102;p5G5?ywOh28jB2MnZxadgw|Dxa!=Y z!-o$S!46;Rg?6Rd$3`KW#$EYl83$>cr1N_$y`X~E!g*t%Lqh!oVM0xAm*@1Y8jq~M zvT~MVC66ITCCJLk#zHR02#Opa-4$np>!Ho)pupzB_iRqf=Ey1pr(>kUjv|Tz6+$EM zLnSKcd(zSH^ESomkY#@c8<&m&oyv~pCXR*fIt+*C=2 zzFI5Qo;V(t82L=sM^u0O11eg9tk2?=e_VG`W-`~io*eHPANk|1gQriQ9)n%3&2XSW z9IPeF6kQUnH`6ADM@Ed`jG<6o+w^yFVbVyhzv!3${WeHzw5IRG*sfR)SOPA=(M6=n z*CAqwlYy;*Vl>Y4GIGHHCS9+{<~o*&m9NP+l!jfRYAw*srH!Ayb~(~9=>pH9;fGaJ zG<(*A>qVJMD-Jq?2XE;)T(W8YxX4z%*T)3TTyTK82sR8J&T63+MTd0}f8k1F_bu)F z`Ne$!c5F=y1#2ogI21uK@O#Amn3kD@u);YF3SjRojSw2QD;zsxs( z+X;cOg+$8}5>pH8St7#1w6wIMaB7n!7p13% z$E)tCpw=;YG&+}#j!qsv)2q2gZTJp0iIDiD*;&id*&2EWP*kL^y^!eyk8I=-OxX7e z>Lcj29qi;B=MR<>_Ub!!{)a;II_D{8R$$7S{sl&?Bf>d^af(-=AE%z)evl*iv-)NC z%5)9UUUqh!5{JBrt~TAhX)UV@6AMsKFWQ}Nw#1nprLTt;9q%d3K5&dOanHU3iF%EZ z<9(&Y2;hTV|8nU=mW2UfVJSU5YH$d~eMrL8)YY}&dW(l-b)uN|02MG>U+xgKHgK`hf?n*A3=3R z7I-|UALUhGU6nK$mvvRlNKCv3_4}IhaGK4Ut++s0mYP4H1a^mceIF`bMaYrKz_C)D zMm&_q5FCNHA#iN#gOUkyDT-+=aQ0P>(~2c{chMupHk=Z2uxkN9dJE9p1O`8Xv7V_s zY2c+5%mtyifA(ksOJpaQxt)p;JU+De&_YOav9AvY_sbN^xvV5jsyA$@b zl3EOGu|Tknas;2_VjFC7xW6$QT;2v-al<9AFI0feWj}BN$1Shl}r2gFhr5?Hwt_8(F z9dHZ}{m{tBnypEOiE$Laa}lyyB|*YTLQPj4yf+rS_d<6+UJ*{d^6hh)lQ>OE3ab}A z9i27ooi>D{l91Ia?2qpxKLer5#pLvKY&f?Sn_dH@Nq?ETMn=9&#};*WRYwYU$@b@` zCM!`Y3h>Y5BFNq&8L;ts&i=Mqrt;L- z*bA6AJRr1PW)l_N4h`#Hf|Dhhk=1H_-AQzI`c(S^!~Ps(IhDNR^7WL$lp2-F*UW1! zUw>869zv;bwX!MvOqTcQcz@P02O+I{*gbTLuc@QZgj z=<`=xb-<9H>^nFPo6B0^48O3V@K;EtayZNk>*q3mu@t{L;Q)H4psf78O?O8F%rpANeKD-dAY)p&Bp|nzu!wE*K1}{y*Tb09s8l(sF@fEk!@v}K!G!z6op@ioL=<3j z;AgE}GMGL6JotWgt$A9paT;X>JbfHZxaots;Lb9wGk`?;&P!#JB# z&$%DKSH7#1?GJ5*M*`QX(7{R0Lx;3YIo#yI2y@{q?9;sJ1G)zXo z0dk6t;kYbfgvdwV8rB5jN!Vc{YhYjy0rZ}&vY)T7B1FNHHfte_NNi*hQAxLd4R!9$ z31WZLkKmAeIgG|^$<4Ain0wa}t}6j$!O6$7!hcz)>ON1=#M+&H{gaZb@s5lrZEfw)XoO11LB|`=O%ImePtdPR9ZI>b z@Tr3->C5RQcKCk}n%3=|HTbe;1LZjKJ8D3hMil%_5pkvgmr8TT2I0%K4i;wzo1qj3 zt*Xs8Ukp3kdeUyO=Xb2~7-ikHp^p7TwYooIr#paZj^+*QBbR>sI3D2JMs>VF%?+ZB zg$ztPQXk-Rmig&0LKd@;jYJa9o;ui}rkr9pVrXA;gd*tzN}n6J%)|?NqW3}qxhLcm z)zj(n5f8Q#{kT9O6s&d3=T^eP)k z&$cnrolni(m62=w=VLg*eaT6Odwdu!T(~_pHYOpDkk|iy zowxsT)GchEt73(b+fsJZ#9X8zR&Vul4VG~B65IlwFUakHZS)>kP!CXEy?mKn2H_h8 z)$=-Sw1!fdUlOYxLgfg)JU*i}bmGEbz*#aEj`J*xsguo4b`yWdO^I(v{wYl~L!)%B z?|m_`(0GK>j;3bbs7~h5Q~g@lxn~eT!urZp)-*Atm$}c6RN2rZ9SXZMZL*>kU-xhJ zNTQ?m8MM!IV)%!iS08#$7AG3rPI$$F@};AtZ61ljq%TZ#7_BW%L1~DhvU12xYN==G zI%nNjSXn9NLy>VHpPU1epuN$bo*k_HX};_iA(`+YJ3B1%0$lpxXz}dIS92k^0E>4E z(vLdI00X0PDBn0lUM+5?mW{WyltPjd5d&RD57)A9*QgMCU0LE;-4jPkHi*z_ZSzg6 zf~q5yh4WCQX8?tn4zMkL9wIP$diwh>Uc9g@?q!k4{!~ur2mBCJN38tXl`D5oUJ*ZJ zXJrVOTH*n6`qFQ{`$7R-KE-s)u39oJD;?|_w@^(_D}*b?-8bS7^7R`&ScvQMamwX~As<%g?v-wUG>qDykStN-d0KFEd`Ap*Mv%3QbWDoJEn-<$L zq4E&v2p2QLQrXlp@^O{XayeKQ;E(jk9Z&0%*#MC!oQ+)kwIhi8FM4Fqc9kULl z66&x5qoPZs@QhK}HxmnSB^z`a^HF!xVUhGr2;QbqAD^CT4X?{suhyJYi)OIreOiOH zQ+KfZ?zKk; z7S8L|V4c${va%m#iLl8kpqf}F8M`v-*45AJ4&zi3L!1+8w6jL%B97j!!O=Egu_Y1Y zudvkuq*ER(KyYD)HZak|?yL&Z%9ljNd_-HmQ?1q-X1V1YaE;S|dRZPF@UHy)8c??> zvx(mb3=K^NHtYM;;+4dmM3HOW3y|hXfoKzst2hf0E zH)O7w?jf5$p_COtf_SQEqA$P8Wsrz4+<;$c0jcmak{wJsOs_PR^!oU4XuDSW;d6Fi zvwN!Dv_|1j#e~A0fX(#^1VK%QjvP5+4S zLq!k0{2-hxqC-XM9%0*;1k(J*R`1%|4dQc+Kh-`lnQ7U~=gww)9@Vs$7}vx!+4E!Zr`{g6^siq( zlK8)S_wMUs9RM`jpU@Mw<4+F22@;e*#4<+5lrB2js6ap@cxSHANWRedeUEUV|JWM_ zMp5RCs;}f!N_wX2O|*3CD=#0dJ}oO_zjBLt<8HfSgSw?qAaB{5jAS*pdPWg<4bO(N zSHAqnZbPZK8A|ym4yVd#=st0ZPYM{dA#X>&)uv)b4@=g*jRt<|c9DyvHLuSo+XFYP zL^(A_DmsA^vMwrB&mF2$dL)4wO<1qFAS!Dp{^71IRs6NJBwMGY5Pp-d^=**@#)Tz} zP|}2!49-R>2HthKVq;+!^qy+d{Nk5%I~s+`MKr1t&P7nvt7DT878255U!H*jfIN!O z6Y*dbHqT%Y66`E#52RCGjjZ8xq1QwUe=PiLrXeR@-fYN;6Z_un+@GUs)`1K+g~dv_ zY2uQ1$pg1`>KlsA<_Vs`C07ADphJgD4kvlia7Y}Ed;B%?!5xei%KSh;hx}-1T9naD z*|hwS&4F-7^oAo;upCn7{-OQ8;?hcW@g?gvFp!+Zrs3$0!e6Q1K0NSs8P$Wd`s&Cy z=hKE`_a@@Je^Kwzsceuf&0nx$=q(p(j|?3gcTpNF@@q@obB30gE~a6@i9d?Jzfcge zvUC|AZv5y8qZrXQcXuf&*(7P>WWP8{{sjB*$Hymosv%~BdPsS3@m`Xm9Yt_ueTGv3 zyrQQE>Pr8x+6D?a(Btxau*qIbQqq)Qo=xO-HC};h*k_h!C=-`T#w?Pw=PoErX=L~+ zZE75+YTX!-Wh_x|a1I+vq2nFm@jW&sc6Q^7YnG=;ZQ#;O|K*GXe3#gq!u(X2C9XgD zShfrOm&X~l)F`&Vr^y%i)~EWRAWLc5KDZ<8g`<-G9h@T6wM2{ub$-X-&RjHWViMSl zqw7^jP)jfqb7P#eD%)IM*BCK?loODQ3jyDe^@I{F_pvi(_M(H`&whmm3TkHYU2<{u z#leKuv<5QT&NJ3y8U`0ezYQ@(W^(rjB>A|r=3X{)cVV7&@R{PD4Pf7!CLGMD-j*Om zgHQ=A&1?2Zj2b{I7h1rwBdspRND2}*q^_2L?r8WNaw6@A$wCn;Y&s{Nq3YgmKmQy_ z@+kz4{pR(nkz3r5EPYSUPn2A!?yu%8yYwVCO#r*PQNXJPBrs=me@!xy_H{g*Xz6YfqM zue4#*#*$lfyzmxC9o&%8>9OX@#^joXjfQ!qbZ7d+h>=qMjL0<{yGeaFnS6wx5ppv8 z%Jh&Z91&jHR&jdAUYha{_#O@CAasxw17jH)jc}4VkWN*sK|eBUnkx-_Pp7`I(mWk8 zM7M!!mAka}G?RmByaDxw%eP_#h9`Fx38k-3zQXQvtwPe&Ljgkv_{zU3$AZ0I76m65^3x+NP=^}J$5H9aW9 zn`Jv(8=lsngABHr4b$t65n|fn@?WlbBh%Qjfqh*vnY`~{3`ooY9AC+ealFG)^CVOO zvgo=6)YtXDhw@3tx#h@ngh?PQ(J3-A+AlXAg~lWCTzw>8ank*rJZZE9ge>}k5V!8B z2C@Jz@_&)_9q?4||NqBrsHAQQS-BMnp=5+m3E3IP3|IEvdsd?CWR$(fvG=ButjvRB zt8B-}-p>E^ac{Tp~&$N8-H`}KOR7Y*{A^j1ar?5HC{BJJBTlbF#mQMdx$ zB^Hw#t~A1RU1EH+XVz!BM2;Oh#(7#K&3Wx4&!u2-03mTfbOO|RbXYFq|1#UY z9ldebfUV8-O2IZvdQk)7W3d#p<-4}64Y7vH_4lLr^< z{%*gLX#bT5?NmOAxhG?L*a~b_@eZJ=vUsiesof!H>94E?YMVZTf=op>V*9g2i;E|} zPkKenLzZP1H||L?uvR95?Tlak)nBItuxFsLTm7?ou|4N3GSpf8Lp!p!zu{BcYSbflPO_b3@FYsnjF%N)N2%3tzMn=jL-T?E?;TFLQWG2;WBv`)Tj@o#zghRIkp{aGjj5Po?bRibCvx1wX><`fO8nC$w3eVw@btzQqJ*B7LIJ^{up z%{tBq$=xFs93Rm9*1Wax`7>!&=D96 zm}G8#JL_;Pd|g?kMMM6IsZtC>bN)c@_qj3FrQ~#UiRt=D+lY)iC3W+>esj03&+rp{ zlYZaj=r>OhJ=%Xq{1V8_`M`W)FlJoo(iz~j3|;5kGYQAp*Qo@hH$@ZPrfYHwIb#78 zXwV)JRK430$K=Wt<#M)!&F{uIe=>XUFb2_g?WC-ox>)DZnQEg-=VIAvxDr+CQlwm; zly$tV^Q#B;k1xAv1~Z#v9+^y$H5nkOCCe2o9!HIE?-=lHS)CsY0UDi6y*Q)YV&V1c z*E&R5Pt15~cm5hn-) zY7$hXe6&IQRS#dzK`5}%tHQ1abif}Ysh78FotB>hYF~R25rzdO@*7s2sX3^-tRI>_ zlI?v?IAnH}WtYCJSwo)Ijt4XSw|(`-vr2o~76s_skdj_HQjzn9P4QCZ)^|m6fxlyJ zY`h9FIqG#gC#6!F1Qb`#1zW?k)fg1h21TzKJ?M}JZG|l8qM5$BRA0)un=cCmCTo^e zUUiz>Ib~lTN9vSJDzYBooJ|Sbs9L@_eAjsWV<2Xur^!UMCrgu8rukytYGq(Zy~_`} zB!7$~m*wVpw&AKzV|wuyVlyNJJFpXL1(JS}cXj$E?M*?j-qxm`;@-fw5+x)$c!jI5 z^-mdS6h@l`<W94txml!B!nfPn2E zmyUWxyrKi_0_gvIFWs^sHY}I^MIUKw*dZMRU1wxrVIj4h`Jq5cy{^#Sw!VcSVCxx+ zWA>>`DAZzHd0Wv=kKj2b8h;bZd0}Ao%xtKDo{L~;gUcX&Kb$k>Tbx>v>x5_Qc*2ow z>3DeS-lwE2rbUB@Fc<1ch3+mN$7t@YAv1Rcmu*L*v)s{e&{@Yd;hxgG62CMfyGY^B zn2`+#=I6L%?t2T$-PeKR{yB2 z*2+s+8v842A46xFfvl{>9<@;{XbX*VHtn(T$#X9R(6u@q7qg;R#++7SbV|C0&m@Qz zU5rSG9>SAJzHkvSV55-gY+G2*m9Z5_SXo)|(gmv#LX#iXN{46i-cw@71bN!AVMXmC zIT0Szp-{7v2YLZLmyz%KQbA3MHVj|Qv{XUd>=kkC)-8D;6A_Ehzb|t{0d_TU7J)8F z7r8td@9yjxzjO8|gZ4W|3E_f;-QjrsjGCYdZ+NLKz}kQ)QxgjAuF%WuE*e z5;F%<2stnS+s?*Q*t~Gv%g=;Tp>}&&d zl4FZ%X;;IKaWXQBGn%*s%SZLt7K3bu>1$M4CMZhq;O;1ahYBR0Pv_-9lp2x-p10|( zGfbMhR?cy??dsXRzC4*AFaC!s=8&c&EFf{#|1ipj2jUH<3cm27V8Ar~-LOWJ(_+s0JZk9? zK5^?imO;X&Eq8*Mmxb`w@OcY0k8dc`*hPmNROb`6R;?V*yzO96CweWfM4eg~`dK?V zu=hHb$}JPRGmls^3+K3l%6aV;X2A_sOzQH2Yoit3z?aUn~Oj8T}-j!l{zyw zV#n~+j|q_|^Fff3V4%);0=OYqWw3I>y%2Dn1sW%idmsmiyox1$siOb9TYoc*e_U2H z-hPpJntyOp$=B3_!~bfFFvUPle84NRB}um%8g7NOnVR*vy?Hr^G=yQIDHoMMTYM(n)v&}7Nr2?jJBx(4&EyQtC-`N>mj1OpzhSYgF1?c77?oSeH!!$NHq@GoC*U2 z1OGsqhX-K}R+tY|Q#KV!5L>ynhtyXSkO;v;<+s-8NF>P>ad_P zT`idEADVuk6r1b$5b$`S=@lV2Ndp=5V|=;44f+nD+vzUTDv3FNAzOx7>QH7K`);ILnp|jcx>23h z&`*!YY7#E``&EM~F=U{y6L+*0hP<_XnMFh%2NO}!Altlk(uUg}p$rdS#muE3%r_zd z=mN4UNZcV(SG~$12f{LMX*zv>d0$`Kb%7hLMC-ol)|qg>5=Jg?>wY<{cEe2w){X?W z+o%1X5(l8?y$Wo|X+zStUP)t_G|U7`MJmsO z;>yf(WDDJ_lNtZGV}mQ3i|^9_!M2HK^Rtjbk_~oT_zU(oZTTizeW4+Rz><^*Ic6by z9ET%YnDKF37>5MhUvLwz7rhZaV=RMw1`&?htt3dM)k5?;uoQqK<`CA0Yyl(4hNR{) z3PB`6VPO{y!iUMt8SD zcw}Vj&C^iKBTErD-x2M_I;2`-wCgIX>|xDJSg=m9dvi6lm3cZmCzfWVM8+|Yg~vV1 z`wgY9A~lMOhCNuye*esHT%9FAw_75bTGo?0A?a-+9J~K8C#-i$hg@J zir&kHk@|UEP)X)q6t`iqL$c0-NHu2@nVv#mmvzQ~>-jQ-a1$>xa=Y{kmFNH!Y$)_=HKYLFt zw_Q@=tf@Ib`5;LH)#?Y;1u^oH@x;5Lzt9X+45G3XTLFdI41C^*6n@K)V?*EKz?W_1 zHgA9TQZRDuw%vp@-ELJG!wLP?BVERt9n+zS{Sc1&@P7JKvc%qQHtW1wAda!sdh^)x zj!L<#MQS-G;mv2Ib6eLo2FG=2MrcggeqB!BW)8^!xLR0X`kyRCYo{3>pa1H?NhjdY z1Ci%Y;Qbh@sfjoQwRd28K?3x++jpGVzUMU4`T+nz6ItZQfH75QbYVneKisYQhYIPNy;T}QB+Rb& zcU08^DqS^{sP@;66! z4+3ot3rr7~>oUhAye;wK2?3EBL2UvnT7j21LmebvAMU)xm*WcmAop0sK&ct(HtJ=| z*gAc^a2LfG>sfO}K!2;z+x>6G-+wtF%W64+JabMc<#wz3-tEsWTVa34Jl6dkhdY z%EtC;j|UvyoCKRN``_7L#=AXv+*2$!b3(A1bXJT0nqwGKH}N)Vrvfp1I*K0Zd#2qG ze4BQd|8jWDv@h6?B@n^Vge2Z@o~|Do7J?XtU0yz=>$RoCuiH&lky&=#r5G1Y;J?E7u9Y&BY4}| z*ih>uYZMnfxdufm)a*0cX<6#2Swi6q&Mp2*wbu6^;lpplUtK*~_4&v>snvy1auz!Z zV!^uZg&q}wx^M=%%qCp-ewK*3rR-GX!P!rqA=~IkR04YpYrN~F_KB-V zy4Y}enqpCdIkGV|uZV)UX4N&Po_u={TrUV_3kKE8d4jyAZ>ojz0M@0jaX45^UD#^#KXIf#3O2z$0*IHm+37Y1``u^HL7 z4qxA{BLw+`O~oHU?n2thxs+5?R90WxAHz3uqSLb<=T^I4o|aZAiP$sItfC3ki=y1K^Ug^SPi-sh}HnrtNC!bJj{j(0rN~c zAb|~phrg7LC@Y&oT>%dd&$n`*1m(xdK?88=j!^A)gu~47&#U~wRT!=_?am#3h**lI z4pBLjwk#;63RKg*V;zx2SIRQcc#MSSV)C^&XR}F)^&o}38?lFg+)4_{g9Avc+C09g z^a8|(Oj7o#6ypC+dkoKeC;o+eh@#`es%R*`fukP;dKZ0ts@^~!ISf&>% z4%B(pfq+uBQV2elI%WMOYxM!E)d;LAB}jUFdp)St#QV2TWQm-~y81PHzj!VPK;Dtk zpC-rE3t{BxECAVvSEo**Mme8!k&ln>Uw-GkJgfwk0Tsh+l{~F~pL$~0Y(USFNKEQ~g+Gn8P;n{0FYpAI($E~ZO*RCE}m27xmuA9YPB<25`v#75_6Yhdjy!jmehYGV(SH+i9J52 ztY!A@&f4?Asg1#@wZCbG{r&y*3sm>2V4bWPJ=ov1A2Kg%hT8e(|0x>p0q}taMGK=l zVG5^VSp(O;`nYB~cv6trogdg0K-dh?$VJq4$d%>d@M*x5Uw$jnE}DKeT=166a(%jQ zZJMA0$Xa?_+txs1rVo_%5KC5LYO8yb^$tS#P)Pr;X~@ zwQIr&r>_o321s`HtSw(Q)P>F!yFd#L7A3IEg9|?`SS8@9`m{aGIU5JFGTRHFT<8ht z#9L5?C)o1G)4`+GjL7i8L38Dshlcsv9T;7RfQ85GV_}ko2@DKFAYpsR6lpRj+6JRR zUXAUv>^_XBHQl28wSEA$4PIlfJ_87EiV}1!C6H##&6(`On66$JS$4fjaIevi9uKl# z<@@)a)x93Qc{&!7{)sF@C35`HuNQg1YOGeL3GIZ*zQ zO#gMj$&0IDl$mC2lq^FxwQDhjOL7+}MA!K>PF`hKvip*sfJ1p%h24=_pM;c*e8&pO ztU7|4UK5lB?%Xw-4B&OV{?~1gE5gnj+BkjEgj59ROF@ZH0L{uk@QkTx;Jc4=g3?2@ zpZ1_+Y-B~P6NwAp1`u1K`>cyxcal5n5r-E-Q~>#|jfxA$aAjlv0(iUkI~msj&QSf! zQ8l){gy|z}BjDUAF&iiZdm$`AFvaa4MW_D3Zp}3i5CL+CLrh+fKK@{H%(D)%;h5@g z?rp9jN?1*ZQ-jGliXb6}yX5eteiu?vsQZC$P@F#Zg;gcD2jcTm{a_GaW$DmDAI$j5 zfb{Wl+1tAy9dcGjJVEzb|Mr(tZV?qe>*BH3-&8XQ#0*6+OTe=EQ``y7Ad zi;0aR{+rZhhTgXCGw=rK?Mw{UXaQfU^m444+Aa|FCkDX3odq00j^1LIB>`YK>G#MA z4h?m+me!{1Jw+$qa;}lP^K-zKXA|t!W!iqy6Q-&)$c_C^unY+n_~%}_Q}4M~?}6=Q zs!(~X=G&X=`epQ*zx7(5W`~0&qKkTwyIWbrp$MM1&>)_wF@X)kLXGD`(@B<+l?EHJ z6l?1DOn*YLx?7jG|K1vw*EtYIlT<(_FX*z?nUzIUyQH~xmRu!%$FK{5TZE&9H|TfWgaEf?pDF2^wm`StlKZL}Uxfw* zK|&z_6D{n57p!7zzb-eIS6k%pl{b6NLk7;yyKzM|FofRKlKW5~(4>hkk~+&=c70a_vR)^9ZV!UUV*IJhp!xnD!F%c z3j!wd-o0CLY{+)U&Ov(L4$OK=1`pRP3|PX=4-}O+EU1H+R}T0$Oh(3Icw#q}#_~Y5 zhX=7s7fcXKfZ+>x#EJwHawaWJ^2n*EGGWR`0<+dN_&rfxwjIYoAx*yK=IBw{($^l& zuszJp5<^h`>F+#3Bv3%fwiE2uzLGEw^>&k@^2I$D)SuptWgcnWQQtf%+^hFZCsi)( zt0Cz<=67PK>>T8*ODX2nu1VNbW^ub>eeWA;YDJC?-+|$C5Nk29rbHa;2}A))7T*p- zIpQ@I|G1b?G_>Mq?A)#{p&()Zesql5jm$iJi0Wq|DxqYk!ZsbMi>SCICL++S$#J<~sji(V6Xr+~o}Y3l4DUGM1p1UsF3ayGhvsoEaH1MKT3m==+lE*c)krOtlc~?+AqeWXU1SP#6lz?KcP# z34i;RsR@1}N3dK%6wN59f-f1=?vkPS}A^CQ$u-+k4s2kPT0zzGCKTXN^D$5plpO-iYtb% zOKAtr*=+nhpo63w{BXbQ(KKC0v9v1-g5S`NwU^;Yq|Zphu1NbL%WxK8X2nKhEg?l( z*!0wakHTz6jhaCj`9~1h`SW2B5q;N95iS|vWYF$3H2hOS93B)K74kGd+-roE^CUUq z!1$ZeL4rsIpT5H%VH`ErmlHkev1_jBu{~+HG6_GD@Y2Rv+0^6zXw2$dgqo&Ktfzl_jaya(8`#ESqL=@MZfCY^(Ci$ncaT%y~e5>NR$` z`i`lG`uTlGAEF)e8tpt!Ms_5qwY8PTUhwd9!5`{Z5VXXhoo^Z$5?={WG5C(>$HE0K zl)Q(ivHcxf-Ju=g?+;#L7(_?b)@M!cahlD6W#kiYuYJK4_g@el0Cv9DV5l+0JDgkZI@>i-$QvoCo4D7sZG}6g9yRW$ln1sD zu$uPNx;xeF#z>2bzC^CP&^?>IonMCow)t-XzzIj))OmhQ`rTg=U~cY0YPpG~bKqdk ztgKXr>dY@VSOvt6NW7o7xA(PNYUG^0WV|AYNX?$ECWY7p6JGW>@N5b6*vhh@c&g=6UkJCasi1LfTwX8Sl^%0?6Oc!#w; znoG2J9cvH9ihrV|o~m+XP8$v6IDn@9YK41T$OA_zFZUAtQmnqpj2pSf#f0Mw@6X=~!`)ykm9W)G#C zO#fh$2iwqvbJlAx{`(>*oh_@EecWn0<2S5WEWs}Jp`hVumlx3yYB!{oK76V3{}Zl| zaO^d5g|4!n_VCzzcA(iq>W|K(+<(IPd{?paJXO|2Chu<5HP?faaG`KR|b3i^Y%ELxwn`d^$iIKESjDAjyoDF6DZqV z@`8iZMX0kI1TL_ZI)lkyxYTvi0#W{wR< zGZP8;qh5bQ)ZAP!8Te(qWtn0PFZy_J+C_LWt*S$SmGU&fQGD|))u?d@lFy-bV{A-F z%1;uZQ8De;HBx{LI~X_8NJ%0L<$JII7Y|qTK)3$pTC2Qpm-GGkKZHS#GIDF>IMtWU zz^!rDn5-eOy+?hDZXYs%LOQrJ%g!ja{E)Ah4d&4N^wb{mI)G`fGTM+K@ZyOlEGm_R zgWV$snvzKGN;C1_qg%}L(f*%go2X+dABo7@JOyXA!!;r?NgaeJB5c<#)Rwf|Lnw{iZY@thl$3{k)7o7RTno3sdgQV)xt63Zy<{WP|T!JNE=k`)29 z>wXXHz%IJz))VgxG|@|ij*jlVJ`+XXz<64ES&4K29B)6~;krou(fEsbE);S{oyl!2O=bJPHxf#>CJ{hV0Z9(b(^69Y^%KH9_2DFZ9rGFHC|xNV$^ph! z-l3`{v(@;qfWv%ead&mf3%xJ270Qw)p(WWqsDN zoG?S1*JcH;4{rGjK3EpH#_G|eS0S}BVH?q!KcFvV#^E3Pt?F zD0BvH@T4}R9qmmK{3|E;c*?rGs7xxv=IFO5L4X|Sf^Y(!?u*KFnKw>ken}n3vL6X) z)hp_UK*g4j!iL_|oy8CQfwK-lo?oG_97(KeU+mO|*gO`Sh)1B}7-AN>vJr-xzkt&c zrs9{vovBn3XCVQZ4LSamytqY|Q=Kv+~D+B;ofvAn+Sg{%47U8sZCA=`5N760w|FVqxl{}v3P)&Sn)K@R>lo@##qYY>3on8S&6m*`5Q>GS?D4SHVerx4p-zM+Yh4tXdD zzu&;D1g`d4e4Sj6D`iTPcx{}hO^Kp@3|ef6wXARXBKG+@&yUY-m=cJEIloe(sZ~a? zpqY8yH3btia7$2iwJ-uQ2IyIZIAxdLSYOsw45j4}uc;b3Vm>g@{1&0|++kSlfx+6K z!6r~$Ac@p~xye9_%yk2285(*4;v6zEuJgspqLr1QA9w`eFCiU{YxS?vjCb-Bffv(+ zL~X=a-oEGmpTg!PkZE_0fixsGHb;AZP6ZKqFG7MXDII@tX6q?6*s8VM*U=DqZVK;t zqW|#TVtbKZe6KbNlV6y-XI8PY;TwC*tCT%`;%}#lZjt*7*FBSNc-@{xJhsr2AXAq+ zC)nM`vb9|EZZa{Y%ho!`=8P}Z0I~#~;S3DZG!0n!1yC4qAL;~S8opd|uXbFpkU=aK z2t7SyS*HooLdzd>&lR<_a>2YW3+r$#Tq!<))^|HZ#l?Ab^x@i^c#k7<=vk}O_j%7N zxR{SS=GFIUfn>=rV`!Q$2R;|b-SH6Mnhs`mv}Msw0nkl-+x#A~IfJH1j02Qx2aHuC z9%69u{(Z5L3X~sVT7Db9_Ym9*mY%!OkaCccZ25@oN%>Q1;)DYj=)F&FnFJKx?yde?260PvD1Tvh-Bt% zuR5GeK))mr0t!ND$MY0-Y6~>^D>Zt+RXZ}};6GSw{1!-@JirKz!5ahSus0pkicg;= zDJUv(+s!;iyxU;A2y6IsgdHBHRb77>CB3o(OndujX2aJ(DoUHrfN*}?_A&Ny9?cM; z8j%YR20-00kV;$+aX(kq?oUzb==u7_5Ov;!>60n1$(T%_K8m_+7=#qGAl*q=J$LRL zKSa1A3PQvQ7N}yx+W24Wuu(Ly5YI#6;&OpQQ2~Qf-5Nx;YaF_>#z7I_0!E~DAed($ z%pDQXa(nDK!ETn-WeU|i7JTJgmZNvs)CwP7>gZ~Wq#x?na&_xdGn_?&KH4EsL@Y0h zPp#4}^8jEnW60}XkL&2@P=UM}gqj6|HsV%y9I=l?@?LH~VFrrOUpihTTtFq0)3%}- zoywWb!>3Ti>d}8;;4OdedwO9r^(N9qYr}YsdIOc=ZxSq8TM^R1tTWky6-7xdr!g93 zI7C*0uFy@bMo)5@If&ZLq?RWt>d8ryWD22-PO?9u&)U3Q7XlhyJ#+v|#fR7HScNQ4*{->yhhD-9%qsRXi)xdvZ zAn3;2!uGY#=ieuI=yXvj3B|p~XD;2%00L485}!^uU07Zwoeb?M&=p5+0hq3elzTnU zcVGu40L5MyC=!Qk0p#{k&Q?uC?EIPE`}w7@N@ix+9?SmPGZ2)7Fr2RY5nm>4W&w2U z0|OI{@pzmA>?k$d>f3b6cL zY`0FyqPFp@I-GI+;SKQMVzq3pF||S5kes!hlYVI z80H;bn>oJC46f_eSEe9&F_IpBaZmTV$Ef_C#y|8D>1)?Np*I9f@Ig<7t)U=cZ&kh8 zso((aOcNwC>h#rw#A+l1X${h(W&tjH%P?TZV?Wz13TH_L{zW*1Z>OX%KpzZS6@+EC zjxRSscoOtL;Fsrj+se1GwY8t=ybM__DsY=0;OPn5VdFH5SFc>LTPVRHQ7!O#azE*uX{lCe**jO^V=3Hpn_$d4#nYgHu>NNB*k0NwZ#~SSPlb^m5&#pS zAw6Vr-38hHoL8r25sNrj3O?+?2xDnv$%Zumds_*_dPXEHjyZgyw!53vOaVv2`aqDS-Ll$SMv1X`t@BE@RSalX zleNuo4t(OOCmEt9>;9cz|Ja{R+6&8NKFH+`aSS^Ej3MYK1Z0Tijg0K~b6~kd4*0uD zOmGlq0@>sULQ!J%{lWhCvz|spZ402QO`B@V+HKmx=hbN;TL2RA0_uIq&}`)_WP3rN z1#S2Ba2WWY%(MxUPZ1z8P>UB%h`@96^Ldl(cT-wovlt{MqbZJ#B(O`YI4f1oVUuyp zLfI_~Orz(Dgi^DFBWJDY_dO;XFYBAyIJQ_jHav{;nI z-yF)-6sTG2mYM_2)dwdCECM`f;dmZ7^l&n{)n@4Fqh&9a3J`?UIEqDk)4pi{mgk8a z7R7qFwJzwgFAljA? zkbSb)9^nXp%!;lI5L<HmqE=gNmj7CbayIY^EKBHKkE9!^e9hRjjT0lC!L zkzoP5nFJ6`&p@IH4z{s1fCKT*N!UZ$3{1a9_FbulJ_0G)E=EHV++y`=d%_B=_LU%{ z#s`#r;XMm!C|IjS5=-&bId_c-cA+bd@)k{MSiG|RMrppIqT}L7HpZ%Gm&Z5!h}V?C z>YD|fX&(BM`!8hDi>`G>*p>C6h02Ut0(QHJkwYfOL@ANYP*YW81Bk-x;K}NTS?a zj|A`t2#VE{rNRNJNz#aV`MFBZ9#pzWHW`sF92BT|d>>S{!%*EGSXR9nFVYLSsRD<& zR|hn1dYcNFMRGW^HrjX#Um3Gf@kwK7+NS07ZBw6pP);~oyO==4;>LUcR-4QS59{R` z!pknz5o+P2$!c0RkQb_|Pib*LDRKCOA=*iy_`G(-OB(#Y@6I`h61DRA+|V!!XBrE$ z=vAhl$jAf&fDNj3B>RevE+-=+<61_cz6Mxx5diE9pg}AMpqYYT(MZ?~lD5LoY*EGv z!eIDy)t7-Ol8yfU>NGF2l$~2YUY+($p?5`T!#U>qOIkd8I55aarLaBt?)LRM*oYyz zpx^Y56WUO9Uvm0JgcR+-+g5Suw}hp!GaJGAK;{o4?Gj{>9pC3_itza_?%xX;5W#f> z3N61^-(>LE!@&@`@SxeN;*dA7150}boO*B<366Bb)3}#ZdG-V=Z^{K8;s#Jg*9 z5?V$&{xat@cUVB2gR}*;4rN4zOlg^Vv#ys7VU{$ibNKY5g&bf-6Q{dfSRsHBlI+R) zqEHWRLwkc%(=Z?F%^{iuWkerh*@e+4vp_Cc_607|@LKf1GL;MJnjM-UQ%Cc%0kcY& zF&16^$>)D(P^eGYsu3kzf+y_sokeVVFz5--^_4(})C2JO=xM-dNZFG_I7ICh$!yp? zw(O{UM3+U^3_5~H;S5r9v?pWvgjMKf~y_HBFkI}@N=k&YfR z55K3etAr|{(Wyv^rOFfQmxxTl9Vjm(C1%P2^5jybD3Rt4o_JHm$f1Pa<1I4If|^?W zCBO#|#&bLXqBxRXBdNW2D!k=yKZvrFl2()+lMhWPzf9S5p6UTMNJsut6Icj?CfcFA zxzs%f1a|XN;ho|{Z(EL&%=kz6vQ^+3bjn=F3TGug?!XbYlo){x2?R-I1B>dA(YK1#448y1U!vI22! zAaybP)ZGzJ!v0{PzP~i~bbkr>yEWa{dx3iiwnK&icTv;O{LciGr$AAo5-#f*81zx$ z$Lc)El%TA#GAVEu&ob#eiZ;`-n`@?s?q;u(^I4yXx9pp7N^Rdt4XWNWZ03@qlA{%n zdeb<6F&;F_lY6UYpg56xZ(qEW=rEqQLf?4yeKsaG3rsR?%tbzJ*2Rki9z$@eTj6Hn z=Tx-sCPX-giZ19TR<~t49EM-(Tg8Lyyiv&C% zAz`o@5tgn&SPB%{5TvLM(R(14Ln63-r7ptgm3ar(7rj4Lw~KWf&megRh*=giGhiMZ z&l6Snup|S5MD02cWHsY*`uXj6Rx;mrk4yjdb>ALBo72fM57~e1s?f*b19H?$B$4n{ z0E+FteISC5zpB0vR-q|F*s(Ihd7*DkUczi?_nn8 zC`FGOG$Ihsa}lXf5dNpHnvS}^HjlyB@Z%-()**7GQg9Puf(9C~PK{KRL8w_e?0{Ji1BZl}K~fk} z6~B7*ir*CCM4{)$118RIHxmN2Fqr(R~m&~pN4Wmcdzz!;~(5W zNoP9E?p{_h!5DpyJ~+PlqrtM(4sd36ZDG0BV11A4x#bN$LT8q&%+AK4+A}V-a%qr! zU2rMdrugIjLR);3uFH#d&jP##lDH`uWI<_@gPMcpy#|R(-G>Qjy)cX}>m>=LBxdM| zR_lTTD@2nHmG%-`p}PVzL&%6lWaGFz>_ye1JA}aKb+?<#TLxyZ(m>gRT#=owU=If0 z`g3zqX4bz~n>*(KtuH3po?Lkf?cXtpo;*VQ4JM?;~-vAPF8lKE|8{ zI-2nCkG#dlScQe_J|YTd>bNqDG~&aJVb$0TSKv5!*@9~)<-$({jR$@hhrF}a`ielqvN*5EJ@`s=Z?)*}4o-w`;ZzgdMYQu*%+3vlmR(KB z?pQO1aSMorEyM;TYXNTk9k{KKG?5t?GlWeN^@lzOGKOnprq{XCr9vCW-!zi#b$IVM zQ0CP*KyHp5$Pw_q!h1S30`+Ce!yV)QJ!&!k%ya@_9lx$nyc{gWS;~1@bbZ`#&*~$= z%JAgdy{Kj0Ks3Uz5}4=1WC*W_R8RuF*K%yC@cXKdsOV#MOTA;(l_Q!eJpDl^^fD$q zr6os7-xR0C>3-RewG>Ju7+;lt*HuQfB6Yy@f<8%}j=kCjH9{(KT7A1$^Yar4a)*yP zPt&!%zuh=y_GBnPOIvYg7GrKwHnf0nWk|se{XN$fKO52itf2sDdMPK?(uE;HXD{A* zGoEN92^1-eK|YNJ_y!7)Vt8zjMhYo)h8I5=6v5Uyhu~X)gT{$@LZDHC`A_8t@9^6r z+%}OD5*Sa)F2y_z>W#rsi~`lhpAZr7PaB~&oyu%BgBQPyOSY$JD|xHk^^n71DL zcx^ngV}vqFaY44EJ0uDcRr$xuChryqd;lUE8KFd}Y4;{gE}(GSV;gz!LQWYwX6Fjm0v_}A^tIzkRG`ljF} z2vocaeTw2~(=AUQDu+hn9GZT`C z#p!MwSsV?l_F6EJ3__mb)~H7+?XjK*tMr<-ZQS;w7hItSaT0-q7_Jkpl9Bl~rJuP5 zhU`PWzY3kT@u{`2G2~OIY|^y)Ya;ttN%^YW??pS`36x!(Ytf%Ane9m`xbl8fZ7eg+7dM;XqO zGSt%-$jN)X^AfiIzjLm7Bf_Oo_vzC$z{_G++Va)GqK05-_Rt<5zdPy#Qhjx>6^aF4 z8u@Ge58#qn`Q0G{zVuHHY62dNBHR$SJ<%D*Z9aQBiQ4L=z2ReZw2 zK~q=65yHqX`*Kw)qC@SR!d;L4o=ylqFfg&%xq}Ev6uwv#7(eakD%3DTvP!`n=^Yjy zD#V_$jiL@7u}~?q80moo7U(c~zx~h2KinPr7dBiP^Xd*KWmWhGu6PNGl+* zN!YCtqKDX;PxI5mmte1+9w=n853QPc+&S=0Xu63a9>_z1T{qYm8D_E>uc#LsX(WcJ zG*Lz8Vvn;j@-wGs4vRa|kawwIS*hC zY|VJ2rh}R)F8Y?PSS;^n1V`^H38JK-p;8DsWq9WYuNy# zAbU7Kk=kCaNFlEG*#3`uwuS|&cGDTr;B>BQT@YOF=sZ)9i6rkGjGGd-^+a41u*=wM z%EWO7TQk0{}#F_bB>1!w5^z4!ZPU?y&lv-ApZ`t_Bd3jeTt zI$D!1w_01i#wX4#sW+{Ms!nOxx+-DU1oK?0bs7^PJ+|4nX!2fYOyd05?V3yPwIT`q zKVB&`ni4XaEcWH1ZqJ|l2hFpU?Szjk)yd1Pxfxt1aw}*jn$vXs(R>my)5yYDjb`Yu zkmKXP<81a8! zRDd!p5weIf$GPhwZ3z_NIs1~~0?JZC!3@pR@sRDLc!5{15E=-gim2fc7R_b(PQ236 zK*CDk7>mb@-upDU?RX*9?dtpb?(H_@?d}qExs_wW27!KxjraowNW@{$5Kuv@neLOW zm44npq?Xo(+JBkaJ?Z3zW8(zEEv{vwQEoR)s4*yGUvW&}UU-uzbZ zR+})WSCX*4EU*qho=fc<3l&e*jdOc(M-$A!mH?xmUPq0(CdDk8^g3w*(cY|6f)l9w zgwE6-0D*imNajH)Z+CyE-{(5G>*#*>)Uuy#=9nSh5JBtPRh^x;jWvtFh1`D8(g*h2 zFHcp?LD>Plj_s!@hxpb^zZ@x%+EQSWdnXo^w|y)haC}|MbgSPZi{r`ONVdm+3-=SIGN&s-*8|Hw<)p_tCk1;o7barUhRhO5=WNs;AHrsD&k>JS$XqCGjw&mJj-$U0(|GZoW)kjYQ? zMDoQNnK8JKPTOT>zxh6GSoeHOEXt8L)~$*s>pSxa5|_-pO~8)udznrULQIS(>XwB2 zFOc>mN3*I=c*>4{9iU5j7!oP`!s40}WJQF<$J5{Bff^_lqIXHvIlPkHgcME7=(~o) zckOT1JO&nPt=HxS|{mu?gf|iIG2iWzc#!kITKpD7LP+Bs2FK*8&If#qic~ zh2pD{^#Y`Q|G4f?zZ(+bL5uLO;dUTFQ+v#$VD9-^f&CXjtzbxxNeAOAOC1JS0_xao zhz>MW!s$SiMEZIqBo+Ox5)y>$0*DM>fh-tsR=c0y?vr1*0N{Shqz$A%aQ9O?4qJ=A z(9B9ja5{U4KPL`AfRVFze|jO9j#>_rXEFiIYB+@aH{65z%B+*0h_=LDE-`MWgP)H1 zlv(jtwv3)W!Iv)UtJ3>MF4}DuBS#;S|8Z}XEcTW(thOx`hVGA77bIely^W#y$1A0( z*TM?lhdqhQ-ZfxSNOI4Do+sX~Ha4da9pAcEd8EC9~c&?3#DS;m4cL1FlPSoc;QWr;eS9EiS%GcTdVQwb)E@$TuR0xJ8=k zCFf9O4ql&H-6)TPG-?sngsfh+dnBt&BuiEnTS!BKm5Muv9|#HDnQblA*jC( zB6UD}L4EcK>iBRf>{kGPEp{W5SC3DRfzl9(SqAhbe`jshRtzdv)sDNX0T8;se|s^S zQ{V4P5Z#cT;E|kOAI+CL3k2|qxi50;DB&vCJI?ZCVFpt*((S5VjX-Oof03tQJvt+* z2G96DFgJLSUuh#lb-oZL{rU@wW4?k+*$;}FS^>DHDW zc%}@u+NU(rUnPgxcRXOIcR0}GCHkhY?5j_>yJWSS*+(~!L15Rbt0zm$uGl zh%vK$yyv#mL9Suio&s1cJz@T)`#KGLqP)Yoo%@yi*9^1V-F&pyQGfL~{Wm|=iskt5 zvulr)mD6C%w+yIDYCmqI(cZJ1`@Ss|2nhnnj99_7PLUlL6w^`e39ggDT6fpvU@X9U z2-g5Os<|B-%5*AwI1i&MGk=!na0vAxuL}!Gu$7}(u7)C770kYj$cqua6LY1l6ei~eQN1Ho<&xl#2!3t zNW7KNSnXSS7aAYyzV84{zHq32|Ea!y9r}V`gIVqx=0Nr)oq5*R z$|d7odUwpmVn6o*ozVBOpn6ELfuf=X=WfBLQezr8JSobeEzs&BV;IQ7%cj&ex^5Fm zTN1;ez59OhG>S{S$Z^;4n7<WuQWz8rcSaX zqV~^YsKkcf&#?<2l}88Q`9*@$#~xQ1N0A<|OMt%vYB>dIY3ZgNGd7FbZ3EyOWU%RS zxB#l#u+w<9mq3ey%*$D<-L-)5(e)qPCyO~#$?f?Sl=S%wqq;Zt&g-WYlF)edwQ4F~ zmlJ)no-m7E_#TT9=-Pf1erFm}h^v0&7c6OM@7{dVx@P$7_srgQx@IiZ3KBs;6&l zIk|6EjrBU#?P?kY2c>=|LImnyq zWvaeLJC)8kzn0m|nQ9`U-oSR6gc(^PgCl?-*t)VS z8y;rP`*fj&e_%-d1z17Xbsm&H_lqGe=y)SYeFVm~&qOvK>tvy2!*u^x_f=AtXQ~=W z%jPMd9;u7HQs1#>J-%{|ZY{kGr{=Qv#+@_#&(_G7sAB2dAN82wO6j;c8!89iPuN0o ztb4hcj$!R$!`XM)NooYc*=1eVpa?cjvE_XZ#o0ot(AjkX(_k3|XRd}dZ55#p9$RSX}aWj3vY?=`!NiBv;EMPaf1#wqhWRjI!wP(W=+3yaQCc{Me) z7a$Y`y-@$3_D4{Zjk!k{UB-(R)XT=pzhVvCwRVh(uAOP`Ggqu)=I8wC=pjvTaM@j@ z<5yQ&P$BglNi%Jk4>b%i&X*e-d)H2gx?AmPcv*x4@LTY&}Ss2%j!N8}h?$hHg z!N~EhC|%e_*IRkB>NJIi$}XblhfD)tCHPs@=&gfm+OoOFY5jSfe`6HuVR*I3^*U#k z#tYlUl`G^NF}awWR=vtt(nZ#|O`oTgr0A9MJk}eTIb)Cq`LroO3fH-@U-ILddfjcD zUG$Y`>yu5kPvu}Z3EVbrjm(Nm^6POWE6S0)QKTJBia$ED z+!}9<_^_l6S)t9fM~(VU_&***3!7NAtJ$fFkM6Zq_^#Gipv^TgQF}5iKh z=uqYFYK7O%kmJHk47*0fa9UmZN$jmO3j&v71s+Om=JgF;jizZ6NHOW{ zT9N!1_N_l5N!?NN>cFFYx1Pn zjvZON_a|UYTz7(kg3ib@p*q)Ag2V95xOTx|kDb9Wf@yeMrDfRZ`jE!)USXmB2^{S3 z`;N_8f%IXi4#owPgOEHzV(;r1?^s^*aqz0E-F%H~XCB^L2mv{r>0my7%_FInMWd$LI4r@8>;yYvz}t z3GK=GjL{3iZcf8x16sv|%#s+Z(y7QDYZYrH%&FFsRnu^$5Q#L0UbzMm83tvMsEE!$R9J1+lAdnaQOv|- zQ%44xw?5d@znWn&9P#Bz(R|q#eN;5m_{w=Jf^aGbP%3=uqx(yLC zQ}P~7=>Jga_!xO}^%P2$W9UqF8Tm-2Hc2N761z>+?JA?JQ{rn9xNqbK9y40|&}@vp zx<3C~-Y{awjnc(`1oM`#{4DxAG46-l*ncYV1W9|anP;K;c@yfCBHm#92Ft1 zX%ro1eczIw&!JxkIYXbC)-+o-u|sp5Ek!FE$ui9&6^~ukaEtG@^3L9IlE4u-1R1^S zki!I)%Lub)Yf-In**FcT%JZ;;8mx)+UXc^Mt&Qpqhtgvg&`?V>l)& z`^rMGVHv@6V6@Kpg46+_Y<-W>ya z&wnplJ7|oK^i%K+{oMNd2e&MecLH>VQ%>5bzf`EZTfFV{lm+y37@iNOSIq!wIF^-m z{MJ-h$`Fb6)r_k-+piP3g(=BbepbSoN7kE_LxBn}l`>HkDe*%&pfdSAw~K)YQj$+u z5SiT1{J)=S9iYGm+%JUiqK8ae1l?4ER5UbF5eFyS_5_#c&_&b{`R5-6e_G0@{1o=o zd8`W{*Sp*W@BG4lKb}gbH?@kqs^fDtH*@rOFh|vFgZocS_<^sp24oXop(e=v4IQ*P z#5UQ~_>qKJ%)l=RnWZ4kLkR8e+qc||eF+D05@g@OZtxu`dtqEX10_KKu_hOB|A)|r zQlKF}9A-ov5ldM+K{hdv{D}Q7hg`$r2R6_b7Zf;ea!4CAOy`N! zH)-oy-?q8|57-$ibffC?D*L&GLWc8UAFcVXOO8&%pMqGg-c(9%8neJPXD{&flXb(z zN_?jDB*%#1Z2mt(C%p4F;aJ>739H0Oun(Aq2~;>nghV}aNXYzbO@-prD2g(4`cWWcDP;9LdzM#J*=Itd#ko~h%@<`3m-5`F zPH6+yPhk#=hm*hO`m$!XK5yzzrL3S1i%Q!d3+6DPkSHD_$tXC6SLfAV({6!U<%%}w zH!uNtK&80zD4>tI3EC2CA0r9{o#NFDTbUO6&LhL9d)+aDu%h?fMtWLsx$FVgpC7h= zPWNRbS>vh@Bpi9$L)|_zfX#rSWR%`sAJkJcoI0sLe#n5tRUV#uh+|ZJ^yt;4fKz*| zi{Ok}@e^o_Ub_70FL$?F+;F`TK7%}F-y5peSZnN8VqMGNLE352=V8lb2!!(Y_G!_@ z!zpQ|Yto)3mS@`i2!e6|_CLvMRP(svI_x<)POi%->1T^>uZzf{lg1;WD;r`Nj!z0%!4F9QM%8;UQ zw)2%P+51G`&us4M;WTRjWyo%cM*HUeaVXH@gQZRUK78*=>GR|>UC~1<({N3J>}h*z zz`~o%1x4GLc)5R|c=8pEyIpQOmN)Wq>8>7Ozu`jHyck`j4!Rcq$eHAutJ&Aly_6x$K3mcf7+=s zx0^*F*Ui}H7Eo(q&)5{+t2&9!Mu!oRvZI8(=@;9k`Bam#>cG#9@^Z#*#-UL(w``92 z&c$~*#O3eSpBVRC(hygg;$)TAs$!m5PMBekA?3V5ANpGorUMiK3GwkD7D+)0=l^*z z!$e`*`Eyw@-^4g9pnt2tx}=emw>uCb45e;VpzuQok7+++q1&< z@1}y&c6A3$s|Q|2V6W)=o?@R^`zYlX*i}q6$K#}t-4PVexs-p%J6Rp}dDq5(t%^#= z{w+TOS`V(Ls&cMoXe13OItyJcO-=ZH1FGvgf}GUNq?A4XQgc=AN&Uw1ouZ(`vDbTH zMd{y&&lmsUqwd9I&fY$eK2oC9jaJ`^&T7UdHa5RK-|O1bAY_;EsKQkOAplYr4gu~EHwbHpz>DtKWB`#ylY|Y);o3&Jx4^;=%zbmU6vuc-l zy^VTJZWt&F^@~x@Nz4$N{$5FtxL(c@_Qh(mH#ow?B__*cP+8@Mq%GgWKEd1TwmUsN z=X6vg2$Tu*m(bBIe<7A{|Gj1qfbR;>vAU3ABJOC~$QP**tv#28EcGw2`@^qIXUMo| zqFd{$>SF85#`~ivN>CFM1IYKC;U4lz_#etTM7#9awA9pTd3j2JDIlfE|Gc2j;(j_(?)upp(YkQ_n~`}dE~=NI*FgrSZebqIFP#he;capEC*@Bibq&=^8rcH5mr#3%)&SV7 z5b?Gitqqz4V8fn;i}61%)8Rvrh?CC#>*rZe55jQMe%~RHS#oc89Va?Oeel;=^oQq> zKii&p&60RDBwwta{XVO1-cjevoDvTsE|K*(Gbc8jVKU`a4cJhT6tBVpk`_)Ad`W{7 zIS>m3DdE3#-K!3ypFp+yl^$^Li(mb9@QcM<7_Mj=zMIg|iCxSSt3!~grvBUz8LoH-JHMz=Q9s9IozsO8 zWcScjQwu|AnRw25Fc%ERZ6|@9BmGRz!Ka&s9vUQ3iR3?tNJfH4!5;z1FhYpWp+F~{ zDMS@Klz5xI(!b=+q2=`$ARhZZ3arh!6xbtpoJG)LKCxR80TBX4u*iz!tIHVQ6|B{#qzGiw zymh+Pk^UM+=AZkjM*Dp%+kFn{p!1#2Ua|3UF5q&9KW}&jy9;*B4nIkn z_V#|Y2680&OTya=H6~G~jsXu3`VDB=T3oCV8@c<>ZQCr!s!E=hC+`wp%0`q}#+Lt9 zpVYNB>wTd#Cy=X`<6bUC0V=EQ>nF z4qf%N_XZbacN|ea<0a`_E7D!EK0xiPPdF!`laiYloRgr)UvYjA6NPm4?DQY{HSKn| zf|)O_-Aa-vQLo2)$pyLY#xY;Luf!TYJb{*D#AKMSS-(%o`<64%Fm4?zcp4`F^s`W?*L-kMmn|b>!D44_CtF$Op8nbq&am9vTZn)X zVTNLXW(O8_d3ksCgF=B3fsn_6QpyUcEi70hpS4T3EN!F<_gv3Wb=!!1$y1>2 zL);#7@?DvYw4gg(7u!OBtj=m{)!tG^y#LNWUHqt5F&qMN0f~j4l*ROZKjue%${4Eg z;mC(-Ivk8nyFEVPkc}EzU~Onp{>G z3&5MM-dQs2+YF@^Y5KqznXK=>^&v)Mg%%q97>DS~qDAXvdcn(edgZ^pX_A3S=g+ky zx`S~?6l%b&d%5&6MR*s?ZC>scAKXJaGks5w6~6)*I(J`tF_>e$8b+B~3F%{T?W1dM zdO2w(`0a-is&bM_ikkj0UKVq%zJu~S7Gf`Ga?s~ZGf-`_Avv2e*e%|Tl7X(p_1NH| zZ1JF9Z2alxVs|=;TA_sBsSp>3U;J{hb&F?+Q*yrJ8C%3M7v2s~p>%XX4eqO6V8G7g z#ZQa?>d$Lb`c2}dUGPRtCaK1IG`QZwRY`we|56bXvm`w{utk?7cAc-7Yltz~uB2x5 zn-Q)pRQIJ9%e^?B+p^35Sg!_NZde}~d@b~Q)BNBXd;9cJQWZY}t|VBG^4wF$MWRtU zr}uR8dOJv3DH5?cY;8{CXp0`dLnT9cO{?PTHYTixQOzF^=Kpe9(z~K;E$T>`8wPFM zp*hhUu7Y7p6Bfp7$xTn7aNwL&w8(*AmarSHUm5bm#A7q9UZkX}gbs$WXZL;#ZtX8v z8_=&LDMOi55JKkt8z}c``h?r6y^gV&+d+rZ9o5+3tE`>4=tmKF!U-et)@~;GFSTfk z?}8sMSpRRY*jLR^{0K?pQ`Obgedz!>7?)>`iCE-U#A$3%YU9kmr8F&1EJj3NvNb0fj%g@JYT-tuMzUknn<#K$>y)rv34U|aD`<;b?zW99K=}3WVlc_LGmA8iqRI+MbQ?qeW&HA0gP=%(68b1_4`nH*y^Kp8us?SBT$DS>zY482>!7zPZ!?Ow- zEwSF9txc`5)+YqbZIk2Cg#qH~cg5mv{I&tR^A=zOE~6-1!F*omy(AmySebrQ7)?a-z6tlbbHu_Gr`gy?6B( z7O}t#%YB-!%1a((vGMK?-mJ<;s5owb-#;AwQ*9KZV2$v+AmEsqT|9OY(d~xi%YM=B zN_#nnG}x#8A-WlcB`4fCQ1>E>rxv{Jc}2~GFF_mqalegz`quB%t*Q5dLOef9*HZ8G zCyf2#6r@q$ZL73W{E|mbio#_AIqymB`^%#L-=`Kr+pNO|l)uZsJA+1kc|@+ak0fH9 zA}u4+1z8}@w|6f>3LST`MCsQ{JznoFKr%dZt24nS9wK+|3}ut)ZeF4Cme!XEuMRTU z;o*i2`*m%~jVt;26PW;3e<-Oq-)WUPG21X8O5Mq`VEJ4t?5om%X3M~M5OsSCfC>kz z2>dsE|2_x-%Xub<<3!S8IVK{WlCLWxHZMr3*g&DxV4@SMz+Em};%zTe2aHS8(;V2@ zzJ3;RO#^_v;>y=qik@rV#7zxjWjHi2ZA$)45{?TyC3fp4r2D@d9$*)^Gy85C>tqdo zsi3_^oz^m~sPam5r>wC3yU-_p%F)Q=G>Wp5Si>5FP<4K4<04kRyL!PshU~1I9ZFuP zpIj2|e(`83CD>cS?4cL*+?+g5%{XGjN5?MT>t>%A>m8FiJET`(;E zz%Qt(oy(G2NiL(-9_6Lkv{okL(>${A@c(@Ewx>|+X)O5LxQlMB6V+8!yZL*8jwtG5 zu<&Wqx&jK;{*4STlcKy_0I7n3lBqU8-N%? zm}^%qq;*g;A#g@cCI_3^3DNBL%>B>KhTNL656#;CzNc3|^b5lvOXm?BaA_m!*D4V! zTuM+7OPrJn8Y9Um^v`^<4`*CvM}{EVRji)tz#g_`y)CN@lT~1<2Gvv#t{j}As*c&Jfy&aw@OAt9tZ09$6kw>X}%uQX`h-&9c9J2jzI_K^q-GQ z7`K1_g@2Ec6E9DuY-;y?yT+?kZ++L1h^=rx9OPUki?1v!Vk8liTr2$br^nJ28M-++ zdR%7hF{@=>SzQBj^{t;+vobp^?iNk|T$I|`2-~Ib84}him)Kh$HI61+p|=i9drhD; z?|pGraPy_2l%ENo3#yv>!>1J9-rYwq0H|!gy#DVyIVs$(N#!$us4nvDDf!~J{fAg2 zS|hPyk22=`saS7*_9yC$eT-E7V)mlEd%}P1V$6q>;*oLpdZ?#DoNL!rHyZTm8SDdp z%%}184&igdwLO!r+U$zQ_{A@;Gce>7@(JI>$UICCgat__6%lDwFM@{vC`-cQdhN=F zNni??0VE_-=vLCRvbrIMBnQd?@`^tge)t{jRN(laJ}=jq47Q+$JktSip6Qk^Bn1@B zvG>$VuWg2|K9?2TBVw1Hmj^MYG$l;#RrKVHI!n6Q>{`zWY0RK^Cw(LL-|A{XITc-k z_NWK`jxaKZr;JVQc*d0zGTr(Vm3t$3P{GK3Tv5zvihcSAyKGQCKS)w*I(S0JBj&)A>U5xQq(%bDGJ z&uEDB@0EN^49~MbNrkcR^dWYHt9h?^%1??vmr5QO-hB0R>s|QhabfAc&mS4DcF(t5 zKi^)Mp#SHDJwPI;+>78GaZ575BMO8C4bUH{0EwQN71-^Pf9eTa)@P9TaN^eS6F-#{ zbO}osk&2NYMq7@{iJX3KPIh9JT^hzGy-S%H?y03sLqVuWQe2)x5^6V!ybaq{=4@yP|jKtaFM8B56Iun<{(RR&@HOQ8Z$O z#PoMLds_Qb#zLK#^g9;=ZoN)1W=*a?-rvG|WS0fwSl+?87XZz5b|Z&0R9{zIEAr}D z*bD1#@Q*3Cd@pV~2~3g?NsLWu?y0Y;!@>5$V=~?z!_HPz6!m&b73-07pNIO+B?G_5 z#JG>vqDFl+Et}5+HqK*9W`ta?c_@cQ(jtTKhLEd5s<#Ej8_qw`?DCN707&}#b%e5Tvd6pFeJ^vjoW3_lY$tX z);$=Yna%HD2AWQ*luu2W6g|=%9sa&fHbz{{dYXT)hoh^vGU5l)Y6(vgYYv ze&>0>u4}4f(C|r$&ecOi6VS*pa+x&?tIbmWAhS81E@f~NU|^>n^!Rph{dI~F(!qC( zcjrsgvKlN*kRkEioKT;rP73}hW{`fsh2)KfzRcp#1%;eeu~+C{*jx;zLKY)81^tjS z!wqZ{Tt_Wj{=z>b&J4$69|ai|kj8ap*y3dV-a~Dx7Ub6m@6&rcmmX1-Zyl)a#2I+y>xKI$TeIaJRsAk-9}!8l z1hZP`O~{PaXZsUi7($*zmD8J%p3XKmQlSlkB>R`}JODaMA@v6k);fC(Vwp^nuGAdf zy8ZW^q0iqJs>mzOJ^gyPB_@;M3H}VF*pa@XX5$+}2B&U-s_+fR{VTaT8c#s^?5&^) zVkXez3vX78aLeLjz4o^7t3b0CoD%$$>{{oIfe65V^bYD%Z)t{LEfB~k4WpUK!BKc%1-#&)*)napj*FtlVX5~s#dE~z7;a@hm2D^`|4?L6lY>0 zGhw_IW-dqnfgOo+)X3glU8Irj_l)ig`9zmtR^zZb8ZRi&bowj*Yu|nzv&V&F@in2H zymCh+*l%`Mx<4Y9CIG7J$8<}K+QLM;@xrL0-<)9K8v$5@P3a5_3`kyk#Jy?oRfM7F;1(bk{oBa39IrD@^Frn_&tIbhj27Y8N5 zynrU7dU(*hyC=cZ-QSzx8cnZ3Jk`yq%UI#Xgj>6X?Bi8;rn!BP+uzn-!&_xZmu98}wF_xm3X z1MP>WJL%m{2@q$IfJnq6%(`TP#sf^>dw^Icx+8xm?jmVq)g!c5s5%GBaA({J@2~G+ zVEianMpsyR7$!&j$xPWaqTU3cEO$; z%k?3{VFy_*{GySl1GkYzfPVkS$G(gunAESAw!a^Vn=o}~4xD&wPUs!@9;GK0v*3Si z9>BS{>HEOaf;of`5o4Best4oP(O|F!P!Xah16f7sT;bpfT(y}&{O(%qZpy)Z_cN#( z1{LQ{tY#~uc)l+*ZNGx}!Xo-w9?*!rUppG-`o_<8Y8_9XCR~Y?W9MaR*A(gvH+U@S zR?sbP%@8;BJ@?r9u&a@Lt(Y%iuGJ+qxy7M}?o--rQtaTdbZKX$m&^I;G*Q@*{>%Y4 znIavvlvjPnC9jkJirua@-7z51!YFt#-`LWJJ6#{WvyklRcRZi3m`KjIqWVKg&&u&jK4$Ns5mLSonYRA4K6cKwj|z`ie6*5xR#rr z16Qy32ng}SVRaTHMpzG*HXwN#kg&2ZE(a&-(#H%3ZI1UoYw|_@+_nm_t9pGo3+*vi z(i3a(es@IxnrqU?dSyzuzNh9(aw;JkT~wB|qv1!!N{4@8`|nC=TEZHre>R^P^7FGz zbin&YF7Bp2Dvf-?*u zF_%1g>LG&!|8YRKH()xkRh`%yMB%HdH?5-aQMSZtoX6==wwsI8YMC&qxa;22bD?&F zHoxxc#pQ7cDGygOED2Z`y?v+Xm_p{qWc%sTVmal(serq}`)%O=Ji15mcv>(XK-kPC z4Ca9#CP38dpqXX4ex03@Q*Ly06p56D6bi~q_u@dwf;jPj{1>tT*6*#BNrJ}*WaNR! zvAe4)H9cJl_>+}ds|3QHV+l;qE4Nlazzxo^B@KHpYSFr*{A@KV19LRQKj3sHb%MZ* zpCZGKmN0Cd6Lb!0^SxQYWvo98ENq3!tja4LbeWn0uS|fpYS`LlWf7Ql+@Rh@ zlw}}0vRrtsTk6;j)BC}nI=Z^iU~!lPt_lPgctMD~=F2Ux+*t)mBmriY6m^|PQB80Q zXnpD5gP~BUT94Uq%Q#&}g4H?4{Z`U63oLf%FG)zm?wCJ8jtP1F9D7p5V0s9Vg9FIm z0ETJsR17|Q_6)j#9jRVDOjc4o98?GR7iEEvpMbE(csxj;^9FVukHc>nxC{gYIJWVC z=^^3;qF3RD7!tH2c`}H)+}S&)72fTEgaeG_A4BbhsP;6B^Be}x%2dcV52{xCbFA3gdPD7Po%wf`2^sg(t$pg&@OhSrP1=jS?@4}+u1Q7jxarkpJ+RoMu;9Hn1=!l94b;7Qm-y*2)t znjktkYIzs%btyJ;Rf40orzOgCuH1>oUOntPA^nuopLr-8MqKDA%Pkd@i4$m>5eWt; z>RS-8--Dds(9k4kq7l>cN(YDEKia_+ruEY&AaLq|$Jw#THK>bLR#xKH$>Uc0^NJqd z4WIAKla=_j_MAnsVew4FeQtGS-^m*+m(#0BO%l#+_0sE_>9?&O&0m}}kGAFj(#YNL z2@B%qJNV7{k_M#V_MZ(-yG4$lJnWsnC;(yKW}gudZF$2Jzxh2X#*gWq>TO-$#@v3< zzRUmJ5BvW%^+yPlNDu}^0Pti}6%!&7dtj=Ibz3#ZTQ8>c3h6=%2Idf8LE|wAI;k$^ z3NlkcI0nJ3I$EugiK&b0)Zx9;S^Vgg`JrfJqlBF;n^>8-a?iuVUR^e}q9#Y60-ZDk zG(@_nL60~UoQK(KDYlj&tLK3H6;9AvkTT~;&4M+s`&-PtArm>J4qVlM%B@7`EKNq# zbH%Vnwamb7^R@TMnjLb~Spb=C7C1apEZm*Xu3$OWn*GW&A ztGw(%5Z&pL`bWN-y6jhea1OGn*MApQ%GTetN=vsGo@{2|S4{HVEq&CwZTfD2S!_#} z3Z<1-T2tm^NU||1HE%6zaT<#YDBu0}4$)l+fWEg~P~}#=*2bEvzGT12E0Ju*yTy1= zh8(9x8dBd8f=`Xlql1;CRi9*= zkMHLh476BlJcM6lO7?1>0`k?^lEBWYF#R?tYB)ZbMF{MUGSLG`e3Dc6bA10^?>Ale zNN$Qw?#Ky%=Kgy{G3_(q>gss!adL8obxvCbX-Nb!TG?K@c(LC!xv+5b@6PGNL_ngD zg=tzy`eIRimr0X6Wm>CFp}gMP*y&as=e&`y3b6r~;vpsHxqxvXTpDHljVch~+2Z}K z>i$hB8PN2SrneEPFopF_es)1Tzx?34doMq$VmKZTB;sTBV51IkL9$8~;7vdgpscLi zS~fCa4}Nl))g_(eOJr60^e(Y&qvv|a>r8Tfgg4E#4|Q*Gn5;8!_OAW&v{~ze4ZlT1 zhe=b`Bq}Z`O@puA?K?rS)~BS}1{RLE6Fjxngz6uEKG?zG6++~lZcnJcI62}*;P7V> z7D{z0w83Ws^ZKBq2ni2&8TkP!m|xCi^s{F}KYTdTRf#HKBo9zM62i`z(>eN;O;x4r zP$ScQwKKMJFYDP4HFo^~GdBh|gJZGHehY*ptDa>L8fPiGv3(R(-{C-Cu$RKIX$Ll%| zcnNW}(4HNS2g41}k!}fIEu4MzvCkdk5Ee=Nxdj0?bY)2(h3w2e`Gd;lchg_iGc zCe-%m+VjILJ^aIDCc2Eu*78r#!zG+?CMZ)@8F}xVYCU;ddN^684_{Cgw?^?RBOR4T z4Pe7;0s>l~ab9-`X_j%!H{wl0oq}= z!EMxX9hyOsoRODzPZiC~G4HV7AW&b?H7@r2z5{OH9blsU&(cQV{iT0l=+paz7IeX$ zBV?qpv8NTQJ=zp^V2751iN2IPN-OqT@po@~$}(9i<)?;s>GUx@rC-iSy?cB79w?Ec z1+U%C)p30I-?uOZ-@pXKu+6?~7*5fD9u_39w?|HCluPlBC17=kvmau4(yQa(Ph@)s zvs;khwj){Uk6I7Tx3@I%z`REmAHR3o<_n#-PD2Sag>21`BS5z>&WLuFfik>k6-+w$ z`osW9myH%s1tOM7GZabFNPZM#v(OnLl3s5NnfGPE4r*$HqA2=ywCLiOGjv@QSre8z zjvtRXS|r@w0pMDyqi=U^|E@Ya_{>nGy8RK8yY6YxGzb<&74*Jev4^uLjvsXu3wltsGr)#?jhYzMH}pkN;Ev2Qa>METiOsMW{KQqX`=$v{e+A81(RQ|l0MFCijjPbx zCDN$&6mPc}C)TBU^%mT1=`FdhRX!gVW_d3&k1gfvEboMIoyEX{j?;Hb_o6Y`GI>*2 zSQ%K;gUlkNB>(N$c%ezxk)JjD!djUMC3^$VJL*<1<>ZVWqRjJ1OPH0J?h_my62Qd+ z;m &28JK;^aZ5nS;KJxZmn}0 zP<+LKce5E%IaDu^sJ0Bz1dh9YIH#A_X`k!R;-J( zI~t;U2}~)wea89I@S)1a#=kELZX@|A@RZX3n(-aCDV@G%WMZQK&g&$K<|dR9Tzf8W z{hH`08LYW(w3qXcheV#q*|M3>DbM_NH;+6}eJaoB|(!7($`HQ>Vfs}kQQ<+BeR2k)s)4j{| z1Nm7tkG({Cd1re0WeG0Sq)^#_z&7kNv}6!mu~I8@z8#OcYq&h0%O1;qj1-kqS0$M^ z2M|z1LCmSr`B!=NhWa zRavCC7lW;+b_I-EfA3kz@5}+OI$Mk&Y}G^Eiii6538(fH#kqnZ)|K_dtQe+ zgmu#Yu)FxetL#IsfFNnODMLlm!@k!sd@w;mU(0Uf!JIPGr=sk9Op6SA%Qejdc|}wA z-{e>}arNNwd+Dt_g8|c>6Pun!6?)3@m4#Y>bTX%v_9U5%Y(E^yZ|#a5efb(wV79J) zm>ek@S*V>nji?xNy4aa)RvEaoToj00eRJxC1$lC~9US$Nd%r0xW--s5LZhs05;SvM z^IC_=rFYVgqG+W@CA`9leh=w)@P{rxuau&x7~Th}UbR5+L3hdb^=noxt{h2o*yY); zC6B6pg=e{!`Hv!`I0PY&eFg&!#5b`GcDn0e3&MRtFUN&cwbk!4z_RIVhl34t6*AnB ztj5VqZ5#&U(ZVf@oM6(=msBC4q10WI$A5nH$h8f`zZ?ltQJm|V%vhHWqRA1?{2CM? zewLzHqgWzHMNKoML|-TXN0TWS7vvXQ_M>&d;c>a1qGlFNmf#J^h%%CQBU`kmiR|(( zTre{OS9VVah40Pon2J04-Pr56BR`2ytJYjkch^7p5gRX}ik%lftH1bM)}z2QFv$(o z77}%xGTm*RHtY^i`h$8W@Zo-NXK?a}iBaHIqJx4u5?9B@==3C0;=kg!7!UA`wut@x zj85j$9WijF_=LF5KroU%aEXKK$IWt+J>zy($ev3|$;tHqSv*eLxf{ zBNa&UI3lD4Gfrhd5dK**BD0*RUxzd8TvnA`IVi6Q0=naQ_6-BK*L16 z+^-aSj7+nhV%!;zJ6OB*H+6?oJ^^KklRhFrK3toKX)a6v{&|*s_@p-Jp*M4Pmn*kT zGnrG1R2R%X!z_?GS`=es8WxN0i8XKVsVSX|81V}{Q51F5`w2Tp5bf)$~0pBbYLO@pMhqVtMJFNf~her9EUe&Kzm6J^yLs(@uEKx_A zdMav{G@^TY8gy#|X;jT59!QEf@y+pnmc?XJrS_VPKf8LUab8Fx`Ra8xr=J>06Pdjs zg|qCXag`R)F?F;twZ8?$1nlFLt~Z)nV?%OI3e|l*vyg!ccnFsm!(4hDm>|>C!*%8Rt>eb0YKTJ+@0cimLwQq_r2{^7g~xTk6y)Xq85czFX+H$2M%-J!gF8^8Rb4n^lamtbOBar(sfkx|P&B z*zr!JTH`s*W_npTep=#N%zdgfwf|D)^`Dky2z$nlPS!`)ioe!uA@jz`6iFko4TcR~DtQ|W zp*edxF$3xO+5SxT#DcKB3fhk4Ps;*NKSVI_=1zaUk*O`r4(B}LKnKN`XlPiNUfVO9 z!9rQEFz|&aD*TgmXD}YJ@m!9iUFkb`h6+>wK|uZWv^QYR(Ci7CmGj{_audlQ@s$P@ zar1Y0m=0w#;Wfd|o*|o+hP?1PMS~g?t<2MX_C1o^gYO5|fCz#O>H;MXF_ZxzZ`j5j5DjVbKs`z)#mUml54d ztV~bou@p?cDrSP8URRlJ0N>XLy~^=Q-45jRke)YGisw5=e%2ondTbC7jINUqySLJ5 zbGj>Mw@^mUX52$xSV$fwcv}HDFHwB}Z&JsW2E_CGr|qDEbipq!jC`Ww%dOa#B3OQ` zNk)kHge0Zd zR$ZOvF~>Ar^)nr;cF~`q#;Z5)axAIw2_;gG6egUN&|@m7gy%LQ1F6tUC&IMBmVw!W z=a-&}N@6`DMg|=A6Mar!jAs;dOO+1il#-NG1ghqhD_2yMl@s7}f=?zQcNr+QOW?H{ zV3w?0-;o=xr~s6bwAt$AxfsiQa94&ON96o!@HRlJEg;MZiRFL*zkhh!JlSe)L2cC& zC(P-c>=Iuf9?RLfZjsd+GO}S=2GfGjVb7(9H*MTYhY=bAGThH*9G29a1_@$G#`-?V zvEB~?(ZpV4UvRSbEvb1O8bPdoU(5`=V!b`bNXD&}e}h|VEM}Tp3-^CIU+ui8CmZe8J1n2o@gde6if@-9NP4dw1qU&3_0^9I7H zWa1dfSbUima(;5p8m4&{I>&q3i@dyAM%R>G(;FREvhZocMKK?)&i|r)-Ke(H`yYK` zIAex^or6fC1m;Z|KsUaSld32PG~!B!RZ*zD8>bx+3`wih(JUd*X$Iq!LRkn5E9jXJ zzOCQ8U+a$!&Sp#PKKd{#ytf(1SvGq|5M(V8;OBqx)F}^iAzv*;Rnjz!ZB(>0C)Y^~ zM_B;rOl3BM0ywMR`3KR`DNCE!GR!JzkCCIa(Ox9-qd~d@1olrw(yBb1xO{>Ojd@M> zL&=T^tNH>Xn-BQ@CAJjfn?oFu=~)iQEKO@l%WWsbfK>E*Rw24`+{GDa%mW^|DnSL$ zcMRqPRerk^re>g0Q~H=DQ>Y}B(AgZu4mP8f>7t;GRg8kSf8HUn$Cb(=c0+q64e zpE5Uo7w>9}@@Uo6{JW^$f}b2UsZ{A4HX&2%<9cV9Q`Itxt8=a(#EF_gNp|;I6AwIK zoMOn>1hE-(njhMHN5OK)6_>p$SdDnhK<)`+&D_Cv+IRs*ASbrRnfBU%cGYshoZP$9 zs!uc3&wS72K~51+^8kV{>rcKKmd{zF4z+*#7)1|x7mHZ~sYVMsks8Ih|8w@silJ&< z=EDKwVfm_9>#Sir9qAtOf%VHAgU=r^=B%>o-R!s3c+J8yps4VaUt34d#H`2-b&tu# zD9wD`1{<}k7M_v(BtN~7<5a5kL{F7H9A9`mVwhb+CESH*M`20OsQl;Yjuz}d4Z+uu z(xVp`kjYb1Q`hE^3>W0(9ai1GaTcX^32-GYNN><2AK2OX>$C_#QO(SXeAO+Pm4Q9` zt2)hc9nP1ta92v&wy0`B!}3~r9tUpjx035>o2tIkB5O;)ZK6hv4DOT zfiRKCOJGmBohduOFyf4$ayg#YtM8=?eH~0goNaTMESdQ26TxyOLoQl?6|7%BeE490 zZ=>}u)89FhK4r)cl-8-0Bbw_ERW`R9vEd06=5(twit8s^cdIQ7s2uI{4k>PvMH?rD&bSFpPChXtv-jb7jr&LyOf#sV|MrH>|ZWdoNX!buFUTk5BYF5A@z8f`ON(=05m2FDE80%hxcs2{V8|q(ch{8^M#RX64~d- z4>v+H^D_~;IOvR7yR81Z1Hb{{>6hpme?0<`h%%S~68pGi#l*#DYH9Tiiy5jkoxaN` z^hPl^mArYGPyIXBY-T~HssBgUh1I#J(%3?O<sqa3C_1OiJOzy3sRG=}`zULIKI(s`fm&A(N%TOz zNg$E9&n+Idt)T$;+vRxKp|&Ai{=An-t56~}Nksk7fjV*2z*%||MqVJ?Fvnk$+Yw07 zY+RcOiI3uPd4PNR3R?;Fq%5Pe{XGx(TK!f&N$wsM+58QSO;QCAaF>t;1DPi4yWB7* zPqGBA?YU#omn?Bl4aqO|4D?W6MQfcxiChKJ)rZp-xW-zl2+#;N&Sm9xt%c>?9`;3O zVnC+9SEQw$g%~izdaeO;Ay}XAnO}Y;CEqiJxV?V4B5z)oA?+UH49!8sj`DuLkHaHR zh~0dcw)Kez*HN4-&&UgUi^+DW=smY0^co-ge_#fN>Qp`7`Z{LH?MV?Y#jzQ$=MKVf zmu-gn0~K!v{)R!Gq5Z*58Ay@W^-E9?BP`Dv@5gwxfd2g+5`Pd z{FO@$oo-7gI10%}4^%vj&W(dR0zHWokVD_A30H2Xalq2Y(``@$O0jLe#)f};qt#ay z%7~yO;x2db!4t@;m`2m)LhnpRdgcVq-IevMu-W&bbBhdX)1OW3! zz-i`ugfU77$OCN%UI#ZNOvnt1rnmT3x~UWB=8p@NdZBk_>0h2dBmwBJFY(fq zvYm{*Ev_8L^p=Um40*t|@)`y3Uz#QqH(Bfb`IS_Le{Ps6hT{7>{Ioy_fwz+si;nVK z(O5;uqaP~$>8$u_$#yf%9mdSPQCubOicE)(+I;9g=ndpjD*J?sd7>W z97V2x7E$VxeU2e|FWh5{Tuya>8gFCUqN{kbb9^l$pjVSaUe>6};}EJ+Nk=(df_7W6 zp6wKTlV@(LMcp>0lGW*NyTEt(e_n0n8%3+EDBL4)ao&4!($c}B#KK0D77w_yFb%b- ztNYKy$-@M9ci?4uI^@5=U2C?Kdr6itVtkNn$1!0GtGvf)Msi>E1fL>(-;?r`frwbR zR3EJ?l=pIJ;Cjpl%&0J7!qK($o)<4{WC#GYx7E2Alt@K0*B&D};VE42)jE<5EOgep zJZhT~jjJQu!=5HZv>{W$Nn0yeI|vO_-rH(%gCbAAe?TBm&)w!FxLyPCm;qOg$4;T}X?#m%*$&S$0W%f+KJwAee#$XEQ!VH`EkiO? zb&i|=QksX;5Z0Fudy6oijz|Z7rs|h@2i43yo%y9;^>d)KV=G+009G^c3tc|y$8T3K zQhP3`H>?n`_{=P|_Srq0}W_@zs4YgsgQ3HNSmzr3?`jIY z6t9$JUbH%I{3&~}&z2qM`tG~l*DI+=zVfxDB4Z1NigWxL#%Z|is}leWJ|4CYLNs~O znw=p+x?wpsy2H}3H-}AF*(IUchF^d-Lx!LBU-yRbEM|ntrxQ%9>ek}!FPC*4g1ULG zYYLY*dBfQJb-xvbbFpwN2%?7tAmb&vLl&+cfSTL)_eM}{=P!Mcl%n%U2olHN=p2Xn zLmvOv){@G7#fu+DcWQr`V)oe8lhQ54ZO&wI-E27-T}y}cH5$8$EwHIilE7@oDn8pg z%%bkyMGD^NTe8dLHNR4Fa2MzZFf-bJdH4Llo!~@yHZ(O^*y<=MeqOTQbKyJYtt|Gc ze}~apIC|I`O$6O>vu25KTzyPMo`{9ZCH403vM}w%&Gemgr&6r#99dKU)$8d6X02~d z&1|_}sbTP>DvIU&VeqV&LF7B|w3aC$Y-W>GLUund&5z;*U@faOlQ|(xgu)|QeCFoz3sDuo+0#1t?*}|*AF!^P~9T`$y{^m=G+fG z-0st%gS(@uWS{0st*$d#_AQqgm_dR7w^sGL9v-^g!Yw~?D4RfWA9EQ!{N({7>c#@C zsNN&8pZ|P3IqTF#|Af-}CNa$Owu_AkIcSOhd$qKl*&k*iX3`)gx*FcZ0*4M`Uk;62 z5g@vpaYvm|t4~a<6BCYc{FHr7{8W zKo8xIsGt&Dd5>h{L2eUE*BqI5>&633t=zS^iJ?~yG-n3+W$oGx(o>x^8w2L>dbbrv zfm|v2wud1v1m-acu>647#iF_JSy*02LnT=p_ANnB4SO^ahLNa4d;%u_LMo-ctE`3o z(xqT@0nkXb3ZeUmm+UrDsV@tlBp`M{&r@1b%>FgjVCD0z&-1g$$8E zL@;H5#6zCH6T*{ZJ~n?o!63n_C~*X`2cv-#LEaq$mX~iSnw0%=FYK50`17ua&JwmxCO`XYcQ#HD&qEaUv>s(a5_&e zigESu-@f=jxTJFQ)(23I=rh^0gTkS4&TQibv>;j)s~^GHgFstErKYDA4vYixw55$JHAX(UFC$C{vcokx4Bpj-e!TFqb0O%sM5FUCs1hJy;%K=6?dY zoo4xPoBl*1JcUT2F@!9F84@TA+1WemnY=PVZE!Eu2?#@oG?VlZrB!KN(jevcRzXp7 zTs{2pJAZ|up$k}27-GSR;#9?omOpk{?jEoMkF1egiN}G1~ z&vlM--FI_Ka)mk43J}#03SbW+1@!Yf`RRAVqHN7A_m}gsc85_JyGwv+AXbct@p7=! zj<}TD&OPAJarvH;X(lC)s}zT>Us4G=ub9Z)*9aQ2((iXDYsmeZ%l7sP){~-0y5q~3 z`Ofmo=E`xH1n>zA>E-lHw-fiUN}NUYt#V{PJKh6sXEd^i2AvXXKbfBJ?>V(=S-6-3)V` zh%#dwf)WA47kIw|Z5tAA*Ue3HPJ>G1vlIFhhY@WyIu)HW`x!XDFuBP|vb1xJhEY-C ziI;gCh~fTQOT6lbxw1xG&G^!*7{k&T!?*vcfsDBSYXV|OQ=pO7-cVYBUo9WTOVu~-fC|U z-_IkMe;H8!%;i&WF1clSJgBpfisfkS{a*QLpaj=t-wc%&0USD3VgGLG_b-#5s`_%W zS*Nho9^fhSmh_#OsL)i=*P&s{K&k^jgSc97uWM*`RY)BK>BDtUyb4*BfrlU}<<`F3 z%MExIV35hh%EBTBC4bld1ex$(Dvt(eYX4PLTZLW{Irl`u2^IcN^ih@<6Kml&I9PL| zJ&*z6hj=yyuCx<3a0HPz&hu2|L=pX17mrU9P14Al+w8mdTGaQ-#sQC6fgNQEVuldZ z5cc#0I00rrZS#Bc=7dqke;)-(22+Ic#_KXagwQ=b(;Qq6HSr6kI~)rOP4r_ksp>zK z=5ZP3jrOz~3%4*LuE_gDmYrw9Bjk7N9d>dtKq3&@SyA=?9x4D}oxuO&G3#JP5(gku z;PUiARqGwL&;5ry7}^;cR2A13#Zj_}r}1CU(^JzZ^xQhXFi)%;Xs2y+aeU(8%WrwQ z2-yilPVHx@EKj!fj@7<(0{#QuwdPif!0f!E0M@YKED~!OC`3vHuiE`@*O4d*tk#OY z|HD)PrYA~-od-0b2(^QsFHxct_%T<@n%~!3Xf>`iODjt~3@M#pHp4u4lVn+3lkBNG zkeZt)uDwR1*(h~=Yd$JEF?_E~EE!wKlPICx^xqUC+y_t>3m~)xCHm9znS(d17NlN* z7uc9=GtXmovT}g$}nwTZOHeW z-XI}ZGFWeDLvXp{-p)Ew#vx<^1m}cflmqAllD_%+^n@3HPfIK}ix{ZD6z#%xG?g4_ z-BD~ezS8$B&}?&Q0?68zJ&g~JQAYrlbYQE(%wa0xi)+{&b^rOqsqeQWJ1EWxG#RY# zNxY%_v`E)+S2Tz_-6naU=*=pcp3%6sw=Q~?N9dYPr?>|Fdz`h7$!ib(^In~aoO%84 zU}!ttei_=#j+@>4JH8GH%)y+NoB0T^M@Axvnuz^FDR3aV;iMiDolBuCixpV#T$xft zsMx?>E)sut;dAWHtVx6*rVvui9`1A<9I{_X(N>SLv+4J` z|MrS4=SI4{r4&cG!Fxc*{|h&>|9M*3AaF&_FLECuNwQQz8zL|~#(|z?@JXt!z}Eac znB5^pxlYJc>B}`B&AZ?-0B_>@)(WDN{g?Oe2BZk=$%JI%*RNl*ad4=bnWcd%1CMFj z-;kkJSzY@7SbNL3s@AT1cq=waD1wrL5`u(Ex0DLfNQWRL-JK#K2#5+OUDDm12N03& zmXa=!uK!#c@qWI%-`@2*_c{0Rz}{xwzY9AnH6AFe|9(D7 z$?gru$K?(_?7h?Ycz(Wv#Cl|#`(}fJ?06Y=$UNj~`>B&_pLd(f7B&_SUg{Lxv?!_A zU2r6t+6Z%*)`Q>eI2gQJw$wy!Th`LTYR4DF<6%uLg3YEdhbNPMXlOgv^?lW3l2xX%{P*tQrvoN$i0;qTN%K1;A zrAAlhS1}NuO{>_>uXJo+tb)J`Suu#^6?8p2jN3Zd{P-;a05HRa-kmK#9Yk74K?T|x zI*UE*KgC9`0R4USA=${3Q0LjIAk^>OLy?2FH4nRw3 zT&#^2v94@&W1XUC`;O49UrQgFmo~~;mpycp^EQ&bHov#$`g<1~>3fb1a3(!|h`-oz zQ1oXjGH>AWh?A0n8e3&vh%t9My`!Jpq!k@!ZLIr9Crh&9uDz`fS@*$I7|Gds<=pY? z@3aeeq`C?cLw4dfKGnZKJAPF&HZ?VsLZ3Qo5YU4K`m3JQ=ar{6q4VaR*Kix_;>k0k zTK_|yxf|GkU^d(hY`|1F8lG_Oc`GKle6vOX_&KmWaez|u1{@u8=lQnXP0E%Esg`c? zFT5-oVvdtcgbJgPmGM*i40$77t&)ZxIy;1ebb=2AMdNUaDe0u^L-nOg{6 zgubeu!m%N41V6S5tPyByxQ{GS*Z0<$YT*$QdLFUc@b00kRn-L>H_~{Dj+eJ`F6_LU z<+j$|{SuyD+i;bl^%UuP?|zkukUrbe5V}? z5Ll(v94z*qjG5aJEb_2+q(Qo$#=Zb#0}sU4)5{)4E;v=d18nzpXF*p`q<=M>fGG&7 zeEi8Yep%{D}(SxiS=U1c+FT-goWvgk}>F8Srf!=I1jb&4X@> zywe{{JQ?s}A%v#m4v#jQ#CMQlT3itY26O)YJ+N^zL!)X0!!8=J8L}s%V`P*>q!=5} zc@vs@eBZL$5L~8{Pj3eo#DUpK6hD)7lf-43J_dS`rOt^@A$VVFQ8pGU5!V&f&;yYU z)&=M-c)B^%uqBKoHDzahOOXy^2|7_C4b)AOD=cSP#fR9@KMj8iWk)JOt9xTd>af#Y z;q8Y^4dJm`Lve+cm9=-J(V#2QAKfqsD9v4#Z9GY^`>nhq-+~_J>d=I-09sMKK2$~J zGxQWNEYZ+NAFo@uO_^tM{Wljl^(gN$(n*(Le^PeXe|4Mlo9;sdbOyP9*;k`1iM!uT zh+KR3XwxDG?PKJuTR%G6!lafv!-vqQp_OBi?TR`w%*Ysg52k|x_HtQPj{Bx;A3HG? zP$k7+P`jb=D>C6Zi1!2jZOT=43Q&~8aPzCR}(IVZtQ+iEeVCf1sSy`@-iCDoc9RB>em#ChX}m ziLT_KLyis31rmX}88qz(LvT`M*AR#am3s}?KRUtB6KasLB8E4-{^XfnmRSrftD$ZX zo^@9_Kij0B&}?*v?kQMQ7}~A;I5)$q@jQlLbmUgx){n=@nbr#kvbZyUu)D){?$wjF zLKivo)Xx_obN&;wBKmfNkVsz=IC}7+ShW7T0R15afErEkRRR5y;cvdz5`g9r(N4d_wyLxUuZ8$XB)TRHEz&=xhO z@$EZiKvc?{yw`-i)J(gOZ|M3~!}^)5a=}J2Bi&QFBH|6io)_TFwA_YiqW2o5YuSjv z^ou_?e`HrYwYplyn6vF0VB4(a5h8aM!@@ZxJmEst=9u~aeTSS z*P-jl+Q1xw9Qos)p5-N2$>BzYKaY|SS}7a*rbESGxxHok0!qIGteN<9jUfH4h=Oc> zPHG`E5S=z)hNUc>kqreBIIp zcx4=})lgL#qK8%B(<;NFk4^G4Y1f4XHQ=b##)S$v|hcB5)Qpn2$B$~!p> zlBDp2Ug%NS*8d!7nk+7Z$={q0nn$eb@=D*qQM{L6D6o0%w?1S@A%-rwR?&A}frLFI z4_wE-9W%NS7tv26j>*r4*8S-F&LD%4PYQLv%n(IW7z$*AW!CEp zNe=R(%DiZ1$p>INu&@XC_#m$F;R*7f%)ff=+H+;)c`gNY^--WX=0CHfUyN}{1)qlG z)@f+4^1gtq&@^jl`5j5-|HPu$c(6bCM2VqGGpGC zOiel8DkdrlBv7z31phU9KXQ=U&HPa3AHlrXTpV+pGO(*b&-%X^^3xB{rFfReMk7Z{ z*dvW9%GlQSDbkW1q2^Z{9qxTd0Mo3o*!G918^k&bYSkXDA;tc+$r zpRBZ zLDBc=2wE`f^&A2RF$%btq<~Ka1j?D)XMA1!uSN+py$D4eaiEeZG#1U@o%;G6uz($) z1>}BUw$~4UE)Q_USm!~n&!M6$$OO{J_J5v-!?+U(E{p~qAkT32tj2+fW2U=p(NG55 zrQyNuh66DB5hdj#k8`h(B02C18RpkdLV%w#FVHH?&iKcH4|%^K4Q5}fH!f_<16fU9 zs+s9Bcn^W`GAdscs7+}vbp<9dC4)v-B|t$3jljW~$q-}Gi(HL2&g0IUZxG2n9dvaU z)E}qRh7?ErD;!O7ITf8U(L)u%0Ky^!pST^!9jBD1`wCI!Eao&qw`DxA^8u%yu@%YjDOb5eXKdj%?t5?KMTNDyYIGuewTi78(m>KQ=yQD~F{Znj8I><^WL z7gHfs@b&Y-D3ggM7=@N2#32TpCO z*}mjt%sllg??3*MEEYGi+Rwx3zxr#oUd>Awp=Y{GRq z`B}t#8~&FJ#BUHQFQ?ZnCz-xK8DJD4Qi;t48F*?<4zw@|bcGIS-Q8!V*AT_C9@O~X zjSMA8L=t{#Jl|ew)$+7AtBOVLeo(-ArXQ%`6>PDe2V&i=v;;ry-KC<(G>mjP9h``M z!Sva}=ucIf(j$%UPsQHJ6;Gy-sqETFbP0|T$N8+TW6v~#N}g>COSaKwaTFcl>N|iY zrV9yOp(ClZSjfE&Mwc~A=!LPnoHdsIZ>>iR?IaDL6m2H`+2%nFoCfEIb6GJ^l2wq_ z#1Mm3v261)W>{$e28uCFM8lF0u?e{JnlLtRfCEgiKCO@3qyi zaC(DKkfD|z`~k;Wg!MjyfaDmPC}LyvOI-gmidD*IKKa+OO3^s-C@ zjZ$Oj?tI$y>(;+wW=npAvq{3A@Z|#vGe+r8xpU|OeX2pZnUWH9)lL2uut$p|fUQVn z-QhkNoSI@yN81?-jW2SC+FWZwnY`6N%wSj>V?;uq`d6VpNcEVGm2*G+i)84^$Dx-? zbq9f=i-t@;8J-${h_eQPzSY8%38!7TK!G)>@MF$yULFY>qEILFvoU9cg%M_`mdGHF z2I)|N>ygWta}riTbg9xmsslS85=5K9agT`LpaZ3_2l*D{{0G0-syaSO@*;ZzFft|d zv@tJT`U9}$0-QdB*_s~EIWZGXg{KBg!wix8FYZC~Kejiz#n3B@(Ox^S1oEW+&PSL6 z$+z(C{Ta2%H9HpA*w!;S!qv`;7VN!9LF&Qg$m_)VaxsJqsJ(EdAxPHHS7(@mpnChz zI{fwEPweLI-sI#Y3-lxfaBppb`J~N8HKiBAn!4c?i-hw?Pi^;(L#iChz20=GrYz+UGp6NeAzEldBKCx7FdMTsaBgs+Co7WOJPwhugLxgR^bD%q3M^K1Zgg@~&RD90d=F{&0$2MyA_hlh z3i9m+J+wW&y`sNeA6|NTg07lR2#J4YdIZ6*_!#@iL(_vTE&nw*aFDRcs)eO*7SWS| z(nSNjAfHn6;c$)dmvyfS=En+p&qMOngQ&IhL9!_d=Py#u1J>hNr zmJj|1j2lH#vuGw7F=<@A!&w<13eKc$8ZJ~)^mLb8Cz*pXqcO7yzoT%J4i9=9k`O;} zkID5b@TR~>m+IN)7-$}>5B~SLLrdbLw^7V&&}ASD%F>WZ0yP97OnYq@q=EWkI(rDI zETAt2^JmVd2$Y})uSxOvIfQWp7GPa~M?8RDl4<4Ts$g+}oNN$lYQ1bDzJxRzXz~(t z*!Y+M0_KsQ`;Z1PzZ^H&Scm|=M!zJKMk@Efa5l|^# zbj}x!&Kk|)OiHS8MrwPY0O~-TE(-6CXy-*98K4n#x85Zu!6h%vWZRX|FqlZlvoWZZ zsxEG#Vg{1aZRYE@SPg&&`rD33eNAg^S5WlbP&&e@ejd-|l`MGtVEJbtG9~+YwLW_etX8K=S?>Ua`I#bYt#9Z^pgnmvb`yFyL4-V9 zB+Ioja>@;n0D=Bp4$_hcOL2JXNFo9SjozZnWoz6rG#ZTJ7pnzVD%6ExNA30pHOz3oxP2v6d}pQ0_cDA44}iLsIP{uvnB z@J|^zKq#(Insk2FB?qqzaF--xR&*yz19E7>eF2s6O*Sio1F>%71(6bm@g(!BClc3e zkGE#GkZ+Kkfdv2S+`-wh=^5xLIQK+47@Be1d#YT#83UED?MN_-JJvU;s;5Dop*X)W zNx292sPY{>@XFqhilXg-AazKjj&_pyNG+)giIqfNe2ilFW<>UMwQteo?0_U<>Ad=cA<+_zM!oL+=#n;d+J5_q8IJWygxNp1M*X^5?qi7vtF@3^e_ zX`tu(fL$3es+IEn);c6)26e5qKiQ6l)(t<GXx~}&qSlOgWrY_5&<6v3@f#}067=u66a41=Tl`RFg!4{h*ky0&!R6cC#>}90 zHXbQu0p_AUCB^O2N4ON^tlX=m;~{NZEMoVCTrmX;H)kC!P94KTsP?UK*`$2}J`;sH{kyzQNfrn@c``=n?QUxRP^4laSM6&OD6so&sb)(LqYE zkAWlOR+$Kh3z2ngtFh4|u?VM~!)mw(!fuXc7)r|6^96T4d8-7puj;2*4$)nUTYry% zYELoHZzIfsvyYoMK*hJjD@B_$6yKk0c4eVQ9(k8kwD-D=kAv}_SD|hJ{!%Z1gDOt= zA>*lFF5*)($J@*T_R<<)$|Md*@VS|;fHYHQmOm^luuNe+$_s01k<6empfFU+<_L)_anP3#28K%R|PY z-}~Dsk|u2o!9u+tn>8osLnp<(z2ep&a;sfShQW>BDG~DP8u?V z)?g!#!=42S@r9B(L*O*F7Mrd|QNW>;0AL;pT_dKn$7%jY&vF&dIU}`vLpxpY8>K1;HHD*}HiI)XJ&l-|d4qPY$R$tY!Ed zZKOVi{C=0tPFS8n6>X}d%Phna%yG6}3}ge3fSL2A_%CJ^W1VJc|EIC2w`qapK-o1p zTQsX>ICaltu`l2M_@%`NBZi5nH*!OtZj4wzmmDz{#(plx0sR-Q6Od#=`8`<${q?G^ z<+IdD=JEGg?N)!H%l1le644r}hCBer_U_|~oFX)fK)-5qTyEq>4_VT)tF*uXbYVT*qrhtXVMI3Xi#s{uETcHZqfrFJakpKCdxeQT_vkI#<9UB< z;em?b09FJ-y)U&{nlD3yG_fX_#~)O!wCX}?W)333Ga-I~mo5IzTm35#XrrEHRcwag z(<|f6|HYqh&Y*Wi24ZORNzezIExq1lLBgRi2iPr;%M2`AP!|fo@^lvQ<~p(bx$qhw zAMet$%=e)iEJG!boBy=Va80l69#KX@qY|3iEQuG(j_;UX447Rg<$}^u&V#n2{XnR4 zfpqlv)7vk=uM6CUw6f2?ZQapX=(Adpj>VssN-e+vCVvMPJp}<pxpC1WG|l^}8*mF4syEk3Xm7!9iu7)oKh2&d5qjfR=lVi$)TI=@h)O|5Cr02@t#ssa(@5CqP{`1=0biWdmgb zEO`7YCH2D+xk&@zFX)N~5a_f;NvopeU87W70~mZ}vW_6Eo^wp;q$Ev`gN}zGJHR#= z#m6#(9dV;_tL>U3cPvgbt1<)72!5V|3~*_<4+S07Nn;F##fv@2zXl7=H-Qsg{WnPb?nE>%D z2E43MgGY`Ej4m~CI{|A>q#Xr1(xT;yr?);ckzJO&G?#c2_wOZb+Hl&I;-X#6+^)R5 zycZ>PLqn$_6!iclVj-HS5w{q>ey-;7&;lXL9 z2OMV_89#}&?iJu~Y0YS2MCI$Y|$2sa3RgCamDuvAf1B?d5M)FTfh zmgpH$%TyP#h5&HEfNk#`iGGA*_ zRHywQHZ}DU2L}hc^DZ;E5sAf?-MUZ=X#E;AIsWs_T%FO5H*j`vBicWS@_G?Qb%*6N zyF=#X`15aU*8hEZGMkn=7w(2Kd~O4@7*;I=7pcp2URM@k|Gk@z0$l*!TgSqEhYt=A zBI`Z|v>CRYBf5F>Er6@+n0*Dx^pN88YDL4E0NEttYOjiEjXpEy*50phQ!PljK0nYA z-6HL__MKVx$y5`bKDTd|z;EH|E%+aSN?UGqpOyT{P z4S;Qs&ekZgJh*W=IV)@B_dy7lZ0+#A{rg)Ed9XQ0@H!9b^w@X`xI<<6`eb9EX~)s; zS}SS1ps=t@-gT!u1;#rile)&?qpD$ntbu<;Tucn=^{wi0vlsQg*ZYgjZ(DJyZIKRJ zdm%Sz9NuX`?)&?J-g;_~a|-@NX_t|QcTZ->e1YOm389KkaJ914*3;t};^pPtp5Z$h zn9zDDxxHG4odXVxQBmhkCU-RO>^Npt;%EeL&ishtDeIZAL0!0V1^SVk0aHg5>dKWX z-@bjT_QAcayhKJu76?QlGQ|5zN>&ylCMVe*s?~~>PWFAIKdb}LH}~qM@ba_-e$M|! zPJ3bJVV#hWnh|Kew&&BbR110b7V~_3edqu0i%d>V)~Wdgvu)T!7brYy)j@}pK6PyjK=F@{;Nr2FCH$5SxoC=>|$ddAri8TrHW zDEYMOV9gr*ut(hwc{*%T+OH}c1>qe3hI1x5dd=mw~w7S3Ewl$n^GO1?6bXddH21iFnFI>KC#Aaz93k!_h^4GhB z9HdG-L%WR1cHA=glDFiHJnn7~&h&yj18-*q@yYhFVVoKjg_1VaV|XRzwR+G?ns)eRn*u7gxO2Y@qbM)Q`~-xu1gQX;ELN2;GX5+edrSGPXA2cD%gKaj*S% zje%|mn~?cJAkU^^n|LY-tjE>0wYj-hIDcQ^hP^^&|7d%AyJkaUH z`1=U*Fj~$ojpVE>fM3Zu3rkD2!blFwbI69s6UO;a0HcDFMepCuhU4+@oQfMwEG;E8t=Pan z^GLq{rG_Uwz-KI-)^mf~jtN@KM9DJ_pA0Il^bizxRgAdoe`|X~*mwigf+-cj<0#*0 z2L}Ozu}96VyN`vsuXjH5g)e2}uqwrSMePT|9ud0HJyWkKBmbJ$fvk}sJdaOqfx?Zh z_?mSI1U=_qPsBNMDvpMe(c*2K56rK3#2i;^YHHf`nYTf_6$A?+W=*Rfs4Vw^2i3o1 z^Z6N--1Fz;)YRwUEc0s7wY>Y8;LIu5O8H3br-Dd1Bu>60Zb1z;-q){RO93-+xX^r3 zc;-{zg0LEaizy6Nzs(%Hl9G};AE_uTx*D80Omq?h-qp4W?l37W z=H|k~NUP}yxJl4Cs-ArKJhE4H*Ms~oxSz){Un<*65YH3 zop8~wuaz^FyIoFBzu7@n7=EMv>>B%4W0*&ZrB-*nu*pVsb%AoiumtdR1iSfZgjM!1 z4+vcNLr%`lBhlN|?~tvw^22urZSCjZT6J_4;)>%)xv-|2TL%}h7CB{nRCMn&wO&0r z!p0yzi(`;eQ1FJczbt()Q;KF4ju|bm)1lwhQ2)%}O934U$IaMdq-a!k=d3unA)fxs zWy?V7wE74S504+`4A8F96>|`e<2MpX3!@%oUj8Ip_&^j`=;j5}Xg5Ghn{|eus_g@t zo{d4(zZ1k*CHuuGR-=AYjCswa@D?wyFvNk501sqjWRzRpk@5`cP}-pEfMLH1URC*n zV=tI~0vXRZ=;@Ouv#)O#AHr(x=uuENw&GHeA92e~Jy(=>^4UTbcR7~@gk<0(YuzcM z@r5Y|Bny)QKxqX81>xbxjo6r(Z{5Bf-*V8{*fWDnd6ceH`}i>27Fc}Ne_%!JMfrDr#Z~&jPOb*$cyfIq zF#AeIeq?Lb-STbGvjacwL6aj`g)qpq(-Q+wL3W3?U-awQ$-{Ps-o?Abz1jbgVP-b0 zwG6nGmHQ9nETk;&&S`o@R`?{ zlbf5n^kCb^2X(7|tn0wYjap#%hpq1aRzMlD0zBc=S2iL7mPOeY@MuPvss99WmYnzG zFw~%1iBS;SrK^?6x5}N&W1m@S2nTNeY6mxyQ+v4^1bC5G~w~ zoB!S~E~*@2Tc#VApNNTB-ZeQ-7@cZI87%4v1c7tF{=P+wbsklm-Z?t;-TC5cH(@_~ z&Du8?)toN~bvNRL^k~W|Gr&Hmsh?df_*Fk?Y4&s& z%(JuLM!i^m8d4H`6tij0m%aPT>S!Nd)OXNF8J4S2p{Z#)V~HH1(F45_yw3apPc}UFeK34 zUeGw2mw7)RZ=OiwiySJD-R@*Ya^r5?#ZMzSI-I|;NnAFSJEEO4*}r2!%%u^~&d-=$ z>_~hy{va|-@+R)vNbld~i%um8<|0(yFXq2BP%F-scNaUZ-6}7uoJ?vz?Uq$UXiHBz zm77tcT~8NHR`34f1O7TMoIc(Xp%k3m=joPj27b;C$jU+=WKUz+h_Y#y)U-n)Z3j#W zzvNV{(rglt3On&%K4jmqy|8Jc_MZ%%uv5^QhLf!g*J7NZc)Mq+s%rB0dTQ$4iSadC zO`~of6Fz(jinvOlj;?FB=EaBaGF1JZ_&j3rSY2J+`#3skv2`0XVvXRWT>9_9$)15* zkO2EABn$vLkSG=!-2_T(j2tcQ_3J&lzXG_HtHG?~l&h<2Xz&mtwJ(K`^nc(ixeCW$ zU1MWX8J4?`14sCXdsU@tjIjA$@b^^0?0tXdZ?x&=CbG2GZ$uH_vrpH2`bdg4oRJbs z?6Q})D3EE|QH*c49XW<{(@5GXKaR!~ABcMDoZEl3p$^mZX%sbbZ_+CB^jEgW$kbm+ z54(Jgm_N;(w@xX?DpzLYdNdoV=&EbzH?c|AX!mN2i(SetT@1a)_@mc-rfN<_Y;0`Z zyTCx~{euIwLa-II`YcO>M{fba70IuYpvEWJ`O%|C$TP!P`5G$wk7D(YM#d*9?j!nzp@*H5nz-!m?lbaO*- z|NeG+8|;3~_qWX#VW;uNCTjo_*c_<)CnO|Ttv`F4T$DFR+@H&*AfK3?dg}Z`B20(M zu~2_jQsxd?=`*a$hN|yp+UKr*lCvpKZksM#Z1e2-<tq&|2IT|-(%|5xdt8D0VGT)?#=J-I>FM<*^{wd@xes9H=w=0+!a6pw=L>@^sGG1X zq0Em$J;Fhu^xC3=nMZ@`*Ux!8k^#Qu->WoGB>s`2;td5u>NtkrC}{{L^A?8_^HpyU z-h0BMeut}UYnyU*fxbT?gpNzaF#E+=69vQ+sQ3XYuBs;g`{+$SZ1KnF`La3&t|EFv z?B9kA<3^tO^>-PIZaXp($K@xHBJ*%hj>MLnA_ZO!4j$ecAX(28g6c*KZgS}ttd)o= zzc?S@aa*y=zj}2S%v&Oa*HAy_=I*+7oYu~D)!y0cE?Z~go(}$go&~*5LOiS|5{j}bFDo& zgyEl7EqQ~(Di=GoEUOJZY7CEFxA$vV-Yn;OcpQqSjZDb5Y8BN^=oa2zaS4GT4}(NM z*$;%_)jI(3WDgkG!D0vs3F+0<1!qnMx*UvZ#B^HM)uYA@PVgdODsu9g7Nvhjm-J&m zR9d5W{J=uxC15$*(EBCZaz=uf+YU!qSeS>0hhl!(shoSb+1{bLQEch3IPx2t?nro1 zQPQ3zdT;+N?^qVRF6~&;*kUwUtd1U}vRLUCE^{f935gSXY>vfrKewZh3rmB zRdrG3=koZtJMcx+DlksM9=JUrX(0y(PGBf`0sczP#Z@+PNa%kK-o22h=p_&o`2cL4 z#w<%Qk4c5)U#&3IRu+W$SRjE+0E1gv-uP4Sm5ZxFTKRlbSQi_&_AG{PaGe(Ucx7zG znwp4#OAvWE-P%sw7ZRq)LL!L>SWe%rJuet9S9i~nWwVC7DUvqee{cP75QQV$QIe6O z?+noXHh`dhh})F#G5}sC9YBESzJq4;?KQ+(ITc>UiNWsb0w`39ladiF`GL^WjkuGM?ePQ#PKCP z_Ax3d0GL6O;6Nk<3b#Bv5`AvHz79!QSMNG^Fk2h8pNX{l)A3juTzT`(iwITJGR|Ci zBQRU6@v-SP1uoI3V)sK=E#lYv`6PG3&h8rIywD;>-J*KtopM`6eMsN$7OEOUuJ8c;mae-}u4*N_{2 z&;Y@+N}B-q@`26*@_rpEj?6itUuz$>abtMK?PN^{6V!*v8&;Jos^grwr<{M`8r8Ge zD2#sy#r$oEb$Eth?a|!5YtBJnJIztDnJ>Rs>AYt%Y|%{5Zo90?Ms^B!!{+6A&+!@+ zZ!ua6vXC3^j&`Q?^@jRX{L2WiL%4g@{La<1C6&a?xQBb!%Eo`-Zd>!Hi(GmYA9tUb z{E19&V>8Cq@Ga*k^y@QLde4o)hV}V&%1U?tnj)vs+dPtKq5x_tK9s-Ah$gE5f$y{| znU`p+m18FS!jvxp0STq`OjK-*)&alwbcXzb%q$=|BL=!)-3p1RuwUGEAwwLb+pzk^ zfo!<4i*XAXM&z0oL{N-!5HXvv6B|eQecbJu`Yo^p6{BI0_P{(X9rT75_ap9;9k=C} z(4Uo=vH69{QGvb>7?T5y4g-rkr7iFb$5$4@*E zo~1N0a15zz&5X<0d`(D?t?^~+i~98UXx`j+m@>B0AI`!}!8F|1z{%nt=J~Cs$T}W{ zKXY2-4R*tN9%-Y`Y7I{NZw6U^QICO(va3hBN4W0lha>l$VJ`EE4L-mWn!*Q!*qhAd z1~@CiWOQ<0sX8JB>7|da!QTBS@c29rkGcv_?oDv5%*edlV-;l78o_}^?VOxSmu~!9 ztqx_trh>(t+G1(W8Hoj1V*^k#?}Kpj%(-&{NnMZPJ7Ov;NzZwlLQVrf=%HyF0yDx& zo;eIVOwY`000dwa3|JV8%ea)M`E5M-;<%oioP4n(wJo%)z~d9ZN@H?zB68)ZZy9p zR%}^wOX!Sa^LO+*EYQ^zxTH&!a4Y`LJ&8{d?i~hiOc4IP})!itPrucT~IBl zcuV7Z0Sl`E3SsV$IlUc221Fbi2O}$cF43!7|ho4E>ygVeLL5cglu+iqNAf1!Rmec zCkO*sAh-1fD-2@Tx!rGFK%-j|p!%!@u)-fsFX)C0A*i-ms&Me=9WI5hY`4?0&v{EU zt5j4pjX(UV&!jZc`oCI9vZ;aV%~uqqRQk+>Z#+G7ivJBob+S*k(ShPT6&{}IBW8Sk3?76oVc@ zRo*-+HMQ0glc3a!7)A+9(SD``Y3OG@r^6)}_jAv2H}U6UV#UFDIkNYRcT zQfw7mKFW-^VEsbvqD+UIBCgr~6%UiM)#bv3neX4l$w;o4N@Cx8_O{Ob$5o{PehqrS zvb|f#Cl0QBVY-o#`x{_xoec;cUIkZ% z5JcnqL{hR5VjQ#Cc5)~z6%A>`cf0^R^2yVuHSqAb*XkG>{*9NKa8_SgenojX4k_s< z{Yy{@2xQ3D85lFHrl+RPhvfM9C|lM|*%|S@KVK%eSo{$6RiJvJ$zS*vQ~)X9?0ntH z*)&NXMU4Gb=G51#icEL03|-zIcKc4 z^1&A~=y-($LtyLB2=>WD#NhFmgzf!rA#>c zT%_$Yb+|Rker7Gm1<6cSXB-;^Cu0|H_2`>9-7*R9*?;59g@0K{;8S!$dXk7|(h4cH z{qZ?D^7TKdfN8En_bf^0u{Z$sa#Pn=8)^dAI!B8%bDABskj=3m5IG(1@$ir!w}-?5 zK(5zY<7~GRD2|U#JcKs~%~Rht+J0e@8@R zWtkTF3kz9MrnLlgPYQq7OCqg0lh(3qw8GTVrb#w=RIRS2VecpHQA4$`+dCTx$lw5XLCC@bQlW5kc%U{2@G)eW%ON?yC)Z>qR4asraYY^BKFJG9 zybc%jEYj|5@r5e*t3AGS3dLfr>r`@3K9$~K)JPrP%05Kq5`8hPg`DGP?$<+oCiAn; z(9@YCymdwBm9yv6;T~qd#IqewbiG}A3~IP>Ccj~$nSkChuj|J33t}o#6xF^UD2TjT?XccZiMtB?_LY|k!WVia_%=zf+Jitd{+*qj*#&DKpFdw9wK2tfeO%_S-l`w-R-7n)8JVkqo1;(=m_QeeI>W4ra~0|`@JBgC&k(!imUCtIXWrfKM zw~k5U;BZ=~qNQle#czM#X{Mf58jswU0?8mD)t>+{>Z`os3VNi(zLDkX5Az-ix;8>J z5cRYC=O*kiu`zCe^CzWFiVw|QUDrSdUlr41aEdv~GA$#c9ywrv17>9~26ZVU&j3=u ze6GVD)I-!scGIwIJqth{VxMYpR0~tXVXBE zGqKU9;T;{Vk+eyIkM9LzL;y7wGyD<^|1^HY6(@3#?ceOyU@_`v0)Q%f_4n`7?W$9U zK+yOJop$QLu19;RP5Xf+$V!UGy@*yp;#7)P#0QoapZQ!}Y>Cg|N{82CRE$eR`rl&K zz5Tjkgoy21^OBL!dq;G6Jg(KZ-Lo`!{ZD(XWcX2mndi?vA@t%@Fg=d~ z2oV9VrBX_NWrc@^5+Hq2hC$)L^yOKr-^(%ABOZhTL;3PwWpCp;@JdjG1ffXei@4l& z_x5tOl>t}#IuhFn2%H9cUO&w`uUPO_f|C@gt?u<&kDQ%(z?8)d*bdsdx>_Je1HOi> z{Z%L&T)23#21=D9oPpFAP9v>=8F*|cN^KO4Z9dc6*cr%4(N1Sb>e%`)g{7~qN(oHH z8Wl)BaibQwa-qH>PbYVi2Z%kf?&_bRI1IpzwoVVJ=nvv+7=AqgjD=AiBjh&3r9a9q z<``E}`BJ>oB|=q;Esz@?myk$q;(d5`L5;?DVanMx3ZLr~si+GdAPe)C&=4NTRe{?g zuU!hvnX-NJy1x+za`1Ec%|Qohv+>%qcc`gt=M+yCg;2!+oW^SS>8P-_C6?n5}Jf6O(URa#NY0@PbN*Q0Zr;&1YY34q?R(C3u6>9V_CIx$CMqa z`bS5{cH7n$2-NQAB?Y{D(<*ia;4Wrjs7O-k9XK;Txk);p<>>O36j&^4lR>9vRQH{_ zKR?Vwst&jBwTu0}fqoQY+%u=vuO^MhPa0}Z|DqOOK@+kzcz%bt-HNk;cDDung?4Kb zCN~X1$wgln$?III(ts>u^fliiByF`*;-n%Q>u7i|xLfj|tCwBI)hBt2 zU9-Scy_5O!rKcZ;k9un`ahC`>{2#)T&8wh+>^}|_VnYzq0>nG=02JmF-3A5Cg%JHB z$I;&_naz;)iRsc~(dfbl7M3!bkA?cG)^~dBenm2O6W&|eY^F`G|J}DGpfNVw21qrd z=~wcHWw|3p6-{1Ml~rWat)W~+7hj`X$ug$wckK;Tc|Dw*yFc)KWHz8=CKc5il8t}8 zn``5Ucj>HCg<6(tdF8J&m1E&uCavVB$xJyt7z-mmGGigzjI<;7C(`Y%Ph&3?``xhi zMmgcNdQ2aMuK~?da-dg zNMZ0?T^w%c`l-nr#rZmvZ;f5n+v}p&d+(f57%B8HTGwQ8O^(e^W8WD*rQp%YMg&>Uzk{)uvw$TQ~QJBx2J`A5D~#*sXQlZVjH>il%KS z#IXM`bFkB!SFEUbyMzz@2rA{>QQPbJkJlRSR@M2eKEh#eObil9X-MD3+kZKF=^lxV zEOzS$*qCjP>v$jOFk9(pX(IyfEMq}J#$c?WF=le}e*t9?VjAh-a0$XDVh$DG52CL; zN5wazXlk9syaeLqwPtFZlm?VN&Zac_F&P?NX0^#a?O@2d++5=`g|oFZzOud+<+z`UyX}~%(quH-x0B8HaCL%&YKQ>tGiK>5)#Y5 z%}*wmk3(M7(ZLE2&shLp3KPUM-j=`Z`BmL2c(&c%K4w(g^5qZJcZ4{v50ZR!^sse9 zVnj`ALk@n=jJ(Lz+{zJS3d_juC(d0D@3O?bmRR@JZ#p-xEKsfXfbEKBXs@8n@gYZF zsZ8QjP>Lq2Nk_-b&RxXWpaPk{h?!Y-Gc>>0&sAxFoR{qGxux_S1kpiXee8z!OMW1<)Na<7=r)RisI zCGs2VG`dIt<1o7m>2VyxuerIm(3V-F-Jk$in!|>MhUNf+BUQb~L0dI762y)zAu+Ku zee@7o_)*-t6+@T!ZzSM5N3_5D&=gt7J{HmZ?(?K5&m6bX=i+)$q(9ciBY{sEfh~?N zRBydL$j{9Kq!)JZ<_z#6e&tD1 z45DvMtsOO$NLZ6*D2kq7`}JV)kzJATdaO17?TKCTr={ht7x`Kz9G|9Vt8q(NR4(oCdvr?*=__w18we+m}UV#Yy7iIZ-1FB7blM^58&q8@5A<3=9WVD*gIhoG5 z8zO*IvO8@vL5DXla2$o03^LJkR39(GZ!`icQEk^1>IZ;oGyp9sRzA&9zgMVxq;*E& zy^Xt;`J-6Iz8we@NG zU9xZYYT%sEoEtt>Y;GXn*SBPI{xENi8NRXBD5tF4W?z5pM|n|)d0 z&${hO3c`Ht=8V!IpVtE3sZkDvSeL=Lc2V; z@n*j%A*+M$-%_jBSC&krSDi{GzB}w!VPj9Yh6L2UyMMoRNi31-#pEdQjd#7QdEy98 z?7*L#$HT;cQ+L(F?2l@*z!Kf79#LSz=jJV?NRNlyd~3InHc6s;>gTVyx2v5F>_bH@ z&l;d)%v50cL)?qx~1$^ENX6fK%hAZr{Ez3s8CsxQvYJq&gn#Wq^0|)7? zs(dU)Zssq-%R=4LLLKg%rWzu3B^buG7X6yvo_T(a!wItG#rEvon-_oYGfSvz+rQRU zVLGn3mSVHF_+7k_()oVWmz~dIL3<&XWvk;IS>$m`L@bPQKz1TiZ^(OiSlu%WyJG44 zIHWE~^fqqxx8+V@qQF+~Zo!77PGW|6!r{MNPI{L`!d|Ektd#&R+5dCV$c)5X8>39uj>s3{pUI5|D6e{rY(WXH3+B(zs zq6M2EVu^mPgnAZL{?9Qzew$R#lRes`QG{(d48c@-shy;9?|d zsJ?Un+oLG0$$2-2`0I?WHvbK@()UhIitF9c5k_S>TNC%}HfY(vw`%aQwg_$-IqPJXelW2~bw&QRd}8IPkIx6U5R&Bl4WtAaTTnct4_QmgZ>qYmNa#FAp&$YalKV9F zpHa@s$;t+b4M6TAT0Y7{z;lp!58?zMyj)39%FS(r;Mw$2e>OEHYZ)9fquO;L2lgnp zIz6!<4H;^~MN?OYKyh6n)}`jTn4+}&kHRz=20Pl=6cn}`M)G$Vys3ixlJVkbZ`$))wVXGitrObD- zu7#$)Yd;uA=+j^|ro#O^=k2F;L!gISykc8w)Xf_Q;TduwlsPR6S#9)_#O2v32kINZrX?ri%p6z-Gcca z)tf*flm5!q+-fS?>{+8<5BoXivXf`Vo~33Hmo`B%2LI+)<%pKF+RS**WVQiq9TJM{ z0sk#usAg<@aU5qN)J_zd4K!H@*}=h8liZvlb?cxq6}AR;%VxTq9JAcGe$byJGL`|V zyqG8mZw3?Rk%*8Lx;l$VO1l3G{Inea_AvurR+QOYBU4&^XelWODH4EdgCl_*`fq@x z+M;W?CiJ*$B!KT=P7)z{L1W|6aT=fGvg^S_QqnI!Mdm3kv4<=8e zu4mLYkXvZon!ys%@--9;e zS8+nd6_*Esp=BtIFN&*@1V36Sv%ZQDDd+#%8TUhXXF;)ZbnRj&={h;$Dju1J^-gHC zu!xHpq^O*jgETJ`o*||RE903MR}{k3+;b~L90g)Vhg)l}``Bc`^DX-g^7;1fdW8e*3ytR>_EBr*_|)BL0oY@elSW5Cy>_i1Un>6!Gi?hf5}H+led71zI5e z32q)Q#yfIKZOo{4DgUNv`@{a%QYYPSmakhw2Awt743A#9-w3IgZ4iVRZ`{auavBjH z{?~ei8k2D7SOO%zK7$99o=kLoCcwb=SSG-NfEl9|!@$jKu0q|OH*MpF$*{=4aOPR@2nl~1Wmt{*CpGt z>c~)6l$bGn^;b_1%Eo*XhJoFSJ0vg9imQEmRJQs~s`)vQXJljx>fhJCCa^i}%-Q1P zYj@h&!0FqFKKFEYp9Zlp5Y#ij)@Nf7;RW_%4;WnOxsM=dVUS*%C5&h+jZ)d#RyDSV zmRnwfVnFP46vcozdepZa@dU_f-d|7qzGi<8&Q9biW_ZxG(6RTf(r*PH5MZ@r7!qOa z#WjS?r^gDxePA&1gJpR5n0PkzDV7GG=0z>>r*m%bw|F1OHft}e?BbwkEVX*dNcWR% zGCWD$+Kc*dZA!#Luc9+3c*)}qhYhOevmG@fbu64tg~Skp0*SDQSl^PK+Kilh8`ofb zY7XJR&F+oH6JG6YV;9P+?>vUVsAF7t^ndNRXuSeiaO6ssbO_PMpbi%txj8cP9XL`T za`&5%xK^-Y1VEcK9dExn^A^(Q+{Ye$Up;SfE^e(i@tF0@8_0f6{v+#Zq_jqAeBM=1 zLr7Tpz1ldVRviaputk@ua?+u(e(; zf3=Usos-=su-Du_AN(Nqp68~PYPo(TKGae)%tSbw$S-$0RFqkSIXP85S&C*Rwz0OX zb#k7h5pJz{6BEtdvYziw>5^~V>+RaDHU38bnBp4e?F8!CNLgDt<{U1fC~A}^zWC1X zOQ~!~^y;y6cOL$C1JPk9$S|Tla#)4Pr=z7fWi#_set75I)%Q%da|ua~n!is+OK9Bc|;|^I3X^lf)kx`qtT|J}rZy|VYd1E8nV-kjj41)#wkx=Kw zhg*qz17_PIHR<=fX80~JEG_*KavH(V_GvaM+H17>=eQf}k@fN=YJ5387KMn56;+*x zS)(6HkA*HSyQPIiwFx`piVtjmx0|G5i0GC_O;dvDZO`T>w&7!HHK~b=r(}y)Xo)3? zvL>_kw0K(St>`Pdoy)_a7VfoFPE={OZE#dt6jCdRXvM>C7N`60T4HkH7tN>P*UmMZ z@?z3?quxZ|Wt7w%wBbSpB)a&zX55d?uTJIgjGJws4$pMNYc%12@&+j)Ou8uG+mNzOXgAm*r$rd%G&Lko=hj zT~oK5jT9AGE)rByvf6!(0e4ki5s%w++Rv^2QXea6>7-t}3vSrqMV|;$?q!RW<|LSb zC~`ie??w`Ma!t-VSD_3X+dso!Ut~9ZO+1e-#_#oqL(ew`;lxq3%!VM|d2->-L2b&y zJNtOC6z$AlS4#J*Z?WU{J~ILv7b=2NpCa!`8X6jg{z;(qAA{=DOc}rBAianPRegOu zvSw=kN7ogS8amgra6$w;fqUizT8 z?Z5dT1RAk5=8m%JGXfQK2zEhr76Xjwau!9~nb~E3@o|29QvL^4!zrPTRRi3bR>;Td z*c3O2{(Uw@d)6h<_Ran1Yj?GR_nx$H^JzdJo*r^=xHnrEM6*p8j^I?o!ovUXUVYOY zG#Bd5wrKM=EV&kqpS^#Fu%R@Xx=xjFm~A(0-a_iHe&8H`&*zOPTz!ZFg{i=_Z>afN zffq$68r(eiP_MJzaD-G2Jk3Ik7u$<=?e4K!DiEU6i}p}C-r8%PI!YBN`F4?fv>I@m zg*~_V-Ja+i$v~5ZV%w!0{Dda~ElKAh$YBq(IaZ zbeoS;hhAylOjH|UMD*KuMs_wS+@ymsBW!zkwl^79#Tv5#C^n>dp?+7H&A&a^rG47u-r zLi=5vro7;SMVO^{lY#iy{cNP*%v|Z&Gt#gJpGpc?LSPzX6Ob9-!0u2llj(n=f8L^E zx?Gg%>guke8UhLVEfg=s`Gz@_Khh zRlG=DL8zG|+_rKZ;xl?*r?4X8pQnGbh)ohxi+-c^ga%(%m{Y{E{DXZ4ilxUD{TU9zXu8F@Mca zt@4%Yk;?RwU)G!WL_7g~x zX#cF}Dz<+be0`U|G7ra<2QwWqyp=8Tt4RQZ3xZ3an*CK;-!gK)q^|HhSTGhRZ8icD zEa=jKN2&Ui1=_O*xQ@uaba+3*`B-O*)Ar-w;IHC5K2bLF>F10+zq;}YS}~`qmC-#; zYT{g7yZ`+x-}k=w-oe$drV7ma|FxB8fVt~~_W}X}wgD$%1UUpCWz7O9 zK-Z1re?HU{$QJ|tqN9%(7Z-OMG$)r~3dlVny?eMi5JD+OLe?XtoKyk9C*>iOOb#Iy z_BmsS+^z|W6hsmkanOSw6Nlh%VC@YUeUon+MNrSy*yDWG4Jp*Xp z6?nQTJ%BumqZjAZ%ITlFWw7RJ^I=L1dg+9p==?)BBY-9B2cO_r{E)LU8pE2oEaI>(tqn zBSeRg0wLrDIBV^fc zoHGz$)kbOOx!N55G3U0GWG8zZCiT$IEccXHhN!JO&iIKIK7P{ez~)|!{!gl`-0p5S z$P^-A@uAmjgOF62W^PEDc<~kITdv;>?+8^`GR91cn4)-LD7{YIv9nQMMx7EfKwbHj zAxGQH#DbH&-K<;wCLOIcv`yLbId0f+8%oi3E93pl*N3SjM-iF`>!%Kj_z}U`3A(@I z4OUymhhjVtc!LX6P8jI7jC_9cJr1MAiz_}pHOp4wejszTr8oWRPvh^H-&1||xX4^qOQdHjFcq}sJ(L_5vU9RPmEPnf z$t`G)W7?V}k+mHq3gm>|{a45?a1oqaD@)_#nL&|@QzWkt+}_z~g3u%m7Z(?zi+mhV zH$j}ke+@+BovWgM2S}xlKl1&Y&v^rxCm5!FL(lizS%aOd;vnJU#}MdDUN<*4=T!0} zK}UfmK?_V`s$Qdj1kLSyi$>#uwI-1EHdM#(5s#;bpgULF7yQ+#Ocn zn%K6fwjrU#CUXR}E9g)WCVL9fVBUF@*s_i=C=n?<)nK?N_28P&@I-aNR4=)aZW(j2 zBtTNT&tgH~vx$5=3+cElmmB;#CtEpWY}J@uH3agysTn-zag=F-mysO;K`p`21$q)c z|8O!@riuWs!%qZ#`$ z-xU$HqKDLg>#)n`Gt`U1<-1-!4t0<0MG&!+?c2+5oZYN;cZKw$INYgWm0d+{`m5jm z=SbPHvW_ef%*@W#I3@n~Ksk>N;a*uA8=LruzkLkkES?Tdq=KSzRaxkC@ zjAX4Qin?FJ2uMq+Lx6IA1kXe}7|Aw+qmbC-kM*4I<@HyjARey%1KPc_;d9FpSYM${UPCyFLX$BnU^N z){O^pJXet5l`2GQTyBLpboMCjc^y3y5nx==y*KQHkx4`HMvzEmYM=j>0iPgQJGJnW zknuK7Ia;=THzNG!0%RW(ItB9d9CaMZ(_4c91>jOXdAULIWzQ7)c2eJSp&KwTsDWO+ zsKJ1*r?xc_)wNvpT?~F=jp%$ohUou{-^0y{GoU)R6H&@gkR(JhMS-27tD}U^4ZrJ7xvy$B1qU|$9v(tR3 zlqU8f?#UOt)9cMCa|bPc2w*JB1x zIxBqlNh#k>#efzYnfum6it+ky<2b&uNj+HBgsqXarss1L|JL-Q&*Cxi z32B71lLKo%HbtPt|NPP}rS>ctlo_JlvIr0gb+gL{_wA*8e0-F1o{ryn2l+58EW2Sf zb@e|FZ2wt{8CQNFgL_aW!bCwq;ZSpI@Zvw{(ADdi&=OZ6NmI?)>g4@31xSk3ivap` zJ~E&&$QCn!*k;{V`!SER9iwEYmpg}OaxoS~o+6H!j{ zLke~;Pz5zHgHX!rdcBd5c<|!$H;(X!ulE|gn%=wDPcw=AgZ-@)W#3aLqIbnG@!_QJ zbgGcTWD$&}=I%A`VqWKW9@Olj8*1g|op7pF*12_gx|>{!#y#3O6c@uOqTQ<;NX(qI z9Z<8|J+i6>+xR7|7G!4Nc}dj-zsEezs&1E&z1ZDVJE3Z4WEtu2D}BOdr9TIJL^0^L zVFA5JbqT+e{kd(y77#g*D2x>EgXXY^znWap-gJV z7upumjfn9nm-5Qr=l0evMDqi9HYRZSe=O6Qc*6d1=*y$AZmrx$2DzLrY-}U!g#*v3 z;+Pp%U;zJQf64%Gi5UoNf!8>+~E50M4HJZeGmXP!QN1@t!Yp?YtT zkkCwWEO&QzLl~2XJk;>GtPR;D-X_{-#urq(Z`)p#ux?eKRg9Rj%Swm4UZnEa{f02L z-_ioAS^6iQO-|0d2hx8KK{YA<;wIx=BGN@qCYi0p1Z;g=h>27-kx^t$5;C%d-vS9; zKf1bP0P+zZ=?uOFz$oGe(!Nsv?a2Ophhyab;aMR|>c}Tw6qBso_6!m{AXV_^6L30c zX=%3(4!*#26}D4|p-)Bbu%36L&TvHkn=#lC&pW26na z%L{};V)FE$gd~=|T7KuT2Im*dVNo?!d|hTE-l ze-o84>E}IMW8}Q8(zAVCW+o=2sNBX*d|_l%;5Ob@BSV-*ytxnBO)$=OYo>#{j6!qF z%kg>!zu@fLS55hSA~)T5qAC5%xx3YVT^NX=8R*Hlihne)Xa3lAG# zBXSPPu_rEEJ|if;W08q@vo%aIgOfyjF5@Syqt=*P7#0<}cs`eff`{fXwhGhqrvpj( zP7N@B5OY;C-l1 zduIwEW}NDTNlQ^c6A|T7;E zuRRD75pj{?rBQM{(l>s#vzFf5x_;-%OG)hUCHG>uhDA*M|2|Sbr0~(8f*+)3>d;`n zrQ&I9_rmx4(a#!{anPZ$dq1VAe&H5jkbw_<;g*u?@so%T_A#kyIXpLwC|=ghi3Ku^ z-9m?gY6oo$@?r9q%yI(@)wJv56%{KzvCP6kLLlgv#)m`DAM)Qyjix0i2!K<;sZhXL zD?a@Gzb8dVMBeZBEar?YP+-|TSZL0^SbhWbk$=a39<*DyzxZMnk{kyWuEJ+q| zyT6{h@S&u!p(=)d&U5ZpYOH-sZ-ML>Mw}!zLSxKV0FDed%x<-YwL*gpAz@^|{<%#d zHWBXt=XvXA=<6w#Z$LlJ}O-2``?E#@{eklmRBo;bj!DL3bZmC`=h$p)I73D-U~~f z;JgE^_nTCvQ+ZZcShP+CE!9To5_eKb65)K%5}~fh8`ES;(wll}sT&Z&@bwjuQ;j;^ z$}nJW@T88#Av+}OEo<@IBKaw^va*HlhA!ZXZ^0NdMMTJXJGbYgk2Y(N*VrX zRP@J@2~)+^T5E1UQ*r{NVx~8T&%}Hs_gFw2jKB}wjl*H4rS%m=?(vaPQaE-Y*Jmr} zmA~gRk9H(=y-#RRF^W_j{wCgAjO;BNK(0Y@5TSv-aE3Zo>T!x}KAQi|;1t35_Y;e5 zd%l&b!4I~< z+4Idi%#r&ko4ip^p5mr%dwhrB1tJulRGv30a4dZ*r>uO-=h=&WN7Q8@>aFJE^ut6u zwSbI`F8QUWEk)QCeF52rN-X`ei}LBC$w@_ruV;#o7bK){iT!$vX;2}zV%si;eV!KH z?J_`+(x|1va(k8gx^lTsT#0pOm&Ce1Ui6~Y#ks}M%9k65w-{G!)M`k%);+0QdO340 zqtauBqCi)__*G=9tfkLzJGX*j>*QM`*Qh#1x!HPDEGfgxz&Txdw-o}xrxC6ZcTr#B zlFj7lKtNwN72Hv-i5;{3XV~|9tj}z!YURX@`7~uitu^#B>w_onU1SW!kWY1n^Sf%& zH-?ez1Z~?oQZSY!9HUNQAZC%vy4K%H2~c>hUAs0iuH@n(0KFe1HEbIC=A1IS3bFFY zy#9v`5sH6)73ue~GcwSj{qq2t@~CK|`s?d3*scv0Vgqgpt=a>aWk&^x&(@v!4&>^) z@sX2gAH}5xZE~~gU0l^u8vsX|P>8Txo!sp3A7{vK#6Z9i2y)d1!@p!_ma6WM#Fn3h zS^k23Xr;C3H7k4~?ca_jCR`-_Q;!u%F<$xlmg5)j{$EKF5|YgY zUYw&oUrz~Mvao<8M)^lo%?~3|2~#3AMAD(yuyKDI$3Jh@q!W#%;3f*kU@kT`t*#!r z(TGO#3fHj@!Aq?h3>?m%a+DQ>_EqCAE&FQzTU1Scv8C$VIF;H{Nxw&s(*HhAI zB2Cfi3FH%l>U&$;EHt9qKnE;T)|~( zLlbacG!ux20qMzg_n#djK&B2V_Fu#uqC%s3BD< zBp7BE(wrMRcR^^f+j7DN^JnBP5X@hW*Ib^7Hgk(ta-WRIb+L;@wJ(INV&Rkv`s!!GuM?MCp9= z@%59;MU%+7b0bz8YHsq;vG<2n?N*@5F>=yZw^%~77!U)obx4tY_4;3-7#fwz(1b!l zmMZv3v-RDJa&tIB7`s!%Cs$euJ3v217O0Si9d*Toe^%;jB_Mygoo%-vS)Qrx{%@ej zD!>bCdJCLP@lyA9UE>{vsF83OSoT5dt+ttg1VUn0z6+ZxX91;qi!=Af_2QD7p)^P` zN>{FfTwZhWL55oVoXvkkxkOY%Uke zwcWVk{J$3QzD&qpe54CRf@i@(xGy2$_o%m;9;-WrO}AbP$`i0S|A#gZfP@>L61@EP zM~^SjU`Lv5@S~3yZNGW>a!_4VfZ{3=&gC~4I$AKM)JIG^={AeE26}L)siL&^n_<=l z2^vHv8C9p+VMr&{E;MX5BG!EdpWFL_%>3tCuZ4@qq8;yQ;rnsg3Um08l1SQ zJfTs>?h@*$S<|x4j_B818SnmRy%G6WSV!Ij2{8YXboEa`8_1z)$}C!Sg##nM;^4gl z$my=bjeDnSykqulH0rB_|GfQRk21kYFJeg1VfN_cP3)OzU)cb{9Uhcy69ZQjKz@N- zHqh$ufq!W;}=>};0?&jm3+$9xRn6;&}Hj%6AISwL|LglBhm0rOk(c(IE zptNP-voS5(FiY5hYg-{-RVveNwo{tA9!%d0qZ&Bp0vRDAPz(4?f zrM9FK1N0?#fRUTKaA2(3c{Q;?khIE@k1|iMj#9*Btr5n~!dSIKBx3lrYL3%Sy;?US z5!a2ilK`M~SdXRJRX9M?pMj^Hz`tH=7&^mv*FK%|*x0=vHIAfOyQqB=?15I0!Lu1vo;1*o_dLXa zo-;K)jigN-9Up_eg^F|^-ZDsO>7f4$P)qODE-}UHG%YDmGaeQVRq{M7cW?lG`V=j6IiSa57vgqy_{fGE*Yj7 z^8G>qXK=&vq3O(LhGSE9V2E1ux+;6oUt>IftNWDAGOQ(LHti`Zx33X<{g8{In#;y3 zjqF$)_GIcvIP5<+nPv3ixxs)1&6O>BF6j6_?8ZSYWMQr!_|u*nKIB}AfHEQ$qUmKV zkK<#$GcUg41zG9mtfE1$af1v52c*(erHDUV-Sj7>XA$vv`AR__yE#X!aG4Ep->+Sq zq&lrHZSTOc_m69*7lq<_6u+Rt^E-Ug*vdhzlFP(cHEHr58fmXKv#XR})J^j~$61Nk ze9K?HxpWLs8;!@@&o=@yMd=DhQ@3^ke@&5OOPx4ZDyfhdcHTuX?v@kke8AGL^};v^ zHhO&MX|vAP^PkBezoxF9OqnGWKjh`F9`huv%;apr>^p<>{D<_cl$7F3lC=Tc94?|~ zV%k1rx<4%{80)53igR}j%e3Ld)cR^E>LFHG9N)o*9b6$TCmhIk^2zg`VBRv&>BnLr zrTJ6-v|pWpf0Ldyd_Y;kpF73iacBY}>GOO;1E61;zddSW?#lTIajD=vJlSAZLYU!< z0V2mwO@ct2l501c)n@~+c|JivJ~gjs5%k}S51KA|YA%oa?a)1rD~2{e`q4{#(^vHhr1F!M;5WW9xOI>=+=H(rYm8g%Nge|Y{ z2uWk2mioM>6roMKM>B~vZzp6|xpbrZo&Kv~8~?1JTMu3nwDuID(3nCX1Od16{(I1m zr5`*v*yH>6sdG{aQ$vM)ZCRiCP6v`B70a>@!$qG=qTWJ!%jaS@rDDVvNW~D&M*|md zUT0m5g98sL-Z)q2O6B{>hiMq$%uAbaFb|a)NN=o1k|QAl`kl*>IZU5)^iEq6FEoy~ z8GguPHG*#+RlO z*m3&7jx_=v^rb~ohV3HE_ODUTZcPpzB}igl#wMs#t)u;H%c2rMW1VcJ$~?O{h9zan zDxF&u@RTV|AIs~tg5&T4H$ZT+eEO2tQ z+v+|X@_g>iVT46kdGGH+PWR|wk8JLbo`d)FnIfRM41In(jfvX%oAy$F@#`LvxoEy&c5GQvjnvdELO8k2H*Zr-6NkX}K|#!>KcH{rx^|^ZCb}3dWkI~e zKSsz{dg1mM%!X30w7T3F!+!-hkyaE(9zk=9+*47ILkkqGUzGJ+#LP|_d5lT3)6}Eu z(Q-71|M|FgbT;Q(#C1u??vmSKsc+^J88scSjf`Az(tnmw1N@+?jfg&c=cJV79JDlwINK>`k(7y9MQ{$|6RJQ2}ll6L@eLyp}^HWFr zi?cUH6d#9*8^7>Fa`WuMj7g_FsUx?EPXEzgEF;qXD!Ys9yCaqs(2$q?L6 zv$+@Dx}D>IRVie}4JZxY2tO!>$Dt zEH2iSZs;v3_i*7EuJhMy8+cW1JgU66onpxQw8AYZyP`dxvoXcBHuyYH7CuTezi~rZ zk8eb0?rotz3hX%~1xMMBd~5WZA%i)pGa#DFN^m)Jiczlr*m`?pq*LKY{p6G*bktYX zI<>Ts&(Z(6MN#Ly#Or0ZmrK^Nt{{JP-tF+mqTA(B%jI9#opQi*mRpBg?Z|QjRDWHLFVBUc4*!mqbri$mV8guC=+yz1 z&sk_Z2yQxl`38;_q*qHjCiW> zzNOiy>bpp2(Y$`KdX&R77$O<#weK37Kkg*a-?60Nd~}-pN5yR8s3dzZqiyoA7C)fs zxa0+3EvEq1fnNfo|GH25Q*QRVuEkV_4w=#*3wlsDpmqSiiYby^GK*XRi zWuyGEbvT}DSj_KhTJJjd=x1(r)&kx4;T?7}&yGOdAMuqT9&tq&mUj}wD>#=Q6>gsq z{7oDlM)+WlDy7Ik`0y~o3%iD8y~NyekakW@aFV)Az>(O+bTck?+{0c_AaQ)b%1nKJ zdSH*hAZ9Chen78D{IGsrRM4nQd;3r=AwTQ3@-eB+mlNxqyz`QN5( z6~Yg4Y#Fq+-kIHl!Hioi(w`JLF}`6_TWu ziSP#7SpGjrnw}~qc_;`g;Y+lu)_D|@AC080A1u(IBNA^n_=Wv0i7o-32v%hb#1OTM zm#0U`p4=thACE_~hdp>^6*VLyt~Uxk6Jp{+;7vh!-L zT8}P46kc=+ELyCB2g`W;8YX(FM+L@YnjsK?T~$f7Jb`9d7MZ7<-BRT1uAqcE|E#KeTW*-%SMz$c1RA&s zI%qv(sM_SE>k@b_`PfbFh$~5B?#Wi%FCA5O^$J?!*_SPsB#~K)w2DeXYF(;&ey?$5 z4RYh$pJa?I*)2a?a&fj7zcya>I8?PdoAG8eWW5527iwS!K!_; z-zJgce711bgNY_tRJppFKjZ_YoD5cFj#Drf*-E0cb^VB$&6JJa9%?=(rvVj{oGjr= zjl&_l$JG`wPTzL>+BrUe4hdj zzW?JMC~a7uo}Gl}APfronK&-FzffA(%|)M8r!O38U(`O?rCdCfI=H79xQ|dCRt|5L z$qRsO%HZF!vbT(!95z1Py|CC=62Rq^j~@Q3NS2CDpZeUsD)k_lR$IaaH zCO>|qZ=b8Z5QSh5P7!r$VvL>kGfZy`!ewFqZb{7U9(Lq7IR6L?3w0 zCVAi9MDrGx2n6B5T5G@b+kRLxb-N*Mz$QR9wt?{k;#oj%o|VizqtXr+Aig92tNOg5 zNGe{@z-#YeMKSmyHTGA4+EflHNu&VBYu5c8<`&34e_nbSdHgI_Z5k%7uz^BAA7Yd% z{*OF)vRa^@`RRWMk=|c*^3U5}9QNc%Lu}N zTg&jpTYZDRL}%Nv?gbIvO^;74>sEb3($WfR58RcaD@7M=$Pm;w(Wq}82PPq=xG4<; ztM1yyphQ4#>T3ZywM#`Ye$46Shw&GF&0WSA(n61Sa8KTRCEp-|dz^Q= z`_(4fe;}N3x3!20Op+mtM^ae}x+?lth<1`k`bEo6H(kANP1pu4NtgtjQL%hHsBdW?=jobmZB! z%kx%m{<{P3mpwW;sV)T$z~7MwrS$@x6LlPPm<6gi+%{vC_-*Z7U4cKJJKWuLoj-zv zQqD8^3P)Pj!@+#jT#_w2$FYvxo1tftvSsqv3Gx>>(TJ%u)u!g=^RntO?*=3RBU^N= z9h;ROU9hCPR`p8n&C3UA-C^Uy?rfz1=M~{CZ<4~hKU{T~kX@n5Hhwu-p_TI*%;N;9 zix}sR#T((P(=KEP;B64nS3YC^s^-zy+;x~|Ke5pO6T1$@r9^gAc~Mt+-hPht5}`r@!AV;K zBzcU_@n0XJ9&{u)Zj=naO-dR!y@ZKpLcX?IJ;(u3TRSU9Gy5CkH4p%P`0y={Hi&%D zMrY&Q%&v@7R9^!|q?Re%$3IvZ#nO?49FU`1gjc8q1{>H`v@)kp$k9YC zsVNdiA)H@Or@n1)NlhJWV&cB`Q88@%IPdJ2a$r1{C~8wG{`#MvMe|RBZb=YF&8ex) z)8Pc(0zgNdx_HAwx5{nJ43#fL08;%fad@G43*$h_$RN*i*iYjI`rfLYf7{?ub{)|I z@yjDWio;g?Fc~91&$dLuAp&e0(|}r3!Zci&N~K^=W6bZ2-?|P(80ZJrFV%YMiLm|z zHtDlnKJY?8y@q;Pb?#Gh+MobCmUGy#z ztw@9Y2qq%w7PH3T$jNPxZW8wHTN=tIu7zbic=N$HoyT0`#+fta@UhHodt}Q3C=0{G zx0yaot>(K}PWarjcuY(C=DM*F61W&v#=?w$-zOR7;5>G58Laf_`EpEe$!M_v!WW6w zv0(jCL^1(b;I)`x@!|_T=1{_i9BMs?k>uzFb45LPDa(Uj=ITE!HZ##vCu29yo5^;+ zPTlj{d~v*cfEDrDY)$zn;v**3PKSzDTc<7i+sMc7QfT;p7~}Pzq{PdA`Kke z0rANrVt6MO=UC9a`%&U+p9>WV3ieCWq`TNpQVB_H>L%Zy6g|WVX|DaAL->3m6+CtL zCt4cc-q_m>jTSqo%`jJHjeQ@-t?A;H#RynJ%yY^EjDTF>o&^wvR`q_Vd;Nhh&;w+c#9gurCtIH|ulSuNCH z=P3V`AXw0BkDMq6a7z?B-DBNMqitpteO`7RitVT!HJL=QaypRDx0G)e8W<(!S-nUl zZzVAI(rUqba*f`M$LT(TOeq2r5k^HFv6UK;qGn%pg?JVoHH}X`H6?EEsF{R?ZnbP> zv_9jqO=R6PCzlWOld&P0BUah`ywxKi=un;)CaX*$O8fv7oP3UVf~l!~lkWo&2+&f~ z_RP;I?X|ty*!@zKC6{voekr@lM1TD8{KY5AhS`(wxVyHQIMu!3leXTk6@nz$Y-OAp zio)CScJN*v`e7FrCu1|E;#;t{@6l8|R8!mPX}{Qfd@^=+w!W99T%2|*B(k2$q2T(SY$m`H0PW?Rw`vjf_6s=fKyp>c_oB9hrGA<553-|s*KtAU6lM(~iOOye zRo7K>z|_H=`*#of@MB9Tc}=2aZcffOvBR+d7{!Bz$Wvnj2NKT1@71Q~ zL*G)-+Lt>^W!)EaP!xI7(JcRJ;*26zZ^wq7shXDgO3QQvk>H~Z-@_j%ptE5}8226# z$I!jXl4rXu!stb4L)(9LY`+++9YsOGc6&8<``cy4*rpW$0o^NY47pSGYxGm!id^Z( zvbIGa6Ve(JL+2OtTT0aj!WHqTo2RYpGKJrpeCW!^-zikK4JVWEV)V`4ly66EY@XeG z-7t8Vqz)-RLJ{#e#Hci(yvzBDi~8qh^_;sR>imr)lH@3FyxFzfHPb2*ElWzCL4v0338qj z>P3o|hZWwRD}(M>Zed0bbGyoo}T)l%3y#nYP+m2r9*M#bQjk zsA>tNtAxyP`_S=wF_9H?&DWdz3i0bw{nYC;D*?Xj2`{q={~Ru;?_$nOP+?SP8*Cz@ zI6ikNcW=qF)j|cVP3;MWrS*r5dI-%w`SxLrSA&*!rbb4V>l*T^7mLsr(zd zFPNH~(>O8Er(%Eb{MiEXVto_c$GP4cCAGa*8Z@e#ro+Hu*X(!q zXuMKHxBS%7d)v1pMcTnYr^Xl`OY!?|Ns8a536j}mGP~K@H1~mXvnB3~PdM-W0XI^O z98Ugi%TB9w%u(yh>R}tMn)dzIYjzuzRN5JuR}I}h*NQIIFFj4%hUi5FcX`bI#$hbc zx7&GFrRM}-lW9LodAU9I)axG1YZBn{<39!h_#2>X-3=Xp1}-d~+rJ-im3=sd(8Sj1 zVex0?hW zu<2HLXadgyIdm+rY2V1+#Dp0x^fggiSNHN|(FvGOtAy+-kK402(JY7i#y_N0AwkkP z1hVF5boBTilTiUUhug+Z2wMLP_lnQs2yi=A3ZX4ve!V4IPz#n=LNn18;!VtSZW4Zz|`!r7WcD12H(UkEAYr5w*46KUR3nA3G=~C zh%;D?#0LaqJyNzU1*BcNZvz5piuR&Oj_Pt04;mohK11%6;D0`VUkR9_oiuczu;rW1 zj4Lm`1*lMF{W`zbp|Up)$@{gw-#eitp;TIm+>~f(6*LJacNu-MMJt3NAjQ9*HNn4!Ih^eyx%U})ywPa{ORX2t>5>RxEN%911IjZI@o4_dV37;*Wcy}=d{)VC z36ZF8^;Bmd((`h0923Ffw&-iX@oSU5_whVk$ot6#{OJ&*#|ibrtPNe zdgZKsjRdT%plYnE!5*FGo(1{>vw~EH?WrL1f*QHeXv?^emKV;x8dIq}e{{eM50|+x z*pe29r->6!gXkQ77mB!we+lDPmXLU_gk{S7xV3a>yT_xnuBo=muu#G~U0_y}$yTxp?Mx}J^GjTL=@Pl%tvO(x4*xYz z`K;*4ZYaoJPQ7v|A>Dt5d=ub&^(5fIRy24!v@!8j&U+GGN>-CmLF)I`WNTd_!AZlX z%2q4^&C?QoS#+OUBih!!-|ik*8I4x)AVYrhsvY+CYh-RYr4-kB(05}#Gu)r)Lu9XR zQKJ*-Mvh$g-e!zm2bx%S=u-us{apRBgx=MCsuE(@mK7myC*Kn`|-EzUot z>%-5;v3zh}euKdPiMf>(G9)rE=NQR=wonq7L4+ZuKS>>P>}@{SVTk8XCmU&UDmmZ*y_Q!(sfNm&FbY2c7{hhE!U` z%K3_GYEh*auoICTOALIgQ$}k^$(J4XKKe93l7BnC;Vjeg7DO*e&+Ihxq8JfFG>k4Z zx7R9}h=3LUV+apGbs~BnM1W^#;$9fL@S~g3@eU;9(>LZghc$am{ipZzDDKRe`M0_! z;B+^t=`xCF`(DtmefH?D;wf()^E+|GG_ad}kCM7E7ilvOxcd?|*9On3M5pJm$udxk zauI-71iL_}HnKY$#Rg#k=QKDP$CtxTS2|Komx7M)Jlt@;m~cw71c(F{){9FbX~fj} z`ucAH%5c>z`F}S*@h||@?O@n!8`y2g>l?v8;{MKEN`Ofs@#R@r zW>jJcFo3yA^os@|`r|~F^&)A3gw;=LPgyVGZvOL&TM5G^zG(mh3Aq!xpxgk{WARYY z&|tVCn>*e1_BIv)LE9^A;zDR6A!ngdnLU>7KYtZb<75vYHZ2CHjgrSpbC_v0_9%qH zg7$|ol8X?z(rv5zmEQX6m!cQ`4)0qy{5~qAe3y-@TcvdxcV$z(9cBZos6;*T7eV|) z%77D@>$9^=Fc9{i*LvRzzV5i8`D*0F(uhXjgq*tJp$KPGhmbv}@!uhz8o(=IV2oCp zr(4nM=0ax`KP)CBQ9j0KZWc!${9-h0Ptc$|m37OnBXb8guwDFnK6@-{Hd=EUL~TCZ zzc6cnI0Af4tIJ^n$XAwB=ay3VJ&Qn$-pS8IN8uQvDJ^FX={Uf&!>3TyM1PNwM=j1oj5g)!Dr|N&*IK9SD z04T4^ue%WF$MZzhL?x;CZ~SlG(R3N)HAH_}Epc=;g;|8n?ZuSXa~vn8zgM>9C(I@$ z7I~LJ&namZK0TZ8{H;CzKYrUu9|ehY^`!-Ezb{*<$@`dkg=n89!IGC|h(Lbc)biwb$zCM2U~4pPbI3;s8HayNGm z+YgTQ;$4RKSS!5gK~_@Or4^$qI~7D2jpA18$_aXr0kfyH7cCV(G$@l#)?tu|8#Q^G z>3LUNutzHxjaD_4RI;H;Y2Peffuw`-4f}n95FVs3ByyC?KjZ`D1Rj%XKgEJsjq%X$ zOT2gGMy}w14nBHOJKCvb1q-A2t98ws9|cwD3IC71_Y8|FTiQU|ag=jZU{Hc&MI{Hx z8FWZ03L;7lN=A|`IirqBXlM}>0cj8x_FV+W#f9<9ParQL}DB)IZDz zbo2j!t=ifWcP@) zHb=LA&Er_=KQJM|jkzt07OSXm)j;OdOMl*|{qz3k`}8HIFVCwhw_VR8HaX58E1aon z@`B(Xrqlf+zw*P&^T(8=$Bskg&A_{mT)H~dwLfQPXJ*Lz*|o7^xzC;%dnMK8H4={f z#uLgkBTeWvl?r2Xm+p9`-V)gm+3_{Q!BvV^oXu^9ZBeqN%V~xQ|N9K>9@u6TcjEzT zM$!nkx{Z?Lt=1b4OBJAxbo20RS%rKv8ez?|m61O^( z9gJ<$Rg$OU5|_4}jbo{0Q1xH`mX(uxQ^EpYBf<4-QC;cuc-XUw4_uV=A=M-I6K7I_ zmR&OmW7tip9@#Ee%GTJah0*5?nHs~j$*btPD4IISgE(xdVRdDFFMTU_PvET>{5W&X zQIfK^|5Z}A6sx7VKEp~4_1xxSt`_+-gFboYeCEr5)7Krl!&e((YQw#IgyH7;wJLVP zegeqP15b92k=_;Ujzaep-tjJ3nYu{HAa-nP;;@I3G54Z@SSY*wwoK5*LNfVob!+(f zy@X8aHtM=*(5Mudb1BYEy5Py9s!c=~KmQdU=frD8fSqQAe(Ernij=8Z_6 zd-pZNdZe!(!zJ$^G5+uIOeo|?p>o!c=+JX$@(H(t)eoyHy~F2|D|MG9@nf0Yzd38) zAKK8^`6P)!W}I9AP*ukUDr54$_cKSRBt?`UyWkCA$`EIu?Nd>!j>+iVch+Fz19aF)Z03l~(X zmRUSzkA$_%)K$HzN`1^fGb}c%bjQWb+}tx@zQgHC!hq^cn8LEn=xpmR2`h=1k?r@~ zqd3yMQ~%&LgD0&grB-q-e8XOK*k&`mKA*^>YZ2EuxUKhT*jF^qZz?$L1?58~9d&B( zL})c0Q^CRulN|drt;HSa!Cu9_`^G|OqY@O9g1kERpjRyv)z9mF;^f^} znL3=j)786LuR&AyC}?ap_W0XxOe>sh_gdE+m*gf2_1beCKUt+_>Bs6SDDB@OcI&CU zn#{22UbGC8Zrc`_^)ygkA26z2oed2=*F&oB^v{dxy{JE)adRY*Gdp>Gkw9jmA3RL! z^fa9*F(*4LJ-Eh>jP6csBlO2{pI4lRKXQ0xGXp@dzI07^ZBd#bdN829w!1l4UeIpS zolIHqcMB!F?slw~>A6bithG$^!o4l=CPoDJTNP4iUQfLyCrrw^Dg|v<8;%b5VKb_G za>X`Pn6EjPF?V-$*TL*|y>tw8xA561Uac)vshS&-TAVW~Kfk#0EhjrW$|W!a~Iwm#%K|8(iye6-TrnHy>@hSw zk!8N_D%EpUBlV43xE~#+YV@1;nt9=QvX|duJ#li)L|~V%-rBl;$K@v$?qf897Cy%+ zF3GE~IlWGuqGpzGyb0?+wU}!6j$Kc}=VDGg+D#MR(fbFJl6aiJ>@9-*Iej5#PzJr;g(Y~M3N?xoDr#u~$9jD0o)O8tM#miY3FW70~ z#j18pgkPC42WtCg&VL(J0?gzFcNTUg?_H_^ypEjxq@QvxE587#Q3zAguUe40peKpqy zCd{rJO?%*hrJV4qZ{HqE7`TH?Qs)s1-=K@sQN%<(-gCm#*)`v?Qlh7tnvWUJ4+u0t z-cJ1@y$#2}<#NH-!|R4QfomP-?0S!}GU!n@_v%$z>2*~t-X!3iEQ3xyrg|EWnU^kX zW#M*i=LCLvSLB^Dak(EW?+I4=)<6jh({%%3lS(=As&mipAtf2_IQ!p1xPe`Z16@bpT~X(WUKpWy++YLk zH0!Pznlt(OzS_|S&q)&8g2d*+S5S9eIZ9zFOC~^ece+rhfy{o}dAshMq#RRjPoWVk z2wQ=vcSDs?vhB<|2%cBNW{wqmwosaD_h^=B&FSn_IHQzje$BXkkBigr)IQ_->cX2h zstWz|PM#A5!>CrXebuCmR-=~zdf~2T&$`0nzYksbz?d{=cb02 zQ@+X3MFV^9t)$wUH+p<)Ez6~PNF+O^gD4k`dx}NTJ8Q{1VV`sqMc{!NUFW#Z@x~yl zwhV&Y)|p9OH_>^p$xAk#d~YP#v&R@cnI2c-3JKu52cYW$l|}OiS%OTLM!^e}Y0pA) zeAjIzH~^?4=9Cg9LcF>72q* zB#Q%FI^RNfD5N9IV`V)9ZN-lw<$TRc=oV`Z9;{up#fXz1u2 zMa>{%tbzkH*O_j_6M5<*+kR>If2wXJ3&=xvX(ci3iDr`k-E zeH0RiBqTIqtRiS4quv*Ab=WT9^r-9l@gmRTxRbPIxqMHVr%ttGN=8J|!uzq$KYN6H zM_$*4qjdapn0Us@M}9HU$Z%@Bd4#6N$Z|A)>(6-z5PP;f zS1S=78QSaKUiYlsZJb|#KPq9J%32>at*B7pImH&Uj*W<)uYRoOd?V<_MYhwTY>y); z?>F-87}@d1=P6rW;fcw$ifnA`65&IEpYx*Q?32wb#qg|LS%tDdDFB%@}fJj@uW9DgJ|m}lEJ zv|-Db$j={M@J|{oiyP?J+1qCbPI0>ZkKAN@y;+O>8DpuTqKdOjYvvVjqT!(Y1>#&H zCE?5fJIOoqsL|8D;;du&$LQEpP90c0NPc@`!=~!njT0+Q3r@VeRBo2)ilxvYnv0=a zN$_>kE0;Mo=!b+9SiHhtDb7Sw`X6EkYa8<8d;Pz^exck#T`>|L6;cOOh#D4p=QYLOmbfphrb#I5ghp>@l|H5= zCF^1oPFFC;rE@BlRRv#Um4FRbnp8F}c)8k&C8zU`MUAY1hZYT6PxvCYZ1x*#aa4c0 z(edimhvJEej)&^w?{yrBQ4@Hzi(GGDtKG$kQg_UxvczofUC&EZif0b4fyJ`qymA;nbhHjdL!a+i{|IdIGhcN%jIbER70Xe1 z{sDq5MT;_DjlX~S=A=xoEIB$t8)JG!A!vtxPBwsyCN*fOmj*`Z3Y7#b@O7%NIB@&Z z4~wXjPKQN@)-kswN!Z*DuzUY-M|WkSOQfcJWKGY&tfIa*D7~6&x)CTJen6$lF36R1 zB<-|VwNrOY>HcisJCRY=YOC_b>{u>bk>@^`4O77fo2; z){CtjYmw4gKFY?TE6{zF`nj_iCn}G?AvV?-#9SJs4 z{>I7;HQ}u$X$D%V+ZhENO40egKXzv^Sxh)PRW}x7*&Ilif>~8&7FF*VFSdFvyzPZ?rM0))6=rrnlAVgb(_XgXu9< z-fGiRu$w<8(^a2fzk}0r9&`GXy0IrY>V00I6}2!JYolh~kEeYiWIfx2)gTRFF`k9? znzNnWl1B2ZPPlD%4=$A#4GxpNfoUEyHF|}&46e5M3$Qt5pU8isA3JkeMq&1}%)PZc zW^V>UD0ui05AMF}v%O`Q_S(ywk%f_%h5KOjXKhlVOUCw@+5#2IlWJ9N`>v~XOWyW` z#;I;_lT$4n=X>qHyXsvrdVF|sbd+Q@{Cc0`cpS!NliIRj-5G+$*VM?&1x`m}hDXvC zlcQpY!GaY}Vu>U6%8ay;w2nm4Y!il0!$}M@v?F{tq`E^g?oRdSPltP@spPa2Pt!D?G{1ZF`dIga4s0?PX=Lr`K{rGg*|l znWlx(j){rwe?lLsOf$=N-*M(U9cuRcJ;k4Me@2pRx<_lQ32Vn;NO^y+!zG!VYV|FU zmDnSSW0#Jw)7qM<@3>s7Q25!#Iwx@Z-9!bc1F?*(`R0_(tq#wX6KSJs&5L=sots^G zMvNNDG#OO}5)K}*huD%R&(FBB^#|TMG^-+)-J5r6j1s0tli@kH<&OL4vn~6yCCuAU zEL>h_T6%ZRJEiCLXG zAZAzW3jfws2wRg{0*~Ju4pe?jErtgcu{`RT9j8vMGAuBXkEd?zb7<9$uxt~Ys|U|N zV&0y6qw%pZ>+JCM9UyAhVI+jarg1xt#EZOS1WI$zpg5oG_x^eB5Id>7Hs_U*4E%IK zlv{ppXy}8+ZiWWJOi!M19JK#s34P{b@K52dgDCP!@kA@*Om$f2H&Knf~ZT3Pi#03zIpY2^ZmJ# zhmGr>GBN`G@*=&<4T}r~Xwsrk^77b*=bn_bj=wb=W_0^R;Z5eY>8s55tM_X(JQ6p~ zHI=Zr7<;Hy!t47pepWd_9x;IZcNZ-5dUM?v={b_R`;!WqSwE*84pYZWN=sz-idSn9 zo(=aA=eqpWPx35&Ti><~++7GS22yfJ`%yCO|8~F4$D(=_i?JATBQM8M-+dZ-DwE$a z)(8C$h3cqzhjpSiG*Zjl36!x)POg1p%4v&HF_KXti9QY|7Z%b2Ngp#C`*y6Vs*P0RSFVbL_x{N*6gneoRp2rs3E0 z@_PX!<*4vZ{63RREU<003wThbb@^IC%hL*Q=4@BrCIZRw(o$RPcPP?-jzjI0&cF_4U;YrON2t9 z_GbmmHbfF>r+YNP1ayW+p3|&v-r$LM9+bNR({yNckUlM|jZQ@KRJei$cCYFY04hQ) zo+t^)mjiEC-+{6GP(kZTd5%CSTi^y3E0a2HHlLhwBWyUuWfZqUDxQzmmxJtBL(h}YrUT|iZR#4=o7h2oq}UZx zPNC#7#r34s$k0%uweLv`iBd^!4UNS4s9hkgcm8Vgs(n|!#bYmLYE_)|&`f-XZPy$- zF?{_HRNnshMHA_AP+!L`w336t@>xShirb8oa5zp)Th z?UXr$dU7u)dVTZHuglgR#-Ibe`{iVEHa@RT@`*+m#x;jO9L6z62r_G_S*v-72t)_~ zi0k59KIb3jjp`l#TL8|f@zfr>;Eg++uBdx{dNVwJ#l9-7Dl&(dtBMC*KwJXY56*3R3qnlx)5m{{9rPy>>*bH84iOUgnq zpCtWF=THE4;p^AprR`kJ7Q6XUQ~XC9vdrSq&R{h(KU9Q&oHxUD_oK?K`YU%D1?L*P zaS^TePvJ{S1j)Ve5f)Ji6$$(T!VNcFP@mO&XOn(i|BP1G<#L6lvTH!6nL7uLz0M&; zp0leKJtJytUd=mQcCDMqxL)QYdzw|CtpOf&M*nXW(0>LraZ}mdP<1a6&aln9=f1jV zD4w%8yNpN4^N2M~y9HSUeRZpsmQro<+!K=VZ@TTyd)!uG#B_)10e`xWDka3XIaWvR zpVGVBb0XU)#7rV3$ISq})wFKIIgtKFA5lTTBsg678y)O_OzWvv>t)-OZ_d>4V4b;5 zXn@*|8E+MuJZ$cTJ8WCY^}JhjZtMtsj7OgkWQRwJRr* zY1*KEeZ8N#P0?mGHs_nFOs4S91ucUGAA3$iMzmg+03zOFF?85e6}5!tmL*Ml@C*1#9%Iv( zWwvxOeQ4GD(T~&pd2UxYPPv6 zlbA>Rz7zGXmAXbaF^;hi;#QQb$&}+KmLriERlew@{IlC#6fI&%LCqz?T;i6|;PQL! zRPnxEo2uh|N83aLj^oT%|GWr(f#~4)LA@)NpCcNx`s1dt!LP+J5N*4&l5Lj=@t79L z;K(QRLp?Ua(Q(`iVRmi0(H{rCTgH&3VlHZ`4`<-R&hd7-9X$VaJTp-AZOOvd&GFIo z@wszI0EHCS62+~&-DG5GS&0@Fize9^u81@Yd`*a7{YZJr_*HtyetEkOOB89_5lt`O zN(1Jn@dQ0^uvS-bxjVgZw5D%zM{)0ej2pzJM;z#PC4_#j&kLOF zZ~zJwv?`blR@VBSd=rjtx7xDf4_S@BZf$Ovs{HdhyRXggQkF|r6aTj_rI{cSYKZqy zRkhlJu^KTiE*ZoIl@Z zit!I59VZ!;oj`S#$}wekvh+Dk?gf%9%WrWq%ZKtM^bq^W6Fd-9INc+LW0@XFjzK#k z%HDct9dt+k`w#A!wj6~O89YchlMAMzU$NG0>P7h{tDc2&{Ph-pR-%f+&Lj*v;^7Dm z{DaX(Tgp_YF)MM;8Ljlchr;S9G#v3U^{fQj)DNZ@&tK^oC)TLqrLl}}=uZHP6Maqi zjMGgA=g<|QI6J1wEGx8dj?r_^nN(rx?3<)|fCdBr2LB7t+E}YCzl)?bCi1aQpD2iQ z$r@>_nl8ldb2t@gtn_YlFKxpEhvo%^-uB)KPCeH)l*_j_m$V}xn!>sk+A0lqE1Udhq^`VoYJYv-cWu{ zMQOz6UC^$y=NNEY6^$M-zIW;od&Z$YW%9GTRd;)x+Fw2^`0zD{^c*27MW!C3XAp