forked from EleutherAI/gpt-neo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_fns.py
300 lines (255 loc) · 14.1 KB
/
model_fns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import mesh_tensorflow as mtf
import tensorflow.compat.v1 as tf
from tensorflow.python.tpu import tpu_estimator
import mesh_tensorflow.auto_mtf
import mesh_tensorflow.transformer as mtf_transformer
from optimizers import get_optimizer
from utils import (create_host_call, get_graph_info, remove_batch_from_layout, simd_mesh_setup, add_mode_to_params, get_batch_size, auto_layout, auto_layout_and_mesh_shape)
from models.utils import biasmask_attn_weights
from tensorflow.python.ops import resources
from sample import sample_autoregressive
from models.gpt2 import gpt2
import math
def model_fn(features, labels, mode, params):
# Get global step
global_step = tf.train.get_global_step()
# Construct mtf graph + mesh from params
graph = mtf.Graph()
mesh_shape = mtf.convert_to_shape(params["mesh_shape"])
if mode == tf.estimator.ModeKeys.PREDICT:
params["layout"] = remove_batch_from_layout(params["layout"])
layout_rules = mtf.convert_to_layout_rules(params["layout"])
# Mesh setup
if params["use_tpu"]:
var_placer, mesh_impl = simd_mesh_setup(params, mesh_shape, layout_rules)
else:
var_placer = None
gpu_ids = params["gpu_ids"]
mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl(
mesh_shape, layout_rules, gpu_ids)
# Trainable variable precision
# Store to checkpoints in master type, train in slice type, compute in activation type
if params["precision"] == "bfloat16":
variable_dtype = mtf.VariableDType(master_dtype=tf.bfloat16, slice_dtype=tf.float32, activation_dtype=tf.bfloat16)
else:
variable_dtype = mtf.VariableDType(master_dtype=tf.float32, slice_dtype=tf.float32, activation_dtype=tf.float32)
# Build mtf mesh object
mesh = mtf.Mesh(graph, "my_mesh", var_placer)
# Build mtf_features & seq length dict for getting number of microbatches
# We need to pack inputs into a dict to pass into serialize_training_step
features_dict = {"inputs": features, "labels": labels}
sequence_length_dict = {"inputs": params["n_ctx"], "labels": params["n_ctx"]}
params = add_mode_to_params(params, mode)
batch_size = get_batch_size(params)
batch_dim = mtf.Dimension("batch", batch_size)
batch_dims = [batch_dim]
feature_length = sequence_length_dict["inputs"]
length_dim = mtf.Dimension("sequence", feature_length)
mtf_features = {}
for key, x in features_dict.items():
if x is not None:
feature_shape = mtf.Shape(batch_dims + [length_dim])
if type(features_dict[key]) == dict:
features_dict[key] = features_dict[key]["feature"]
x = tf.cast(features_dict[key], tf.int32)
x = tf.reshape(x, feature_shape.to_integer_list)
mtf_features[key] = mtf.import_fully_replicated(
mesh, x, feature_shape, name=key)
# Instantiate dict for dimensions, bias, etc that can be calculated here once then passed into model
other_features = {}
memory_length_dim = mtf.Dimension("memory_length", length_dim.size)
attn_bias = biasmask_attn_weights(mesh, length_dim, memory_length_dim, variable_dtype) if params["causal"] else None
# Add attn_bias into mtf_features
other_features["attn_bias"] = attn_bias
# Define other Dimensions that we'll need inside the model
embd_dim = mtf.Dimension("embd", params["n_embd"])
vocab_dim = mtf.Dimension("vocab", params["n_vocab"])
# We need this because gathering when both the args have the same dimension in them breaks things
# This dim is specifically for the weights
# This prevents the "Einsum has lhs dimension without corresponding rhs or output dimension." error
embed_sequence_dim = mtf.Dimension("embed_sequence", params["n_ctx"])
other_features["embd_dim"] = embd_dim
other_features["vocab_dim"] = vocab_dim
other_features["embed_sequence_dim"] = embed_sequence_dim
other_features["memory_length_dim"] = memory_length_dim
if mode == tf.estimator.ModeKeys.PREDICT:
# Set up the model for prediction
inputs = mtf_features["inputs"]
if params["remove_partial_sequences"] is None:
params["remove_partial_sequences"] = False
export = params.get("export", False)
if not export:
mtf_samples = sample_autoregressive(
inputs, other_features=other_features, params=params, variable_dtype=variable_dtype,
remove_partial_sequences=params["remove_partial_sequences"], stop_at_token=params["eos_id"], sampling_use_entmax=params['sampling_use_entmax'])
else:
with mtf.utils.outside_all_rewrites():
with tf.variable_scope('gpt2'):
mtf_samples, loss, loss_batch = gpt2.model(mtf_features, other_features, params, mesh, variable_dtype=variable_dtype, context=None)
mtf_samples = mtf.anonymize(mtf_samples)
inputs = mtf.anonymize(inputs)
lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True)
inputs = lowering.export_to_tf_tensor(inputs)
outputs = lowering.export_to_tf_tensor(mtf_samples)
predictions = {
"inputs": inputs,
"outputs": outputs}
def scaffold_fn():
return tf.train.Scaffold(
local_init_op=tf.group(
tf.train.Scaffold.default_local_init_op(),
lowering.copy_masters_to_slices(),
name="mtf_local_init_op"),
ready_op=tf.concat(
[tf.report_uninitialized_variables(),
resources.report_uninitialized_resources()],
axis=0,
name="mtf_ready_op"))
return tpu_estimator.TPUEstimatorSpec(
mode=tf.estimator.ModeKeys.PREDICT,
predictions=predictions,
scaffold_fn=scaffold_fn,
prediction_hooks=[mtf.MtfRestoreHook(lowering)])
# We're not predicting, so we better be training or evaluating
assert (mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL)
if mode == tf.estimator.ModeKeys.TRAIN:
# Gets number of microbatches per batch for serialized training
# if param tokens_per_mb_per_replica = None, this defaults to 1 and no microbatching is performed
num_microbatches = int(mtf_transformer.utils.serialize_num_microbatches(batch_dim=batch_dim,
sequence_length=sequence_length_dict,
mesh_shape=mesh_shape,
layout_rules=layout_rules,
tokens_per_microbatch_per_replica=params["tokens_per_mb_per_replica"]))
else:
num_microbatches = 1
params["num_microbatches"] = num_microbatches # Add num microbatches to params
if num_microbatches > 1:
# For serialize_training_step we need to modify the model to output results in a dict
def serialized_fn(mtf_features):
if params["model"] == "GPT":
with tf.variable_scope('gpt2'):
logits, loss, loss_batch = gpt2.model(mtf_features, other_features, params, mesh, variable_dtype=variable_dtype)
return {"logits": logits, "loss": loss, "loss_batch": loss_batch}
else:
raise Exception(f"'{params['model']}' is not a valid model - please select from [GPT]")
# Serialize the training step - Gradients are accumulated locally and reduced once.
var_grads, output_dict = mtf.serialize_training_step(mtf_features, serialized_fn, batch_dim, num_microbatches)
loss = output_dict["loss"]
loss_batch = output_dict["loss_batch"]
logits = output_dict["logits"]
else:
# If we're not splitting into microbatches, return logits & loss as is
if params["model"] == "GPT":
with mtf.utils.outside_all_rewrites():
with tf.variable_scope('gpt2'):
logits, loss, loss_batch = gpt2.model(mtf_features, other_features, params, mesh, variable_dtype=variable_dtype, context=None)
else:
raise Exception(f"'{params['model']}' is not a valid model - please select from [GPT]")
# Auto layout generation
if params["auto_layout"]:
auto_layout(graph, mesh_shape, logits, loss)
if params["auto_layout_and_mesh_shape"]:
auto_layout_and_mesh_shape(graph, params["num_cores"], logits, loss)
if mode == tf.estimator.ModeKeys.TRAIN:
# In TRAIN mode, get optimizer
if params["num_microbatches"] > 1:
# If we are splitting the batch into microbatches, var grads are created in the serialize_training_step fn
# So we pass them in here
_, update_ops, var_grads = get_optimizer(mesh, loss, params, variable_dtype=variable_dtype, inp_var_grads=var_grads)
else:
# Otherwise, they are created in the get_optimizer fn, so we leave inp_var_grads blank
_, update_ops, var_grads = get_optimizer(mesh, loss, params, variable_dtype=variable_dtype)
# Log summaries to tensorboard
mtf.scalar_summary("loss", loss)
# Log gradients if in params
if params["log_grads"] not in [None, False]:
for g in var_grads:
grad_norm = mtf.sqrt(mtf.reduce_sum(mtf.square(g)))
mtf.scalar_summary("grads/norm" + g.name[:-2], grad_norm)
else:
# For now, we can only export fully-replicated tensors.
# This has to be done before lowering or they will not be included in the graph
mean_logits = mtf.reduce_mean(logits, reduced_dim=vocab_dim)
max_logits = mtf.argmax(logits, vocab_dim)
del logits
fully_replicated_mean_logits = mtf.anonymize(mean_logits)
fully_replicated_max_logits = mtf.anonymize(max_logits)
fully_replicated_loss_batch = mtf.anonymize(loss_batch)
# Gets & prints info about no. trainable vars in the model & dimension names
get_graph_info(graph)
# 'lowers' mtf tensors into a tf graph - this enables us to export results as tf tensors
lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True)
tf_loss = lowering.export_to_tf_tensor(loss)
tf_loss = tf.cast(tf_loss, tf.float32)
if mode == tf.estimator.ModeKeys.TRAIN:
# Use our patched version until mtf updates theirs
host_call = create_host_call(params['model_path'])
mtf.utils.remove_summaries()
# Creates train_op
tf_update_ops = [lowering.lowered_operation(op) for op in update_ops]
tf_update_ops.append(tf.assign_add(global_step, 1)) # Need to manually increment global_step
tf.logging.info(f"tf_update_ops: {tf_update_ops}")
train_op = tf.group(tf_update_ops)
else:
tf_mean_logits = lowering.export_to_tf_tensor(fully_replicated_mean_logits)
tf_max_logits = lowering.export_to_tf_tensor(fully_replicated_max_logits)
tf_loss_batch = tf.to_float(lowering.export_to_tf_tensor(fully_replicated_loss_batch))
with mtf.utils.outside_all_rewrites():
# Copy master variables to slices. Must be called first.
restore_hook = mtf.MtfRestoreHook(lowering)
if mode == tf.estimator.ModeKeys.TRAIN:
# Set up the checkpoint server and return the TPUEstimatorSpec
saver = tf.train.Saver(
tf.global_variables(),
sharded=True,
max_to_keep=10,
keep_checkpoint_every_n_hours=2,
defer_build=False,
save_relative_paths=True)
tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
saver_listener = mtf.MtfCheckpointSaverListener(lowering)
saver_hook = tf.train.CheckpointSaverHook(
params["model_path"],
save_steps=params["steps_per_checkpoint"],
saver=saver,
listeners=[saver_listener])
return tpu_estimator.TPUEstimatorSpec(
tf.estimator.ModeKeys.TRAIN,
loss=tf_loss,
host_call=host_call,
train_op=train_op,
training_hooks=[restore_hook, saver_hook])
elif mode == tf.estimator.ModeKeys.EVAL:
# Evaluation metrics
def _perplexity(loss):
perplexity = tf.exp(loss)
return tf.metrics.mean(perplexity)
def _bits_per_byte(loss):
bpb = loss * (0.29335 / math.log(2))
return tf.metrics.mean(bpb)
def _metric_fn(tf_mean_logits, tf_loss_batch):
mean_logits = tf.metrics.mean(tf_mean_logits)
loss = tf.reduce_mean(tf_loss_batch)
perp = _perplexity(loss)
bpb = _bits_per_byte(loss)
return {"mean_logits": mean_logits, "perplexity": perp, "bits per byte": bpb}
def _lambada_metric_fn(labels, tf_max_logits, tf_loss_batch):
eos_token = params["eos_id"]
answer_positions = tf.where(tf.math.not_equal(labels, eos_token))
correct_answers = tf.gather_nd(tf.math.equal(tf_max_logits, labels), answer_positions)
accuracy = tf.metrics.mean(tf.cast(correct_answers, tf.float32))
# I guess tf_loss_batch has z_loss and maybe other stuff added to it
# so maybe this should be calculated separately in the future
answer_loss = tf.gather_nd(tf_loss_batch, answer_positions)
log_perplexity = tf.metrics.mean(answer_loss)
return {"lambada_acc": accuracy, "lambada_log_ppl": log_perplexity}
eval_task = params["eval_task"]
if eval_task == "lambada":
eval_metrics = (_lambada_metric_fn, [labels, tf_max_logits, tf_loss_batch])
else:
eval_metrics = (_metric_fn, [tf_mean_logits, tf_loss_batch])
return tpu_estimator.TPUEstimatorSpec(
tf.estimator.ModeKeys.EVAL,
evaluation_hooks=[restore_hook],
loss=tf_loss,
eval_metrics=eval_metrics)