-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtest_SpliceAIDataset.py
204 lines (175 loc) · 7.35 KB
/
test_SpliceAIDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import random
import numpy as np
from downstream_tasks.SpliceAI.SpliceAIDataset import SpliceAIDataset
from transformers import AutoTokenizer
class TestSpliceAIDataset:
def sequence_tokenization(
self, tokenizer, targets_offset, L_context_size, R_context_size, max_seq_len=512
):
# create random sequence
M_size = targets_offset
left = random.choices(["A", "T", "G", "C"], k=L_context_size)
right = random.choices(["A", "T", "G", "C"], k=R_context_size)
mid = random.choices(["A", "T", "G", "C"], k=M_size)
seq = (
["N"] * (max(0, targets_offset - len(left)))
+ left
+ mid
+ right
+ ["N"] * max(0, (targets_offset - len(right)))
)
seq = "".join(seq)
# Add X to imitate any service token
encoding = tokenizer(
"".join(left + ["X"] + mid + ["X"] + right + ["X"]),
add_special_tokens=False,
padding=False,
return_offsets_mapping=True,
return_tensors="np",
)
targets, token_targets, mid_token_targets = (
[],
[[-100, -100]],
[[-100, -100]],
) # Start with CLS token
within_target = False
target_probs = [0] * 98 + [
1,
2,
] # ~1% probability for class 1 or 2, 98% of class 0
for ind, val in enumerate(encoding["offset_mapping"][0]):
if encoding["input_ids"][0][ind] == 0: # reach "X" (or ["UNK"]) token
token_targets.append([-100, -100]) # add SEP token labels
mid_token_targets.append([-100, -100]) # add SEP token labels
within_target = not within_target
continue
if within_target:
token_length = val[1] - val[0]
current_token_bp_targets = random.choices(target_probs, k=token_length)
targets += current_token_bp_targets
current_token_targets = [
1 if 1 in current_token_bp_targets else 0,
2 if 2 in current_token_bp_targets else 0,
]
token_targets.append(current_token_targets)
mid_token_targets.append(current_token_targets)
else:
token_targets.append([-100, -100]) # service token
assert len(targets) == M_size
if len(token_targets) < max_seq_len:
token_targets.extend(
[[-100, -100]] * (max_seq_len - len(token_targets))
) # imitate padding
elif len(mid_token_targets) > max_seq_len:
token_targets = np.concatenate(
[mid_token_targets[: max_seq_len - 2], [[-100, -100]] * 2]
)
dataset_results = self.dataset.tokenize_inputs(seq, np.array(targets))
a = np.array(token_targets)
b = dataset_results["labels"]
assert b.shape[0] == max_seq_len
assert a.shape[1] == b.shape[1] == 2
# we expect that a and b are either the same (if there was no trim)
# or a contains b (if there was trim)
if len(a)>len(b):
b = b[1:-1] # remove first and last token (CLS and SEP)
# now we check that returned token targets are substring of the tokens targets computed here
substr = [
x
for x in range(len(a) - len(b) + 1)
if np.all(np.equal(a[x : x + len(b)], b).flatten())
]
assert len(substr) > 0
def test_sequence_tokenization(self):
targets_offset = 5000
random.seed(42)
tokenizer = AutoTokenizer.from_pretrained("data/tokenizers/t2t_1000h_multi_32k/",
)
datafile = "downstream_tasks/SpliceAI/test_Dataset_data.csv"
for max_seq_len in range(12, 1000, 61):
self.dataset = SpliceAIDataset(
datafile,
tokenizer,
max_seq_len=max_seq_len,
targets_offset=targets_offset,
)
# test very small context
for i in range(5):
L_context_size = random.randint(0, targets_offset // 10)
R_context_size = random.randint(0, targets_offset // 10)
self.sequence_tokenization(
tokenizer,
targets_offset,
L_context_size,
R_context_size,
max_seq_len,
)
# test large context
for i in range(5):
L_context_size = random.randint(targets_offset - 10, targets_offset)
R_context_size = random.randint(targets_offset - 10, targets_offset)
self.sequence_tokenization(
tokenizer,
targets_offset,
L_context_size,
R_context_size,
max_seq_len,
)
# test random context
for i in range(5):
L_context_size = random.randint(0, targets_offset)
R_context_size = random.randint(0, targets_offset)
self.sequence_tokenization(
tokenizer,
targets_offset,
L_context_size,
R_context_size,
max_seq_len,
)
def longrun_tokens_class_computation(self):
datafile = "test_Dataset_data.gz.df.pkl"
tokenizer = AutoTokenizer.from_pretrained("AIRI-Institute/gena-lm-bert-base")
targets_offset = 5000
max_seq_len = 512
self.dataset = SpliceAIDataset(
datafile, tokenizer, max_seq_len=max_seq_len, targets_offset=targets_offset
)
dataset_results = self.dataset.__getitem__(0)
seq, targets = self.dataset.data.iloc[0].values
seq_encoding = tokenizer(
seq,
add_special_tokens=True,
padding="max_length",
max_length=max_seq_len,
return_offsets_mapping=True,
return_tensors="np",
)
token_targets_class1 = []
token_targets_class2 = []
for om in seq_encoding["offset_mapping"][0]:
st, en = om
if en == 0 or st < targets_offset or st > targets_offset + len(targets):
token_targets_class1.append(-100)
token_targets_class2.append(-100)
elif targets_offset + len(targets) >= st >= targets_offset:
token_targets = np.unique(
targets[st - targets_offset : en - targets_offset]
)
if 1 in token_targets.tolist():
token_targets_class1.append(1)
else:
token_targets_class1.append(0)
if 2 in token_targets.tolist():
token_targets_class2.append(2)
else:
token_targets_class2.append(0)
else:
raise ValueError
for pos, (q, v) in enumerate(
zip(token_targets_class1, dataset_results["labels"][:, 0])
):
assert q == v, print("Class mismatch at pos ", pos, ":", q, v)
for pos, (q, v) in enumerate(
zip(token_targets_class2, dataset_results["labels"][:, 1])
):
assert q == v, print("Class mismatch at pos ", pos, ":", q, v)