forked from AKSW/natuke
-
Notifications
You must be signed in to change notification settings - Fork 0
/
natuke_utils.py
433 lines (386 loc) · 20.3 KB
/
natuke_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import pandas as pd
import networkx as nx
import numpy as np
from copy import deepcopy
from tqdm import tqdm
from sklearn.neighbors import NearestNeighbors
import random
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
try:
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
except:
print('no GPU')
"""
*************************************
* *
* *
* UTILS FOR BENCHMARK EXECUTION *
* *
* *
*************************************
"""
def disturbed_hin(G, split=0.6, random_state=None, extra_cut_from='nubbe', edge_group='doi_bioActivity', node_from_feature='node_from', type_feature='edge_group', group_feature='group'):
"""
G: hin;
split: percentage to be cut from the hin;
random_state: ;
extra_cut_from: edges from the origin that needs to be cut but not restored;
edge_group: string of type of edge to be added for restoration;
type_feature: feature name of edge_type on your hin.
"""
def keep_left(x, G):
edge_split = x['type'].split('_')
if G.nodes[x['node']][group_feature] != edge_split[0]:
x['node'], x['neighbor'] = x['neighbor'], x['node']
return x
# prepare data for type counting
edges = list(G.edges)
edge_types = [G[edge[0]][edge[1]][type_feature] for edge in edges]
edges = pd.DataFrame(edges)
edges = edges.rename(columns={0: 'node', 1: 'neighbor'})
edges['type'] = edge_types
edges = edges.apply(keep_left, G=G, axis=1)
edges_group = edges.groupby(by=['type'], as_index=False).count().reset_index(drop=True)
# preparar arestas para eliminar
edges = edges.sample(frac=1, random_state=random_state).reset_index(drop=True)
edges_group = edges_group.rename(columns={'node': 'count', 'neighbor': 'to_cut_count'})
edges_group['to_cut_count'] = edges_group['to_cut_count'].apply(lambda x:round(x * split))
train, test = {}, {}
for _, row in edges_group.iterrows():
if row['type'] == edge_group:
train[row['type']] = edges[edges['type'] == row['type']].reset_index(drop=True).loc[row['to_cut_count']:].reset_index(drop=True)
test[row['type']] = edges[edges['type'] == row['type']].reset_index(drop=True).loc[:row['to_cut_count']-1].reset_index(drop=True)
G_disturbed = deepcopy(G)
hidden = {'node': [], 'neighbor_group': []}
for tc_df in test.values():
for _, row in tc_df.iterrows():
neighbors_list = list(G_disturbed.neighbors(row['node']))
neighbors_hidden = []
has_cut = False
for neighbor in neighbors_list:
if G_disturbed.nodes[neighbor][node_from_feature] == extra_cut_from:
has_cut = True
neighbors_hidden.append({'neighbor': neighbor, 'edge_group': G_disturbed[row['node']][neighbor][type_feature]})
G_disturbed.remove_edge(row['node'],neighbor)
if has_cut:
hidden['node'].append(row['node'])
hidden['neighbor_group'].append(neighbors_hidden)
return G_disturbed, train, test, pd.DataFrame(hidden)
def regularization(G, dim=512, embedding_feature: str = 'embedding', iterations=15, mi=0.85):
nodes = []
# inicializando vetor f para todos os nodes
for node in G.nodes():
if 'f' not in G.nodes[node]:
G.nodes[node]['f'] = np.array([0.0]*dim)
elif embedding_feature in G.nodes[node]:
G.nodes[node]['f'] = G.nodes[node][embedding_feature]*1.0
nodes.append(node)
pbar = tqdm(range(0, iterations))
for iteration in pbar:
random.shuffle(nodes)
energy = 0.0
# percorrendo cada node
for node in nodes:
f_new = np.array([0.0]*dim)
f_old = np.array(G.nodes[node]['f'])*1.0
sum_w = 0.0
# percorrendo vizinhos do onde
for neighbor in G.neighbors(node):
w = 1.0
if 'weight' in G[node][neighbor]:
w = G[node][neighbor]['weight']
w /= np.sqrt(G.degree[neighbor])
f_new = f_new + w*G.nodes[neighbor]['f']
sum_w = sum_w + w
if sum_w == 0.0: sum_w = 1.0
f_new /= sum_w
G.nodes[node]['f'] = f_new*1.0
if embedding_feature in G.nodes[node]:
G.nodes[node]['f'] = G.nodes[node][embedding_feature] * \
mi + G.nodes[node]['f']*(1.0-mi)
energy = energy + np.linalg.norm(f_new-f_old)
iteration = iteration + 1
message = 'Iteration '+str(iteration)+' | Energy = '+str(energy)
pbar.set_description(message)
return G
def get_knn_data(G, node, embedding_feature: str = 'f'):
knn_data, knn_nodes = [], []
for node in nx.non_neighbors(G, node):
if embedding_feature in G.nodes[node]:
knn_data.append(G.nodes[node][embedding_feature])
knn_nodes.append(node)
return pd.DataFrame(knn_data), pd.DataFrame(knn_nodes)
def run_knn(k, G_restored, row, knn_data, knn_nodes, node_feature='node', embedding_feature='f', emb_dim=4608):
if k == -1:
k = knn_data.shape[0]
knn = NearestNeighbors(n_neighbors=k, metric='cosine')
knn.fit(knn_data)
indice = knn.kneighbors(G_restored.nodes[row[node_feature]][embedding_feature].reshape(-1, emb_dim), return_distance=False)
return [knn_nodes[0].iloc[indice[0][i]] for i in range(k)]
import multiprocess
def restore_hin(G, cutted_dict, n_jobs=-1, k=-1, node_feature='node', neighbor_feature='neighbor', group_feature='group', embedding_feature='f'):
# function
def process(start, end, G, key, value, return_dict, thread_id):
value_thread = value.loc[start:(end-1)]
restored_dict_thread = {'true': [], 'restored': [], 'edge_type': []}
for _, row in tqdm(value_thread.iterrows(), total=value_thread.shape[0]):
edge_to_add = key.split('_')
edge_to_add[0] = row[node_feature]
edge_to_add = [row[node_feature] if e == G.nodes[row[node_feature]][group_feature] and row[node_feature] != edge_to_add[0] else e for e in edge_to_add]
knn_data, knn_nodes = get_knn_data(G, row[node_feature], embedding_feature=embedding_feature)
knn_nodes['type'] = knn_nodes[0].apply(lambda x: G.nodes[x][group_feature])
knn_data = knn_data[knn_nodes['type'].isin(edge_to_add)]
knn_nodes = knn_nodes[knn_nodes['type'].isin(edge_to_add)]
edge_to_add[1] = run_knn(k, G, row, knn_data, knn_nodes, embedding_feature=embedding_feature)
restored_dict_thread['true'].append([row[node_feature], row[neighbor_feature]])
restored_dict_thread['restored'].append(edge_to_add)
restored_dict_thread['edge_type'].append(key)
for key in restored_dict_thread.keys():
_key = key + str(thread_id)
return_dict[_key] = (restored_dict_thread[key])
# split threads
def split_processing(n_jobs, G, key, value, return_dict):
split_size = round(len(value) / n_jobs)
threads = []
for i in range(n_jobs):
# determine the indices of the list this thread will handle
start = i * split_size
# special case on the last chunk to account for uneven splits
end = len(value) if i+1 == n_jobs else (i+1) * split_size
# create the thread
threads.append(
multiprocess.Process(target=process, args=(start, end, G, key, value, return_dict, i)))
threads[-1].start() # start the thread we just created
# wait for all threads to finish
for t in threads:
t.join()
if n_jobs == -1:
n_jobs = multiprocess.cpu_count()
restored_dict = {'true': [], 'restored': [], 'edge_type': []}
return_dict = multiprocess.Manager().dict()
for key, value in cutted_dict.items():
split_processing(n_jobs, G, key, value, return_dict)
return_dict = dict(return_dict)
for thread_key in restored_dict.keys():
for job in range(n_jobs):
for res in return_dict[thread_key + str(job)]:
restored_dict[thread_key].append(res)
return pd.DataFrame(restored_dict)
def restore_hin_split(G, cutted_df, edge_group, n_jobs=-1, k=-1, node_feature='node', neighbor_feature='neighbor', group_feature='group', embedding_feature='f'):
# function
def process(start, end, G, df, edge_group, return_dict, thread_id):
value_thread = df.loc[start:(end-1)]
restored_dict_thread = {'true': [], 'restored': [], 'edge_type': []}
for _, row in tqdm(value_thread.iterrows(), total=value_thread.shape[0]):
edge_to_add = edge_group.split('_')
edge_to_add[0] = row[node_feature]
edge_to_add = [row[node_feature] if e == G.nodes[row[node_feature]][group_feature] and row[node_feature] != edge_to_add[0] else e for e in edge_to_add]
knn_data, knn_nodes = get_knn_data(G, row[node_feature], embedding_feature=embedding_feature)
knn_nodes['type'] = knn_nodes[0].apply(lambda x: G.nodes[x][group_feature])
knn_data = knn_data[knn_nodes['type'].isin(edge_to_add)]
knn_nodes = knn_nodes[knn_nodes['type'].isin(edge_to_add)]
edge_to_add[1] = run_knn(k, G, row, knn_data, knn_nodes, embedding_feature=embedding_feature)
restored_dict_thread['true'].append([row[node_feature], row[neighbor_feature]])
restored_dict_thread['restored'].append(edge_to_add)
restored_dict_thread['edge_type'].append(edge_group)
for key in restored_dict_thread.keys():
_key = key + str(thread_id)
return_dict[_key] = (restored_dict_thread[key])
# split threads
def split_processing(n_jobs, G, df, edge_group, return_dict):
split_size = round(len(df) / n_jobs)
threads = []
for i in range(n_jobs):
# determine the indices of the list this thread will handle
start = i * split_size
# special case on the last chunk to account for uneven splits
end = len(df) if i+1 == n_jobs else (i+1) * split_size
# create the thread
threads.append(
multiprocess.Process(target=process, args=(start, end, G, df, edge_group, return_dict, i)))
threads[-1].start() # start the thread we just created
# wait for all threads to finish
for t in threads:
t.join()
if n_jobs == -1:
n_jobs = multiprocess.cpu_count()
restored_dict = {'true': [], 'restored': [], 'edge_type': []}
return_dict = multiprocess.Manager().dict()
split_processing(n_jobs, G, cutted_df, edge_group, return_dict)
return_dict = dict(return_dict)
for thread_key in restored_dict.keys():
for job in range(n_jobs):
for res in return_dict[thread_key + str(job)]:
restored_dict[thread_key].append(res)
return pd.DataFrame(restored_dict)
def ml_restore_hin(G, train, test, edge_group='doi_bioActivity', neighbor_feature='neighbor', node_feature='node', embedding_feature='f', min_delta=0.00001, patience=10, epochs=1000, embedding_size=512):
def getX(G, train, test, edge_group='doi_bioActivity', node_feature='node', embedding_feature='f'):
X_train = []
for _, row in train[edge_group][node_feature].iteritems():
X_train.append(G.nodes[row][embedding_feature])
X_test = []
for _, row in test[edge_group][node_feature].iteritems():
X_test.append(G.nodes[row][embedding_feature])
return np.array(X_train), np.array(X_test)
def getY(train, test, neighbor_feature='neighbor'):
classes = pd.Series(train[edge_group][neighbor_feature].to_list() + test[edge_group][neighbor_feature].to_list()).unique()
classes_codes = {}
for index, class_name in enumerate(classes):
classes_codes[class_name] = index
train[edge_group]['class_code'] = train[edge_group][neighbor_feature].apply(lambda x: classes_codes[x])
test[edge_group]['class_code'] = test[edge_group][neighbor_feature].apply(lambda x: classes_codes[x])
num_classes = len(classes)
y_train = to_categorical(train[edge_group]['class_code'], num_classes=num_classes)
y_test = to_categorical(test[edge_group]['class_code'], num_classes=num_classes)
return y_train, y_test, num_classes, classes
def get_mlp(dimX, dimY):
model = Sequential()
model.add(Dense(dimX, activation='relu', input_shape=(dimX,)))
model.add(Dense(dimX, activation='relu'))
model.add(Dense(dimX, activation='relu'))
model.add(Dense(dimY, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
X_train, X_test = getX(G, train, test, edge_group=edge_group, node_feature=node_feature, embedding_feature=embedding_feature)
print(X_train.shape)
y_train, _, num_classes, classes = getY(train, test, neighbor_feature=neighbor_feature)
K.clear_session()
model = get_mlp(embedding_size, num_classes)
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=patience, min_delta=min_delta)
model.fit(X_train, y_train, epochs=epochs, batch_size=64, callbacks=[callback])
y_pred = model.predict(X_test)
restored_df = {'true': [], 'restored': [], 'edge_type': []}
for index, row in test[edge_group].iterrows():
zip_pred_classes = sorted(zip(y_pred[index], classes), reverse=True)
restored_df['true'].append([row[node_feature], row[neighbor_feature]])
restored_df['restored'].append([row[node_feature], [class_name for _, class_name in zip_pred_classes]])
restored_df['edge_type'].append(edge_group)
return pd.DataFrame(restored_df)
def embedding_graph(G, embeddings, embedding_feature='f'):
for key, value in embeddings.items():
G.nodes[key][embedding_feature] = value
return G
def true_restore(G, hidden, train, test, percentual=1.0, edge_group='doi_bioActivity', node_feature='node', neighbor_group_feature='neighbor_group', neighbor_feature='neighbor', edge_group_feature='edge_group'):
G_found = deepcopy(G)
adding_df = hidden.loc[0:round(hidden.shape[0] * percentual)-1]
remaining_df = hidden.loc[round(hidden.shape[0] * percentual):hidden.shape[0]-1]
df_train, df_test = train[edge_group], test[edge_group]
for index, row in adding_df.iterrows():
df_train = pd.concat([df_train, df_test[df_test[node_feature] == row[node_feature]]])
df_test = df_test.drop(df_test[df_test[node_feature] == row[node_feature]].index)
for to_add in row[neighbor_group_feature]:
G_found.add_edge(row[node_feature], to_add[neighbor_feature], edge_type=to_add[edge_group_feature])
train[edge_group], test[edge_group] = df_train.reset_index(drop=True), df_test.reset_index(drop=True)
return G_found, remaining_df.reset_index(drop=True), train, test
from gensim.models import Word2Vec
from stellargraph.data import UniformRandomMetaPathWalk
from stellargraph import StellarGraph
# 'bioActivity', 'molType', 'collectionSpecie', 'collectionSite', 'collectionType', 'molecularMass', 'monoisotropicMass', 'cLogP', 'tpsa',
# 'numberOfLipinskiViolations', 'numberOfH_bondAcceptors', 'numberOfH_bondDonors', 'numberOfRotableBonds', 'molecularVolume', 'smile'
def metapath2vec(graph, dimensions = 512, num_walks = 1, walk_length = 100, context_window_size = 10,
num_iter = 1, workers = 1, node_type='group', edge_type='edge_group',
user_metapaths=[
['doi', 'name', 'doi'], ['doi','bioActivity','doi'],['doi','molType','doi'],['doi','collectionSpecie','doi'],
['doi','collectionSite','doi'],['doi','collectionType','doi'],['doi','molecularMass','doi'],
['doi','monoisotropicMass','doi'],['doi','cLogP','doi'],['doi','tpsa','doi'],
['doi','numberOfLipinskiViolations','doi'],['doi','numberOfH_bondAcceptors','doi'],['doi','numberOfH_bondDonors','doi'],
['doi','numberOfRotableBonds','doi'],['doi','molecularVolume','doi'],['doi','smile','doi'],
]
):
s_graph = StellarGraph.from_networkx(graph, node_type_attr=node_type, edge_type_attr=edge_type)
rw = UniformRandomMetaPathWalk(s_graph)
walks = rw.run(
s_graph.nodes(), n=num_walks, length=walk_length, metapaths=user_metapaths
)
print(f"Number of random walks: {len(walks)}")
model = Word2Vec(
walks,
size=dimensions,
window=context_window_size,
min_count=0,
sg=1,
workers=workers,
iter=num_iter,
)
def get_embeddings(model, graph):
if model is None:
print("model not train")
return {}
_embeddings = {}
for word in graph.nodes():
try:
_embeddings[word] = model.wv[word]
except:
_embeddings[word] = np.zeros(dimensions)
return _embeddings
return get_embeddings(model, graph)
#BFS2Vec
from stellargraph.data import SampledBreadthFirstWalk
def BFS2vec(graph, n_size=[5,5,5], n=5, seed=125, weighted=False, dimensions = 512, context_window_size = 10,
num_iter=1, workers = 1, node_type='group', edge_type='edge_group',
):
s_graph = StellarGraph.from_networkx(graph, node_type_attr=node_type, edge_type_attr=edge_type)
rw = SampledBreadthFirstWalk(s_graph)
walks = rw.run(s_graph.nodes(), n_size=n_size, n=n, seed=seed, weighted=weighted)
print(f"Number of random walks: {len(walks)}")
model = Word2Vec(
walks,
size=dimensions,
window=context_window_size,
min_count=0,
sg=1,
workers=workers,
iter=num_iter,
)
def get_embeddings(model, graph):
if model is None:
print("model not train")
return {}
_embeddings = {}
for word in graph.nodes():
try:
_embeddings[word] = model.wv[word]
except:
_embeddings[word] = np.zeros(dimensions)
return _embeddings
return get_embeddings(model, graph)
"""
*************************************
* *
* *
* UTILS FOR BENCHMARK EVALUATION *
* *
* *
*************************************
"""
def hits_at(k, true, list_pred):
hits = []
for index_t, t in enumerate(true):
hit = False
# get the list of predicteds that's on the second argument
for index_lp, lp in enumerate(list_pred[index_t][1]):
if index_lp >= k:
break
if t[1] == lp:
hits.append(1)
hit = True
break
if not(hit):
hits.append(0)
return np.mean(hits)
def mrr(true, list_pred):
# using the first list pred to get how many there will be
rrs = []
for index_t, t in enumerate(true):
# get the list of predicteds that's on the second argument
for index_lp, lp in enumerate(list_pred[index_t][1]):
if t[1] == lp:
rrs.append(1/(index_lp + 1))
break
return np.mean(rrs)