forked from GillianGrayson/dnam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxgboost.yaml
50 lines (40 loc) · 1.51 KB
/
xgboost.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# @package _global_
# example hyperparameter optimization of some experiment with Optuna:
# python run.py --multirun hparams_search=fcmlp experiment=example_simple
# python run.py --multirun hparams_search=fcmlp experiment=example_simple hydra.sweeper.n_trials=30
# python run.py --multirun hparams_search=fcmlp experiment=example_simple logger=wandb
defaults:
- override /hydra/sweeper: optuna
# choose metric which will be optimized by Optuna
optimized_metric: "f1_score_weighted"
hydra:
# here we define Optuna hyperparameter search
# it optimizes for value returned from function with @hydra.main decorator
# learn more here: https://hydra.cc/docs/next/plugins/optuna_sweeper
sweeper:
_target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper
storage: null
study_name: null
n_jobs: 1
# 'minimize' or 'maximize' the objective
direction: maximize
# number of experiments that will be executed
n_trials: 20
# choose Optuna hyperparameter sampler
# learn more here: https://optuna.readthedocs.io/en/stable/reference/samplers.html
sampler:
_target_: optuna.samplers.TPESampler
seed: 2
consider_prior: true
prior_weight: 1.0
consider_magic_clip: true
consider_endpoints: false
n_startup_trials: 10
n_ei_candidates: 24
multivariate: false
warn_independent_sampling: true
# define range of hyperparameters
search_space:
model.learning_rate:
type: categorical
choices: [0.05, 0.01]