forked from GEM-benchmark/NL-Augmenter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
186 lines (158 loc) Β· 5.79 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
from setuptools import find_packages, setup
from nlaugmenter import __version__
from nlaugmenter.evaluation.TestRunner import OperationRuns
from nlaugmenter.utils.mapper import map_filter, map_transformation
NAME = "nlaugmenter"
def all_folders(search: str, transformation_type: str) -> list:
"""
Get all folder names for either the transformations or filters
Parameters:
-----------
search: str,
search term, can be either 'transformations' or 'filters'.
transformation_type: str,
if 'transformations' is the search term then specify what type is it (light or heavy).
Returns:
--------
list of folder names.
"""
folder_names = [
NAME + "/" + search + "/" + f
for f in list(
OperationRuns.get_all_folder_names(search, transformation_type)
)
]
return folder_names
def read(fname):
with open(os.path.join(os.path.dirname(__file__), fname)) as f:
data = f.read()
return data
def recursive_requirements(search: str, transformation_type: str) -> str:
# (1) read all requirements.txt in the folder.
requirements = ""
for folder in all_folders(search, transformation_type):
r_file = os.path.join(
os.path.dirname(__file__), folder + "/requirements.txt"
)
if os.path.isfile(r_file):
with open(r_file) as f:
requirements += f.read() + "\n"
return requirements
def get_default_requirements() -> list:
"""
Populate the default requirements to be installed for the library.
Returns:
-------
list
list of requirements.
"""
# Get the default requirements (light transformations and light filters)
# (1) read main requirements.txt
mandatory_requirements = read("requirements.txt")
# (2) read requirements for light transformations
mandatory_requirements += recursive_requirements(
"transformations", "light"
)
# (3) read requirements for light filters
mandatory_requirements += recursive_requirements(
"filters", "light"
) # light filters
return filter_requirements(mandatory_requirements)
def filter_requirements(requirements: str) -> list:
"""Filter the requirements, exclude comments, empty strings
Parameters:
-----------
requirements: str,
string of requirements
Returns:
--------
list
list of filtered requirements
"""
requirement_list = requirements.split("\n")
# Remove all comments and empty string.
requirement_list = set(
filter(lambda req: "#" not in req and req != "", requirement_list)
)
return list(requirement_list)
def get_extra_requirements() -> dict:
"""
Get the dict of requirements for all the heavy transformations and filters.
If a user specifies a heavy transformation or filter, the corresponding requirements
from the generated dictionary will be picked up and installed along with the default
requirements.
The generated dictionary will be of this format:
{
'lost_in_translation': ['rouge_score'],
'mr_value_replacement': ['torchtext==0.9.1'],
'ocr_perturbation': ['trdg==1.6.0', 'tesserocr>=2.5.2'],
'pinyin': ['g2pM==0.1.2.5'],
'punctuation': ['cucco==2.2.1', 'fastpunct==2.0.2'],
'sentence_reordering': ['allennlp==2.5.0', 'allennlp-models==2.5.0'],
'synonym_substitution': ['nltk==3.6.2'],
'token_replacement': ['editdistance>=0.5.3'],
'transformer_fill': ['torch', 'transformers', 'spacy'],
'toxicity': ['detoxify==0.2.2']
}
Example usage: pip install nl-augmenter[lost_in_translation]
Returns:
-------
dict
dict of requirements for all the heavy transformations and filters.
"""
# Dictionary of requirements
requirements = {}
# Heavy transformations picked from mapper.py
for entry in map_transformation["heavy"]:
file_name = NAME + "/transformations/" + entry + "/requirements.txt"
if os.path.exists(file_name):
req_string = read(file_name)
requirements[entry] = filter_requirements(req_string)
# Heavy filters picked from mapper.py
for entry in map_filter["heavy"]:
file_name = NAME + "/filters/" + entry + "/requirements.txt"
if os.path.exists(file_name):
req_string = read(file_name)
requirements[entry] = filter_requirements(req_string)
return requirements
setup(
name=NAME,
version=__version__,
description="NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation",
author_email="[email protected]",
long_description=read("README.md"),
long_description_content_type="text/markdown",
license="MIT",
url="https://github.com/GEM-benchmark/NL-Augmenter",
project_urls={
"Bug Tracker": "https://github.com/GEM-benchmark/NL-Augmenter/issues",
"Web Page": "https://gem-benchmark.com/nl_augmenter",
},
install_requires=get_default_requirements(),
extras_require=get_extra_requirements(),
keywords=[
"augmentation",
"natural language processing",
"NLP",
"filters",
"deep learning",
"text processing",
"machine learning",
],
classifiers=[
"License :: OSI Approved :: MIT License",
"Intended Audience :: Developers",
"Intended Audience :: Information Technology",
"Intended Audience :: Science/Research",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Operating System :: OS Independent",
],
packages=find_packages(exclude=["test", "docs"]),
package_data={
"": ["*.json", "*.txt", "*.tsv", "*.csv", "*.npz", "*.ckpt"]
},
include_package_data=True,
python_requires=">=3.7",
)