-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgococo.go
275 lines (229 loc) · 7.03 KB
/
gococo.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
gococo - CLI for executing COCO TensorFlow graphs
Copyright (c) 2017 ActiveState Software
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
package main
import (
"bufio"
"bytes"
"flag"
"fmt"
"image"
"image/color"
"image/draw"
"image/jpeg"
"io/ioutil"
"log"
"os"
"path/filepath"
"golang.org/x/image/colornames"
"golang.org/x/image/font"
"golang.org/x/image/font/basicfont"
"golang.org/x/image/math/fixed"
tf "github.com/tensorflow/tensorflow/tensorflow/go"
"github.com/tensorflow/tensorflow/tensorflow/go/op"
)
// Global labels array
var labels []string
// DRAWING UTILITY FUNCTIONS
// HLine draws a horizontal line
func HLine(img *image.RGBA, x1, y, x2 int, col color.Color) {
for ; x1 <= x2; x1++ {
img.Set(x1, y, col)
}
}
// VLine draws a veritcal line
func VLine(img *image.RGBA, x, y1, y2 int, col color.Color) {
for ; y1 <= y2; y1++ {
img.Set(x, y1, col)
}
}
// Rect draws a rectangle utilizing HLine() and VLine()
func Rect(img *image.RGBA, x1, y1, x2, y2, width int, col color.Color) {
for i := 0; i < width; i++ {
HLine(img, x1, y1+i, x2, col)
HLine(img, x1, y2+i, x2, col)
VLine(img, x1+i, y1, y2, col)
VLine(img, x2+i, y1, y2, col)
}
}
// TENSOR UTILITY FUNCTIONS
func makeTensorFromImage(filename string) (*tf.Tensor, image.Image, error) {
b, err := ioutil.ReadFile(filename)
if err != nil {
return nil, nil, err
}
r := bytes.NewReader(b)
img, _, err := image.Decode(r)
if err != nil {
return nil, nil, err
}
// DecodeJpeg uses a scalar String-valued tensor as input.
tensor, err := tf.NewTensor(string(b))
if err != nil {
return nil, nil, err
}
// Creates a tensorflow graph to decode the jpeg image
graph, input, output, err := decodeJpegGraph()
if err != nil {
return nil, nil, err
}
// Execute that graph to decode this one image
session, err := tf.NewSession(graph, nil)
if err != nil {
return nil, nil, err
}
defer session.Close()
normalized, err := session.Run(
map[tf.Output]*tf.Tensor{input: tensor},
[]tf.Output{output},
nil)
if err != nil {
return nil, nil, err
}
return normalized[0], img, nil
}
func decodeJpegGraph() (graph *tf.Graph, input, output tf.Output, err error) {
s := op.NewScope()
input = op.Placeholder(s, tf.String)
output = op.ExpandDims(s,
op.DecodeJpeg(s, input, op.DecodeJpegChannels(3)),
op.Const(s.SubScope("make_batch"), int32(0)))
graph, err = s.Finalize()
return graph, input, output, err
}
func loadLabels(labelsFile string) {
file, err := os.Open(labelsFile)
if err != nil {
log.Fatal(err)
}
defer file.Close()
scanner := bufio.NewScanner(file)
for scanner.Scan() {
labels = append(labels, scanner.Text())
}
if err := scanner.Err(); err != nil {
log.Printf("ERROR: failed to read %s: %v", labelsFile, err)
}
}
func getLabel(idx int, probabilities []float32, classes []float32) string {
index := int(classes[idx])
label := fmt.Sprintf("%s (%2.0f%%)", labels[index], probabilities[idx]*100.0)
return label
}
func addLabel(img *image.RGBA, x, y, class int, label string) {
col := colornames.Map[colornames.Names[class]]
point := fixed.Point26_6{fixed.Int26_6(x * 64), fixed.Int26_6(y * 64)}
d := &font.Drawer{
Dst: img,
Src: image.NewUniform(colornames.Black),
Face: basicfont.Face7x13,
Dot: point,
}
Rect(img, x, y-13, (x + len(label)*7), y-6, 7, col)
d.DrawString(label)
}
func main() {
// Parse flags
modeldir := flag.String("dir", "", "Directory containing COCO trained model files. Assumes model file is called frozen_inference_graph.pb")
jpgfile := flag.String("jpg", "", "Path of a JPG image to use for input")
outjpg := flag.String("out", "output.jpg", "Path of output JPG for displaying labels. Default is output.jpg")
labelfile := flag.String("labels", "labels.txt", "Path to file of COCO labels, one per line")
flag.Parse()
if *modeldir == "" || *jpgfile == "" {
flag.Usage()
return
}
// Load the labels
loadLabels(*labelfile)
// Load a frozen graph to use for queries
modelpath := filepath.Join(*modeldir, "frozen_inference_graph.pb")
model, err := ioutil.ReadFile(modelpath)
if err != nil {
log.Fatal(err)
}
// Construct an in-memory graph from the serialized form.
graph := tf.NewGraph()
if err := graph.Import(model, ""); err != nil {
log.Fatal(err)
}
// Create a session for inference over graph.
session, err := tf.NewSession(graph, nil)
if err != nil {
log.Fatal(err)
}
defer session.Close()
// DecodeJpeg uses a scalar String-valued tensor as input.
tensor, i, err := makeTensorFromImage(*jpgfile)
if err != nil {
log.Fatal(err)
}
// Transform the decoded YCbCr JPG image into RGBA
b := i.Bounds()
img := image.NewRGBA(b)
draw.Draw(img, b, i, b.Min, draw.Src)
// Get all the input and output operations
inputop := graph.Operation("image_tensor")
// Output ops
o1 := graph.Operation("detection_boxes")
o2 := graph.Operation("detection_scores")
o3 := graph.Operation("detection_classes")
o4 := graph.Operation("num_detections")
// Execute COCO Graph
output, err := session.Run(
map[tf.Output]*tf.Tensor{
inputop.Output(0): tensor,
},
[]tf.Output{
o1.Output(0),
o2.Output(0),
o3.Output(0),
o4.Output(0),
},
nil)
if err != nil {
log.Fatal(err)
}
// Outputs
probabilities := output[1].Value().([][]float32)[0]
classes := output[2].Value().([][]float32)[0]
boxes := output[0].Value().([][][]float32)[0]
// Draw a box around the objects
curObj := 0
// 0.4 is an arbitrary threshold, below this the results get a bit random
for probabilities[curObj] > 0.4 {
x1 := float32(img.Bounds().Max.X) * boxes[curObj][1]
x2 := float32(img.Bounds().Max.X) * boxes[curObj][3]
y1 := float32(img.Bounds().Max.Y) * boxes[curObj][0]
y2 := float32(img.Bounds().Max.Y) * boxes[curObj][2]
Rect(img, int(x1), int(y1), int(x2), int(y2), 4, colornames.Map[colornames.Names[int(classes[curObj])]])
addLabel(img, int(x1), int(y1), int(classes[curObj]), getLabel(curObj, probabilities, classes))
curObj++
}
// Output JPG file
outfile, err := os.Create(*outjpg)
if err != nil {
log.Fatal(err)
}
var opt jpeg.Options
opt.Quality = 80
err = jpeg.Encode(outfile, img, &opt)
if err != nil {
log.Fatal(err)
}
}