forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 1
/
best-position-for-a-service-centre.py
73 lines (67 loc) · 2.74 KB
/
best-position-for-a-service-centre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Time: O(n * iter), iter is the number of iterations
# Space: O(1)
# see reference:
# - https://en.wikipedia.org/wiki/Geometric_median
# - https://wikimedia.org/api/rest_v1/media/math/render/svg/b3fb215363358f12687100710caff0e86cd9d26b
# Weiszfeld's algorithm
class Solution(object):
def getMinDistSum(self, positions):
"""
:type positions: List[List[int]]
:rtype: float
"""
EPS = 1e-6
def norm(p1, p2):
return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)**0.5
def geometry_median(positions, median):
numerator, denominator = [0.0, 0.0], 0.0
for p in positions:
l = norm(median, p)
if not l:
continue
numerator[0] += p[0]/l
numerator[1] += p[1]/l
denominator += 1/l
if denominator == 0.0:
return True, None
return False, [numerator[0]/denominator, numerator[1]/denominator]
median = [float(sum(p[0] for p in positions))/len(positions),
float(sum(p[1] for p in positions))/len(positions)]
prev_median = [float("-inf"), float("-inf")]
while norm(median, prev_median)*len(positions) > EPS:
stopped, new_median = geometry_median(positions, median)
if stopped:
break
median, prev_median = new_median, median
return sum(norm(median, p) for p in positions)
# Time: O(n * iter), iter is the number of iterations
# Space: O(1)
class Solution2(object):
def getMinDistSum(self, positions):
"""
:type positions: List[List[int]]
:rtype: float
"""
DIRECTIONS = [(0, 1), (1, 0), (0, -1), (-1, 0)]
EPS = 1e-6
def dist(positions, p):
return sum(((p[0]-x)**2 + (p[1]-y)**2)**0.5 for x, y in positions)
median = [0.0, 0.0]
median[0] = float(sum(x for x, _ in positions))/len(positions)
median[1] = float(sum(y for _, y in positions))/len(positions)
result = dist(positions, median)
delta = float(max(max(positions, key=lambda x: x[0])[0],
max(positions, key=lambda x: x[1])[1])) - \
float(min(min(positions, key=lambda x: x[0])[0],
min(positions, key=lambda x: x[1])[1]))
while delta > EPS:
for dx, dy in DIRECTIONS:
new_median = [median[0] + delta*dx, median[1] + delta*dy]
nd = dist(positions, new_median)
if nd < result:
result = nd
median = new_median
break
else:
delta /= 2.0
return result