-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
110 lines (87 loc) · 3.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import serial
import time
from ultralytics import YOLO
import cv2
import threading
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse, StreamingResponse
from jinja2 import Template
import uvicorn
# Initialize serial communication with Arduino
arduino = serial.Serial(port='COM8', baudrate=9600, timeout=1)
app = FastAPI()
# Load the YOLO model
model = YOLO("best.pt")
# Global variables to store detection results
detected_labels = []
detection_status = 0 # 0: No detection, 1: Non-burnable, 2: Burnable
# Define burnable and non-burnable categories
burnable_items = {"paper", "biodegradable", "cardboard"}
non_burnable_items = {"plastic", "metal", "garbage", "glass"}
# Open the webcam
webcam_index = 0
cap = cv2.VideoCapture(webcam_index)
if not cap.isOpened():
raise RuntimeError(f"Error opening video stream from camera index {webcam_index}")
def classify_detection(labels):
global detection_status
if not labels:
detection_status = 0
else:
labels_lower = [label.lower() for label in labels]
burnable_detected = any(label in burnable_items for label in labels_lower)
non_burnable_detected = any(label in non_burnable_items for label in labels_lower)
if non_burnable_detected:
detection_status = 1
elif burnable_detected:
detection_status = 2
else:
detection_status = 0
send_to_arduino(detection_status)
def send_to_arduino(status):
try:
arduino.write(f"{status}\n".encode())
except Exception as e:
print(f"Error sending to Arduino: {e}")
def run_detection():
global detected_labels
while True:
ret, frame = cap.read()
if not ret:
break
results = model(frame)
detected_labels = [model.names[int(cls)] for box in results[0].boxes for cls in box.cls]
classify_detection(detected_labels)
time.sleep(0.1)
# Run detection in a separate thread
thread = threading.Thread(target=run_detection, daemon=True)
thread.start()
@app.get("/", response_class=HTMLResponse)
async def index(request: Request):
with open("templates/index.html", "r") as f:
html_content = f.read()
return Template(html_content).render()
@app.get("/video_feed")
async def video_feed():
def frame_generator():
while True:
ret, frame = cap.read()
if not ret:
break
results = model(frame)
annotated_frame = results[0].plot()
_, buffer = cv2.imencode('.jpg', annotated_frame)
frame_bytes = buffer.tobytes()
yield (
b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame_bytes + b'\r\n'
)
return StreamingResponse(frame_generator(), media_type="multipart/x-mixed-replace; boundary=frame")
@app.get("/detections")
async def get_detections():
return {
"detections": detected_labels,
"status": detection_status
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)