forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
cvrp_reload.py
executable file
·391 lines (340 loc) · 14.9 KB
/
cvrp_reload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env python3
# This Python file uses the following encoding: utf-8
# Copyright 2015 Tin Arm Engineering AB
# Copyright 2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Capacitated Vehicle Routing Problem (CVRP).
This is a sample using the routing library python wrapper to solve a CVRP
problem while allowing multiple trips, i.e., vehicles can return to a depot
to reset their load ("reload").
A description of the CVRP problem can be found here:
http://en.wikipedia.org/wiki/Vehicle_routing_problem.
Distances are in meters.
In order to implement multiple trips, new nodes are introduced at the same
locations of the original depots. These additional nodes can be dropped
from the schedule at 0 cost.
The max_slack parameter associated to the capacity constraints of all nodes
can be set to be the maximum of the vehicles' capacities, rather than 0 like
in a traditional CVRP. Slack is required since before a solution is found,
it is not known how much capacity will be transferred at the new nodes. For
all the other (original) nodes, the slack is then re-set to 0.
The above two considerations are implemented in `add_capacity_constraints()`.
Last, it is useful to set a large distance between the initial depot and the
new nodes introduced, to avoid schedules having spurious transits through
those new nodes unless it's necessary to reload. This consideration is taken
into account in `create_distance_evaluator()`.
"""
from functools import partial
from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2
###########################
# Problem Data Definition #
###########################
def create_data_model():
"""Stores the data for the problem"""
data = {}
_capacity = 15
# Locations in block unit
_locations = [
(4, 4), # depot
(4, 4), # unload depot_first
(4, 4), # unload depot_second
(4, 4), # unload depot_third
(4, 4), # unload depot_fourth
(4, 4), # unload depot_fifth
(2, 0),
(8, 0), # locations to visit
(0, 1),
(1, 1),
(5, 2),
(7, 2),
(3, 3),
(6, 3),
(5, 5),
(8, 5),
(1, 6),
(2, 6),
(3, 7),
(6, 7),
(0, 8),
(7, 8)
]
# Compute locations in meters using the block dimension defined as follow
# Manhattan average block: 750ft x 264ft -> 228m x 80m
# here we use: 114m x 80m city block
# src: https://nyti.ms/2GDoRIe 'NY Times: Know Your distance'
data['locations'] = [(l[0] * 114, l[1] * 80) for l in _locations]
data['num_locations'] = len(data['locations'])
data['demands'] = \
[0, # depot
-_capacity, # unload depot_first
-_capacity, # unload depot_second
-_capacity, # unload depot_third
-_capacity, # unload depot_fourth
-_capacity, # unload depot_fifth
3, 3, # 1, 2
3, 4, # 3, 4
3, 4, # 5, 6
8, 8, # 7, 8
3, 3, # 9,10
3, 3, # 11,12
4, 4, # 13, 14
8, 8] # 15, 16
data['time_per_demand_unit'] = 5 # 5 minutes/unit
data['time_windows'] = \
[(0, 0), # depot
(0, 1000), # unload depot_first
(0, 1000), # unload depot_second
(0, 1000), # unload depot_third
(0, 1000), # unload depot_fourth
(0, 1000), # unload depot_fifth
(75, 850), (75, 850), # 1, 2
(60, 700), (45, 550), # 3, 4
(0, 800), (50, 600), # 5, 6
(0, 1000), (10, 200), # 7, 8
(0, 1000), (75, 850), # 9, 10
(85, 950), (5, 150), # 11, 12
(15, 250), (10, 200), # 13, 14
(45, 550), (30, 400)] # 15, 16
data['num_vehicles'] = 3
data['vehicle_capacity'] = _capacity
data['vehicle_max_distance'] = 10_000
data['vehicle_max_time'] = 1_500
data[
'vehicle_speed'] = 5 * 60 / 3.6 # Travel speed: 5km/h to convert in m/min
data['depot'] = 0
return data
#######################
# Problem Constraints #
#######################
def manhattan_distance(position_1, position_2):
"""Computes the Manhattan distance between two points"""
return (abs(position_1[0] - position_2[0]) +
abs(position_1[1] - position_2[1]))
def create_distance_evaluator(data):
"""Creates callback to return distance between points."""
_distances = {}
# precompute distance between location to have distance callback in O(1)
for from_node in range(data['num_locations']):
_distances[from_node] = {}
for to_node in range(data['num_locations']):
if from_node == to_node:
_distances[from_node][to_node] = 0
# Forbid start/end/reload node to be consecutive.
elif from_node in range(6) and to_node in range(6):
_distances[from_node][to_node] = data['vehicle_max_distance']
else:
_distances[from_node][to_node] = (manhattan_distance(
data['locations'][from_node], data['locations'][to_node]))
def distance_evaluator(manager, from_node, to_node):
"""Returns the manhattan distance between the two nodes"""
return _distances[manager.IndexToNode(from_node)][manager.IndexToNode(
to_node)]
return distance_evaluator
def add_distance_dimension(routing, manager, data, distance_evaluator_index):
"""Add Global Span constraint"""
del manager
distance = 'Distance'
routing.AddDimension(
distance_evaluator_index,
0, # null slack
data['vehicle_max_distance'], # maximum distance per vehicle
True, # start cumul to zero
distance)
distance_dimension = routing.GetDimensionOrDie(distance)
# Try to minimize the max distance among vehicles.
# /!\ It doesn't mean the standard deviation is minimized
distance_dimension.SetGlobalSpanCostCoefficient(100)
def create_demand_evaluator(data):
"""Creates callback to get demands at each location."""
_demands = data['demands']
def demand_evaluator(manager, from_node):
"""Returns the demand of the current node"""
return _demands[manager.IndexToNode(from_node)]
return demand_evaluator
def add_capacity_constraints(routing, manager, data, demand_evaluator_index):
"""Adds capacity constraint"""
vehicle_capacity = data['vehicle_capacity']
capacity = 'Capacity'
routing.AddDimension(
demand_evaluator_index,
vehicle_capacity,
vehicle_capacity,
True, # start cumul to zero
capacity)
# Add Slack for reseting to zero unload depot nodes.
# e.g. vehicle with load 10/15 arrives at node 1 (depot unload)
# so we have CumulVar = 10(current load) + -15(unload) + 5(slack) = 0.
capacity_dimension = routing.GetDimensionOrDie(capacity)
# Allow to drop reloading nodes with zero cost.
for node in [1, 2, 3, 4, 5]:
node_index = manager.NodeToIndex(node)
routing.AddDisjunction([node_index], 0)
# Allow to drop regular node with a cost.
for node in range(6, len(data['demands'])):
node_index = manager.NodeToIndex(node)
capacity_dimension.SlackVar(node_index).SetValue(0)
routing.AddDisjunction([node_index], 100_000)
def create_time_evaluator(data):
"""Creates callback to get total times between locations."""
def service_time(data, node):
"""Gets the service time for the specified location."""
return abs(data['demands'][node]) * data['time_per_demand_unit']
def travel_time(data, from_node, to_node):
"""Gets the travel times between two locations."""
if from_node == to_node:
travel_time = 0
else:
travel_time = manhattan_distance(
data['locations'][from_node],
data['locations'][to_node]) / data['vehicle_speed']
return travel_time
_total_time = {}
# precompute total time to have time callback in O(1)
for from_node in range(data['num_locations']):
_total_time[from_node] = {}
for to_node in range(data['num_locations']):
if from_node == to_node:
_total_time[from_node][to_node] = 0
else:
_total_time[from_node][to_node] = int(
service_time(data, from_node) +
travel_time(data, from_node, to_node))
def time_evaluator(manager, from_node, to_node):
"""Returns the total time between the two nodes"""
return _total_time[manager.IndexToNode(from_node)][manager.IndexToNode(
to_node)]
return time_evaluator
def add_time_window_constraints(routing, manager, data, time_evaluator):
"""Add Time windows constraint"""
time = 'Time'
max_time = data['vehicle_max_time']
routing.AddDimension(
time_evaluator,
max_time, # allow waiting time
max_time, # maximum time per vehicle
False, # don't force start cumul to zero since we are giving TW to start nodes
time)
time_dimension = routing.GetDimensionOrDie(time)
# Add time window constraints for each location except depot
# and 'copy' the slack var in the solution object (aka Assignment) to print it
for location_idx, time_window in enumerate(data['time_windows']):
if location_idx == 0:
continue
index = manager.NodeToIndex(location_idx)
time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
routing.AddToAssignment(time_dimension.SlackVar(index))
# Add time window constraints for each vehicle start node
# and 'copy' the slack var in the solution object (aka Assignment) to print it
for vehicle_id in range(data['num_vehicles']):
index = routing.Start(vehicle_id)
time_dimension.CumulVar(index).SetRange(data['time_windows'][0][0],
data['time_windows'][0][1])
routing.AddToAssignment(time_dimension.SlackVar(index))
# Warning: Slack var is not defined for vehicle's end node
#routing.AddToAssignment(time_dimension.SlackVar(self.routing.End(vehicle_id)))
###########
# Printer #
###########
def print_solution(data, manager, routing, assignment): # pylint:disable=too-many-locals
"""Prints assignment on console"""
print(f'Objective: {assignment.ObjectiveValue()}')
total_distance = 0
total_load = 0
total_time = 0
capacity_dimension = routing.GetDimensionOrDie('Capacity')
time_dimension = routing.GetDimensionOrDie('Time')
dropped = []
for order in range(6, routing.nodes()):
index = manager.NodeToIndex(order)
if assignment.Value(routing.NextVar(index)) == index:
dropped.append(order)
print(f'dropped orders: {dropped}')
for reload in range(1, 6):
index = manager.NodeToIndex(reload)
if assignment.Value(routing.NextVar(index)) == index:
dropped.append(reload)
print(f'dropped reload stations: {dropped}')
for vehicle_id in range(data['num_vehicles']):
index = routing.Start(vehicle_id)
plan_output = f'Route for vehicle {vehicle_id}:\n'
distance = 0
while not routing.IsEnd(index):
load_var = capacity_dimension.CumulVar(index)
time_var = time_dimension.CumulVar(index)
plan_output += (
f' {manager.IndexToNode(index)} '
f'Load({assignment.Min(load_var)}) '
f'Time({assignment.Min(time_var)},{assignment.Max(time_var)}) ->'
)
previous_index = index
index = assignment.Value(routing.NextVar(index))
distance += routing.GetArcCostForVehicle(previous_index, index,
vehicle_id)
load_var = capacity_dimension.CumulVar(index)
time_var = time_dimension.CumulVar(index)
plan_output += (
f' {manager.IndexToNode(index)} '
f'Load({assignment.Min(load_var)}) '
f'Time({assignment.Min(time_var)},{assignment.Max(time_var)})\n')
plan_output += f'Distance of the route: {distance}m\n'
plan_output += f'Load of the route: {assignment.Min(load_var)}\n'
plan_output += f'Time of the route: {assignment.Min(time_var)}min\n'
print(plan_output)
total_distance += distance
total_load += assignment.Min(load_var)
total_time += assignment.Min(time_var)
print(f'Total Distance of all routes: {total_distance}m')
print(f'Total Load of all routes: {total_load}')
print(f'Total Time of all routes: {total_time}min')
########
# Main #
########
def main():
"""Entry point of the program"""
# Instantiate the data problem.
data = create_data_model()
# Create the routing index manager
manager = pywrapcp.RoutingIndexManager(data['num_locations'],
data['num_vehicles'], data['depot'])
# Create Routing Model
routing = pywrapcp.RoutingModel(manager)
# Define weight of each edge
distance_evaluator_index = routing.RegisterTransitCallback(
partial(create_distance_evaluator(data), manager))
routing.SetArcCostEvaluatorOfAllVehicles(distance_evaluator_index)
# Add Distance constraint to minimize the longuest route
add_distance_dimension(routing, manager, data, distance_evaluator_index)
# Add Capacity constraint
demand_evaluator_index = routing.RegisterUnaryTransitCallback(
partial(create_demand_evaluator(data), manager))
add_capacity_constraints(routing, manager, data, demand_evaluator_index)
# Add Time Window constraint
time_evaluator_index = routing.RegisterTransitCallback(
partial(create_time_evaluator(data), manager))
add_time_window_constraints(routing, manager, data, time_evaluator_index)
# Setting first solution heuristic (cheapest addition).
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC) # pylint: disable=no-member
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.FromSeconds(3)
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
if solution:
print_solution(data, manager, routing, solution)
else:
print("No solution found !")
if __name__ == '__main__':
main()