forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
vrp_node_max.py
executable file
·271 lines (240 loc) · 10.2 KB
/
vrp_node_max.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Vehicles Routing Problem (VRP).
Each route as an associated objective cost equal to the max node value along the
road multiply by a constant factor (4200)
"""
# [START import]
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
# [END import]
# [START data_model]
def create_data_model():
"""Stores the data for the problem."""
data = {}
data["distance_matrix"] = [
# fmt: off
[0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
[548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
[776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
[696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
[582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
[274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
[502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
[194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
[308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
[194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
[536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
[502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
[388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
[354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
[468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
[776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
[662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
# fmt: on
]
data["value"] = [
0, # depot
42, # 1
42, # 2
8, # 3
8, # 4
8, # 5
8, # 6
8, # 7
8, # 8
8, # 9
8, # 10
8, # 11
8, # 12
8, # 13
8, # 14
42, # 15
42, # 16
]
assert len(data["distance_matrix"]) == len(data["value"])
data["num_vehicles"] = 4
data["depot"] = 0
return data
# [END data_model]
# [START solution_printer]
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f"Objective: {solution.ObjectiveValue()}")
max_route_distance = 0
dim_one = routing.GetDimensionOrDie("One")
dim_two = routing.GetDimensionOrDie("Two")
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
plan_output = f"Route for vehicle {vehicle_id}:\n"
route_distance = 0
while not routing.IsEnd(index):
one_var = dim_one.CumulVar(index)
one_slack_var = dim_one.SlackVar(index)
two_var = dim_two.CumulVar(index)
two_slack_var = dim_two.SlackVar(index)
plan_output += (
f" N:{manager.IndexToNode(index)}"
f" one:({solution.Value(one_var)}, {solution.Value(one_slack_var)})"
f" two:({solution.Value(two_var)}, {solution.Value(two_slack_var)})"
" -> "
)
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(
previous_index, index, vehicle_id
)
one_var = dim_one.CumulVar(index)
two_var = dim_two.CumulVar(index)
plan_output += (
f"N:{manager.IndexToNode(index)}"
f" one:{solution.Value(one_var)}"
f" two:{solution.Value(two_var)}\n"
)
plan_output += f"Distance of the route: {route_distance}m\n"
print(plan_output)
max_route_distance = max(route_distance, max_route_distance)
print(f"Maximum of the route distances: {max_route_distance}m")
# [END solution_printer]
def main():
"""Solve the CVRP problem."""
# Instantiate the data problem.
# [START data]
data = create_data_model()
# [END data]
# Create the routing index manager.
# [START index_manager]
manager = pywrapcp.RoutingIndexManager(
len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
)
# [END index_manager]
# Create Routing Model.
# [START routing_model]
routing = pywrapcp.RoutingModel(manager)
# [END routing_model]
# Create and register a transit callback.
# [START transit_callback]
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data["distance_matrix"][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# [END transit_callback]
# Define cost of each arc.
# [START arc_cost]
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# [END arc_cost]
# Add Distance constraint.
# [START distance_constraint]
dimension_name = "Distance"
routing.AddDimension(
transit_callback_index,
0, # no slack
3_000, # vehicle maximum travel distance
True, # start cumul to zero
dimension_name,
)
distance_dimension = routing.GetDimensionOrDie(dimension_name)
distance_dimension.SetGlobalSpanCostCoefficient(10)
# [END distance_constraint]
# Max Node value Constraint.
# Dimension One will be used to compute the max node value up to the node in
# the route and store the result in the SlackVar of the node.
routing.AddConstantDimensionWithSlack(
0, # transit 0
42 * 16, # capacity: be able to store PEAK*ROUTE_LENGTH in worst case
42, # slack_max: to be able to store peak in slack
True, # Fix StartCumulToZero not really matter here
"One",
)
dim_one = routing.GetDimensionOrDie("One")
# Dimension Two will be used to store the max node value in the route end node
# CumulVar so we can use it as an objective cost.
routing.AddConstantDimensionWithSlack(
0, # transit 0
42 * 16, # capacity: be able to have PEAK value in CumulVar(End)
42, # slack_max: to be able to store peak in slack
True, # Fix StartCumulToZero YES here
"Two",
)
dim_two = routing.GetDimensionOrDie("Two")
# force depot Slack to be value since we don't have any predecessor...
for v in range(manager.GetNumberOfVehicles()):
start = routing.Start(v)
dim_one.SlackVar(start).SetValue(data["value"][0])
routing.AddToAssignment(dim_one.SlackVar(start))
dim_two.SlackVar(start).SetValue(data["value"][0])
routing.AddToAssignment(dim_two.SlackVar(start))
# Step by step relation
# Slack(N) = max( Slack(N-1) , value(N) )
solver = routing.solver()
for node in range(1, 17):
index = manager.NodeToIndex(node)
routing.AddToAssignment(dim_one.SlackVar(index))
routing.AddToAssignment(dim_two.SlackVar(index))
test = []
for v in range(manager.GetNumberOfVehicles()):
previous_index = routing.Start(v)
cond = routing.NextVar(previous_index) == index
value = solver.Max(dim_one.SlackVar(previous_index), data["value"][node])
test.append((cond * value).Var())
for previous in range(1, 17):
previous_index = manager.NodeToIndex(previous)
cond = routing.NextVar(previous_index) == index
value = solver.Max(dim_one.SlackVar(previous_index), data["value"][node])
test.append((cond * value).Var())
solver.Add(solver.Sum(test) == dim_one.SlackVar(index))
# relation between dimensions, copy last node Slack from dim ONE to dim TWO
for node in range(1, 17):
index = manager.NodeToIndex(node)
values = []
for v in range(manager.GetNumberOfVehicles()):
next_index = routing.End(v)
cond = routing.NextVar(index) == next_index
value = dim_one.SlackVar(index)
values.append((cond * value).Var())
solver.Add(solver.Sum(values) == dim_two.SlackVar(index))
# Should force all others dim_two slack var to zero...
for v in range(manager.GetNumberOfVehicles()):
end = routing.End(v)
dim_two.SetCumulVarSoftUpperBound(end, 0, 4200)
# Setting first solution heuristic.
# [START parameters]
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
)
# search_parameters.log_search = True
search_parameters.time_limit.FromSeconds(5)
# [END parameters]
# Solve the problem.
# [START solve]
solution = routing.SolveWithParameters(search_parameters)
# [END solve]
# Print solution on console.
# [START print_solution]
if solution:
print_solution(data, manager, routing, solution)
else:
print("No solution found !")
# [END print_solution]
if __name__ == "__main__":
main()
# [END program]