forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
simple_lp_program.py
78 lines (64 loc) · 2.19 KB
/
simple_lp_program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Minimal example to call the GLOP solver."""
# [START program]
# [START import]
from ortools.linear_solver import pywraplp
# [END import]
def main():
# [START solver]
# Create the linear solver with the GLOP backend.
solver = pywraplp.Solver.CreateSolver("GLOP")
if not solver:
return
# [END solver]
# [START variables]
infinity = solver.infinity()
# Create the variables x and y.
x = solver.NumVar(0.0, infinity, "x")
y = solver.NumVar(0.0, infinity, "y")
print("Number of variables =", solver.NumVariables())
# [END variables]
# [START constraints]
# x + 7 * y <= 17.5.
solver.Add(x + 7 * y <= 17.5)
# x <= 3.5.
solver.Add(x <= 3.5)
print("Number of constraints =", solver.NumConstraints())
# [END constraints]
# [START objective]
# Maximize x + 10 * y.
solver.Maximize(x + 10 * y)
# [END objective]
# [START solve]
print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()
# [END solve]
# [START print_solution]
if status == pywraplp.Solver.OPTIMAL:
print("Solution:")
print("Objective value =", solver.Objective().Value())
print("x =", x.solution_value())
print("y =", y.solution_value())
else:
print("The problem does not have an optimal solution.")
# [END print_solution]
# [START advanced]
print("\nAdvanced usage:")
print(f"Problem solved in {solver.wall_time():d} milliseconds")
print(f"Problem solved in {solver.iterations():d} iterations")
# [END advanced]
if __name__ == "__main__":
main()
# [END program]