forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
sharder.h
334 lines (294 loc) · 14.8 KB
/
sharder.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PDLP_SHARDER_H_
#define PDLP_SHARDER_H_
#include <cstdint>
#include <functional>
#include <type_traits>
#include <vector>
#include "Eigen/Core"
#include "Eigen/SparseCore"
#include "absl/log/check.h"
#include "ortools/base/threadpool.h"
namespace operations_research::pdlp {
// This class represents a way to shard elements for multi-threading. The
// elements may be entries of a vector or the columns of a (column-major)
// matrix. The shards are selected to have roughly the same mass, where the mass
// of an entry depends on the constructor used. See the free functions below and
// in the .cc file for example usage.
class Sharder {
public:
// These are public aliases for convenience. They will change only if there
// are breaking changes in Eigen.
using ConstSparseColumnBlock = ::Eigen::Block<
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>,
/*BlockRows=*/Eigen::Dynamic, /*BlockCols=*/Eigen::Dynamic,
/*InnerPanel=*/true>;
using SparseColumnBlock =
::Eigen::Block<Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>,
/*BlockRows=*/Eigen::Dynamic, /*BlockCols=*/Eigen::Dynamic,
/*InnerPanel=*/true>;
// This class extracts a particular shard of vectors or matrices passed to it.
// See `ParallelForEachShard()`.
// Caution: Like `absl::Span`, `Shard::operator()` returns mutable or
// immutable views into the vector or matrix argument. The underlying object
// must outlive the view.
// Extra Caution: The const& arguments for the immutable views can bind to
// temporary objects, e.g., shard(3*a) will create a view into the "3*a"
// object that will be destroyed immediately after the shard is created.
class Shard {
public:
// Returns this shard of `vector`.
Eigen::VectorBlock<const Eigen::VectorXd> operator()(
const Eigen::VectorXd& vector) const {
CHECK_EQ(vector.size(), parent_.NumElements());
return vector.segment(parent_.ShardStart(shard_num_),
parent_.ShardSize(shard_num_));
}
// Returns this shard of `vector` in mutable form.
Eigen::VectorBlock<Eigen::VectorXd> operator()(
Eigen::VectorXd& vector) const {
CHECK_EQ(vector.size(), parent_.NumElements());
return vector.segment(parent_.ShardStart(shard_num_),
parent_.ShardSize(shard_num_));
}
// Returns this shard of `vector`.
Eigen::VectorBlock<const Eigen::VectorXd> operator()(
Eigen::VectorBlock<const Eigen::VectorXd> vector) const {
CHECK_EQ(vector.size(), parent_.NumElements());
return Eigen::VectorBlock<const Eigen::VectorXd>(
vector.nestedExpression(),
vector.startRow() + parent_.ShardStart(shard_num_),
parent_.ShardSize(shard_num_));
}
// Returns this shard of `vector` in mutable form.
Eigen::VectorBlock<Eigen::VectorXd> operator()(
Eigen::VectorBlock<Eigen::VectorXd> vector) const {
CHECK_EQ(vector.size(), parent_.NumElements());
return Eigen::VectorBlock<Eigen::VectorXd>(
vector.nestedExpression(),
vector.startRow() + parent_.ShardStart(shard_num_),
parent_.ShardSize(shard_num_));
}
// Returns this shard of `diag`. Note that the shard is a *square* diagonal
// matrix, not a block of columns of original length.
auto operator()(const Eigen::DiagonalMatrix<double, Eigen::Dynamic>& diag)
const -> decltype(diag.diagonal().segment(0, 0).asDiagonal()) {
CHECK_EQ(diag.diagonal().size(), parent_.NumElements());
return diag.diagonal()
.segment(parent_.ShardStart(shard_num_),
parent_.ShardSize(shard_num_))
.asDiagonal();
}
// Returns this shard of the columns of `matrix`.
ConstSparseColumnBlock operator()(
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix)
const {
CHECK_EQ(matrix.cols(), parent_.NumElements());
auto result = matrix.middleCols(parent_.ShardStart(shard_num_),
parent_.ShardSize(shard_num_));
// This is a guard against implicit conversions, because the return type
// of `middleCols` is not 100% clear from the documentation.
static_assert(
std::is_same<decltype(result), ConstSparseColumnBlock>::value,
"The return type of middleCols changed!");
return result;
}
// Returns this shard of the columns of `matrix` in mutable form.
SparseColumnBlock operator()(
Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix) const {
CHECK_EQ(matrix.cols(), parent_.NumElements());
auto result = matrix.middleCols(parent_.ShardStart(shard_num_),
parent_.ShardSize(shard_num_));
// This is a guard against implicit conversions, because the return type
// of `middleCols` is not 100% clear from the documentation.
static_assert(std::is_same<decltype(result), SparseColumnBlock>::value,
"The return type of middleCols changed!");
return result;
}
// A non-negative identifier for this shard, less than `NumShards()` of the
// parent `Sharder`.
int Index() const { return shard_num_; }
private:
friend class Sharder;
Shard(int shard_num, const Sharder* parent)
: shard_num_(shard_num), parent_(*parent) {
CHECK_NE(parent, nullptr);
CHECK_GE(shard_num, 0);
CHECK_LT(shard_num, parent->NumShards());
}
const int shard_num_;
const Sharder& parent_;
};
// Creates a `Sharder` for problems with `num_elements` elements and mass of
// each element given by `element_mass`. Each shard will have roughly the same
// mass. The number of shards in the resulting `Sharder` will be approximately
// `num_shards` but may differ. The `thread_pool` will be used for parallel
// operations executed by e.g. `ParallelForEachShard()`. The `thread_pool` may
// be nullptr, which means work will be executed in the same thread. If
// `thread_pool` is not nullptr, the underlying object is not owned and must
// outlive the `Sharder`.
Sharder(int64_t num_elements, int num_shards, ThreadPool* thread_pool,
const std::function<int64_t(int64_t)>& element_mass);
// Creates a `Sharder` for problems with `num_elements` elements and unit
// mass. This constructor exploits having all element mass equal to 1 to take
// time proportional to `num_shards` instead of `num_elements`. Also see the
// comments above the first constructor.
Sharder(int64_t num_elements, int num_shards, ThreadPool* thread_pool);
// Creates a `Sharder` for processing `matrix`. The elements correspond to
// columns of `matrix` and have mass linear in the number of non-zeros. Also
// see the comments above the first constructor.
Sharder(const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix,
int num_shards, ThreadPool* thread_pool)
: Sharder(matrix.cols(), num_shards, thread_pool, [&matrix](int64_t col) {
return 1 + 1 * matrix.col(col).nonZeros();
}) {}
// Constructs a `Sharder` with the same thread pool as `other_sharder`, for
// problems with `num_elements` elements and unit mass. The number of shards
// will be approximately the same as that of `other_sharder`. Also see the
// comments on the first constructor.
Sharder(const Sharder& other_sharder, int64_t num_elements);
// `Sharder` may be moved, but not copied.
// Moved-from objects may be in an invalid state. The only methods that may be
// called on a moved-from object are the destructor or `operator=`.
Sharder(const Sharder& other) = delete;
Sharder& operator=(const Sharder& other) = delete;
Sharder(Sharder&& other) = default;
Sharder& operator=(Sharder&& other) = default;
int NumShards() const { return static_cast<int>(shard_starts_.size()) - 1; }
// The number of elements that are split into shards.
int64_t NumElements() const { return shard_starts_.back(); }
int64_t ShardSize(int shard) const {
CHECK_GE(shard, 0);
CHECK_LT(shard, NumShards());
return shard_starts_[shard + 1] - shard_starts_[shard];
}
int64_t ShardStart(int shard) const {
CHECK_GE(shard, 0);
CHECK_LT(shard, NumShards());
return shard_starts_[shard];
}
int64_t ShardMass(int shard) const {
CHECK_GE(shard, 0);
CHECK_LT(shard, NumShards());
return shard_masses_[shard];
}
// Runs `func` on each of the shards.
void ParallelForEachShard(
const std::function<void(const Shard&)>& func) const;
// Runs `func` on each of the shards and sums the results.
double ParallelSumOverShards(
const std::function<double(const Shard&)>& func) const;
// Runs `func` on each of the shards. Returns true iff all shards returned
// true.
bool ParallelTrueForAllShards(
const std::function<bool(const Shard&)>& func) const;
// Public for testing only.
const std::vector<int64_t>& ShardStartsForTesting() const {
return shard_starts_;
}
private:
// Size: `NumShards() + 1`. The first entry is 0 and the last entry is
// `NumElements()`. The entries are sorted in increasing order and are unique.
// Note that {0} is valid and indicates zero elements split into zero shards.
std::vector<int64_t> shard_starts_;
// Size: `NumShards()`. The mass of each shard.
std::vector<int64_t> shard_masses_;
// NOT owned. May be nullptr.
ThreadPool* thread_pool_;
};
// Like `matrix.transpose() * vector` but executed in parallel using `sharder`.
// The size of `sharder` must match the number of columns in `matrix`. To ensure
// good parallelization `matrix` should have (roughly) the same location of
// non-zeros as the `matrix` used when constructing `sharder`.
Eigen::VectorXd TransposedMatrixVectorProduct(
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix,
const Eigen::VectorXd& vector, const Sharder& sharder);
////////////////////////////////////////////////////////////////////////////////
// The following functions use `sharder` to compute a vector operation in
// parallel. `sharder` should have the same size as the vector(s). For best
// performance `sharder` should have been created with the `Sharder(int64_t,
// int, ThreadPool*)` constructor.
////////////////////////////////////////////////////////////////////////////////
// Like `dest.setZero(sharder.NumElements())`. Note that if `dest.size() !=
// sharder.NumElements()`, `dest` will be resized.
void SetZero(const Sharder& sharder, Eigen::VectorXd& dest);
// Like `VectorXd::Zero(sharder.NumElements())`.
Eigen::VectorXd ZeroVector(const Sharder& sharder);
// Like `VectorXd::Ones(sharder.NumElements())`.
Eigen::VectorXd OnesVector(const Sharder& sharder);
// Like `dest += scale * increment`.
void AddScaledVector(double scale, const Eigen::VectorXd& increment,
const Sharder& sharder, Eigen::VectorXd& dest);
// Like `dest = vec`. `dest` is resized if needed.
void AssignVector(const Eigen::VectorXd& vec, const Sharder& sharder,
Eigen::VectorXd& dest);
// Returns a copy of `vec`.
Eigen::VectorXd CloneVector(const Eigen::VectorXd& vec, const Sharder& sharder);
// Like `dest = dest.cwiseProduct(scale)`.
void CoefficientWiseProductInPlace(const Eigen::VectorXd& scale,
const Sharder& sharder,
Eigen::VectorXd& dest);
// Like `dest = dest.cwiseQuotient(scale)`.
void CoefficientWiseQuotientInPlace(const Eigen::VectorXd& scale,
const Sharder& sharder,
Eigen::VectorXd& dest);
// Like `v1.dot(v2)`.
double Dot(const Eigen::VectorXd& v1, const Eigen::VectorXd& v2,
const Sharder& sharder);
// Like `vector.lpNorm<Eigen::Infinity>()`, a.k.a. LInf norm.
double LInfNorm(const Eigen::VectorXd& vector, const Sharder& sharder);
// Like `vector.lpNorm<1>()`, a.k.a. L_1 norm.
double L1Norm(const Eigen::VectorXd& vector, const Sharder& sharder);
// Like `vector.squaredNorm()`.
double SquaredNorm(const Eigen::VectorXd& vector, const Sharder& sharder);
// Like `vector.norm()`.
double Norm(const Eigen::VectorXd& vector, const Sharder& sharder);
// Like `(vector1 - vector2).squaredNorm()`.
double SquaredDistance(const Eigen::VectorXd& vector1,
const Eigen::VectorXd& vector2, const Sharder& sharder);
// Like `(vector1 - vector2).norm()`.
double Distance(const Eigen::VectorXd& vector1, const Eigen::VectorXd& vector2,
const Sharder& sharder);
// `ScaledL1Norm` is omitted because it's not needed (yet).
// LInf norm of a rescaled vector, i.e.,
// `vector.cwiseProduct(scale).lpNorm<Eigen::Infinity>()`.
double ScaledLInfNorm(const Eigen::VectorXd& vector,
const Eigen::VectorXd& scale, const Sharder& sharder);
// Squared L2 norm of a rescaled vector, i.e.,
// `vector.cwiseProduct(scale).squaredNorm()`.
double ScaledSquaredNorm(const Eigen::VectorXd& vector,
const Eigen::VectorXd& scale, const Sharder& sharder);
// L2 norm of a rescaled vector, i.e., `vector.cwiseProduct(scale).norm()`.
double ScaledNorm(const Eigen::VectorXd& vector, const Eigen::VectorXd& scale,
const Sharder& sharder);
////////////////////////////////////////////////////////////////////////////////
// The functions below compute norms of the columns of a scaled matrix. The
// (i,j) entry of the scaled matrix equals `matrix[i,j] * row_scaling_vec[i]
// * col_scaling_vec[j]`. To ensure good parallelization `matrix` should have
// (roughly) the same location of non-zeros as the `matrix` used to construct
// `sharder`. The size of `sharder` must match the number of columns in
// `matrix`.
////////////////////////////////////////////////////////////////////////////////
// Computes the LInf norm of each column of a scaled `matrix`.
Eigen::VectorXd ScaledColLInfNorm(
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix,
const Eigen::VectorXd& row_scaling_vec,
const Eigen::VectorXd& col_scaling_vec, const Sharder& sharder);
// Computes the L2 norm of each column of a scaled `matrix`.
Eigen::VectorXd ScaledColL2Norm(
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix,
const Eigen::VectorXd& row_scaling_vec,
const Eigen::VectorXd& col_scaling_vec, const Sharder& sharder);
} // namespace operations_research::pdlp
#endif // PDLP_SHARDER_H_