forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
CpSatExample.java
84 lines (73 loc) · 2.99 KB
/
CpSatExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
package com.google.ortools.sat.samples;
// [START import]
import static java.util.Arrays.stream;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;
// [END import]
/** Minimal CP-SAT example to showcase calling the solver. */
public final class CpSatExample {
public static void main(String[] args) {
Loader.loadNativeLibraries();
// Create the model.
// [START model]
CpModel model = new CpModel();
// [END model]
// Create the variables.
// [START variables]
int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt();
IntVar x = model.newIntVar(0, varUpperBound, "x");
IntVar y = model.newIntVar(0, varUpperBound, "y");
IntVar z = model.newIntVar(0, varUpperBound, "z");
// [END variables]
// Create the constraints.
// [START constraints]
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);
// [END constraints]
// [START objective]
model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));
// [END objective]
// Create a solver and solve the model.
// [START solve]
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);
// [END solve]
// [START print_solution]
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue());
System.out.println("x = " + solver.value(x));
System.out.println("y = " + solver.value(y));
System.out.println("z = " + solver.value(z));
} else {
System.out.println("No solution found.");
}
// [END print_solution]
// Statistics.
// [START statistics]
System.out.println("Statistics");
System.out.printf(" conflicts: %d%n", solver.numConflicts());
System.out.printf(" branches : %d%n", solver.numBranches());
System.out.printf(" wall time: %f s%n", solver.wallTime());
// [END statistics]
}
private CpSatExample() {}
}
// [END program]