forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
NoOverlapSampleSat.java
79 lines (68 loc) · 3.16 KB
/
NoOverlapSampleSat.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.IntervalVar;
import com.google.ortools.sat.LinearExpr;
/**
* We want to schedule 3 tasks on 3 weeks excluding weekends, making the final day as early as
* possible.
*/
public class NoOverlapSampleSat {
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
CpModel model = new CpModel();
// Three weeks.
int horizon = 21;
// Task 0, duration 2.
IntVar start0 = model.newIntVar(0, horizon, "start0");
int duration0 = 2;
IntervalVar task0 = model.newFixedSizeIntervalVar(start0, duration0, "task0");
// Task 1, duration 4.
IntVar start1 = model.newIntVar(0, horizon, "start1");
int duration1 = 4;
IntervalVar task1 = model.newFixedSizeIntervalVar(start1, duration1, "task1");
// Task 2, duration 3.
IntVar start2 = model.newIntVar(0, horizon, "start2");
int duration2 = 3;
IntervalVar task2 = model.newFixedSizeIntervalVar(start2, duration2, "task2");
// Weekends.
IntervalVar weekend0 = model.newFixedInterval(5, 2, "weekend0");
IntervalVar weekend1 = model.newFixedInterval(12, 2, "weekend1");
IntervalVar weekend2 = model.newFixedInterval(19, 2, "weekend2");
// No Overlap constraint. This constraint enforces that no two intervals can overlap.
// In this example, as we use 3 fixed intervals that span over weekends, this constraint makes
// sure that all tasks are executed on weekdays.
model.addNoOverlap(new IntervalVar[] {task0, task1, task2, weekend0, weekend1, weekend2});
// Makespan objective.
IntVar obj = model.newIntVar(0, horizon, "makespan");
model.addMaxEquality(obj,
new LinearExpr[] {LinearExpr.newBuilder().add(start0).add(duration0).build(),
LinearExpr.newBuilder().add(start1).add(duration1).build(),
LinearExpr.newBuilder().add(start2).add(duration2).build()});
model.minimize(obj);
// Creates a solver and solves the model.
CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);
if (status == CpSolverStatus.OPTIMAL) {
System.out.println("Optimal Schedule Length: " + solver.objectiveValue());
System.out.println("Task 0 starts at " + solver.value(start0));
System.out.println("Task 1 starts at " + solver.value(start1));
System.out.println("Task 2 starts at " + solver.value(start2));
}
}
}