forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
channeling_sample_sat.py
73 lines (53 loc) · 2.32 KB
/
channeling_sample_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Link integer constraints together."""
from ortools.sat.python import cp_model
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables: list[cp_model.IntVar]):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
def on_solution_callback(self) -> None:
for v in self.__variables:
print(f"{v}={self.value(v)}", end=" ")
print()
def channeling_sample_sat():
"""Demonstrates how to link integer constraints together."""
# Create the CP-SAT model.
model = cp_model.CpModel()
# Declare our two primary variables.
x = model.new_int_var(0, 10, "x")
y = model.new_int_var(0, 10, "y")
# Declare our intermediate boolean variable.
b = model.new_bool_var("b")
# Implement b == (x >= 5).
model.add(x >= 5).only_enforce_if(b)
model.add(x < 5).only_enforce_if(~b)
# Create our two half-reified constraints.
# First, b implies (y == 10 - x).
model.add(y == 10 - x).only_enforce_if(b)
# Second, not(b) implies y == 0.
model.add(y == 0).only_enforce_if(~b)
# Search for x values in increasing order.
model.add_decision_strategy([x], cp_model.CHOOSE_FIRST, cp_model.SELECT_MIN_VALUE)
# Create a solver and solve with a fixed search.
solver = cp_model.CpSolver()
# Force the solver to follow the decision strategy exactly.
solver.parameters.search_branching = cp_model.FIXED_SEARCH
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Search and print out all solutions.
solution_printer = VarArraySolutionPrinter([x, y, b])
solver.solve(model, solution_printer)
channeling_sample_sat()