forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 2
/
earliness_tardiness_cost_sample_sat.py
87 lines (64 loc) · 2.63 KB
/
earliness_tardiness_cost_sample_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Encodes a convex piecewise linear function."""
from ortools.sat.python import cp_model
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables: list[cp_model.IntVar]):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
def on_solution_callback(self) -> None:
for v in self.__variables:
print(f"{v}={self.value(v)}", end=" ")
print()
def earliness_tardiness_cost_sample_sat():
"""Encode the piecewise linear expression."""
earliness_date = 5 # ed.
earliness_cost = 8
lateness_date = 15 # ld.
lateness_cost = 12
# Model.
model = cp_model.CpModel()
# Declare our primary variable.
x = model.new_int_var(0, 20, "x")
# Create the expression variable and implement the piecewise linear function.
#
# \ /
# \______/
# ed ld
#
large_constant = 1000
expr = model.new_int_var(0, large_constant, "expr")
# First segment.
s1 = model.new_int_var(-large_constant, large_constant, "s1")
model.add(s1 == earliness_cost * (earliness_date - x))
# Second segment.
s2 = 0
# Third segment.
s3 = model.new_int_var(-large_constant, large_constant, "s3")
model.add(s3 == lateness_cost * (x - lateness_date))
# Link together expr and x through s1, s2, and s3.
model.add_max_equality(expr, [s1, s2, s3])
# Search for x values in increasing order.
model.add_decision_strategy([x], cp_model.CHOOSE_FIRST, cp_model.SELECT_MIN_VALUE)
# Create a solver and solve with a fixed search.
solver = cp_model.CpSolver()
# Force the solver to follow the decision strategy exactly.
solver.parameters.search_branching = cp_model.FIXED_SEARCH
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Search and print out all solutions.
solution_printer = VarArraySolutionPrinter([x, expr])
solver.solve(model, solution_printer)
earliness_tardiness_cost_sample_sat()