forked from run-youngjoo/SC-FEGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ops.py
57 lines (44 loc) · 2.17 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.contrib.framework.python.ops import add_arg_scope
# The gate convolution is made with reference to Deepfillv1(https://github.com/JiahuiYu/generative_inpainting)
@add_arg_scope
def gate_conv(x_in, cnum, ksize, stride=1, rate=1, name='conv',
padding='SAME', activation='leaky_relu', use_lrn=True,training=True):
assert padding in ['SYMMETRIC', 'SAME', 'REFELECT']
if padding == 'SYMMETRIC' or padding == 'REFELECT':
p = int(rate*(ksize-1)/2)
x = tf.pad(x_in, [[0,0], [p, p], [p, p], [0,0]], mode=padding)
padding = 'VALID'
x = tf.layers.conv2d(
x_in, cnum, ksize, stride, dilation_rate=rate,
activation=None, padding=padding, name=name)
if use_lrn:
x = tf.nn.lrn(x, bias=0.00005)
if activation=='leaky_relu':
x = tf.nn.leaky_relu(x)
g = tf.layers.conv2d(
x_in, cnum, ksize, stride, dilation_rate=rate,
activation=tf.nn.sigmoid, padding=padding, name=name+'_g')
x = tf.multiply(x,g)
return x, g
@add_arg_scope
def gate_deconv(input_, output_shape, k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="deconv", training=True):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases1', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
deconv = tf.nn.leaky_relu(deconv)
g = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
b = tf.get_variable('biases2', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
g = tf.reshape(tf.nn.bias_add(g, b), deconv.get_shape())
g = tf.nn.sigmoid(deconv)
deconv = tf.multiply(g,deconv)
return deconv, g