forked from monterrubio-velasco/TREMOL-Faults
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInitialLoadConfiguration.py
262 lines (173 loc) · 6.79 KB
/
InitialLoadConfiguration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding=utf-8
import numpy as np
# This function createas the initial load configuration that depends on N y and P
def InitialLoadConfiguration(Nbox,P):
np.random.seed(1)
#The initial load matrix will be ordered in respect to the P value
# 1. First we ordered for P=1
## Nbox = int(Vector[0][0])
## P = Vector[0][1]
OriginalVec = np.random.rand(pow(Nbox,2)) # matrix of random numbers P = 0
numCentral= int((Nbox/3)*(Nbox/3)) # number of boxes which is the matrix dividing
VecCentr = OriginalVec[0:numCentral]
VecExtern = OriginalVec[numCentral:len(OriginalVec)]
VecNEW = sorted(VecExtern, reverse = True)
sizeCuad = int(len(OriginalVec)/9)
Part = int(len(VecExtern)/2)
VecOrdCouPosi = VecNEW[0:Part]
VecOrdCouNega = VecNEW[Part:len(VecNEW)]
Vec1Posi = VecCentr
sizebox = int(Nbox/3)
Matriz3 = distInicialOrdenadaV0Comp(Vec1Posi,sizebox)
# np.savetxt('CentralMatriz.dat',Matriz3)
Vec2Posi = VecOrdCouPosi[0:len(VecOrdCouPosi):4]
Vec3Posi = VecOrdCouPosi[1:len(VecOrdCouPosi):4]
Vec4Posi = VecOrdCouPosi[2:len(VecOrdCouPosi):4]
Vec5Posi = VecOrdCouPosi[3:len(VecOrdCouPosi):4]
Vec6Posi = VecOrdCouNega[0:len(VecOrdCouNega):4]
Vec7Posi = VecOrdCouNega[1:len(VecOrdCouNega):4]
Vec8Posi = VecOrdCouNega[2:len(VecOrdCouNega):4]
Vec9Posi = VecOrdCouNega[3:len(VecOrdCouNega):4]
sizeNeg = int(pow(len(Vec6Posi),0.5))
sizePos = int(pow(len(Vec2Posi),0.5))
#Vec6Posi=sorted(Vec6Posi)
#Vec7Posi=sorted(Vec7Posi)
#Vec8Posi=sorted(Vec8Posi)
#Vec9Posi=sorted(Vec9Posi)
Matriz6=matcoulUniforV5(Vec6Posi,sizeNeg,6)
Matriz7=matcoulUniforV5(Vec7Posi,sizeNeg,7)
Matriz8=matcoulUniforV5(Vec8Posi,sizeNeg,8)
Matriz9=matcoulUniforV5(Vec9Posi,sizeNeg,9)
Matriz1=matcoulUniforV5(Vec2Posi,sizePos,2)
Matriz2=matcoulUniforV5(Vec3Posi,sizePos,3)
Matriz4=matcoulUniforV5(Vec4Posi,sizePos,4)
Matriz5=matcoulUniforV5(Vec5Posi,sizePos,5)
L1= np.concatenate((Matriz6[0:len(Matriz6),0:len(Matriz6)], Matriz1[0:len(Matriz1),0:len(Matriz1)], Matriz9[0:len(Matriz9),0:len(Matriz9)]),axis = 1)
L2= np.concatenate((Matriz4[0:len(Matriz4),0:len(Matriz4)], Matriz3[0:len(Matriz3),0:len(Matriz3)], Matriz5[0:len(Matriz5),0:len(Matriz5)]),axis = 1)
L3= np.concatenate((Matriz8[0:len(Matriz8),0:len(Matriz8)], Matriz2[0:len(Matriz2),0:len(Matriz2)], Matriz7[0:len(Matriz7),0:len(Matriz7)]),axis = 1)
MAT = np.concatenate((L1, L2, L3),axis= 0) # MAT contains the initial loads of each cell following a 100% order
#PyPlot.figure(79)
#PyPlot.surf(C,rstride=1, cstride=1, cmap="seismic")
#PyPlot.title("CoulombUniformNbox90 P=100%")
# PyPlot.savefig("CoulombUniformNbox90 P=100%.eps",dpi=800)
VecPosi = disorderAlgorithm(P,MAT,Nbox)
# file12 = ('InitialLoadCon-P'+str(P)+'-'+str(Nbox)+'.dat')
# file12 = ("VecAsig100orderNbox"*string(Nbox)*".dat")
# np.savetxt(file12,VecPosi)
return VecPosi
# 2. We will disorder the matrix MAT according to The P value
def disorderAlgorithm(P,YY,Nboxx):
contador = 0
contadori = -1
contadorj = -1
alfa = 0
Y = np.copy(YY)
VecPosi = np.zeros((Nboxx,Nboxx))
VecMAP = np.zeros((pow(Nboxx,2),3))
VecResha = Y.reshape(pow(len(Y[:,1]),2))
# VecSort=sort(VecResha,rev=true)
POrd = int(len(VecResha)*P)
PDes = int(len(VecResha*(1.0-P)))
VecNflagOrd = np.zeros(len(VecResha))
if PDes==0:
VecNflag = np.zeros(1)
else:
VecNflag = np.zeros(len(VecResha))
contikAlfa = -1
contikk = -1
for i in enumerate(VecResha):
alfa = np.random.rand()
if 0 < alfa <= P:
contikAlfa += 1
VecNflagOrd[contikAlfa] = i[1]
elif P < alfa <= 1:
contikk += 1
VecNflag[contikk] = i[1]
if contikk == 0:
VecDesor = VecNflag[len(VecNflag)]
else:
VecDesor = np.random.permutation(VecNflag[0:contikk])
#Aqui se acomodan los elementos con Probabilidad P
for i in enumerate(Y[:,1]):
contadori += 1
for j in enumerate(Y[:,1]):
contadorj += 1
for k in VecNflagOrd[0:contikAlfa]:
if Y[contadori,contadorj] == k:
VecPosi[contadori,contadorj] = Y[contadori,contadorj]
break
contadorj = -1
if P == 1.0:
VecPosi= VecPosi
else:
contadori = -1
contadorj = -1
for i in enumerate(Y[:,1]):
contadori += 1
for j in enumerate(Y[:,1]):
contadorj += 1
if len(VecDesor) == 0:
break
if VecPosi[contadori,contadorj] == 0:
VecPosi[contadori,contadorj] = VecDesor[0]
VecDesor = np.delete(VecDesor,0)
else:
continue
contadorj = -1
return VecPosi
def matcoulUniforV5(Vec, Nbox, nflag):
A = int(Nbox/2)-1
B = A
X = np.copy(Vec)
Matriz = np.zeros((Nbox,Nbox))
numVec = np.zeros(pow(Nbox,2))
#Matriz[A,B] = X[0]
#X = np.delete(X,0)
numPas = 0
k = 0
ranginf = 0
if nflag == 6 or nflag == 7 or nflag == 8 or nflag == 9:
Xrev = np.copy(X)
else:
Xrev = np.sort(X)
for i in np.arange(A+1):
Matriz[i,i:Nbox-i] = Xrev[0:len(Matriz[i,i:Nbox-i])]
Xrev = np.delete(Xrev,np.arange(len(Xrev[0:len(Matriz[i,i:Nbox-i])])))
Matriz[Nbox-i-1,i:Nbox-i] = Xrev[0:len(Matriz[Nbox-i-1,i:Nbox-i])]
Xrev = np.delete(Xrev,np.arange(len(Xrev[0:len(Matriz[Nbox-i-1,i:Nbox-i])])))
Matriz[i+1:Nbox-i-1,i] = Xrev[0:len(Matriz[i+1:Nbox-i-1,i])]
Xrev = np.delete(Xrev,np.arange(len(Xrev[0:len(Matriz[i+1:Nbox-i-1,i])])))
Matriz[i+1:Nbox-i-1,Nbox-1-i] = Xrev[0:len(Matriz[i+1:Nbox-i-1,Nbox-1-i])]
Xrev = np.delete(Xrev,np.arange(len(Xrev[0:len(Matriz[i+1:Nbox-i-1,Nbox-1-i])])))
return Matriz
def distInicialOrdenadaV0Comp(X,Nboxx):
VecPosi = np.zeros((Nboxx,Nboxx))
VecMAP = np.zeros((pow(Nboxx,2),3))
Vec = np.zeros(pow(Nboxx,2))
for cont in enumerate(Vec):
Vec[cont[0]]=X[cont[0]]
fracc=1.0 ##porcentaje de Ordenación con respecto a la malla central. Dejarla en este valor
VecNEW = np.sort(Vec)
k = -1
contador = -1
VecMax = VecNEW[len(VecNEW)-1] # el elemento mas grande
VecNEW = np.delete(VecNEW,len(VecNEW)-1)
numAle = 1
p = np.random.rand()
VecMax1 = VecNEW[len(VecNEW)-1] # en la grafica ORIENTACION NS
VecNEW = np.delete(VecNEW,len(VecNEW)-1) # borra el elemento que se acaba de asignar
for j in np.arange(int(Nboxx/2)):
for i in np.arange(int(Nboxx)):
if len(VecNEW) == 0:
break
if j == int(Nboxx/2)-1 and i == int(Nboxx/2)-1:
VecPosi[i,j] = VecMax
VecPosi[i,(Nboxx-1)-j]=VecMax1
else:
VecPosi[i,1+(j-1)] = VecNEW[0] # en la grafica ORIENTACION NS
VecNEW = np.delete(VecNEW,0)
VecPosi[i,(Nboxx-1)-j]=VecNEW[0]
VecNEW = np.delete(VecNEW,0)
#PyPlot.figure(718)
#PyPlot.surf(VecPosi,rstride=1, cstride=1, cmap="seismic")
return VecPosi