-
Notifications
You must be signed in to change notification settings - Fork 11
/
evaluation_stats.py
131 lines (99 loc) · 5.18 KB
/
evaluation_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
from data_generation import Event_DataModule
from pytorch_lightning.metrics import Accuracy
import pandas as pd
import json
from tqdm import tqdm
import time
import numpy as np
import evaluation_utils
from trainer import EvNetModel
device = 'cuda:0'
# device = 'cpu'
path_model = './pretrained_models/DVS128_10_24ms_dwn/'
# path_model = './pretrained_models/DVS128_11_24ms_dwn/'
# path_model = './pretrained_models/SLAnimals_4s_48ms_dwn/'
# path_model = './pretrained_models/SLAnimals_3s_48ms_dwn/'
# path_model = './pretrained_models/ASL_DVS_dwn/'
path_weights = evaluation_utils.get_best_weigths(path_model, 'val_acc', 'max')
evaluation_utils.plot_training_evolution(path_model)
all_params = json.load(open(path_model + '/all_params.json', 'r'))
model = EvNetModel.load_from_checkpoint(path_weights, map_location=torch.device('cpu'), **all_params).eval().to(device)
def get_params(model):
total_params = pd.DataFrame([ (n.split('.')[0],p.numel()/1000000) for n,p in model.backbone.named_parameters() if p.requires_grad ]).groupby(0).sum().sum().iloc[0]
pos_encoding_params = pd.DataFrame([ (n.split('.')[0],p.numel()/1000000) for n,p in model.backbone.named_parameters() if p.requires_grad ]).groupby(0).sum().loc['pos_encoding'].iloc[0]
stats = {
'total_params': total_params,
'backbone_params': total_params - pos_encoding_params,
'pos_encoding_params': pos_encoding_params
}
return stats
print('\n\n ** Calculating parameter statistics')
param_stats = get_params(model)
# %%
def get_complexity_stats(model, all_params):
data_params = all_params['data_params']
data_params['batch_size'] = 1
data_params['pin_memory'] = False
data_params['sample_repetitions'] = 1
dm = Event_DataModule(**data_params)
dl = dm.val_dataloader()
# https://github.com/sovrasov/flops-counter.pytorch
from ptflops import get_model_complexity_info
total_flops, total_macs, total_params, total_act_patches = [], [], [], []
total_time_flops = []
for polarity, pixels, labels in tqdm(dl):
if polarity is None: continue
polarity, pixels, labels = polarity.to(device), pixels.to(device), labels.to(device)
for ts in range(len(polarity)):
num_patches = sum(polarity[ts:ts+1].sum(-1).sum(0).sum(0) != 0)
mask = polarity[ts:ts+1].sum(-1).sum(0).sum(0) != 0
pol_t, pix_t = polarity[ts:ts+1][:,:,mask,:], pixels[ts:ts+1][:,:,mask,:]
t = time.time()
macs, params = get_model_complexity_info(model.backbone,
({'kv': pol_t, 'pixels': pix_t},),
input_constructor=lambda x: x[0],
as_strings=False,
print_per_layer_stat=False, verbose=False)
total_time_flops.append(time.time() - t)
flops = 2*macs
total_act_patches.append(num_patches.cpu())
total_flops.append(flops); total_macs.append(macs); total_params.append(params)
return np.mean(total_flops), np.mean(total_act_patches)
print('\n\n ** Calculating complexity statistics')
flops, activated_patches = get_complexity_stats(model, all_params)
# %%
# =============================================================================
# Time analysis
# =============================================================================
def get_time_accuracy_stats(model, all_params):
data_params = all_params['data_params']
data_params['batch_size'] = 1
data_params['pin_memory'] = False
data_params['sample_repetitions'] = 1
dm = Event_DataModule(**data_params)
dl = dm.val_dataloader()
total_time = []
y_true, y_pred = [], []
for polarity, pixels, labels in tqdm(dl):
if polarity is None: continue
polarity, pixels, labels = polarity.to(device), pixels.to(device), labels.to(device)
t = time.time()
embs, clf_logits = model(polarity, pixels)
total_time.append((time.time() - t)/len(polarity))
y_true.append(labels[0])
y_pred.append(clf_logits.argmax())
y_true, y_pred = torch.stack(y_true).to("cpu"), torch.stack(y_pred).to("cpu")
acc_score = Accuracy()(y_true, y_pred).item()
logs = evaluation_utils.load_csv_logs_as_df(path_model)
train_acc = logs[~logs['val_acc'].isna()]['val_acc'].max()
return np.mean(total_time)*1000, train_acc, acc_score
print('\n\n ** Calculating time and accuracy statistics')
avg_time, train_acc, val_acc = get_time_accuracy_stats(model, all_params)
# %%
print(f' - Model parameters: {param_stats["total_params"]:.2f} M | pos_encoding_parameters: {param_stats["pos_encoding_params"]:.2f} M | backbone_parameters: {param_stats["backbone_params"]:.2f} M ')
print(f' - Model FLOPs: {flops*1e-9:.2f} G')
print(f' - Average activated patches in [{all_params["data_params"]["dataset_name"]}]: {activated_patches:.1f}')
print(f' - Average processing time per time-window in device [{device}]: {avg_time:.4f} ms')
print(f' - Validation accuracy reported during training: {train_acc*100:.2f} %')
print(f' - Validation accuracy reported after training: {val_acc*100:.2f} %')