-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
199 lines (189 loc) · 8.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# COVID Mask R-CNN project
# LSTM+Attention
# Developed by Alex Ter-Sarkisov@City, University of London
import os
import pickle
import re
import sys
import time
from collections import OrderedDict
import cv2
import dataset_classification
import dataset_segmentation
import models.lstm_attn
import numpy as np
import torch
import torch.nn as nn
from torch.nn import NLLLoss as NLLLoss
import torch.nn.functional as F
import torchvision
import utils
from PIL import Image as PILImage
from matplotlib.patches import Rectangle
from models.lstm_attn import attn_model as attn_model
from models.lstm_attn.rpn import AnchorGenerator
from torch.utils import data
from torchvision import transforms
torch.autograd.set_detect_anomaly(True)
device = torch.device('cpu')
torch.manual_seed(time.time())
np.random.seed(int(time.time()))
if torch.cuda.is_available():
device = torch.device('cuda')
bbn = 'resnext50_32x4d'
data_dir = 'imgs'
gt_dir = 'masks'
# parameters for the dataset
# if only signs are detected, gt_dir is gt1
# for characters gt_dir is gt3
# for masks gt2 and gt3
dataset_covid_pars = {'stage': 'train', 'gt': os.path.join('../covid_data/train', gt_dir),
'data': os.path.join('../covid_data/train', data_dir),
'mask_type': 'separate', 'ignore_small': True}
datapoint_covid = dataset_segmentation.CovidCTData(**dataset_covid_pars)
#
dataloader_covid_pars = {'shuffle': False, 'batch_size': 1}
dataloader_covid = data.DataLoader(datapoint_covid, **dataloader_covid_pars)
########################
dataset_covid_classification_pars = {'stage': 'train',
'data': '../covid_data/cncb/train_very_large',
'img_size': [512, 512]}
datapoint_classification_covid = dataset_classification.COVID_CT_DATA(**dataset_covid_classification_pars)
#
dataloader_covid_classification_pars = {'shuffle': False, 'batch_size': 1}
dataloader_classification_covid = data.DataLoader(datapoint_classification_covid,
**dataloader_covid_classification_pars)
# combine train and evaluation
attn_args = {'out_channels':256, 'min_size': 512, 'max_size': 512, 'rpn_batch_size_per_image': 256, 'rpn_positive_fraction': 0.75,
'box_positive_fraction': 0.5, 'rpn_pre_nms_top_n_train':400, 'rpn_post_nms_top_n_train':200,
'box_fg_iou_thresh': 0.75, 'box_bg_iou_thresh': 0.5, 'num_classes': 4, 'box_batch_size_per_image': 256,
'rpn_nms_thresh': 0.75, 'box_nms_thresh': 0.5,
'box_nms_thresh_classifier': 0.25, 'box_detections_per_img_s2new': 16, 'box_score_thresh': 0.05, 'box_score_thresh_classifier':-0.01,
'box_detections_per_img': 128, 'num_classes_img': 3, 'x_stages':1, 'lstm_feature_size':256, 'device':device}
# many small anchors
anchor_generator = AnchorGenerator(sizes=((2, 4, 8, 16, 32),), aspect_ratios=((0.1, 0.25, 0.5, 1, 1.5, 2),))
print(bbn)
# out_channels:2048
# num_classes: (1+3)
# background + GGO + C + Lungs
total_pars = 0
attn_args['rpn_anchor_generator'] = anchor_generator
attn_classifier = attn_model.get_attn_model(backbone=bbn, pretrained=True, **attn_args)
for _n, _p in attn_classifier.state_dict().items():
total_pars += _p.numel()
print("Total pars", total_pars)
if device == torch.device('cuda'):
attn_classifier = attn_classifier.to(device)
optimizer_pars = {'lr': 1e-5, 'weight_decay': 1e-3}
optimizer = torch.optim.Adam(list(attn_classifier.parameters()), **optimizer_pars)
total_epochs = 10
save_every = 10
start_time = time.time()
batch_size = 1
print(attn_classifier)
# batch_loss_function=nn.L1Loss()
nllloss = NLLLoss()
#cm=CM()
# switch_off_grad()
def step(stage, e, max_loss):
epoch_loss_classification_indep = 0
epoch_loss_segmentation = 0
# repeat the total number of minibatches in the classifer dataset
total_batches = int(len(dataloader_classification_covid) / batch_size)
for r in range(total_batches):
total_classifier_loss = 0
optimizer.zero_grad()
rand_im_segment_ind = torch.randint(len(dataloader_covid), size=(1,)).item()
b = dataloader_covid.dataset[rand_im_segment_ind]
X, y = b
if device == torch.device('cuda'):
X, y['labels'], y['boxes'], y['masks'] = X.to(device), y['labels'].to(device), y['boxes'].to(device), y[
'masks'].to(device)
X = utils.normalize_img(X, device=device)
images = [X]
targets = []
lab = {}
lab['boxes'] = y['boxes']
lab['labels'] = y['labels']
lab['masks'] = y['masks']
# train segmentation and classification or only classification?
targets.append(lab)
if len(targets[0]['boxes']):
# pass
attn_classifier.train()
attn_classifier.attn_layer.eval()
loss, _, _ = attn_classifier(images, targets)
total_seg_loss = 0
for k in loss.keys():
total_seg_loss += loss[k]
# exclude all classification box and mask layers in RoI
for _n, _p in attn_classifier.named_parameters():
if 's2' in _n or 'attn' in _n:
_p.grad = None
# only if better
epoch_loss_segmentation += total_seg_loss.item()
if total_seg_loss.item() < max_loss:
utils.copy_weights(attn_classifier)
total_seg_loss.backward()
max_loss = total_seg_loss.item()
optimizer.step()
optimizer.zero_grad()
torch.cuda.empty_cache()
else:
total_seg_loss = 0
# set all to eval, then switch back parameters upgrade
# compute the image loss
rand_im_class_ind = torch.randint(len(dataloader_classification_covid), size=(1,)).item()
bt = dataloader_classification_covid.dataset[rand_im_class_ind]
attn_classifier.eval()
attn_classifier.backbone.train()
attn_classifier.attn_layer.train()
X_cl, y_cl = bt
# print('targ', y_cl)
if device == torch.device('cuda'):
X_cl, y_cl = X_cl.to(device), y_cl.to(device)
X_cl = X_cl.squeeze(0)
X_cl = utils.normalize_img(X_cl, device=device)
image = [X_cl] # remove the batch dimension
lab = dict(
image_label=y_cl.squeeze(0)) # This is not used within thge model, keep it for the correct operations
_, predict_score, _ = attn_classifier(image, targets=lab)
# append the feature vector and its class
correct_class_str = lab['image_label']
#print('pred', predict_score)
classifier_loss = F.binary_cross_entropy_with_logits(predict_score[0]['final_scores'].squeeze(0), y_cl)
total_classifier_loss += classifier_loss
total_classifier_loss.backward()
for _n, _p in attn_classifier.named_parameters():
if 'backbone' not in _n and 'attn' not in _n:
_p.grad = None
optimizer.step()
optimizer.zero_grad()
torch.cuda.empty_cache()
epoch_loss_classification_indep += total_classifier_loss
# save model?
if not e % save_every:
attn_classifier.eval()
state = {'epoch': str(e), 'model_weights': attn_classifier.state_dict(),
'optimizer_state': optimizer.state_dict(), 'lrate': 1e-5}
torch.save(state, os.path.join("saved_models", bbn + "_16_4class_lstm_attn_ckpt_" + str(e) + ".pth"))
attn_classifier.train()
epoch_loss_classification_indep = epoch_loss_classification_indep / total_batches
epoch_loss_segmentation = epoch_loss_segmentation / len(dataloader_covid)
# print(epoch_loss)
# print('total!', tots_pos, tots_neg)
return epoch_loss_classification_indep, epoch_loss_segmentation, max_loss
max_loss = 1000
for e in range(total_epochs):
train_class_indep_loss, epoch_loss_segmentation, max_loss = step("train", e, max_loss)
print("Epoch {0:d}: train loss single classification = {1:.3f}, loss_segmentation = {2:.3f}, max_loss = {3:.3f},".format(
e, train_class_indep_loss, epoch_loss_segmentation, max_loss))
end_time = time.time()
print("Training took {0:.1f} seconds".format(end_time - start_time))
# inference + save the model
attn_classifier.eval()
attn_classifier = attn_classifier.to(torch.device('cpu'))
state = {'epoch': str(total_epochs), 'model_weights': attn_classifier.state_dict(), 'optimizer_state': optimizer.state_dict(),
'lrate': 1e-5}
torch.save(state, os.path.join("saved_models", bbn + "_16_4class_lstm_attn_ckpt_" + str(total_epochs) + ".pth"))