-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathpose_transform.py
534 lines (432 loc) · 17.8 KB
/
pose_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from keras.models import Input, Model
from keras.engine.topology import Layer
from keras.backend import tf as ktf
import pose_utils
import pylab as plt
import numpy as np
from skimage.io import imread
from skimage.transform import warp_coords
import skimage.draw
import skimage.measure
import skimage.transform
from pose_utils import LABELS, MISSING_VALUE
from tensorflow.contrib.image import transform as tf_affine_transform
class AffineTransformLayer(Layer):
def __init__(self, number_of_transforms, aggregation_fn, init_image_size, **kwargs):
assert aggregation_fn in ['none', 'max', 'avg']
self.aggregation_fn = aggregation_fn
self.number_of_transforms = number_of_transforms
self.init_image_size = init_image_size
super(AffineTransformLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.image_size = list(input_shape[0][1:])
self.affine_mul = [1, 1, self.init_image_size[0] / self.image_size[0],
1, 1, self.init_image_size[1] / self.image_size[1],
1, 1]
self.affine_mul = np.array(self.affine_mul).reshape((1, 1, 8))
def call(self, inputs):
expanded_tensor = ktf.expand_dims(inputs[0], -1)
multiples = [1, self.number_of_transforms, 1, 1, 1]
tiled_tensor = ktf.tile(expanded_tensor, multiples=multiples)
repeated_tensor = ktf.reshape(tiled_tensor, ktf.shape(inputs[0]) * np.array([self.number_of_transforms, 1, 1, 1]))
affine_transforms = inputs[1] / self.affine_mul
affine_transforms = ktf.reshape(affine_transforms, (-1, 8))
tranformed = tf_affine_transform(repeated_tensor, affine_transforms)
res = ktf.reshape(tranformed, [-1, self.number_of_transforms] + self.image_size)
res = ktf.transpose(res, [0, 2, 3, 1, 4])
#Use masks
if len(inputs) == 3:
mask = ktf.transpose(inputs[2], [0, 2, 3, 1])
mask = ktf.image.resize_images(mask, self.image_size[:2], method=ktf.image.ResizeMethod.NEAREST_NEIGHBOR)
res = res * ktf.expand_dims(mask, axis=-1)
if self.aggregation_fn == 'none':
res = ktf.reshape(res, [-1] + self.image_size[:2] + [self.image_size[2] * self.number_of_transforms])
elif self.aggregation_fn == 'max':
res = ktf.reduce_max(res, reduction_indices=[-2])
elif self.aggregation_fn == 'avg':
counts = ktf.reduce_sum(mask, reduction_indices=[-1])
counts = ktf.expand_dims(counts, axis=-1)
res = ktf.reduce_sum(res, reduction_indices=[-2])
res /= counts
res = ktf.where(ktf.is_nan(res), ktf.zeros_like(res), res)
return res
def compute_output_shape(self, input_shape):
if self.aggregation_fn == 'none':
return tuple([input_shape[0][0]] + self.image_size[:2] + [self.image_size[2] * self.number_of_transforms])
else:
return input_shape[0]
def get_config(self):
config = {"number_of_transforms": self.number_of_transforms,
"aggregation_fn": self.aggregation_fn}
base_config = super(AffineTransformLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def give_name_to_keypoints(array):
res = {}
for i, name in enumerate(LABELS):
if array[i][0] != MISSING_VALUE and array[i][1] != MISSING_VALUE:
res[name] = array[i][::-1]
return res
def check_valid(kp_array):
kp = give_name_to_keypoints(kp_array)
return check_keypoints_present(kp, ['Rhip', 'Lhip', 'Lsho', 'Rsho'])
def check_keypoints_present(kp, kp_names):
result = True
for name in kp_names:
result = result and (name in kp)
return result
def compute_st_distance(kp):
st_distance1 = np.sum((kp['Rhip'] - kp['Rsho']) ** 2)
st_distance2 = np.sum((kp['Lhip'] - kp['Lsho']) ** 2)
return np.sqrt((st_distance1 + st_distance2)/2.0)
def mask_from_kp_array(kp_array, border_inc, img_size):
min = np.min(kp_array, axis=0)
max = np.max(kp_array, axis=0)
min -= int(border_inc)
max += int(border_inc)
min = np.maximum(min, 0)
max = np.minimum(max, img_size[::-1])
mask = np.zeros(img_size)
mask[min[1]:max[1], min[0]:max[0]] = 1
return mask
def get_array_of_points(kp, names):
return np.array([kp[name] for name in names])
def pose_masks(array2, img_size):
kp2 = give_name_to_keypoints(array2)
masks = []
st2 = compute_st_distance(kp2)
empty_mask = np.zeros(img_size)
body_mask = np.ones(img_size)# mask_from_kp_array(get_array_of_points(kp2, ['Rhip', 'Lhip', 'Lsho', 'Rsho']), 0.1 * st2, img_size)
masks.append(body_mask)
head_candidate_names = {'Leye', 'Reye', 'Lear', 'Rear', 'nose'}
head_kp_names = set()
for cn in head_candidate_names:
if cn in kp2:
head_kp_names.add(cn)
if len(head_kp_names)!=0:
center_of_mass = np.mean(get_array_of_points(kp2, list(head_kp_names)), axis=0, keepdims=True)
center_of_mass = center_of_mass.astype(int)
head_mask = mask_from_kp_array(center_of_mass, 0.40 * st2, img_size)
masks.append(head_mask)
else:
masks.append(empty_mask)
def mask_joint(fr, to, inc_to):
if not check_keypoints_present(kp2, [fr, to]):
return empty_mask
return skimage.measure.grid_points_in_poly(img_size, estimate_polygon(kp2[fr], kp2[to], st2, inc_to, 0.1, 0.2, 0.2)[:, ::-1])
masks.append(mask_joint('Rhip', 'Rkne', 0.1))
masks.append(mask_joint('Lhip', 'Lkne', 0.1))
masks.append(mask_joint('Rkne', 'Rank', 0.5))
masks.append(mask_joint('Lkne', 'Lank', 0.5))
masks.append(mask_joint('Rsho', 'Relb', 0.1))
masks.append(mask_joint('Lsho', 'Lelb', 0.1))
masks.append(mask_joint('Relb', 'Rwri', 0.5))
masks.append(mask_joint('Lelb', 'Lwri', 0.5))
return np.array(masks)
def estimate_polygon(fr, to, st, inc_to, inc_from, p_to, p_from):
fr = fr + (fr - to) * inc_from
to = to + (to - fr) * inc_to
norm_vec = fr - to
norm_vec = np.array([-norm_vec[1], norm_vec[0]])
norm = np.linalg.norm(norm_vec)
if norm == 0:
return np.array([
fr + 1,
fr - 1,
to - 1,
to + 1,
])
norm_vec = norm_vec / norm
vetexes = np.array([
fr + st * p_from * norm_vec,
fr - st * p_from * norm_vec,
to - st * p_to * norm_vec,
to + st * p_to * norm_vec
])
return vetexes
def affine_transforms(array1, array2):
kp1 = give_name_to_keypoints(array1)
kp2 = give_name_to_keypoints(array2)
st1 = compute_st_distance(kp1)
st2 = compute_st_distance(kp2)
no_point_tr = np.array([[1, 0, 1000], [0, 1, 1000], [0, 0, 1]])
transforms = []
def to_transforms(tr):
from numpy.linalg import LinAlgError
try:
np.linalg.inv(tr)
transforms.append(tr)
except LinAlgError:
transforms.append(no_point_tr)
body_poly_1 = get_array_of_points(kp1, ['Rhip', 'Lhip', 'Lsho', 'Rsho'])
body_poly_2 = get_array_of_points(kp2, ['Rhip', 'Lhip', 'Lsho', 'Rsho'])
tr = skimage.transform.estimate_transform('affine', src=body_poly_2, dst=body_poly_1)
to_transforms(tr.params)
head_candidate_names = {'Leye', 'Reye', 'Lear', 'Rear', 'nose'}
head_kp_names = set()
for cn in head_candidate_names:
if cn in kp1 and cn in kp2:
head_kp_names.add(cn)
if len(head_kp_names) != 0:
#if len(head_kp_names) < 3:
head_kp_names.add('Lsho')
head_kp_names.add('Rsho')
head_poly_1 = get_array_of_points(kp1, list(head_kp_names))
head_poly_2 = get_array_of_points(kp2, list(head_kp_names))
tr = skimage.transform.estimate_transform('affine', src=head_poly_2, dst=head_poly_1)
to_transforms(tr.params)
else:
to_transforms(no_point_tr)
def estimate_join(fr, to, inc_to):
if not check_keypoints_present(kp2, [fr, to]):
return no_point_tr
poly_2 = estimate_polygon(kp2[fr], kp2[to], st2, inc_to, 0.1, 0.2, 0.2)
if check_keypoints_present(kp1, [fr, to]):
poly_1 = estimate_polygon(kp1[fr], kp1[to], st1, inc_to, 0.1, 0.2, 0.2)
else:
if fr[0]=='R':
fr = fr.replace('R', 'L')
to = to.replace('R', 'L')
else:
fr = fr.replace('L', 'R')
to = to.replace('L', 'R')
if check_keypoints_present(kp1, [fr, to]):
poly_1 = estimate_polygon(kp1[fr], kp1[to], st1, inc_to, 0.1, 0.2, 0.2)
else:
return no_point_tr
return skimage.transform.estimate_transform('affine', dst=poly_1, src=poly_2).params
to_transforms(estimate_join('Rhip', 'Rkne', 0.1))
to_transforms(estimate_join('Lhip', 'Lkne', 0.1))
to_transforms(estimate_join('Rkne', 'Rank', 0.3))
to_transforms(estimate_join('Lkne', 'Lank', 0.3))
to_transforms(estimate_join('Rsho', 'Relb', 0.1))
to_transforms(estimate_join('Lsho', 'Lelb', 0.1))
to_transforms(estimate_join('Relb', 'Rwri', 0.3))
to_transforms(estimate_join('Lelb', 'Lwri', 0.3))
return np.array(transforms).reshape((-1, 9))[..., :-1]
def estimate_uniform_transform(array1, array2):
kp1 = give_name_to_keypoints(array1)
kp2 = give_name_to_keypoints(array2)
no_point_tr = np.array([[1, 0, 1000], [0, 1, 1000], [0, 0, 1]])
def check_invertible(tr):
from numpy.linalg import LinAlgError
try:
np.linalg.inv(tr)
return True
except LinAlgError:
return False
keypoint_names = {'Rhip', 'Lhip', 'Lsho', 'Rsho'}
candidate_names = {'Rkne', 'Lkne'}
for cn in candidate_names:
if cn in kp1 and cn in kp2:
keypoint_names.add(cn)
poly_1 = get_array_of_points(kp1, list(keypoint_names))
poly_2 = get_array_of_points(kp2, list(keypoint_names))
tr = skimage.transform.estimate_transform('affine', src=poly_2, dst=poly_1)
tr = tr.params
if check_invertible(tr):
return tr.reshape((-1, 9))[..., :-1]
else:
return no_point_tr.reshape((-1, 9))[..., :-1]
def draw_line(fr, to, thickness, shape):
norm_vec = fr - to
norm_vec = np.array([-norm_vec[1], norm_vec[0]])
norm_vec = thickness * norm_vec / np.linalg.norm(norm_vec)
vetexes = np.array([
fr + norm_vec,
fr - norm_vec,
to - norm_vec,
to + norm_vec
])
return skimage.draw.polygon(vetexes[:, 1], vetexes[:, 0], shape=shape)
def make_stickman(kp_array, img_shape):
kp = give_name_to_keypoints(kp_array)
#Adapted from https://github.com/CompVis/vunet/
# three channels: left, right, center
scale_factor = img_shape[1] / 128.0
thickness = int(3 * scale_factor)
imgs = list()
for i in range(3):
imgs.append(np.zeros(img_shape[:2], dtype="float32"))
body = ["Lhip", "Lsho", "Rsho", "Rhip"]
body_pts = get_array_of_points(kp, body)
if np.min(body_pts) >= 0:
body_pts = np.int_(body_pts)
rr,cc = skimage.draw.polygon(body_pts[:,1], body_pts[:, 0], shape=img_shape)
imgs[2][rr, cc] = 1
right_lines = [
("Rank", "Rkne"),
("Rkne", "Rhip"),
("Rhip", "Rsho"),
("Rsho", "Relb"),
("Relb", "Rwri")]
for line in right_lines:
if check_keypoints_present(kp, line):
line_pts = get_array_of_points(kp, line)
rr,cc = draw_line(line_pts[0], line_pts[1], thickness=thickness, shape=img_shape)
imgs[0][rr,cc] = 1
left_lines = [
("Lank", "Lkne"),
("Lkne", "Lhip"),
("Lhip", "Lsho"),
("Lsho", "Lelb"),
("Lelb", "Lwri")]
for line in left_lines:
if check_keypoints_present(kp, line):
line_pts = get_array_of_points(kp, line)
rr,cc = draw_line(line_pts[0], line_pts[1], thickness=thickness, shape=img_shape)
imgs[1][rr, cc] = 1
if check_keypoints_present(kp, ['Rsho', 'Lsho', 'nose']):
rs = kp["Rsho"]
ls = kp["Lsho"]
cn = kp["nose"]
neck = 0.5*(rs+ls)
a = neck
b = cn
if np.min(a) >= 0 and np.min(b) >= 0:
rr,cc = draw_line(a, b, thickness=thickness, shape=img_shape)
imgs[0][rr, cc] = 0.5
imgs[1][rr, cc] = 0.5
if check_keypoints_present(kp, ['Reye', 'Leye', 'nose']):
reye = kp["Reye"]
leye = kp["Leye"]
cn = kp["nose"]
neck = 0.5*(rs+ls)
a = tuple(np.int_(neck))
b = tuple(np.int_(cn))
if np.min(a) >= 0 and np.min(b) >= 0:
rr,cc = draw_line(cn, reye, thickness=thickness, shape=img_shape)
imgs[0][rr, cc] = 0.5
rr,cc = draw_line(cn, leye, thickness=thickness, shape=img_shape)
imgs[1][rr, cc] = 0.5
img = np.stack(imgs, axis = -1)
return img
if __name__ == "__main__":
import pandas as pd
import os
from skimage.transform import resize
pairs_df = pd.read_csv('data/tmp-pairs-test.csv')
kp_df = pd.read_csv('data/tmp-annotation-test.csv', sep=':')
img_folder = 'data/tmp-dataset/test'
f = open('lolkek.txt', 'w')
for _, row in pairs_df.iterrows():
print 1
fr = 'denis_pjump000004.jpg'# row['from']
to = 'denis_pjump000004.jpg'#row['to']
fr_img = imread(os.path.join(img_folder, fr))
to_img = imread(os.path.join(img_folder, to))
kp_fr = kp_df[kp_df['name'] == fr].iloc[0]
kp_to = kp_df[kp_df['name'] == to].iloc[0]
plt.subplot(3, 1, 1)
kp_fr = pose_utils.load_pose_cords_from_strings(kp_fr['keypoints_y'], kp_fr['keypoints_x'])
kp_to = pose_utils.load_pose_cords_from_strings(kp_to['keypoints_y'], kp_to['keypoints_x'])
img = fr_img.copy()
#p, m = pose_utils.draw_pose_from_cords(kp_fr, img.shape[:2])
img = make_stickman(kp_to, fr_img.shape)
#img[m] = p[m]
plt.imshow(img)
plt.subplot(3, 1, 2)
img = to_img.copy()
p, m = pose_utils.draw_pose_from_cords(kp_to, img.shape[:2])
img[m] = p[m]
plt.imshow(img)
# tr = estimate_uniform_transform(kp_fr, kp_to)
#
# no_point_tr = np.array([[1, 0, 1000], [0, 1, 1000], [0, 0, 1]])
# if np.all(tr == no_point_tr.reshape((-1, 9))[..., :-1]):
# print >>f, '_'.join([fr,to]) + '.jpg'
p = resize(p, (256, 256), preserve_range=True).astype(np.uint8)
m = resize(m, (256, 256), preserve_range=True).astype(bool)
fr_img = resize(fr_img, (256, 256), preserve_range=True).astype(float)
tr = affine_transforms(kp_fr, kp_to)
masks = pose_masks(kp_to, fr_img.shape[:2])
x = Input(fr_img.shape)
i = Input((10, 8))
mm = Input([10] + list(fr_img.shape[:2]))
y = AffineTransformLayer(10, 'max', (256, 256))([x, i, mm])
model = Model(inputs=[x, i, mm], outputs=y)
b = model.predict([fr_img[np.newaxis], tr[np.newaxis], masks[np.newaxis]])
plt.subplot(3, 1, 3)
a = b[0, ..., 0:3].copy().astype('uint8')
a[m] = p[m]
plt.imshow(a)
plt.show()
#f.flush()
# def get(first, second):
# plt.subplot(3, 1, 1)
# a = first
# img = imread(a[0])
# image = img.copy()
# array1 = pose_utils.load_pose_cords_from_strings(a[2], a[1])
# print (img.shape)
# p, m = pose_utils.draw_pose_from_cords(array1, img.shape[:2])
# img[m] = p[m]
# plt.imshow(img)
#
# plt.subplot(3, 1, 2)
# a = second
# img = imread(a[0])
# array2 = pose_utils.load_pose_cords_from_strings(a[2], a[1])
# p, m = pose_utils.draw_pose_from_cords(array2, img.shape[:2])
# img[m] = p[m]
# plt.imshow(img)
# pose_utils.draw_legend()
# trs = affine_transforms(array1, array2)
# masks = pose_masks(array2, (128, 64))
#
# image = resize(image, (64, 32), preserve_range=True)
# m = resize(m, (64, 32), preserve_range=True, order=0).astype(bool)
# p = resize(p, (64, 32), preserve_range=True, order=0)
# return trs, masks, image, p, m
#
#
# trs, masks, img, p, m = get(first2, second2)
# trs2, masks2, img2, p2, m2 = get(first, second)
#
# plt.subplot(3, 1, 3)
#
# x_v = np.concatenate([img[np.newaxis], img2[np.newaxis]])
# i_v = np.concatenate([trs[np.newaxis], trs2[np.newaxis]])
# m_v = np.concatenate([masks[np.newaxis], masks2[np.newaxis]])
#
# #trs = CordinatesWarp.affine_transforms(array1, array2)
# x = Input((64,32,3))
# i = Input((len(trs), 8))
# masks = Input((len(trs), 128, 64))
#
# y = AffineTransformLayer(len(trs), 'max', (128, 64))([x, i])
# model = Model(inputs=[x, i, masks], outputs=y)
#
# # x_v = skimage.transform.resize(image, (128, 64), preserve_range=True)[np.newaxis]
# # i_v = trs[np.newaxis]
#
# b = model.predict([x_v, i_v, m_v])
# print (b.shape)
# b = b[..., :3]
#
#
# # trs, _ = CordinatesWarp.warp_mask(array1, array2, img_size=img.shape[:2])
# # x = Input((128,64,3))
# # i = Input((128,64,2))
# #
# # y = WarpLayer(1)([x, i])
# # model = Model(inputs=[x, i], outputs=y)
# #
# # x_v = skimage.transform.resize(image, (128, 64), preserve_range=True)[np.newaxis]
# # i_v = trs[np.newaxis]
# #
# # b = model.predict([x_v, i_v])
# # print (b.shape)
#
# warped_image = np.squeeze(b[1]).astype(np.uint8)
# warped_image[m2] = p2[m2]
# plt.imshow(warped_image)
#
# # from scipy.ndimage import map_coordinates
# #
# # mask = CordinatesWarp.warp_mask(array1, array2, (128, 64, 3))
# # mask = np.moveaxis(mask, -1, 0)
# # warped_image = map_coordinates(image, mask)
# # warped_image[m] = p[m]
# # plt.subplot(4, 1, 4)
# # plt.imshow(warped_image)
# plt.show()