forked from CRIPAC-DIG/GRACE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
241 lines (195 loc) · 7.92 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import glob
import os
from typing import List
import hydra
import numpy as np
import functools
import torch
import tqdm
import wandb
from omegaconf import DictConfig
from sklearn.metrics import f1_score, accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import normalize, OneHotEncoder
from torch.utils.data.dataset import Dataset
from torch_geometric.data import DataLoader
from model import LogReg
class EvalDataset(Dataset):
def __init__(self, data_dir: str, prefix: str, transform = None):
all_emb = glob.glob(os.path.join(data_dir, f"{prefix}_emb*"))
all_labels = glob.glob(os.path.join(data_dir, f"{prefix}_lbl*"))
sort_func_file_map = lambda x: int(x.split(".npy")[0].split("_")[-2])
self.all_emb = sorted(all_emb, key=sort_func_file_map)
self.all_lbl = sorted(all_labels, key=sort_func_file_map)
self.all_emb_arr = [np.load(f) for f in tqdm.tqdm(self.all_emb, f"Loading precomputed embeddings for prefix: {prefix}")]
self.all_emb_arr = torch.from_numpy(np.concatenate(self.all_emb_arr))
self.all_lbl_arr = [np.load(f) for f in tqdm.tqdm(self.all_lbl, f"Loading precomputed labels for prefix: {prefix}")]
self.all_lbl_arr = torch.from_numpy(np.concatenate(self.all_lbl_arr))
self.transform = transform
def __len__(self):
return len(self.all_lbl_arr)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
sample = (self.all_emb_arr[idx], self.all_lbl_arr[idx])
return sample
def repeat(n_times):
def decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
results = [f(*args, **kwargs) for _ in range(n_times)]
statistics = {}
for key in results[0].keys():
values = [r[key] for r in results]
statistics[key] = {
'mean': np.mean(values),
'std': np.std(values)}
print_statistics(statistics, f.__name__)
return statistics
return wrapper
return decorator
def prob_to_one_hot(y_pred):
ret = np.zeros(y_pred.shape, np.bool)
indices = np.argmax(y_pred, axis=1)
for i in range(y_pred.shape[0]):
ret[i][indices[i]] = True
return ret
def print_statistics(statistics, function_name):
print(f'(E) | {function_name}:', end=' ')
for i, key in enumerate(statistics.keys()):
mean = statistics[key]['mean']
std = statistics[key]['std']
if wandb.run is not None:
wandb.log({f"{key}_mean": mean,
f"{key}_std": std})
print(f'{key}={mean:.4f}+-{std:.4f}', end='')
if i != len(statistics.keys()) - 1:
print(',', end=' ')
else:
print()
@repeat(10)
def label_classification_supervised(data_dir):
test_ds = EvalDataset(data_dir, "test")
preds_test = []
y_test = []
for pred, gt in test_ds:
preds_test.append(pred)
y_test.append(gt)
preds_test = np.concatenate(preds_test)
y_test = np.concatenate(y_test)
preds_test = np.argmax(preds_test, axis=1)
micro = f1_score(y_test, preds_test, average="micro")
macro = f1_score(y_test, preds_test, average="macro")
accuracy = accuracy_score(y_test, preds_test)
return {
'F1Mi': micro,
'F1Ma': macro,
"Accuracy": accuracy,
}
@repeat(10)
def label_classification_dgi(data_dir: str, nb_classes: int):
train_ds = EvalDataset(data_dir, "train")
test_ds = EvalDataset(data_dir, "train")
dummy_s = train_ds[0]
sample_emb, sample_gt = dummy_s[0].numpy(), dummy_s[1].numpy()
if sample_emb.ndim > 1 and sample_gt.shape[1] > 1: # Multi label DS
criterion = torch.nn.BCEWithLogitsLoss()
nb_classes = sample_emb.shape[1]
multi_label = True
else:
criterion = torch.nn.CrossEntropyLoss()
multi_label = False
log = LogReg(len(sample_emb), nb_classes).cuda()
opt = torch.optim.Adam(log.parameters(), lr=0.001, weight_decay=0.0)
train_dl = DataLoader(train_ds, batch_size=1024, shuffle=True, pin_memory=True)
test_dl = DataLoader(test_ds, batch_size=1024, shuffle=False, pin_memory=True)
for _ in tqdm.tqdm(range(100), "Training classifier"):
log.train()
#perm = torch.randperm(y_train.size(0)).cuda().type(torch.long)
#X_train = X_train[perm]
#y_train = y_train[perm]
for curr_x, curr_y in train_dl:
opt.zero_grad()
logits = log(curr_x.type(torch.float32).cuda())
loss = criterion(logits, curr_y.cuda())
loss.backward()
opt.step()
with torch.no_grad():
log.eval()
preds = []
y_test = []
for curr_x, curr_y in test_dl:
logits = log(curr_x.type(torch.float32).cuda()).cpu()
if multi_label:
preds.append((logits > 0))
else:
preds.append(torch.argmax(logits, dim=1))
y_test.append(curr_y)
y_test = torch.cat(y_test)
preds = torch.cat(preds)
micro = f1_score(y_test.cpu().numpy(), preds.cpu().numpy(), average="micro")
macro = f1_score(y_test.cpu().numpy(), preds.cpu().numpy(), average="macro")
accuracy = accuracy_score(y_test.cpu().numpy(), preds.cpu().numpy())
res_dict = {
'F1Mi': micro,
'F1Ma': macro,
"Accuracy": accuracy,
}
print(res_dict)
return res_dict
@repeat(10)
def label_classification_grace(X_train, X_test, y_train, y_test):
if y_train.ndim > 1 and y_train.shape[1] > 1: # Multi label DS
y_train = y_train.astype(np.bool)
y_test = y_test.astype(np.bool)
else:
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
onehot_encoder = OneHotEncoder(categories='auto').fit(np.concatenate([y_train, y_test]))
y_train = onehot_encoder.transform(y_train).toarray().astype(np.bool)
y_test = onehot_encoder.transform(y_test).toarray().astype(np.bool)
X_train = normalize(X_train, norm='l2')
X_test = normalize(X_test, norm='l2')
logreg = LogisticRegression(solver='liblinear')
c = 2.0 ** np.arange(-10, 10)
clf = GridSearchCV(estimator=OneVsRestClassifier(logreg),
param_grid=dict(estimator__C=c), n_jobs=8, cv=5,
verbose=1)
clf.fit(X_train, y_train)
y_pred = clf.predict_proba(X_test)
y_pred = prob_to_one_hot(y_pred)
micro = f1_score(y_test, y_pred, average="micro")
macro = f1_score(y_test, y_pred, average="macro")
accuracy = accuracy_score(y_test, y_pred)
return {
'F1Mi': micro,
'F1Ma': macro,
'Accuracy': accuracy
}
@hydra.main(config_path="configs", config_name="default", version_base=None) # Config name will be given via command line
def main(root_config: DictConfig):
dataset_name = root_config.dataset
config = root_config[dataset_name] # Load the relevant part
eval_method = config['eval_method']
exp_type = root_config.exp_type
emb_data_dir = root_config["emb_data_dir"]
if emb_data_dir is None:
raise RuntimeError("You must give emb_data_dir")
with open(os.path.join(emb_data_dir, "classes.txt"), "r") as classes_file:
nb_classes = int(classes_file.readline())
if exp_type == "supervised":
print("Start testing using SUPERVISED method")
label_classification_supervised(emb_data_dir)
else:
if eval_method == "DGI":
print("Start testing using DGI method")
label_classification_dgi(emb_data_dir, nb_classes)
elif eval_method == "GRACE":
print("Start testing using GRACE method")
label_classification_grace(emb_data_dir)
else:
raise RuntimeError("Invalid classification method")
if __name__ == "__main__":
main()