forked from CRIPAC-DIG/GRACE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
435 lines (374 loc) · 17.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
import os.path as osp
import random
import subprocess
import tempfile
from datetime import datetime
from io import StringIO
import multiprocessing as mp
from time import perf_counter
from typing import Dict
import hydra
import ogb.lsc
import torch_geometric
import tqdm
import wandb
import numpy as np
from ogb.nodeproppred import PygNodePropPredDataset
from omegaconf import DictConfig, OmegaConf
import pandas as pd
import torch
from contextlib import nullcontext
from sklearn.model_selection import train_test_split
torch.multiprocessing.set_sharing_strategy('file_system')
import torch_geometric.transforms as T
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.datasets import Planetoid, CitationFull, Reddit2, PPI, Reddit, Amazon, Coauthor, WikiCS
from torch_geometric.loader import ClusterData, ClusterLoader
from torch_geometric.utils import dropout_adj
from torch_geometric.nn import GCNConv, GATConv, DataParallel
from model import Encoder, Model, drop_feature, EncoderRecoverability, SupervisedModel
def get_dataset(name, config):
print(f"Loading dataset: {name}")
path = osp.join(osp.expanduser('~'), 'datasets', name)
name = 'dblp' if name == 'DBLP' else name
if name == "dblp":
data = CitationFull(root=path, name=name, transform=T.NormalizeFeatures())[0]
# There is no split, so we perform random split
node_idx = np.arange(data.x.size(0))
labels = data.y
idx_train, idx_test, _, _ = train_test_split(node_idx, labels,
test_size=0.2)
train_mask = torch.zeros_like(data.y, dtype=torch.bool)
train_mask[idx_train] = True
test_mask = torch.zeros_like(train_mask)
test_mask[idx_test] = True
data.train_mask = train_mask
data.test_mask = test_mask
elif name in ("Cora", "CiteSeer", "PubMed"):
data = Planetoid(root=path, name=name, transform=T.NormalizeFeatures())[0]
elif name == "Reddit2":
data = Reddit2(root=path)[0] # Remove the first 2 features because there are in different scale
data.x = data.x[:, 2:]
elif name == "Reddit":
data = Reddit(root=path)[0] # Remove the first 2 features because there are in different scale
data.x = data.x[:, 1:]
elif name in ("ogbn_arxiv", "ogbn_products"):
dataset = PygNodePropPredDataset(name=name.replace("_", "-"),
root=path.replace("_", "-"),
transform=T.NormalizeFeatures())
data = dataset[0]
split_idx = dataset.get_idx_split()
data.train_mask = torch.zeros((data.x.size(0),), dtype=torch.bool)
data.train_mask[split_idx["train"]] = True
data.val_mask = torch.zeros((data.x.size(0),), dtype=torch.bool)
data.val_mask[split_idx["valid"]] = True
data.test_mask = torch.zeros((data.x.size(0),), dtype=torch.bool)
data.test_mask[split_idx["test"]] = True
data.y = data.y.flatten()
data.edge_index = torch_geometric.utils.to_undirected(data.edge_index, None, num_nodes=data.x.size(0))
elif name == "PPI":
train_ds = PPI(root=path, split="train")
val_ds = PPI(root=path, split="val")
test_ds = PPI(root=path, split="test")
# Build masks
data_map = {"train_mask": [],
"val_mask": [],
"test_mask": []}
for curr_ds, relevant_mask in ((train_ds, "train_mask"), (val_ds, "val_mask"), (test_ds, "test_mask")):
for data in curr_ds:
data.val_mask = torch.zeros((data.x.size(0),), dtype=torch.bool)
data.train_mask = torch.zeros((data.x.size(0),), dtype=torch.bool)
data.test_mask = torch.zeros((data.x.size(0),), dtype=torch.bool)
setattr(data, relevant_mask, torch.ones((data.x.size(0),), dtype=torch.bool))
data_map[relevant_mask].append(data)
# Merge graphs
data = data_map["train_mask"] + data_map["val_mask"] + data_map["test_mask"]
elif name in ("amazon_photos", "amazon_computers"):
ds_sub_name = {"amazon_photos": "photo",
"amazon_computers": "computers"}[name]
data = Amazon(root=path, name=ds_sub_name, transform=T.NormalizeFeatures())[0]
node_idx = np.arange(data.x.size(0))
labels = data.y
idx_train, idx_test, _, _ = train_test_split(node_idx, labels,
test_size=0.2)
train_mask = torch.zeros_like(data.y, dtype=torch.bool)
train_mask[idx_train] = True
test_mask = torch.zeros_like(train_mask)
test_mask[idx_test] = True
data.train_mask = train_mask
data.test_mask = test_mask
elif name in ("coauthor_physics", "coauthor_cs"):
ds_sub_name = {"coauthor_physics": "physics",
"coauthor_cs": "CS"}[name]
data = Coauthor(root=path, name=ds_sub_name)[0]
node_idx = np.arange(data.x.size(0))
labels = data.y
idx_train, idx_test, _, _ = train_test_split(node_idx, labels,
test_size=0.2)
train_mask = torch.zeros_like(data.y, dtype=torch.bool)
train_mask[idx_train] = True
test_mask = torch.zeros_like(train_mask)
test_mask[idx_test] = True
data.train_mask = train_mask
data.test_mask = test_mask
elif name == "wiki_cs":
data = WikiCS(root=path)[0]
elif name == "mag_240m":
dataset = ogb.lsc.MAG240MDataset(root=path)
x = torch.arange(dataset.num_papers) # We will load the actual data after the clustering is done
y = torch.from_numpy(dataset.all_paper_label)
edge_index = torch.from_numpy(dataset.edge_index('paper', 'paper'))
train_mask = torch.zeros((x.size(0),), dtype=torch.bool)
train_mask[dataset.get_idx_split("train")] = True
val_mask = torch.zeros((x.size(0),), dtype=torch.bool)
val_mask[dataset.get_idx_split("valid")] = True
test_mask = torch.zeros((x.size(0),), dtype=torch.bool)
test_mask[dataset.get_idx_split(
"test-dev")] = True # TODO: do we need test-dev or test-challenge? https://ogb.stanford.edu/docs/lsc/mag240m/
# Remove all nodes without labels from the train/val/test splits
nodes_with_labels = torch.logical_not(torch.logical_or(torch.isnan(y), y < 0))
train_mask = torch.logical_and(train_mask, nodes_with_labels)
val_mask = torch.logical_and(val_mask, nodes_with_labels)
test_mask = torch.logical_and(test_mask, nodes_with_labels)
data = torch_geometric.data.Data(x=x,
edge_index=edge_index,
y=y,
train_mask=train_mask,
val_mask=val_mask,
test_mask=test_mask)
data.edge_index = torch_geometric.utils.to_undirected(data.edge_index, None, num_nodes=data.x.size(0))
else:
raise ValueError(f"Invalid DS: {name}")
if config.num_data_splits > 1:
print("Clustering DS")
data = cluster_data(data, config.num_data_splits, path)
print("DONE - Clustering DS")
if name == "mag_240m":
print("Loading data to clusters for mag_240m")
orig_x = torch.from_numpy(dataset.all_paper_feat)
for d in tqdm.tqdm(data):
d.x = orig_x[d.x]
elif isinstance(data, torch_geometric.data.Data):
data = [data]
print(f"DONE - Loading dataset: {name}")
return data
def train_procedure(config, root_config, model, emb_out_dir: str, data):
exp_type = root_config.exp_type
learning_rate = config['learning_rate']
drop_edge_rate_1 = config['drop_edge_rate_1']
drop_edge_rate_2 = config['drop_edge_rate_2']
drop_feature_rate_1 = config['drop_feature_rate_1']
drop_feature_rate_2 = config['drop_feature_rate_2']
num_epochs = config['num_epochs']
weight_decay = config['weight_decay']
if root_config.multi_gpu:
model = DataParallel(model)
model = model.cuda()
optimizer = torch.optim.Adam(
model.parameters(), lr=learning_rate, weight_decay=weight_decay)
start = perf_counter()
prev = start
if exp_type == "random":
print("Using random experiment, no training for model")
else:
data_to_feed_size = torch.cuda.device_count() if root_config.multi_gpu else 1
if root_config.multi_gpu:
data_for_train = []
t = []
for d in data:
t.append(d)
if len(t) == data_to_feed_size:
data_for_train.append(t)
t = []
if len(t):
data_for_train.append(t)
else:
data_for_train = data
scaler = torch.cuda.amp.GradScaler() if config.use_half_precision else None
effective_model = model.module if isinstance(model, DataParallel) else model
for epoch in range(1, num_epochs + 1):
loss = train(model, effective_model, data_for_train, optimizer, drop_edge_rate_1, drop_edge_rate_2, drop_feature_rate_1, drop_feature_rate_2, scaler)
now = perf_counter()
print(f'(T) | Epoch={epoch:03d}, loss={loss:.4f}, '
f'this epoch {now - prev:.4f}, total {now - start:.4f}')
prev = now
running_dtype = torch.half if config.use_half_precision else torch.float32
#
# if config.use_half_precision:
# model = model.half()
with torch.cuda.amp.autocast() if config.use_half_precision is None else nullcontext():
train_data_dir, nb_classes = save_test_emb(model, effective_model, data_for_train, emb_out_dir, running_dtype)
del data # Release memory
return nb_classes
def train(model: Model, effective_model, data, optimizer, drop_edge_rate_1, drop_edge_rate_2, drop_feature_rate_1, drop_feature_rate_2, scaler):
model.train()
total_nodes = 0
total_loss = 0
multi_gpu_train = True if isinstance(model, DataParallel) else False
for curr_data in data:
optimizer.zero_grad()
if not multi_gpu_train:
curr_data = curr_data.cuda()
with nullcontext() if scaler is None else torch.cuda.amp.autocast():
if isinstance(effective_model, EncoderRecoverability):
loss = model(curr_data)
elif isinstance(effective_model, SupervisedModel):
loss = model(curr_data)
else:
edge_index_1 = dropout_adj(curr_data.edge_index, p=drop_edge_rate_1)[0]
edge_index_2 = dropout_adj(curr_data.edge_index, p=drop_edge_rate_2)[0]
x_1 = drop_feature(curr_data.x, drop_feature_rate_1)
x_2 = drop_feature(curr_data.x, drop_feature_rate_2)
z1 = model(x_1, edge_index_1)
z2 = model(x_2, edge_index_2)
loss = model.loss(z1, z2, batch_size=0)
loss = torch.mean(loss)
if scaler is None:
loss.backward()
optimizer.step()
else:
loss = scaler.scale(loss)
loss.backward()
scaler.step(optimizer)
scaler.update()
if multi_gpu_train:
loss_avg = loss.item()
else:
total_nodes += curr_data.x.size(0)
total_loss += loss.item() * curr_data.x.size(0)
loss_avg = total_loss / total_nodes
return loss_avg
def save_test_emb(model: Model, effective_model: Model, data: torch_geometric.data.Data, train_data_dir: str, running_dtype):
with torch.no_grad():
model.eval()
# y_train_agg = []
# y_test_agg = []
# z_train_agg = []
# z_test_agg = []
nb_classes = 0
for i, curr_data in tqdm.tqdm(enumerate(data), "Generating embeddings for testing"):
z = model(curr_data)
if isinstance(curr_data, list):
for d in curr_data:
d.x = d.x.type(running_dtype)
test_mask = torch.cat([d.test_mask for d in curr_data])
y = torch.cat([d.y for d in curr_data])
else:
test_mask = curr_data.test_mask
y = curr_data.y
curr_data.x = curr_data.x.type(running_dtype)
if isinstance(effective_model, EncoderRecoverability):
z = z[-1]
has_test = torch.any(test_mask)
has_train = not torch.all(test_mask)
nb_classes = max(nb_classes, torch.max(y).item())
if has_train:
train_emb_np = z[~test_mask].cpu().numpy()
file_for_train_emb = os.path.join(train_data_dir, f"train_emb_{i}_{len(train_emb_np)}.npy")
np.save(file_for_train_emb, train_emb_np)
file_for_train_label = os.path.join(train_data_dir, f"train_lbl_{i}_{len(train_emb_np)}.npy")
np.save(file_for_train_label, y[~test_mask].cpu().numpy())
if has_test:
test_emb_np = z[test_mask].cpu().numpy()
file_for_test_emb = os.path.join(train_data_dir, f"test_emb_{i}_{len(test_emb_np)}.npy")
np.save(file_for_test_emb, test_emb_np)
file_for_test_label = os.path.join(train_data_dir, f"test_lbl_{i}_{len(test_emb_np)}.npy")
np.save(file_for_test_label, y[test_mask].cpu().numpy())
#z_train_agg.append(z[~test_mask].cpu())
#z_test_agg.append(z[test_mask].cpu())
# y_train_agg.append(y[~test_mask].cpu())
# y_test_agg.append(y[test_mask].cpu())
# curr_data.cpu()
# z_train = torch.cat(z_train_agg).numpy()
# z_test = torch.cat(z_test_agg).numpy()
# y_train = torch.cat(y_train_agg).numpy()
# y_test = torch.cat(y_test_agg).numpy()
nb_classes += 1 # It holds the highest index
return train_data_dir, nb_classes
def get_free_gpu():
gpu_stats = subprocess.check_output(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"])
gpu_df = pd.read_csv(StringIO(gpu_stats.decode()),
names=['memory.used', 'memory.free'],
skiprows=1)
print('GPU usage:\n{}'.format(gpu_df))
gpu_df['memory.free'] = gpu_df['memory.free'].map(lambda x: int(x.rstrip(' [MiB]')))
idx = gpu_df['memory.free'].idxmax()
print('The most free is GPU={} with {} free MiB'.format(idx, gpu_df.iloc[idx]['memory.free']))
return idx
def cfg2dict(cfg: DictConfig) -> Dict:
"""
Recursively convert OmegaConf to vanilla dict
"""
cfg_dict = {}
for k, v in cfg.items():
if type(v) == DictConfig:
cfg_dict[k] = cfg2dict(v)
else:
cfg_dict[k] = v
return cfg_dict
def cluster_data(data: torch_geometric.data.Data, num_clusters: int, save_dir: str):
os.makedirs(save_dir, exist_ok=True)
cluster_data = ClusterData(data, num_parts=num_clusters, recursive=False,
save_dir=save_dir)
loader = ClusterLoader(cluster_data,
batch_size=1,
shuffle=True,
num_workers=8)
data = [d for d in loader]
return data
@hydra.main(config_path="configs", config_name="default", version_base=None) # Config name will be given via command line
def main(root_config: DictConfig):
dataset_name = root_config.dataset
config = root_config[dataset_name] # Load the relevant part
assert config["eval_method"] in ("GRACE", "DGI")
method = root_config.method
exp_type = root_config.exp_type
if not root_config.multi_gpu:
torch.cuda.set_device(get_free_gpu())
if root_config.use_wandb:
wandb.init(project=root_config.wandb_project)
config_to_log = cfg2dict(config)
config_to_log["dataset"] = dataset_name
config_to_log["method"] = root_config.method
config_to_log["exp_type"] = root_config.exp_type
wandb.config.update(config_to_log)
print(OmegaConf.to_yaml(config))
torch.manual_seed(config['seed'])
random.seed(12345)
num_hidden = config['num_hidden']
num_proj_hidden = config['num_proj_hidden']
activation = ({'relu': F.relu, 'prelu': nn.PReLU()})[config['activation']]
base_model = ({'GCNConv': GCNConv,
'GATConv': GATConv})[config['base_model']]
num_layers = config['num_layers']
tau = config['tau']
# We load data twice, this is slow but the fix does not worth the time
data = get_dataset(dataset_name, config)
if exp_type == "supervised":
num_classes = torch.max(torch.stack([torch.max(d.y) for d in data])).item() + 1
model = SupervisedModel(in_channels=data[0].x.size(-1),
hidden_channels=num_hidden,
activation=activation,
nb_classes=num_classes,
base_model=base_model,
k=num_layers).cuda()
else:
if method == "recoverability":
model = EncoderRecoverability(data[0].x.size(-1), num_hidden, activation, base_model=base_model, k=num_layers, kernel_lmbda=float(config["kernel_lambda"]), max_edges_for_r=config["max_edges_for_r"])
else:
encoder = Encoder(data[0].x.size(-1), num_hidden, activation,
base_model=base_model, k=num_layers).cuda()
model = Model(encoder, num_hidden, num_proj_hidden, method, tau)
print("Starting training process")
dt_string = datetime.now().strftime("%d_%m_%Y_%H_%M_%S")
train_data_dir = os.path.join(f"outputs/{dataset_name}/{dt_string}")
os.makedirs(train_data_dir, exist_ok=True)
nb_classes = train_procedure(config, root_config, model, train_data_dir, data)
with open(os.path.join(train_data_dir, "classes.txt"), "w") as out_file:
out_file.write(str(nb_classes))
print("=== Final ===")
print(f"Wrote data to: {train_data_dir}")
if __name__ == '__main__':
main()