-
Notifications
You must be signed in to change notification settings - Fork 51
/
08-Organize.Rmd
executable file
·102 lines (67 loc) · 2.09 KB
/
08-Organize.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
title: "Organize with List Columns"
output: html_notebook
editor_options:
chunk_output_type: inline
---
<!-- This file by Charlotte Wickham is licensed under a Creative Commons Attribution 4.0 International License, adapted from the orignal work at https://github.com/rstudio/master-the-tidyverse by RStudio. -->
```{r setup}
library(tidyverse)
library(gapminder)
library(broom)
nz <- gapminder %>%
filter(country == "New Zealand")
us <- gapminder %>%
filter(country == "United States")
```
## Your turn 1
How has life expectancy changed over time?
Make a line plot of lifeExp vs. year grouped by country.
Set alpha to 0.2, to see the results better.
```{r}
gapminder
```
## Consider
How is a data frame/tibble similar to a list?
## Consider
If one of the elements of a list can be another list,
can one of the columns of a data frame be another list?
## Your turn 2
Run this chunk:
```{r}
gapminder_nested <- gapminder %>%
group_by(country) %>%
nest()
fit_model <- function(df) lm(lifeExp ~ year, data = df)
gapminder_nested <- gapminder_nested %>%
mutate(model = map(data, fit_model))
get_rsq <- function(mod) glance(mod)$r.squared
gapminder_nested <- gapminder_nested %>%
mutate(r.squared = map_dbl(model, get_rsq))
```
Then filter `gapminder_nested` to find the countries with r.squared less than 0.5.
```{r}
```
## Your Turn 3
Edit the code in the chunk provided to instead find and plot countries with a slope above 0.6 years/year.
```{r}
get_slope <- function(mod) {
tidy(mod) %>% filter(term == "year") %>% pull(estimate)
}
# Add new column with r-sqaured
gapminder_nested <- gapminder_nested %>%
mutate(r.squared = map_dbl(model, get_rsq))
# filter out low r-squared countries
poor_fit <- gapminder_nested %>%
filter(r.squared < 0.5)
# unnest and plot result
unnest(poor_fit, data) %>%
ggplot(aes(x = year, y = lifeExp)) +
geom_line(aes(color = country))
```
## Your Turn 4
**Challenge:**
1. Create your own copy of `gapminder_nested` and then add one more list column: `output` which contains the output of `augment()` for each model.
```{r}
```
# Take away