-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommentface_counting.py
152 lines (130 loc) · 6.55 KB
/
commentface_counting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import csv
import datetime as dt
import re
import urllib.request
from math import log
from pprint import pprint
import matplotlib.pyplot as plt
from pmaw import PushshiftAPI
def get_commentfaces():
# url is current as of 2021/11/22
css = urllib.request.urlopen("https://b.thumbs.redditmedia.com/S_eQedWbDdBP2LiQC52C6fleIuSC1sHBZtYlxYMYiew.css").read().decode('utf8')
faces = list(set(re.findall(r'"(#[\w-]+)"', css)).difference(('#s', '#wiki_')))
pprint(faces)
return faces
# seems like there's a cap on how big the query can be, so this divvies up the query string into acceptable size clumps.
def clump_string(itr, clump_size, sep="||"):
string = sep.join(itr)
clumps = []
while len(string) > clump_size:
index = clump_size
while string[index:index + len(sep)] != sep and index >= 0:
index -= 1
clumps.append(string[:index])
string = string[index + len(sep):]
clumps.append(string)
return clumps
def get_all_comments_using_commentfaces(api, start_epoch, faces):
comments = []
for clump in clump_string(faces, 3000): # seems like 3400 is the max atm, but gonna go with 3000 to be on the safe side
print(len(clump))
print(clump)
comments_clump = [comment for comment in api.search_comments(
after = start_epoch,
subreddit = 'anime',
filter = ['author', 'body', 'link_id', 'created_utc'],
filter_fn = lambda c: c['author'] != 'AutoModerator' and any((face in c['body'] for face in faces)),
q = clump
)]
comments.extend(comments_clump)
comments = [dict(deduped_comment) for deduped_comment in {tuple(comment.items()) for comment in comments}] # dicts are unhashable to can't do the easy `list(set(thing))` trick exactly: https://stackoverflow.com/a/9427216/645647
pprint(comments)
return comments
def get_commentators_by_commentface(faces, comments):
commentators = {face:dict() for face in faces}
for comment in comments:
for face in faces:
if face in comment['body']:
if comment['author'] not in commentators[face]:
commentators[face][comment['author']] = 0
commentators[face][comment['author']] += 1
pprint(commentators)
return commentators
def get_cdfs(api, start_epoch):
cdfs = [cdf['id'] for cdf in api.search_submissions(
after = start_epoch, # the assumption here is that even through automated means the likelihood of the thread being submitted on/before this time is highly nonexistent
subreddit = 'anime',
filter = ['title', 'id'],
q = 'Casual Discussion' # At some point there was a switch from Friday to Fridays
)]
print("cdfs", cdfs)
return cdfs
# todo: options to modify this to do things like check if participated in multiple cdfs, dumped more than one comment, and/or if a certain percentage of /r/anime comments are in cdf so as to better claim these commentators as being cdfers
def get_cdf_commentators(api, start_epoch, cdfs):
cdf_commentators = set()
for cdf in cdfs:
cdf_commentators_here = {a['author'] for a in api.search_comments(
after = start_epoch,
subreddit = 'anime',
filter = ['author'],
link_id = cdf
)}
pprint(len(cdf_commentators_here))
cdf_commentators = cdf_commentators.union(cdf_commentators_here) # todo: do the union outside the loop
pprint(cdf_commentators)
return cdf_commentators
def analysis_and_visualization(faces, commentators, cdf_commentators):
use = dict()
for face in faces:
total_users = len(commentators[face].keys())
users_not_in_cdf = len(set(commentators[face].keys()).difference(cdf_commentators))
total_usages = sum(commentators[face].values())
usages_not_in_cdf = sum([commentators[face][author] for author in set(commentators[face].keys()).difference(cdf_commentators)])
percentages = (round(users_not_in_cdf/total_users if total_users != 0 else 0, 5),
round(usages_not_in_cdf/total_usages if total_usages != 0 else 0, 5))
if percentages not in use:
use[percentages] = 0
use[percentages] += 1
print(face, '\ntotal users:', total_users, 'not from cdf:', users_not_in_cdf, '(', round(users_not_in_cdf/total_users, 5) if total_users != 0 else 'n/a', ')\n', 'total usages:', total_usages, 'usages not from cdfers:', usages_not_in_cdf, '(', round(usages_not_in_cdf/total_usages, 5) if total_usages != 0 else 'n/a', ')\n')
use_keys = use.keys()
fig = plt.figure()
ax = fig.add_subplot(111, projection='rectilinear')
pprint(use)
x = [k[0] for k in use_keys]
pprint(x)
y = [k[1] for k in use_keys]
pprint(y)
s = [use[k] for k in use_keys]
pprint(s)
ax.scatter(x, y, [20*2**(log(size)) for size in s], c='r', marker='o')
ax.set_xlabel('Percent of users not in CDF')
ax.set_ylabel('Percent of usages not by CDFers')
plt.savefig('allcdfs.png')
def commentators_by_commentfaces_csv(commentators, cdf_commentators, faces):
headers = ['User', 'CDFer'] + sorted(faces)
reverse_face_data = {}
for face in faces:
for commentator, count in commentators[face].items():
if commentator not in reverse_face_data:
reverse_face_data[commentator] = {f: 0 for f in faces}
reverse_face_data[commentator][face] = count
pprint(reverse_face_data)
data = [{'User': commentator, 'CDFer': commentator in cdf_commentators} | face_data for commentator, face_data in sorted(reverse_face_data.items())]
with open('all_commentators_by_commentface.csv', 'w', newline='') as f:
writer = csv.DictWriter(f, headers)
writer.writeheader()
writer.writerows(data)
def main():
faces = get_commentfaces()
api = PushshiftAPI()
# start_epoch = int(dt.datetime(year=2018, month=7, day=6, tzinfo=dt.timezone.utc).timestamp()) # all cdfs
start_epoch = int(dt.datetime(year=2022, month=1, day=7, tzinfo=dt.timezone.utc).timestamp()) # most recent cdf as of time of writing (2022/1/7)
print('epoch', start_epoch)
comments = get_all_comments_using_commentfaces(api, start_epoch, faces)
commentators = get_commentators_by_commentface(faces, comments)
cdfs = get_cdfs(api, start_epoch)
cdf_commentators = get_cdf_commentators(api, start_epoch, cdfs)
analysis_and_visualization(faces, commentators, cdf_commentators)
commentators_by_commentfaces_csv(commentators, cdf_commentators, faces)
if __name__ == "__main__":
main()