forked from neutrons/mandi_autoreduction_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce_MANDI_doWork.py
463 lines (422 loc) · 21.7 KB
/
reduce_MANDI_doWork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import matplotlib
matplotlib.use("agg")
import sys
import os
import glob
import subprocess
import re
from mantid.simpleapi import *
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
sys.path.append('/SNS/snfs1/instruments/MANDI/shared/autoreduce/')
import ReduceDictionary
def get_colorscale_minimum(arr):
x = arr[np.isfinite(arr)]
x = x[x > 0]
xc = x[np.argsort(x)][len(x) * 0.02] # ignore the bottom 2%
return xc
def makeInstrumentViewPlot(filename, outputdir):
# instrument view plot
event_ws = LoadEventNexus(filename)
wh = Integration(InputWorkspace=event_ws)
t = PreprocessDetectorsToMD(InputWorkspace=wh)
xyz = np.array(t.column(0)) # slow
l2 = np.array(t.column(1))
xyz = xyz * l2[:, np.newaxis]
y = xyz[:, 1]
th = np.degrees(-np.arctan2(xyz[:, 0], xyz[:, 2]))
intensity = wh.extractY()
nbanks = th.shape[0] / (256 * 256)
omega = wh.getRun()['omega'].getStatistics().mean
phi = wh.getRun()['phi'].getStatistics().mean
fig, ax = plt.subplots()
for i in range(int(nbanks)):
ax.pcolormesh(th[i * 256 * 256:(i + 1) * 256 * 256].reshape(256, 256),
y[i * 256 * 256:(i + 1) * 256 * 256].reshape(256, 256),
intensity[i * 256 * 256:(i + 1) * 256 * 256].reshape(256, 256),
vmin=0, vmax=intensity.max())
ax.text(-130, -.35, 'Omega = {0:.2f}, Phi = {1:.2f}'.format(omega, phi))
ax.set_xlabel('In-plane angle')
ax.set_ylabel('Vertical distance')
ax.set_title(wh.getTitle())
run_number = wh.getRunNumber()
img_filename = os.path.join(outputdir, 'MANDI_{0}_IV.png'.format(run_number))
fig.savefig(img_filename)
def publish_plots(run_number):
from postprocessing.publish_plot import publish_plot
plot_html_inst = '<div><img style="max-width:90%" src="/static/web_monitor/images/MANDI_{0}_IV.png" alt="Instrument view"></div>\n'.format(run_number) # noqa: E501
publish_plot("MANDI", run_number, files={'file': plot_html_inst})
def createMTZFile(d, out_dir, run_number):
a = float(d['unitcell_a'])
b = float(d['unitcell_b'])
c = float(d['unitcell_c'])
alpha = float(d['unitcell_alpha'])
beta = float(d['unitcell_beta'])
gamma = float(d['unitcell_gamma'])
first_run_number = int(d['first_run_number'])
spacegroup_number = int(d['spacegroup_number'])
mtz_name = d['mtz_name']
lauenorm_edge_pixels = int(d['lauenorm_edge_pixels'])
lauenorm_scale_peaks = float(d['lauenorm_scale_peaks'])
lauenorm_min_d = float(d['lauenorm_min_d'])
lauenorm_min_wl = float(d['lauenorm_min_wl'])
lauenorm_max_wl = float(d['lauenorm_max_wl'])
lauenorm_min_isi = float(d['lauenorm_min_isi'])
lauenorm_mini = float(d['lauenorm_mini'])
pbpDir = d['pbpDir']
laueLibDir = d['laueLibDir']
lauenormBin = d['lauenormBin']
tolerance = float(d['tolerance'])
force_lattice_parameters = bool(d['force_lattice_parameters'])
laue_directory = out_dir + 'laue/'
# Create the combined workspaces and a pandas dataframe that we can use to filter bad fits.
outputFilenameTemplate = out_dir + '%s_ws_%i_mandi_autoreduced.%s'
combinedFilenameTemplate = out_dir + '%s_combined.integrate'
runNumbersProcessed = []
dfList = []
for rn in range(first_run_number, run_number + 1):
print('createMTZ - starting run %i' % rn)
paramsFileName = outputFilenameTemplate % ('params', rn, 'nxs')
peaksFileName = outputFilenameTemplate % ('peaks', rn, 'integrate')
peaksPFFileName = outputFilenameTemplate % ('peaks_profileFitted', rn, 'integrate')
matFileName = outputFilenameTemplate % ('UB', rn, 'mat')
if (os.path.isfile(paramsFileName) and os.path.isfile(peaksFileName) and
os.path.isfile(peaksPFFileName) and os.path.isfile(matFileName)):
logger.information('Including run number {0:d}'.format(rn))
runNumbersProcessed.append(rn)
LoadIsawPeaks(Filename=peaksFileName, OutputWorkspace='peaks_ws')
LoadIsawPeaks(Filename=peaksPFFileName, OutputWorkspace='peaks_ws_profile')
Load(Filename=paramsFileName, OutputWorkspace='params_ws')
dfTWS = pd.DataFrame(mtd['peaks_ws'].toDict())
dfTParams = pd.DataFrame(mtd['params_ws'].toDict())
dfT = pd.merge(dfTWS, dfTParams, left_on='PeakNumber', right_on='peakNumber', how='outer')
dfT['theta'] = dfT['QLab'].apply(lambda x: np.arctan2(x[2], np.hypot(x[0], x[1])))
dfT['phi'] = dfT['QLab'].apply(lambda x: np.arctan2(x[1], x[0]))
dfList.append(dfT)
if len(runNumbersProcessed) == 1: # First peak we've added
SaveIsawPeaks(InputWorkspace='peaks_ws', Filename=combinedFilenameTemplate % ('peaks'), AppendFile=False)
SaveIsawPeaks(InputWorkspace='peaks_ws_profile', Filename=combinedFilenameTemplate % ('peaks_profileFitted'), AppendFile=False)
else: # Append the current workspaces
SaveIsawPeaks(InputWorkspace='peaks_ws', Filename=combinedFilenameTemplate % ('peaks'), AppendFile=True)
SaveIsawPeaks(InputWorkspace='peaks_ws_profile', Filename=combinedFilenameTemplate % ('peaks_profileFitted'), AppendFile=True)
print('createMTZ - finished run %i' % rn)
if (len(dfList) > 0):
df = pd.concat(dfList)
df = df.reset_index()
pwsSPH = LoadIsawPeaks(Filename=combinedFilenameTemplate % ('peaks'), OutputWorkspace='pwsSPH')
pwsPF = LoadIsawPeaks(Filename=combinedFilenameTemplate % ('peaks'), OutputWorkspace='pwsPF')
else:
logger.error('No runs to be added to create the mtz file! Exiting!')
sys.exit()
# Create graphs which can be displayed on monitor
gIDX = (df['chiSq'] < 50) & (df['chiSq3d'] < 10)
plt.figure(1, figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(df[gIDX]['Intens'], df[gIDX]['Intens3d'], '.', ms=2)
plt.plot([1, df[gIDX]['Intens'].max()], [1, df[gIDX]['Intens'].max()], alpha=0.8)
plt.xlabel('Spherical Integration Intensity')
plt.ylabel('Profile Fitted Intensity')
plt.title('Intensities')
plt.subplot(1, 2, 2)
plt.plot(df['Energy'], df['T0'], '.', ms=1.5, label='T0')
plt.legend(loc='best')
plt.xlabel('Energy (meV)')
plt.ylabel('T0 (us)')
plt.title('T0 vs Energy')
plt.savefig(out_dir + '{0:d}_fig1.png'.format(run_number))
# Now let's check out the I-C parameters
# We expect energy dependence but no angular dependence
gIDX = (df['chiSq'] < 50) & (df['chiSq3d'] < 10)
strongIDX = gIDX & (df['Intens'] > 200) & (df['Intens3d'] > 200)
plt.figure(2, figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(df[gIDX]['Energy'], df[gIDX]['Alpha'], '.', ms=1.5, label='Alpha', alpha=0.2)
plt.plot(df[gIDX]['Energy'], df[gIDX]['Beta'], '.', ms=1.5, label='Beta', alpha=0.2)
plt.plot(df[gIDX]['Energy'], df[gIDX]['R'], '.', ms=1.5, label='R', alpha=0.2)
plt.legend(loc='best')
plt.xlabel('Energy (meV)')
plt.ylabel('Value')
plt.title('All Peaks')
plt.subplot(1, 2, 2)
plt.plot(df[strongIDX]['Energy'], df[strongIDX]['Alpha'], '.', ms=1.5, label='Alpha', alpha=0.2)
plt.plot(df[strongIDX]['Energy'], df[strongIDX]['Beta'], '.', ms=1.5, label='Beta', alpha=0.2)
plt.plot(df[strongIDX]['Energy'], df[strongIDX]['R'], '.', ms=1.5, label='R', alpha=0.2)
plt.legend(loc='best')
plt.xlabel('Energy (meV)')
plt.ylabel('Value')
plt.title('Strong Peaks')
plt.savefig(out_dir + '{0:d}_fig2.png'.format(run_number))
plt.figure(3, figsize=(12, 4))
plt.clf()
plt.subplot(1, 2, 1)
plt.plot(df[gIDX]['theta'], df[gIDX]['SigX'], '.', ms=1, alpha=0.3)
plt.xlabel('Theta (along scattering direction) (rad)')
plt.ylabel('Sigma Scattering (rad)')
plt.title('All Peaks')
plt.subplot(1, 2, 2)
plt.plot(df[strongIDX]['theta'], df[strongIDX]['SigX'], '.', ms=1, alpha=0.3)
plt.xlabel('Theta (along scattering direction) (rad)')
plt.ylabel('Sigma Scattering (rad)')
plt.title('Strong Peaks')
plt.savefig(out_dir + '{0:d}_fig3.png'.format(run_number))
plt.figure(4, figsize=(12, 4))
plt.clf()
plt.subplot(1, 2, 1)
plt.plot(df[gIDX]['phi'], df[gIDX]['SigY'], '.', ms=1, alpha=0.2)
plt.xlabel('Phi_azimuthal (rad)')
plt.ylabel('Sigma azimuthal (rad)')
plt.title('All Peaks')
plt.subplot(1, 2, 2)
plt.plot(df[strongIDX]['phi'], df[strongIDX]['SigY'], '.', ms=1, alpha=0.2)
plt.xlabel('Phi_azimuthal (rad)')
plt.ylabel('Sigma azimuthal (rad)')
plt.title('Strong Peaks')
plt.savefig(out_dir + '{0:d}_fig4.png'.format(run_number))
# Reindex to make sure everything is in the same coordinate system
numPeaksIndexed = np.zeros_like(runNumbersProcessed)
for i, runNumber in enumerate(runNumbersProcessed):
UBFileName = outputFilenameTemplate % ('UB', runNumber, 'mat')
LoadIsawUB(InputWorkspace=pwsPF, Filename=UBFileName)
numIndexed = IndexPeaks(pwsPF, tolerance=tolerance)[0]
numPeaksIndexed[i] = numIndexed
gIDX = np.argmax(numPeaksIndexed)
LoadIsawUB(InputWorkspace=pwsPF, Filename=outputFilenameTemplate % ('UB', runNumbersProcessed[gIDX], 'mat'))
LoadIsawUB(InputWorkspace=pwsSPH, Filename=outputFilenameTemplate % ('UB', runNumbersProcessed[gIDX], 'mat'))
numIndexed = IndexPeaks(pwsPF, tolerance=tolerance)[0]
numIndexed = IndexPeaks(pwsSPH, tolerance=tolerance)[0]
print('There are {0:d} peaks total.'
' The UB matrix from run {1:d} will index '
'{2:d} of them ({3:4.2f} percent). '
'Using this file.'.format(pwsPF.getNumberPeaks(), runNumbersProcessed[gIDX],
numPeaksIndexed[gIDX],
100. * numPeaksIndexed[gIDX] / pwsPF.getNumberPeaks()))
# It is helpful to use force_lattice_parameters if the UB files being loaded are the Niggli cell.
if force_lattice_parameters:
print('Reindexing peaks in new coordinate system. This may take serveral minutes.')
FindUBUsingLatticeParameters(PeaksWorkspace=pwsPF, a=a, b=b, c=c,
alpha=alpha, beta=beta, gamma=gamma,
NumInitial=50, Tolerance=tolerance, Iterations=1000)
FindUBUsingLatticeParameters(PeaksWorkspace=pwsSPH, a=a, b=b, c=c,
alpha=alpha, beta=beta, gamma=gamma,
NumInitial=50, Tolerance=tolerance, Iterations=1000)
numIndexed = IndexPeaks(PeaksWorkspace=pwsPF)[0]
numIndexed = IndexPeaks(PeaksWorkspace=pwsSPH)[0]
lattice = pwsPF.sample().getOrientedLattice()
print('New lattice:')
print(lattice)
print('Indexes {0:d} of {1:d} peaks'.format(numIndexed, pwsPF.getNumberPeaks()))
df['h_reindexed'] = pwsPF.column('h')
df['k_reindexed'] = pwsPF.column('k')
df['l_reindexed'] = pwsPF.column('l')
# Write our mtz files
goodIDX = (df['chiSq'] < 50.0) & (df['chiSq3d'] < 10)
edgeIDX = (df['Row'] <= lauenorm_edge_pixels) | (df['Row'] >= 255 - lauenorm_edge_pixels) | (
df['Col'] <= lauenorm_edge_pixels) | (df['Col'] >= 255 - lauenorm_edge_pixels)
print('Rejecting {0} peaks for bad fits and {1} peaks for being on the edge'.format(np.sum(~goodIDX), np.sum(edgeIDX)))
goodIDX = goodIDX & ~edgeIDX
ws = CloneWorkspace(InputWorkspace=pwsPF, OutputWorkspace='ws')
ws2 = CloneWorkspace(InputWorkspace=pwsSPH, OutputWorkspace='ws2')
for i in range(len(df)):
if goodIDX[i]:
ws.getPeak(i).setIntensity(df.iloc[i]['Intens3d'])
ws.getPeak(i).setSigmaIntensity(df.iloc[i]['SigInt3d'])
else:
ws.getPeak(i).setIntensity(lauenorm_mini - 1.)
ws.getPeak(i).setSigmaIntensity(1.0)
ws2.getPeak(i).setIntensity(lauenorm_mini - 1.)
ws2.getPeak(i).setSigmaIntensity(1.0)
plt.figure()
plt.clf()
plt.plot(ws2.column('Intens'), ws.column('Intens'), '.', ms=1)
plt.xlabel('Spherical Intensity')
plt.ylabel('Profile Fitted Intensity')
plt.title('Intensities to be output for lauenorm')
plt.savefig(out_dir + '{}_fig5.png'.format(run_number))
oldLaueNormFiles = glob.glob(laue_directory + 'laueNorm*')
for fileName in oldLaueNormFiles:
os.remove(fileName)
SaveLauenorm(InputWorkspace=ws, Filename=laue_directory + 'laueNorm',
ScalePeaks=lauenorm_scale_peaks, MinDSpacing=lauenorm_min_d, MinWavelength=lauenorm_min_wl,
MaxWavelength=lauenorm_max_wl, SortFilesBy='RunNumber', MinIsigI=lauenorm_min_isi, MinIntensity=lauenorm_mini)
print('Wrote laueNorm input files to %s' % (laue_directory))
comFilename = laue_directory + 'lnorm.com'
datFilename = laue_directory + 'lnorm.dat'
datFilenameMerged = laue_directory + 'lnorm_merged.dat'
numRuns = len(np.unique(ws.column('RunNumber')))
lattice = pwsPF.sample().getOrientedLattice()
# unmerged .dat file
with open(datFilename, 'w') as f:
f.write('5s70aMaNDi3\n')
f.write('%2.2f %2.2f %2.2f %i %i %i\n' % (lattice.a(), lattice.b(), lattice.c(),
np.round(lattice.alpha()), np.round(lattice.beta()), np.round(lattice.gamma())))
f.write('NORMALISE %i\n' % numRuns)
f.write('UNITY\n')
f.write('SYMM 0.1\n')
f.write('%i 1 8 8 1 4 1\n' % spacegroup_number)
f.write('1 1 1 %4.1f 0 0 0 2\n' % lauenorm_min_isi)
f.write('%1.1f %1.1f 10 6 3\n' % (lauenorm_min_wl, lauenorm_max_wl))
f.write('3\n')
f.write('0 25.0 0 0 0')
print('Wrote unmerged lauenorm configuration to %s' % datFilename)
# merged .dat file
with open(datFilenameMerged, 'w') as f:
f.write('5s70aMaNDi3\n')
f.write('%2.2f %2.2f %2.2f %i %i %i\n' % (lattice.a(), lattice.b(), lattice.c(),
np.round(lattice.alpha()), np.round(lattice.beta()), np.round(lattice.gamma())))
f.write('NORMALISE %i\n' % numRuns)
f.write('UNITY\n')
f.write('SYMM 0.1\n')
f.write('%i 1 8 8 1 4 1\n' % spacegroup_number)
f.write('1 1 1 %4.1f 0 0 0 2\n' % lauenorm_min_isi)
f.write('%1.1f %1.1f 10 6 3\n' % (lauenorm_min_wl, lauenorm_max_wl))
f.write('1\n')
f.write('0 25.0 0 0 0')
print('Wrote merged lauenorm configuration to %s' % datFilenameMerged)
# executable
with open(comFilename, 'w') as f:
f.write('#!/bin/sh\n')
f.write('source /SNS/snfs1/instruments/MANDI/shared/laue3/laue/laue.setup-sh\n')
f.write('cwd=$(pwd)\n')
for runNum in range(numRuns):
f.write('LAUE%03i=$cwd/laueNorm%03i\n' % (runNum + 1, runNum + 1))
f.write('\n\n')
f.write('HKLOUT=$cwd/%s_unmerged.mtz\n' % mtz_name)
f.write('HKLMULT=%shklmult_image.out\n' % pbpDir)
f.write('MULTDIAG=%smultidiags.out\n' % pbpDir)
f.write('PGDATA=%spglib.dat\n' % laueLibDir)
f.write('SYMOP=%ssymop.lib\n' % laueLibDir)
f.write('SYMINFO=%ssyminfo.lib\n' % laueLibDir)
for runNum in range(numRuns):
f.write('export LAUE%03i\n' % (runNum + 1))
f.write('\n')
f.write('export HKLOUT\n')
f.write('export HKLMULT\n')
f.write('export MULTDIAG\n')
f.write('export PGDATA\n')
f.write('export SYMOP\n')
f.write('export SYMINFO\n')
f.write('time %s < %slnorm.dat > %slnorms70aMaNDi.log\n' % (lauenormBin, laue_directory, laue_directory))
f.write('HKLOUT=$cwd/%s_merged.mtz\n' % mtz_name)
f.write('export HKLOUT\n')
f.write('time %s < %slnorm_merged.dat > %slnorms70aMaNDi_merged.log\n' % (lauenormBin, laue_directory, laue_directory))
os.chmod(comFilename, 0775)
print('Wrote lauenorm executable to %s' % comFilename)
print('Running laueNorm...')
mtd.clear()
subprocess.Popen(comFilename, cwd=os.path.dirname(os.path.realpath(comFilename)))
def doIntegration(d, nxsFilename, out_dir, run_number):
rA = d['peak_radius']
rB = d['bkg_inner_radius']
rC = d['bkg_outer_radius']
min_d = d['min_d']
max_d = d['max_d']
tolerance = d['tolerance']
moderatorFile = d['moderator_file']
predictPeaks = d['integrate_predicted_peaks']
min_pred_dspacing = d['min_pred_dspacing']
max_pred_dspacing = d['max_pred_dspacing']
min_pred_wl = d['min_pred_wl']
max_pred_wl = d['max_pred_wl']
StrongPeaksParamsFile = d['strong_peaks_params_file']
IntensityCutoff = d['intensity_cutoff']
EdgeCutoff = d['edge_cutoff']
FracStop = d['frac_stop']
MinpplFrac = d['min_ppl_frac']
MaxpplFrac = d['max_ppl_frac']
DQMax = d['dq_max']
a = d['unitcell_a']
b = d['unitcell_b']
c = d['unitcell_c']
alpha = d['unitcell_alpha']
beta = d['unitcell_beta']
gamma = d['unitcell_gamma']
num_peaks_to_find = d['num_peaks_to_find']
DetCalFile = d['calibration_file_1']
outputFilenameTemplate = out_dir + '%s_ws_%i_mandi_autoreduced.%s' # String with output file format. %s will be replaced by file
try:
event_ws = Load(Filename=nxsFilename, OutputWorkspace='event_ws')
if DetCalFile is not None:
print('Loading DetCal file %s' % DetCalFile)
LoadIsawDetCal(InputWorkspace=event_ws, Filename=DetCalFile)
ConvertToMD(InputWorkspace='event_ws', QDimensions='Q3D', dEAnalysisMode='Elastic',
Q3DFrames='Q_lab', OutputWorkspace='MDdata', MinValues='-5,-5,-5',
MaxValues='5,5,5', MaxRecursionDepth=10)
peaks_ws = FindPeaksMD(InputWorkspace='MDdata', MaxPeaks=num_peaks_to_find, DensityThresholdFactor=500, OutputWorkspace='peaks_ws')
try:
FindUBUsingFFT(PeaksWorkspace='peaks_ws', MinD=min_d, MaxD=max_d, Tolerance=tolerance, Iterations=10, DegreesPerStep=1.0)
except:
FindUBUsingLatticeParameters(PeaksWorkspace='peaks_ws', a=a, b=b, c=c, alpha=alpha, beta=beta,
gamma=gamma, NumInitial=50, Tolerance=tolerance, Iterations=1000)
IndexPeaks(PeaksWorkspace='peaks_ws')
mtd.remove('event_ws') # Free up memory
if predictPeaks:
print("PREDICTING peaks to integrate....")
peaks_ws = PredictPeaks(InputWorkspace=peaks_ws,
WavelengthMin=min_pred_wl, WavelengthMax=max_pred_wl,
MinDSpacing=min_pred_dspacing, MaxDSpacing=max_pred_dspacing,
ReflectionCondition='Primitive')
if np.max([a, b, c] > 150):
SetInstrumentParameter(Workspace='peaks_ws', ParameterName='fracHKL', ParameterType='Number', Value='0.4')
IntegratePeaksMD(InputWorkspace='MDdata', PeakRadius=rA, BackgroundInnerRadius=rB, BackgroundOuterRadius=rC,
PeaksWorkspace='peaks_ws', OutputWorkspace='peaks_ws', CylinderLength=0.4, PercentBackground=20,
ProfileFunction='IkedaCarpenterPV')
IntegratePeaksProfileFitting(OutputPeaksWorkspace='peaks_ws_out', OutputParamsWorkspace='params_ws', InputWorkspace='MDdata',
PeaksWorkspace='peaks_ws', ModeratorCoefficientsFile=moderatorFile, DQMax=DQMax,
MinpplFrac=MinpplFrac, MaxpplFrac=MaxpplFrac, FracStop=FracStop, EdgeCutoff=EdgeCutoff,
IntensityCutoff=IntensityCutoff, StrongPeakParamsFile=StrongPeaksParamsFile)
paramsFileName = outputFilenameTemplate % ('params', run_number, 'nxs')
peaksFileName = outputFilenameTemplate % ('peaks', run_number, 'integrate')
peaksPFFileName = outputFilenameTemplate % ('peaks_profileFitted', run_number, 'integrate')
matFileName = outputFilenameTemplate % ('UB', run_number, 'mat')
if os.path.isfile(paramsFileName):
os.remove(paramsFileName)
if os.path.isfile(peaksFileName):
os.remove(peaksFileName)
if os.path.isfile(peaksPFFileName):
os.remove(peaksPFFileName)
if os.path.isfile(peaksPFFileName):
os.remove(matFileName)
SaveNexus(InputWorkspace='params_ws', Filename=paramsFileName)
SaveIsawPeaks(InputWorkspace='peaks_ws', Filename=peaksFileName)
SaveIsawPeaks(InputWorkspace='peaks_ws_out', Filename=peaksPFFileName)
SaveIsawUB(InputWorkspace='peaks_ws', Filename=matFileName)
mtd.clear()
except:
raise
# raise UserWarning('ERROR WITH RUN %i'%run_number)
def do_reduction(filename, outputdir):
# Do profile fitting
run_number = int(re.search('MANDI_(\d+).nxs.h5', filename).group(1))
config_filename = outputdir + 'mandi_autoreduce.config'
config_file_list = glob.glob(config_filename)
if len(config_file_list) == 1:
d = ReduceDictionary.LoadDictionary(config_filename)
doIntegration(d, filename, outputdir, run_number)
mtd.clear() # Free some memory
# Create the mtz
print('Moving on to createMTZFile')
createMTZFile(d, outdir, run_number)
mtd.clear() # Free some memory
# Generate the instrument plot
makeInstrumentViewPlot(filename, outdir)
mtd.clear()
try:
publish_plots(run_number)
except:
print('Cannot publish plots. Maybe this was not run using autoreduction?')
else:
raise UserWarning("Config file {0} does not exist. Cannot do profile fitting.".format(config_filename))
if __name__ == "__main__":
np.seterr("ignore") # ignore division by 0 warning in plots
# check number of arguments
if (len(sys.argv) != 3):
logger.error("autoreduction code requires a filename and an output directory")
sys.exit()
if not(os.path.isfile(sys.argv[1])):
logger.error("data file " + sys.argv[1] + " not found")
sys.exit()
else:
filename = sys.argv[1]
outdir = sys.argv[2]
do_reduction(filename, outdir)