forked from kappazeta/km_predict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkm_predict.py
437 lines (377 loc) · 18.4 KB
/
km_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# vim: set tabstop=8 softtabstop=0 expandtab shiftwidth=4 smarttab
# KappaMask predictor.
#
# Copyright 2021 - 2022 KappaZeta Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import argparse
from util import log as ulog
from architectures import ARCH_MAP
from data_generator import DataGenerator
from util.normalization import set_normalization
from util.save_prediction_masks import save_masks_contrast
import os
import numpy as np
from util.raster_mosaic import get_img_entry_id, image_grid_overlap
from util.rasterio_dep import proj_rasterio
import pathlib
from PIL import Image, ImageOps, ImageFile
from PIL.PngImagePlugin import PngInfo
import subprocess
import rasterio
from version import __version__, min_cm_vsm_version
from pkg_resources import parse_version
import math
import tensorflow as tf
import urllib.request
class KMPredict(ulog.Loggable):
def __init__(self, log_abbrev="KMP.P"):
super().__init__(log_abbrev)
self.cfg = {
"data_dir": ".SAFE",
"product": "L2A",
"overlapping": 0.0625,
"tile_size": 512,
"batch_size": 1,
"model_weights_source": "http://kappamask.s3-website.eu-central-1.amazonaws.com/model_weights/2022-06-16"
}
self.cm_vsm_executable = "cm_vsm"
self.cm_vsm_env = None
self.product_name = ""
self.data_folder = "data"
self.weights_folder = "weights"
self.predict_folder = "prediction"
self.big_image_folder = "prediction"
self.weights = ""
self.product = "L2A"
self.overlapping = 0.0625
self.tile_size = 512
self.resampling_method = "sinc"
self.features = ["AOT", "B01", "B02", "B03", "B04", "B05", "B06", "B08", "B8A", "B09", "B11", "B12", "WVP"]
self.classes = [
"UNDEFINED", "CLEAR", "CLOUD_SHADOW", "SEMI_TRANSPARENT_CLOUD", "CLOUD", "MISSING"
]
self.batch_size = 1
self.product_safe = ""
self.product_cvat = ""
self.weights_path = ""
self.prediction_product_path = ""
self.architecture = "Unet"
self.params = {'path_input': self.product_cvat,
'batch_size': self.batch_size,
'features': self.features,
'dim': self.tile_size,
'num_classes': len(self.classes)
}
self.cm_vsm_version = "-"
self.model = None
self.aoi_geom = None
self.model_weights_source = "http://kappamask.s3-website.eu-central-1.amazonaws.com/model_weights/2022-06-16"
def create_folders(self):
"""
Create data and weights folders if they do not exist
"""
if not os.path.exists(self.data_folder):
os.mkdir(self.data_folder)
if not os.path.exists(self.weights_folder):
os.mkdir(self.weights_folder)
if not os.path.exists(self.predict_folder):
os.mkdir(self.predict_folder)
if not os.path.exists(self.big_image_folder):
os.mkdir(self.big_image_folder)
if not os.path.exists(self.prediction_product_path):
os.mkdir(self.prediction_product_path)
def config_from_dict(self, d, product_name):
"""
Load configuration from a dictionary.
:param d: Dictionary with the configuration tree.
:param product_name: Sentinel-2 product name.
"""
if "cm_vsm_executable" in d:
self.cm_vsm_executable = d["cm_vsm_executable"]
elif "cm_vsm" in d:
if "path" in d["cm_vsm"]:
self.cm_vsm_executable = d["cm_vsm"]["path"]
if "env" in d["cm_vsm"]:
self.cm_vsm_env = d["cm_vsm"]["env"]
if product_name:
self.product_name = product_name
else:
self.product_name = d["product_name"]
self.weights = '%s_%s.hdf5' % (d["level_product"].lower(), d["architecture"].lower())
if d["level_product"] == "L2A":
if d["architecture"] == "DeepLab":
self.features = ["AOT", "B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B09", "B11","B12", "WVP"]
elif d["architecture"] == "Unet":
self.features = ["AOT", "B01", "B02", "B03", "B04", "B05", "B06", "B08", "B8A", "B09", "B11","B12", "WVP"]
elif d["level_product"] == "L1C":
self.features = ["B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B09", "B10", "B11", "B12"]
self.product = d["level_product"]
self.overlapping = d["overlapping"]
self.tile_size = d["tile_size"]
self.resampling_method = d["resampling_method"]
self.batch_size = d["batch_size"]
self.architecture = d["architecture"]
self.data_folder = d["folder_name"]
self.product_safe = os.path.join(self.data_folder, str(self.product_name + ".SAFE"))
self.weights_path = os.path.join(self.weights_folder, self.weights)
self.prediction_product_path = os.path.join(self.predict_folder, self.product_name)
self.product_cvat = os.path.join(self.data_folder, (self.product_name + ".CVAT"))
if "aoi_geometry" in d:
self.aoi_geom = d["aoi_geometry"]
if "model_weights_source" in d:
self.model_weights_source = d["model_weights_source"]
def load_config(self, path, product_name):
with open(path, "rt") as fi:
self.cfg = json.load(fi)
self.config_from_dict(self.cfg, product_name)
self.create_folders()
overlap_pix = self.overlapping * self.tile_size
if (overlap_pix % 2) != 0:
raise Exception('Even number of pixels needed')
def get_model_by_name(self, name):
if self.architecture in ARCH_MAP:
self.model = ARCH_MAP[name]()
return self.model
else:
raise ValueError(("Unsupported architecture \"{}\"."
" Only the following architectures are supported: {}.").format(name, ARCH_MAP.keys()))
def get_cm_vsm_version(self):
"""
Get the version of the cm-vsm utility.
"""
q = [self.cm_vsm_executable, "--version"]
with subprocess.Popen(q, stdout=subprocess.PIPE, env=self.cm_vsm_env) as cm_vsm_process:
for line in cm_vsm_process.stdout:
cm_vsm_output = line.decode("utf-8").rstrip("\n")
if "Version:" in cm_vsm_output:
self.cm_vsm_version = cm_vsm_output.split(":")[1]
return self.cm_vsm_version
def get_model_weights(self):
if not os.path.exists(self.weights_path):
self.log.info("Downloading model weights {} ...".format(self.weights))
url = os.path.join(self.model_weights_source, self.weights)
site = urllib.request.urlopen(url)
urllib.request.urlretrieve(url, self.weights_path)
def sub_tile(self, path_out, aoi_geom):
"""
Execute cm-vsm sub-tiling process
"""
if aoi_geom is not None:
self.aoi_geom = aoi_geom
cm_vsm_query = [
self.cm_vsm_executable,
"-j", "-1",
"-d", os.path.abspath(self.product_safe),
"-b", ",".join(self.features),
"-S", str(self.tile_size),
"-f", "0",
"-m", self.resampling_method,
"-o", str(self.overlapping)
]
if path_out and len(path_out) > 0:
cm_vsm_query += ["-O", path_out]
self.product_cvat = path_out
# Area of interest geometry supplied?
if self.aoi_geom is not None:
cm_vsm_query += ["-g", self.aoi_geom]
self.log.info("Splitting with CM-VSM: {}".format(cm_vsm_query))
with subprocess.Popen(cm_vsm_query, stdout=subprocess.PIPE, env=self.cm_vsm_env) as cm_vsm_process:
for line in cm_vsm_process.stdout:
cm_vsm_output = line.decode("utf-8").rstrip("\n")
self.log.info(cm_vsm_output)
self.log.info("Sub-tiling has been done!")
def predict(self, force_predict = False):
"""
Run prediction for every sub-folder
"""
# Initialize model
self.get_model_by_name(self.architecture)
# Propagate configuration parameters.
self.model.set_batch_size(self.batch_size)
# Construct and compile the model.
self.model.construct(self.tile_size, self.tile_size, len(self.features), len(self.classes))
self.model.compile()
# Load model weights.
self.model.load_weights(self.weights_path)
# Go through all folders
date_match = self.product_name.rsplit('_', 1)[-1]
index_match = self.product_name.rsplit('_', 1)[0].rsplit('_', 1)[-1]
tile_paths = []
# Look for .nc file, as the name is not specified
for subfolder in os.listdir(self.product_cvat):
subfolder_path = os.path.join(self.product_cvat, subfolder)
if os.path.isdir(subfolder_path):
for file in os.listdir(subfolder_path):
if file.endswith(".nc"):
tile_paths.append(os.path.join(subfolder_path, file))
# Initialize data generator
self.params = {'path_input': self.product_cvat,
'architecture': self.architecture,
'batch_size': self.batch_size,
'features': self.features,
'tile_size': self.tile_size,
'num_classes': len(self.classes),
'product_level': self.product,
'shuffle': False
}
#Check if prediction already exists
tile_paths_unseen = []
for tp in tile_paths:
path_image = tp.split('/')[-2:-1][0]
prediction_path = os.path.join(self.prediction_product_path, path_image, 'prediction.png')
# If True, run prediction on all tiles, else only on those for which prediction.png does not exist
if force_predict:
tile_paths_unseen.append(tp)
else:
if not os.path.exists(prediction_path):
tile_paths_unseen.append(tp)
# Predict in batches
for j in range(0, len(tile_paths_unseen), self.batch_size):
tile_paths_subset = tile_paths_unseen[j:(j + self.batch_size)]
self.params['batch_size'] = len(tile_paths_subset)
predict_generator = DataGenerator(tile_paths_subset, **self.params)
# Run prediction
predictions = self.model.predict(predict_generator)
y_pred = np.argmax(predictions, axis=3)
for i, prediction in enumerate(predictions):
save_masks_contrast(tile_paths_subset[i], prediction, y_pred[i], self.prediction_product_path, self.classes)
return
def mosaic(self):
"""
Make a mosaic output from obtained predictions with an overlapping argument
"""
# Create /prediction/<product_name> directory
big_image_product = os.path.join(self.big_image_folder, self.product_name)
if not os.path.exists(big_image_product):
os.mkdir(big_image_product)
# Create list of prediction images
image_list = []
for subfolder in os.listdir(self.prediction_product_path):
if os.path.isdir(os.path.join(self.prediction_product_path, subfolder)):
image_list.append(pathlib.Path(os.path.join(self.prediction_product_path, subfolder, "prediction.png")))
# Sort images by asc (e.g. 0_0, 0_1, 0_2)
image_list.sort(key=lambda var: get_img_entry_id(var))
"""
A function that creates raster mosaic.
As parameters it takes: list of images, number of tiles per row and number of columns
1) Takes the sub-tile width and height from the first image in the list
2) Sets final image size from col*width, rows*height
3) Creates final image from all sub-tiles, bounding box parameters are also set
"""
overlap_pix = self.overlapping * self.tile_size
crop_coef = int(overlap_pix / 2)
n_rows = math.ceil(10980 / (self.tile_size - crop_coef))
new_im = image_grid_overlap(image_list, rows=n_rows, cols=n_rows, crop=crop_coef)
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = None
# For a correct georeference it is necessary to use 10m resolution band
jp2 = ''
if self.product == "L2A":
for root, dirs, files in os.walk(self.product_safe):
if root.endswith("R10m"):
for file in files:
if file.endswith(".jp2"):
jp2 = os.path.join(root, file)
elif self.product == "L1C":
for root, dirs, files in os.walk(self.product_safe):
if root.endswith("IMG_DATA"):
for file in files:
if file.endswith("B02.jp2"):
jp2 = os.path.join(root, file)
# Define a directory where to save a new file, resolution, etc.
# Get name and index from product name
date_name = self.product_name.rsplit('_', 4)[0].rsplit('_', 1)[1]
index_name = self.product_name.rsplit('_', 1)[0].rsplit('_', 1)[-1]
# Define the output names
png_name = os.path.join(big_image_product, self.product + "_" + index_name + "_" + date_name + '_KZ_10m.png')
tif_name = os.path.join(big_image_product, self.product + "_" + index_name + "_" + date_name + '_KZ_10m.tif')
# Crop the edges in the final image
f_tile_size = (self.tile_size - crop_coef * 2) * n_rows
crop = f_tile_size - 10980
new_im_cropped = ImageOps.crop(new_im, (0, 0, crop, crop))
# Fill metadata for PNG format
metadata = PngInfo()
metadata.add_text("Software", "KM_PREDICT {}; CM_VSM {}".format(__version__, str(self.cm_vsm_version).strip()))
# Save with a recommended quality and metadata for png, tif is done further down
new_im_cropped.save(png_name, "PNG", quality=95, pnginfo=metadata)
new_im_cropped.save(tif_name, "TIFF", quality=95)
# Deal with tiff-related issues: projection, bands, tags
proj_rasterio(jp2, tif_name)
'''
Assign 0-255 to 0-5 output
Save final single band raster
'''
# Read band 1 (out of 3, they're identical)
with rasterio.open(tif_name) as tif:
profile = tif.profile.copy()
band1 = tif.read(1)
# Translate values
band1[band1 == 0] = 0
band1[band1 == 66] = 1
band1[band1 == 129] = 2
band1[band1 == 192] = 3
band1[band1 == 255] = 4
band1[band1 == 20] = 5
profile.update({"count": 1})
with rasterio.open(tif_name, 'w', **profile) as dst:
dst.write(band1, 1)
# Add a version tag for tiff image
tif_img = Image.open(tif_name)
tif_img.tag[305] = "KM_PREDICT {}; CM_VSM {}".format(__version__, str(self.cm_vsm_version).strip())
tif_img.save(tif_name, tiffinfo=tif_img.tag)
def main():
p = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
p.add_argument("-c", "--config", action="store", dest="path_config", help="Path to the configuration file.")
p.add_argument("-product", "--product", action="store", dest="product_name",
help="Optional argument to override product name in config.")
p.add_argument("-t", "--no-tiling", action="store_true", dest="no_sub_tiling", default=False,
help="Disable sub-tiling (the tile output directory has already been created).")
p.add_argument("-cpu", "--use-cpu", action="store_true", dest="use_cpu", default=False,
help="Use CPU.")
p.add_argument("-f", "--force-predict", action="store_true", dest="force_predict", default=False, help="Force prediction on the tiles for which prediction.png already exists.")
p.add_argument("-v", "--verbosity", action="store", dest="verbosity", default=1,
help="Verbosity level for logging: 0-WARNING, 1-INFO, 2-DEBUG. Default is 1.")
p.add_argument("-l", "--log-file", action="store", dest="log_file_path",
default=os.path.join(pathlib.Path(__file__).parent.absolute(), 'km_predict.log'),
help="Optional argument to specify a location for .log file.")
p.add_argument("-O", "--tiling-output", action="store", dest="path_out_tiling",
help="Override the path to the tiling output directory.")
p.add_argument("-g", "--geom", action="store", dest="aoi_geom",
help="Area of interest geometry as an EWKT string, for subtiling. For example: \"SRID=4326;Polygon "
"((22.64992375534184887 50.27513740160615185, 23.60228115218003708 50.35482161490517683, "
"23.54514084707420452 49.94024031630130622, 23.3153953947536472 50.21771699530808775, "
"22.64992375534184887 50.27513740160615185))\"")
args = p.parse_args()
log = ulog.init_logging(int(args.verbosity), "km_predict", "KMP", args.log_file_path)
if args.use_cpu:
tf.config.set_visible_devices([], 'GPU')
if args.path_config is None:
p.print_help()
log.error("Expecting the path to a configuration file")
else:
kmf = KMPredict()
kmf.load_config(args.path_config, args.product_name)
cm_vsm_version = kmf.get_cm_vsm_version()
# Ensure that we have a compatible version of cm-vsm.
if parse_version(cm_vsm_version) < parse_version(min_cm_vsm_version):
log.error("Please update cm-vsm to " + min_cm_vsm_version + " or later")
else:
kmf.get_model_weights()
if not args.no_sub_tiling:
kmf.sub_tile(args.path_out_tiling, args.aoi_geom)
kmf.predict(force_predict = args.force_predict)
kmf.mosaic()
if __name__ == "__main__":
main()