forked from zylo117/Yet-Another-EfficientDet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pose_MSA.py
506 lines (430 loc) · 23.3 KB
/
train_pose_MSA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import argparse, time, os, sys, traceback
import datetime
from tqdm.autonotebook import tqdm
import numpy as np
import torch
import torch.nn as nn
#from tensorflow.keras.optimizers import Adam
from torch.utils.tensorboard import SummaryWriter #type:ignore
from backbone import EfficientPoseBackbone, EfficientPoseBackbone_MSA, EfficientPoseBackbone_MSA_mixed, EfficientPoseBackbone_WMSA
from torch.nn import SmoothL1Loss
from efficientdet.loss import FocalLoss
from loss_6DoF import transformation_loss #smooth_l1,
from utils.sync_batchnorm import patch_replication_callback
from utils.utils import CustomDataParallel, replace_w_sync_bn
def parse_args(args):
"""
Parse the arguments.
"""
date_and_time = time.strftime("%d_%m_%Y_%H_%M_%S")
parser = argparse.ArgumentParser(description = 'Simple EfficientPose training script.')
#subparsers = parser.add_subparsers(help = 'Arguments for specific dataset types.', dest = 'dataset_type')
#subparsers.required = True
parser.add_argument('--dataset_type',
default = 'linemod',
help = 'Arguments for specific dataset types.')
# linemod_parser = subparsers.add_parser('linemod')
# linemod_parser.add_argument('linemod_path',
# default='../datasets/Linemod_preprocessed',
# help = 'Path to dataset dir (ie. /Datasets/Linemod_preprocessed).')
# linemod_parser.add_argument('--object-id',
# type = int, default = 8,
# help = 'ID of the Linemod Object to train on')
parser.add_argument('--linemod_path',
default='../datasets/Linemod_preprocessed',
help = 'Path to dataset dir (ie. /Datasets/Linemod_preprocessed).')
parser.add_argument('--object-id',
type = int, default = 8,
help = 'ID of the Linemod Object to train on')
# occlusion_parser = subparsers.add_parser('occlusion')
# occlusion_parser.add_argument('occlusion_path',
# default='../datasets/Linemod_preprocessed',
# help = 'Path to dataset dir (ie. /Datasets/Linemod_preprocessed).')
parser.add_argument('--weights',
#default= 'imagenet',
default='./weights/trained_MSA/efficientpose-d0_linemod_obj8_one_best_train.pth',
help = 'File containing weights to init the model parameter')
parser.add_argument('--save_path',
help = 'path where to save the predicted validation images after each epoch',
default = './weights/trained_MSA')
parser.add_argument('--es_patience',
help='patience for early stopping',
default=25, type=int)
parser.add_argument('--save_interval',
help='interval for saving model',
default=1000, type=int)
parser.add_argument('--val_interval',
help='interval for validation',
default = 10, type=int)
parser.add_argument('--freeze_backbone',
help = 'Freeze training of backbone layers.',
action = 'store_true')
parser.add_argument('--no_freeze_bn',
help = 'Do not freeze training of BatchNormalization layers.',
action = 'store_true')
parser.add_argument('--batch_size',
help = 'Size of the batches.',
default = 2, type = int)
parser.add_argument('--lr',
help = 'Learning rate',
default = 1e-3, type = float)
parser.add_argument('--no_color_augmentation',
help = 'Do not use colorspace augmentation',
action = 'store_true', default = False)
parser.add_argument('--no_6dof_augmentation',
help = 'Do not use 6DoF augmentation',
action = 'store_true', default = False)
parser.add_argument('--rotation_representation',
default = 'axis_angle',
help = 'Which representation of the rotation should be used. Choose from "axis_angle", "rotation_matrix" and "quaternion"')
parser.add_argument('--phi',
help = 'Hyper parameter phi',
default = 0, type = int,
choices = (0, 1, 2, 3, 4, 5, 6))
parser.add_argument('--gpu',
help = 'Id of the GPU to use (as reported by nvidia-smi).',
default = [0,])
parser.add_argument('--num_workers',
help = 'Number of workers used in dataloading',
default = 0, type = int)
parser.add_argument('--epochs',
help = 'Number of epochs to train.',
default = 500, type = int)
# parser.add_argument('--steps',
# help = 'Number of steps per epoch.',
# type = int, default = int(179 * 10))
parser.add_argument('--snapshot_path',
help = 'Path to store snapshots of models during training',
default = os.path.join("checkpoints", date_and_time))
parser.add_argument('--log_path',
help = 'Log directory for Tensorboard output',
default = os.path.join("logs", date_and_time))
parser.add_argument('--no_snapshots',
help = 'Disable saving snapshots.',
dest = 'snapshots',
action = 'store_false')
# parser.add_argument('--no-evaluation',
# help = 'Disable per epoch evaluation.',
# dest = 'evaluation', action = 'store_false')
parser.add_argument('--compute_val_loss',
help = 'Compute validation loss during training',
dest = 'compute_val_loss', action = 'store_true',
default=True)
parser.add_argument('--score_threshold',
help = 'score threshold for non max suppresion',
type = float, default = 0.5)
# # Fit generator arguments
# parser.add_argument('--multiprocessing',
# help = 'Use multiprocessing in fit_generator.',
# action = 'store_true')
# parser.add_argument('--workers',
# help = 'Number of generator workers.',
# type = int, default = 4)
# parser.add_argument('--max-queue-size',
# help = 'Queue length for multiprocessing workers in fit_generator.',
# type = int, default = 10)
print(vars(parser.parse_args(args)))
return parser.parse_args(args)
class ModelWithLoss(nn.Module):
def __init__(self, model, param_generator, debug=False, num_gpus=0):
super().__init__()
self.criterion_focal = FocalLoss(alpha = 0.25, gamma = 2.0)
self.criterion_l1 = SmoothL1Loss(beta=3.0)
self.criterion_transformation = transformation_loss(
model_3d_points_np= param_generator.get_all_3d_model_points_array_for_loss(),
num_rotation_parameter = param_generator.get_num_rotation_parameters(),
num_gpus = num_gpus)
self.model = model
self.debug = debug
def forward(self, inputs, annotations, obj_list=None):
features, regression, classification, translation, rotation, anchors = self.model(inputs)
from loss_6DoF import gather_nd_simple
if self.debug:
cls_loss = self.criterion_focal(classification,
annotations[0],
imgs=inputs[0],
obj_list=obj_list)
smooth_l1_loss = self.criterion_l1(regression,
annotations[1])
transformation_loss = self.criterion_transformation(rotation,
translation,
annotations[2])
else:
anchor_states = annotations[0][:,:,-1]
indices = anchor_states.ne(-1).nonzero() #找出那些有效的锚框(anno的最后一个值为-1都表示忽略)
##################
cls_loss = self.criterion_focal(gather_nd_simple(classification, indices),
gather_nd_simple(annotations[0][:,:,:-1], indices))
smooth_l1_loss = self.criterion_l1(gather_nd_simple(regression, indices),
gather_nd_simple(annotations[1][:,:,:-1], indices))
transformation_loss = self.criterion_transformation(rotation,
translation,
annotations[2])
return 1.0*smooth_l1_loss+1.0*cls_loss+0.02*transformation_loss, \
cls_loss, smooth_l1_loss, transformation_loss
def main(args = None):
"""
Train an EfficientPose model.
Args:
args: parseargs object containing configuration for the training procedure.
"""
# parse arguments
if args is None:
args = sys.argv[1:]
args = parse_args(args)
args.num_gpus = len(args.gpu) if args.gpu else 0
args.save_path = os.path.join(args.save_path, f'obj_{args.object_id}')
# create the generators
print("\nCreating the Generators...")
train_generator, validation_generator = create_generators(args)
print("Done!")
num_rotation_parameters = train_generator.get_num_rotation_parameters()
num_classes = train_generator.num_classes()
num_anchors = train_generator.num_anchors
if args.num_gpus == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
print("\nBuilding the Model...")
#build model and load weights
model = EfficientPoseBackbone_MSA(compound_coef=args.phi,
num_classes=num_classes,
num_anchors=num_anchors,
freeze_bn=not args.no_freeze_bn,
#score_threshold = args.score_threshold,
num_rotation_parameters = num_rotation_parameters)
print("Done!")
# load pretrained weights
if args.weights:
if args.weights == 'imagenet':
print('Loading model, this may take a second...')
model_name = 'efficientdet-d{}'.format(args.phi)
file_name = '{}.pth'.format(model_name)
weights_path = f'weights/pretrained_efficientdet/{file_name}'
temp_weight = torch.load(weights_path, map_location='cpu')
del temp_weight['classifier.header.pointwise_conv.conv.weight']
del temp_weight['classifier.header.pointwise_conv.conv.bias']
model.load_state_dict(temp_weight, strict = False) # 类别数变了 删掉这部分权重再load
# temp_weight = torch.load(args.weights, map_location='cpu')
# model.load_state_dict(temp_weight, strict = False)
print("\nDone!")
else:
model.load_state_dict(torch.load(args.weights), strict=False)
print('Loading model, this may take a second...')
temp_weight = torch.load(args.weights, map_location='cpu')
model.load_state_dict(temp_weight, strict = False)
print("\nDone!")
# freeze backbone layers
if args.freeze_backbone:
def freeze_backbone(m):
classname = m.__class__.__name__
for ntl in ['EfficientNet', 'BiFPN']:
if ntl in classname:
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_backbone)
print('[Info] freezed backbone')
# 227, 329, 329, 374, 464, 566, 656
# for i in range(1, [227, 329, 329, 374, 464, 566, 656][args.phi]):
# model.layers[i].trainable = False
if not args.compute_val_loss:
validation_generator = None
elif args.compute_val_loss and validation_generator is None:
raise ValueError('When you have no validation data, you should not specify --compute-val-loss.')
writer = SummaryWriter(args.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
if args.num_gpus > 1 and args.batch_size // args.num_gpus < 4:
model.apply(replace_w_sync_bn)
use_sync_bn = True
else:
use_sync_bn = False
model = ModelWithLoss(model, param_generator=train_generator ,debug=False, num_gpus = args.num_gpus)
if args.num_gpus > 0:
model = model.cuda()
if args.num_gpus > 1:
model = CustomDataParallel(model, args.num_gpus)
if use_sync_bn:
patch_replication_callback(model)
# optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas = (0.9, 0.999))
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum = 0.9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=25, factor = 0.5, verbose=True)
epoch = 0
step = 0
best_loss = 1e5
best_epoch = 0
val_interval = args.val_interval
model.train()
num_iter_per_epoch = len(train_generator)
try:
for epoch in range(args.epochs):
last_epoch = step // num_iter_per_epoch
if epoch < last_epoch:
continue
epoch_loss = []
progress_bar = tqdm(train_generator) # type: ignore
for iter, data in enumerate(progress_bar):
'''
#data[0][0]:batch of imgs (batchsize,W,H,C), data[0][1]:batch of cam param K (batchsize,6)
#data[1][0]:batch of labels(batchsize,num_anchors,num_classes+1) , data[1][1]:batch of 2d regresion (batchsize,num_anchors,4+1)
#data[1][2]:batch of 3d transformation (batchsize,num_anchors,num_rotation_parameters + num_translation_parameters + 1)
'''
# continue
if iter < step - last_epoch * num_iter_per_epoch:
progress_bar.update()
continue
if iter >= num_iter_per_epoch:
break # 一个epoch结束 因为这个generator会循环生成 所以得手动退出
try:
imgs = torch.Tensor(data[0][0]).permute(0,3,1,2) # BWHC -> BCHW
cams_K = torch.Tensor(data[0][1])
annot = [torch.Tensor(sub_anno) for sub_anno in data[1]] # 3组标签:类别、检测框、3d变换
if args.num_gpus == 1:
# if only one gpu, just send it to cuda:0
# elif multiple gpus, send it to multiple gpus in CustomDataParallel, not here
imgs = imgs.cuda()
cams_K = cams_K.cuda()
annot = [sub_anno.cuda() for sub_anno in annot]
optimizer.zero_grad()
loss, cls_loss, reg_loss, transformation_loss = model((imgs,cams_K), annot) #obj_list=args.obj_list
if loss == 0 or not torch.isfinite(loss):
continue
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
epoch_loss.append(float(loss))
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. 3D loss: {:.5f}. Total loss: {:.5f}'.format(
step, epoch, args.epochs, iter + 1, num_iter_per_epoch, cls_loss.item(),
reg_loss.item(), transformation_loss.item(), loss.item()))
writer.add_scalars('Loss', {'train': loss}, step)
writer.add_scalars('Regression_loss', {'train': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'train': cls_loss}, step)
writer.add_scalars('Transformation_loss', {'train': transformation_loss}, step)
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', current_lr, step)
step += 1
if step % args.save_interval == 0 and step > 0:
save_checkpoint(model, f'efficientpose-d{args.phi}_{args.dataset_type}_obj{args.object_id}_{step}.pth',args.save_path)
print('checkpoint...')
except Exception as e:
print('[Error]', traceback.format_exc())
print(e)
continue
scheduler.step(np.mean(epoch_loss))
if epoch % val_interval == 0:
model.eval()
len_validation_generator = len(validation_generator) #type:ignore
loss_regression_ls = []
loss_classification_ls = []
loss_transformation_ls = []
print(f"validating...")
for iter, data in enumerate(tqdm(validation_generator)): # type: ignore
if iter >= len_validation_generator:
break # 一个epoch结束 因为这个generator会循环生成 所以得手动退出
with torch.no_grad():
imgs = torch.Tensor(data[0][0]).permute(0,3,1,2) # BWHC -> BCHW
cams_K = torch.Tensor(data[0][1])
annot = [torch.Tensor(sub_anno) for sub_anno in data[1]] # 3组标签:类别、检测框、3d变换
if args.num_gpus == 1:
# if only one gpu, just send it to cuda:0
# elif multiple gpus, send it to multiple gpus in CustomDataParallel, not here
imgs = imgs.cuda()
cams_K = cams_K.cuda()
annot = [sub_anno.cuda() for sub_anno in annot]
optimizer.zero_grad()
loss, cls_loss, reg_loss, transformation_loss = model((imgs,cams_K), annot) #obj_list=args.obj_list
if loss == 0 or not torch.isfinite(loss):
continue
loss_classification_ls.append(cls_loss.item())
loss_regression_ls.append(reg_loss.item())
loss_transformation_ls.append(transformation_loss.item())
cls_loss = np.mean(loss_classification_ls)
reg_loss = np.mean(loss_regression_ls)
transformation_loss = np.mean(loss_transformation_ls)
loss = 1.0*cls_loss + 1.0*reg_loss + 0.02*transformation_loss
print(
'Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Transformation loss: {:.5f}. Total loss: {:1.5f}'.format(
epoch, args.epochs, cls_loss, reg_loss, transformation_loss, loss))
writer.add_scalars('Loss', {'val': loss}, step)
writer.add_scalars('Regression_loss', {'val': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'val': cls_loss}, step)
writer.add_scalars('Transformation_loss', {'val': transformation_loss}, step)
if loss < best_loss:
best_loss = loss
best_epoch = epoch
save_checkpoint(model, f'efficientpose-d{args.phi}_{args.dataset_type}_obj{args.object_id}_{step}.pth',args.save_path)
save_checkpoint(model, f'efficientpose-d{args.phi}_{args.dataset_type}_obj{args.object_id}_one_best_train.pth',args.save_path)
model.train()
# Early stopping
if epoch - best_epoch > args.es_patience > 0:
print('[Info] Stop training at epoch {}. The lowest loss achieved is {}'.format(epoch, best_loss))
save_checkpoint(model, f'efficientpose-d{args.phi}_{args.dataset_type}_obj{args.object_id}_{step}.pth',args.save_path)
save_checkpoint(model, f'efficientpose-d{args.phi}_{args.dataset_type}_obj{args.object_id}_one_last_train.pth',args.save_path)
break
except KeyboardInterrupt:
save_checkpoint(model, f'efficientpose-d{args.phi}_{args.dataset_type}_obj{args.object_id}_{step}.pth', args.save_path)
writer.close()
writer.close()
def save_checkpoint(model, name, save_path):
if isinstance(model, CustomDataParallel):
torch.save(model.module.model.state_dict(), os.path.join(save_path, name)) #type: ignore
else:
torch.save(model.model.state_dict(), os.path.join(save_path, name))
def create_generators(args):
"""
Create generators for training and validation.
Args:
args: parseargs object containing configuration for generators.
Returns:
The training and validation generators.
"""
common_args = {
'batch_size': args.batch_size,
'phi': args.phi,
#'shuffle':True,
#'drop_last':True,
#'num_workers': args.num_workers,
}
if args.dataset_type == 'linemod':
from generators.linemod import LineModGenerator
train_generator = LineModGenerator(
args.linemod_path,
args.object_id,
rotation_representation = args.rotation_representation,
use_colorspace_augmentation = not args.no_color_augmentation,
use_6DoF_augmentation = not args.no_6dof_augmentation,
**common_args
)
validation_generator = LineModGenerator(
args.linemod_path,
args.object_id,
train = False,
shuffle_dataset = False,
shuffle_groups = False,
rotation_representation = args.rotation_representation,
use_colorspace_augmentation = False,
use_6DoF_augmentation = False,
**common_args
)
elif args.dataset_type == 'occlusion':
from generators.occlusion import OcclusionGenerator
train_generator = OcclusionGenerator(
args.linemod_path,#args.occlusion_path,
rotation_representation = args.rotation_representation,
use_colorspace_augmentation = not args.no_color_augmentation,
use_6DoF_augmentation = not args.no_6dof_augmentation,
**common_args
)
validation_generator = OcclusionGenerator(
args.linemod_path,#args.occlusion_path,
train = False,
shuffle_dataset = False,
shuffle_groups = False,
rotation_representation = args.rotation_representation,
use_colorspace_augmentation = False,
use_6DoF_augmentation = False,
**common_args
)
else:
raise ValueError('Invalid data type received: {}'.format(args.dataset_type))
return train_generator, validation_generator
if __name__ == '__main__':
main()