-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdf.py
83 lines (71 loc) · 3 KB
/
pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import streamlit as st
from dotenv import load_dotenv
from htmlcss import bot_template, user_template, css
# from PyPDF2 import PdfReader, PdfWriter
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.indexes import VectorstoreIndexCreator
def get_pdf_pages(pdf_docs):
all_pages = []
for pdf in pdf_docs:
from PyPDF2 import PdfReader, PdfWriter
pdf_reader = PdfReader(pdf)
pdf_writer = PdfWriter()
for page in pdf_reader.pages:
pdf_writer.add_page(page)
with open(pdf.name, 'wb') as output_file:
pdf_writer.write(output_file)
text_splitter = CharacterTextSplitter(
separator="\n\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
loader = PyPDFLoader(pdf.name)
pdf_pages = loader.load_and_split(text_splitter=text_splitter)
all_pages += pdf_pages
return all_pages
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def get_conversation_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def main():
load_dotenv()
st.set_page_config(page_title="Chat con multiples PDFs", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat con multiples PDFs :books:")
user_question = st.text_input("Pregúntale lo que quieras a tus documentos PDFs:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Tus documentos")
pdf_docs = st.file_uploader("Sube tus PDFs aquí y haz click en 'Procesar'", accept_multiple_files=True)
if st.button("Procesar"):
with st.spinner("Procesando..."):
all_pdfs_pages = get_pdf_pages(pdf_docs)
index = VectorstoreIndexCreator().from_documents(all_pdfs_pages)
st.session_state.conversation = get_conversation_chain(index.vectorstore)
if __name__ == '__main__':
main()