forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber_of_possible_binary_trees.py
102 lines (85 loc) · 2.83 KB
/
number_of_possible_binary_trees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
Hey, we are going to find an exciting number called Catalan number which is use to find
the number of possible binary search trees from tree of a given number of nodes.
We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i)
Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
"""
"""
Our Contribution:
Basically we Create the 2 function:
1. catalan_number(node_count: int) -> int
Returns the number of possible binary search trees for n nodes.
2. binary_tree_count(node_count: int) -> int
Returns the number of possible binary trees for n nodes.
"""
def binomial_coefficient(n: int, k: int) -> int:
"""
Since Here we Find the Binomial Coefficient:
https://en.wikipedia.org/wiki/Binomial_coefficient
C(n,k) = n! / k!(n-k)!
:param n: 2 times of Number of nodes
:param k: Number of nodes
:return: Integer Value
>>> binomial_coefficient(4, 2)
6
"""
result = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
k = n - k
# Calculate C(n,k)
for i in range(k):
result *= n - i
result //= i + 1
return result
def catalan_number(node_count: int) -> int:
"""
We can find Catalan number many ways but here we use Binomial Coefficient because it
does the job in O(n)
return the Catalan number of n using 2nCn/(n+1).
:param n: number of nodes
:return: Catalan number of n nodes
>>> catalan_number(5)
42
>>> catalan_number(6)
132
"""
return binomial_coefficient(2 * node_count, node_count) // (node_count + 1)
def factorial(n: int) -> int:
"""
Return the factorial of a number.
:param n: Number to find the Factorial of.
:return: Factorial of n.
>>> import math
>>> all(factorial(i) == math.factorial(i) for i in range(10))
True
>>> factorial(-5) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: factorial() not defined for negative values
"""
if n < 0:
raise ValueError("factorial() not defined for negative values")
result = 1
for i in range(1, n + 1):
result *= i
return result
def binary_tree_count(node_count: int) -> int:
"""
Return the number of possible of binary trees.
:param n: number of nodes
:return: Number of possible binary trees
>>> binary_tree_count(5)
5040
>>> binary_tree_count(6)
95040
"""
return catalan_number(node_count) * factorial(node_count)
if __name__ == "__main__":
node_count = int(input("Enter the number of nodes: ").strip() or 0)
if node_count <= 0:
raise ValueError("We need some nodes to work with.")
print(
f"Given {node_count} nodes, there are {binary_tree_count(node_count)} "
f"binary trees and {catalan_number(node_count)} binary search trees."
)