forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequential_minimum_optimization.py
632 lines (545 loc) · 20.3 KB
/
sequential_minimum_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
"""
Implementation of sequential minimal optimization (SMO) for support vector machines
(SVM).
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
programming (QP) problem that arises during the training of support vector
machines.
It was invented by John Platt in 1998.
Input:
0: type: numpy.ndarray.
1: first column of ndarray must be tags of samples, must be 1 or -1.
2: rows of ndarray represent samples.
Usage:
Command:
python3 sequential_minimum_optimization.py
Code:
from sequential_minimum_optimization import SmoSVM, Kernel
kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
init_alphas = np.zeros(train.shape[0])
SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
b=0.0, tolerance=0.001)
SVM.fit()
predict = SVM.predict(test_samples)
Reference:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
http://web.cs.iastate.edu/~honavar/smo-svm.pdf
"""
import os
import sys
import urllib.request
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs, make_circles
from sklearn.preprocessing import StandardScaler
CANCER_DATASET_URL = (
"http://archive.ics.uci.edu/ml/machine-learning-databases/"
"breast-cancer-wisconsin/wdbc.data"
)
class SmoSVM:
def __init__(
self,
train,
kernel_func,
alpha_list=None,
cost=0.4,
b=0.0,
tolerance=0.001,
auto_norm=True,
):
self._init = True
self._auto_norm = auto_norm
self._c = np.float64(cost)
self._b = np.float64(b)
self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)
self.tags = train[:, 0]
self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
self.Kernel = kernel_func
self._eps = 0.001
self._all_samples = list(range(self.length))
self._K_matrix = self._calculate_k_matrix()
self._error = np.zeros(self.length)
self._unbound = []
self.choose_alpha = self._choose_alphas()
# Calculate alphas using SMO algorithm
def fit(self):
K = self._k
state = None
while True:
# 1: Find alpha1, alpha2
try:
i1, i2 = self.choose_alpha.send(state)
state = None
except StopIteration:
print("Optimization done!\nEvery sample satisfy the KKT condition!")
break
# 2: calculate new alpha2 and new alpha1
y1, y2 = self.tags[i1], self.tags[i2]
a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
e1, e2 = self._e(i1), self._e(i2)
args = (i1, i2, a1, a2, e1, e2, y1, y2)
a1_new, a2_new = self._get_new_alpha(*args)
if not a1_new and not a2_new:
state = False
continue
self.alphas[i1], self.alphas[i2] = a1_new, a2_new
# 3: update threshold(b)
b1_new = np.float64(
-e1
- y1 * K(i1, i1) * (a1_new - a1)
- y2 * K(i2, i1) * (a2_new - a2)
+ self._b
)
b2_new = np.float64(
-e2
- y2 * K(i2, i2) * (a2_new - a2)
- y1 * K(i1, i2) * (a1_new - a1)
+ self._b
)
if 0.0 < a1_new < self._c:
b = b1_new
if 0.0 < a2_new < self._c:
b = b2_new
if not (np.float64(0) < a2_new < self._c) and not (
np.float64(0) < a1_new < self._c
):
b = (b1_new + b2_new) / 2.0
b_old = self._b
self._b = b
# 4: update error value,here we only calculate those non-bound samples'
# error
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
for s in self.unbound:
if s == i1 or s == i2:
continue
self._error[s] += (
y1 * (a1_new - a1) * K(i1, s)
+ y2 * (a2_new - a2) * K(i2, s)
+ (self._b - b_old)
)
# if i1 or i2 is non-bound,update there error value to zero
if self._is_unbound(i1):
self._error[i1] = 0
if self._is_unbound(i2):
self._error[i2] = 0
# Predict test samples
def predict(self, test_samples, classify=True):
if test_samples.shape[1] > self.samples.shape[1]:
raise ValueError(
"Test samples' feature length does not equal to that of train samples"
)
if self._auto_norm:
test_samples = self._norm(test_samples)
results = []
for test_sample in test_samples:
result = self._predict(test_sample)
if classify:
results.append(1 if result > 0 else -1)
else:
results.append(result)
return np.array(results)
# Check if alpha violate KKT condition
def _check_obey_kkt(self, index):
alphas = self.alphas
tol = self._tol
r = self._e(index) * self.tags[index]
c = self._c
return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)
# Get value calculated from kernel function
def _k(self, i1, i2):
# for test samples,use Kernel function
if isinstance(i2, np.ndarray):
return self.Kernel(self.samples[i1], i2)
# for train samples,Kernel values have been saved in matrix
else:
return self._K_matrix[i1, i2]
# Get sample's error
def _e(self, index):
"""
Two cases:
1:Sample[index] is non-bound,Fetch error from list: _error
2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi
"""
# get from error data
if self._is_unbound(index):
return self._error[index]
# get by g(xi) - yi
else:
gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
yi = self.tags[index]
return gx - yi
# Calculate Kernel matrix of all possible i1,i2 ,saving time
def _calculate_k_matrix(self):
k_matrix = np.zeros([self.length, self.length])
for i in self._all_samples:
for j in self._all_samples:
k_matrix[i, j] = np.float64(
self.Kernel(self.samples[i, :], self.samples[j, :])
)
return k_matrix
# Predict test sample's tag
def _predict(self, sample):
k = self._k
predicted_value = (
np.sum(
[
self.alphas[i1] * self.tags[i1] * k(i1, sample)
for i1 in self._all_samples
]
)
+ self._b
)
return predicted_value
# Choose alpha1 and alpha2
def _choose_alphas(self):
locis = yield from self._choose_a1()
if not locis:
return
return locis
def _choose_a1(self):
"""
Choose first alpha ;steps:
1:First loop over all sample
2:Second loop over all non-bound samples till all non-bound samples does not
voilate kkt condition.
3:Repeat this two process endlessly,till all samples does not voilate kkt
condition samples after first loop.
"""
while True:
all_not_obey = True
# all sample
print("scanning all sample!")
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
all_not_obey = False
yield from self._choose_a2(i1)
# non-bound sample
print("scanning non-bound sample!")
while True:
not_obey = True
for i1 in [
i
for i in self._all_samples
if self._check_obey_kkt(i) and self._is_unbound(i)
]:
not_obey = False
yield from self._choose_a2(i1)
if not_obey:
print("all non-bound samples fit the KKT condition!")
break
if all_not_obey:
print("all samples fit the KKT condition! Optimization done!")
break
return False
def _choose_a2(self, i1):
"""
Choose the second alpha by using heuristic algorithm ;steps:
1: Choose alpha2 which gets the maximum step size (|E1 - E2|).
2: Start in a random point,loop over all non-bound samples till alpha1 and
alpha2 are optimized.
3: Start in a random point,loop over all samples till alpha1 and alpha2 are
optimized.
"""
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
if len(self.unbound) > 0:
tmp_error = self._error.copy().tolist()
tmp_error_dict = {
index: value
for index, value in enumerate(tmp_error)
if self._is_unbound(index)
}
if self._e(i1) >= 0:
i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
else:
i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
cmd = yield i1, i2
if cmd is None:
return
for i2 in np.roll(self.unbound, np.random.choice(self.length)):
cmd = yield i1, i2
if cmd is None:
return
for i2 in np.roll(self._all_samples, np.random.choice(self.length)):
cmd = yield i1, i2
if cmd is None:
return
# Get the new alpha2 and new alpha1
def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
K = self._k
if i1 == i2:
return None, None
# calculate L and H which bound the new alpha2
s = y1 * y2
if s == -1:
L, H = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)
else:
L, H = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)
if L == H:
return None, None
# calculate eta
k11 = K(i1, i1)
k22 = K(i2, i2)
k12 = K(i1, i2)
eta = k11 + k22 - 2.0 * k12
# select the new alpha2 which could get the minimal objectives
if eta > 0.0:
a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
# a2_new has a boundary
if a2_new_unc >= H:
a2_new = H
elif a2_new_unc <= L:
a2_new = L
else:
a2_new = a2_new_unc
else:
b = self._b
l1 = a1 + s * (a2 - L)
h1 = a1 + s * (a2 - H)
# way 1
f1 = y1 * (e1 + b) - a1 * K(i1, i1) - s * a2 * K(i1, i2)
f2 = y2 * (e2 + b) - a2 * K(i2, i2) - s * a1 * K(i1, i2)
ol = (
l1 * f1
+ L * f2
+ 1 / 2 * l1**2 * K(i1, i1)
+ 1 / 2 * L**2 * K(i2, i2)
+ s * L * l1 * K(i1, i2)
)
oh = (
h1 * f1
+ H * f2
+ 1 / 2 * h1**2 * K(i1, i1)
+ 1 / 2 * H**2 * K(i2, i2)
+ s * H * h1 * K(i1, i2)
)
"""
# way 2
Use objective function check which alpha2 new could get the minimal
objectives
"""
if ol < (oh - self._eps):
a2_new = L
elif ol > oh + self._eps:
a2_new = H
else:
a2_new = a2
# a1_new has a boundary too
a1_new = a1 + s * (a2 - a2_new)
if a1_new < 0:
a2_new += s * a1_new
a1_new = 0
if a1_new > self._c:
a2_new += s * (a1_new - self._c)
a1_new = self._c
return a1_new, a2_new
# Normalise data using min_max way
def _norm(self, data):
if self._init:
self._min = np.min(data, axis=0)
self._max = np.max(data, axis=0)
self._init = False
return (data - self._min) / (self._max - self._min)
else:
return (data - self._min) / (self._max - self._min)
def _is_unbound(self, index):
if 0.0 < self.alphas[index] < self._c:
return True
else:
return False
def _is_support(self, index):
if self.alphas[index] > 0:
return True
else:
return False
@property
def unbound(self):
return self._unbound
@property
def support(self):
return [i for i in range(self.length) if self._is_support(i)]
@property
def length(self):
return self.samples.shape[0]
class Kernel:
def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
self.degree = np.float64(degree)
self.coef0 = np.float64(coef0)
self.gamma = np.float64(gamma)
self._kernel_name = kernel
self._kernel = self._get_kernel(kernel_name=kernel)
self._check()
def _polynomial(self, v1, v2):
return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
def _linear(self, v1, v2):
return np.inner(v1, v2) + self.coef0
def _rbf(self, v1, v2):
return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
def _check(self):
if self._kernel == self._rbf:
if self.gamma < 0:
raise ValueError("gamma value must greater than 0")
def _get_kernel(self, kernel_name):
maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
return maps[kernel_name]
def __call__(self, v1, v2):
return self._kernel(v1, v2)
def __repr__(self):
return self._kernel_name
def count_time(func):
def call_func(*args, **kwargs):
import time
start_time = time.time()
func(*args, **kwargs)
end_time = time.time()
print(f"smo algorithm cost {end_time - start_time} seconds")
return call_func
@count_time
def test_cancel_data():
print("Hello!\nStart test svm by smo algorithm!")
# 0: download dataset and load into pandas' dataframe
if not os.path.exists(r"cancel_data.csv"):
request = urllib.request.Request(
CANCER_DATASET_URL,
headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
)
response = urllib.request.urlopen(request)
content = response.read().decode("utf-8")
with open(r"cancel_data.csv", "w") as f:
f.write(content)
data = pd.read_csv(r"cancel_data.csv", header=None)
# 1: pre-processing data
del data[data.columns.tolist()[0]]
data = data.dropna(axis=0)
data = data.replace({"M": np.float64(1), "B": np.float64(-1)})
samples = np.array(data)[:, :]
# 2: dividing data into train_data data and test_data data
train_data, test_data = samples[:328, :], samples[328:, :]
test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
# 3: choose kernel function,and set initial alphas to zero(optional)
mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
al = np.zeros(train_data.shape[0])
# 4: calculating best alphas using SMO algorithm and predict test_data samples
mysvm = SmoSVM(
train=train_data,
kernel_func=mykernel,
alpha_list=al,
cost=0.4,
b=0.0,
tolerance=0.001,
)
mysvm.fit()
predict = mysvm.predict(test_samples)
# 5: check accuracy
score = 0
test_num = test_tags.shape[0]
for i in range(test_tags.shape[0]):
if test_tags[i] == predict[i]:
score += 1
print(f"\nall: {test_num}\nright: {score}\nfalse: {test_num - score}")
print(f"Rough Accuracy: {score / test_tags.shape[0]}")
def test_demonstration():
# change stdout
print("\nStart plot,please wait!!!")
sys.stdout = open(os.devnull, "w")
ax1 = plt.subplot2grid((2, 2), (0, 0))
ax2 = plt.subplot2grid((2, 2), (0, 1))
ax3 = plt.subplot2grid((2, 2), (1, 0))
ax4 = plt.subplot2grid((2, 2), (1, 1))
ax1.set_title("linear svm,cost:0.1")
test_linear_kernel(ax1, cost=0.1)
ax2.set_title("linear svm,cost:500")
test_linear_kernel(ax2, cost=500)
ax3.set_title("rbf kernel svm,cost:0.1")
test_rbf_kernel(ax3, cost=0.1)
ax4.set_title("rbf kernel svm,cost:500")
test_rbf_kernel(ax4, cost=500)
sys.stdout = sys.__stdout__
print("Plot done!!!")
def test_linear_kernel(ax, cost):
train_x, train_y = make_blobs(
n_samples=500, centers=2, n_features=2, random_state=1
)
train_y[train_y == 0] = -1
scaler = StandardScaler()
train_x_scaled = scaler.fit_transform(train_x, train_y)
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
mykernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
mysvm = SmoSVM(
train=train_data,
kernel_func=mykernel,
cost=cost,
tolerance=0.001,
auto_norm=False,
)
mysvm.fit()
plot_partition_boundary(mysvm, train_data, ax=ax)
def test_rbf_kernel(ax, cost):
train_x, train_y = make_circles(
n_samples=500, noise=0.1, factor=0.1, random_state=1
)
train_y[train_y == 0] = -1
scaler = StandardScaler()
train_x_scaled = scaler.fit_transform(train_x, train_y)
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
mysvm = SmoSVM(
train=train_data,
kernel_func=mykernel,
cost=cost,
tolerance=0.001,
auto_norm=False,
)
mysvm.fit()
plot_partition_boundary(mysvm, train_data, ax=ax)
def plot_partition_boundary(
model, train_data, ax, resolution=100, colors=("b", "k", "r")
):
"""
We can not get the optimum w of our kernel svm model which is different from linear
svm. For this reason, we generate randomly distributed points with high desity and
prediced values of these points are calculated by using our tained model. Then we
could use this prediced values to draw contour map.
And this contour map can represent svm's partition boundary.
"""
train_data_x = train_data[:, 1]
train_data_y = train_data[:, 2]
train_data_tags = train_data[:, 0]
xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(
resolution * resolution, 2
)
test_tags = model.predict(test_samples, classify=False)
grid = test_tags.reshape((len(xrange), len(yrange)))
# Plot contour map which represents the partition boundary
ax.contour(
xrange,
yrange,
np.mat(grid).T,
levels=(-1, 0, 1),
linestyles=("--", "-", "--"),
linewidths=(1, 1, 1),
colors=colors,
)
# Plot all train samples
ax.scatter(
train_data_x,
train_data_y,
c=train_data_tags,
cmap=plt.cm.Dark2,
lw=0,
alpha=0.5,
)
# Plot support vectors
support = model.support
ax.scatter(
train_data_x[support],
train_data_y[support],
c=train_data_tags[support],
cmap=plt.cm.Dark2,
)
if __name__ == "__main__":
test_cancel_data()
test_demonstration()
plt.show()