-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path11-carbon.Rmd
1045 lines (898 loc) · 39.4 KB
/
11-carbon.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
editor_options:
markdown:
wrap: 72
---
# Inorganic Carbon {#Carbon_1}
## Contributors
Peisheng Huang, Kamilla Kurucz, and Matthew R. Hipsey
## Overview
Understanding carbon cycling is central to understanding food webs and
how aquatic communities are structured and supported [@Dodds2020].
Exchange of carbon between aquatic systems and the atmosphere is also
fundamental in influencing climate [e.g. @cai2011; @borges2011].
Accordingly, there are a wide range of applications that require
simulation of carbon species.
The $\mathrm{AED}$ library can be used to simulate both the organic and
inorganic pools of carbon. As carbon is a core building block of an
aquatic ecosystem, `aed_carbon` ($\mathrm{CAR}$) is designed as a
low-level module for managing inorganic carbon pools, and is able to be
linked to by higher level modules associated with organic matter
cycling, primary production, and other biotic groups. In particular,
organic carbon is the currency of energy exchange through food webs, and
the processes for modelling organic carbon are described in
[aed_organic_matter][Organic Matter]. This chapter presents the forms of
inorganic carbon and fluxes of carbon in the aquatic environment and how
they are modelled in the `aed_carbon` module.
## Model Description
The core variables included in the `aed_carbon` module are Dissolved
Inorganic Carbon (DIC) and methane (CH4).
The dynamics for DIC is captured in the model when `simDIC = .true.`.
The rate of change of DIC concentration as it moves with the water is
calculated from local effects associated with air-water exchange
($\check{f}_{atm}^{CO_2}$), oxidation of CH4, ($f_{ox}^{CH_4}$), and
sediment-water exchange ($\hat{f}_{sed}^{DIC}$), which is summarized as:
```{=tex}
\begin{eqnarray}
\frac{D}{Dt}DIC = \color{darkgray}{ \mathbb{M} + \mathcal{S} } \quad
&+& \overbrace{\check{f}_{atm}^{CO_2}+f_{ox}^{CH_4}+\hat{f}_{sed}^{DIC} }^\text{aed_carbon} \\ (\#eq:car1)
&+& \color{brown}{ f_{min}^{DOC} - f_{gpp}^{PHY} + f_{rsp}^{PHY} + f_{rsp}^{ZOO} } \\ \nonumber
&-& \color{brown}{ \hat{f}_{gpp}^{MAC} + \hat{f}_{rsp}^{MAC} - f_{gpp}^{MAG} - f_{rsp}^{MAG} + \hat{f}_{rsp}^{BIV} } \\ \nonumber
\end{eqnarray}
```
where $\mathbb{M}$ and $\mathcal{S}$ refer to water mixing and boundary
source terms, respectively, and the coloured $\color{brown}{f}$ terms
reflect DIC fluxes computed by other (optionally) linked modules such as
modules of organic matter ($\mathrm{OMG}$), phytoplankton
($\mathrm{PHY}$) or zooplankton ($\mathrm{ZOO}$).
The dynamics for CH4 is captured in the model when `simCH4 = .true.`.
CH4 is formed during the decomposition of organic material by microbial
methanogenesis [e.g. @cicerone1988], which requires
strictly anaerobic conditions and is therefore usually restricted to be
deep within aquatic sediment. Inputs to the water therefore are from
sediment CH4 production, which can enter the water column either as a
dissolved flux or via ebullition (bubble release), or from external
sources such as wastewater discharges. Once in the water, dissolved CH4
is the balance between inputs from the sediment and losses from
air-water exchange and CH4 oxidation to DIC.
The rate of change of CH4 concentration as it moves with the water is
therefore calculated as:
```{=tex}
\begin{eqnarray}
\frac{D}{Dt}CH_4 = \color{darkgray}{ \mathbb{M} + \mathcal{S} } \quad
&+& \overbrace{\check{f}_{atm}^{CH_4}-f_{ox}^{CH_4}+\hat{f}_{sed}^{CH_4} +f_{dis}^{CH_{4-bubble}} }^\text{aed_carbon} \\ (\#eq:car2)
\end{eqnarray}
```
where $\check{f}_{atm}^{CH_4}$ is the air-water exchange of dissolved
methane and $\hat{f}_{sed}^{CH_4}$ is the sediment diffusive release
flux. Bubbles moving through the water column after release from the
sediment can also dissolve, denoted $f_{dis}^{CH_{4-bubble}}$.
The details of how each flux relevant to DIC and CH4 is calculated, and
the associated parameter settings, are described in the next sections.
For details on how to model organic carbon refer to the
`aed_organic_matter` model.
### Process Descriptions
#### Carbonate buffering and pH
In most circum-neutral waters the carbonate buffer system controls the
pH conditions within the water. When CO2 within the atmosphere
($CO_{2(gas)}$) is dissolved in water, it can exist in a variety of
forms. Initially, carbon dioxide will dissolve, $CO_{2_{(aq)}}$, which
can then form carbonic acid, $H_2CO_3$, and dissociate into bicarbonate,
$HCO_3^-$, and carbonate, $CO_3^{2-}$, ions.
```{=tex}
\begin{eqnarray}
CO_{2_{(aq)}} &\rightleftharpoons& CO_{2_{(gas)}}
\\
CO_{2_{(aq)}} + H_2O &\rightleftharpoons& H_2CO_3
\\
H_2CO_3 &\rightleftharpoons& H^+ + HCO_3^-
\\
HCO_3^- &\rightleftharpoons& H^+ + CO_3^{2-}
\end{eqnarray}
```
<center>
```{r carbonPlotly, fig.cap="Bjerrum plot of DIC speciation.", echo=FALSE, message=FALSE, warning=FALSE}
library(seacarb)
library(plotly)
pH <- seq(2, 12, by = 0.1)
res <- speciation(K1(), K2(), NULL, pH, 1)
df <- as.data.frame(res)
plot_ly(df, x = pH) %>%
add_trace(y = ~C1, name = 'CO<sub>2</sub>', mode = 'lines', line = list(color = '#FF2500')) %>%
add_trace(y = ~C2, name = 'HCO<sub>3</sub><sup>-</sup>', mode = 'lines', line = list(color = '#01A08A',dash = 'dash')) %>%
add_trace(y = ~C3, name = 'CO<sub>3</sub><sup>2-</sup>', mode = 'lines', line = list(color = '#F2AD00',dash = 'dot')) %>%
add_trace(x=c(5.84717, 5.84717), y=c(-0.5, 1.5), mode="lines", name='pK1', opacity = 0.75, line = list(color = 'grey', width = 1.5)) %>%
add_trace(x=c(8.96592, 8.96592), y=c(-0.5, 1.5), mode="lines", name='pK2', opacity = 0.75, line = list(color = 'grey', width = 1.5)) %>%
layout(title = "<b>DIC speciation</b>",
xaxis = list(title = "pH", fixedrange = TRUE),
yaxis = list(title = "Relative concentration (%)", fixedrange = TRUE, range = c(0,1)),
margin = list(
l = 50,
r = 50,
b = 50,
t = 50,
pad = 4
)) %>%
config(displayModeBar = FALSE)
```
</center>
The sum of the concentrations of all these forms is the inorganic carbon
concentration (DIC), and the composition of these forms depends on
acidity (pH). The total $DIC$ state variable is the sum of carbonate
species in a water parcel, which is conservative with respect to
hydrodynamics:
```{=tex}
\begin{equation}
DIC = [CO_{3}^{2-}]+[HCO_{3}^{-}]+[CO_{2}]+[H_2CO_{3}].
(\#eq:DIC0)
\end{equation}
```
To capture the interaction between carbonate species that make up DIC,
each cell is treated as a closed system, as in a titration, where fluxes
into and out of the system are specified, such as fluxes due to
respiration, dissolved sediment fluxes, or atmospheric exchange. The
changes due to these fluxes alter the $CO_{2_{(aq)}}$ concentration
without changing the alkalinity, allowing for the speciation and pH to
be recomputed at the end of the time-step.
`aed_carbon` provides three options for modelling the bicarbonate
equilibrium by switching the CO2_model options:
The users can choose the `aed_geochemistry module`, or adopt the widely
used CO2SYS code [@lewis1998] or @butler1982 code to
calculate the partial pressure of CO2 (pCO2) and bicarbonate system.
These options all lead to creation of state variables for DIC and pH,
and their concentrations need to be specified in the boundary
conditions. The use of each option is described in below sections.
##### co2_model = 0
This option is selected if the user wishes to defer the speciation, pCO2
and pH calculation to the geochemistry model in `aed_geochemistry`. In
this option, `aed_carbon` creates the DIC and pH state variables, will
compute the atmospheric exchange and sediment fluxes, but not update the
speciation, pCO2 or pH.
When using this approach, users must pay attention to correctly
configure the `aed_geochemistry` model to link to DIC, pCO2 and pH
within the `aed_carbon` module.
To resolve carbonate buffering that module can be setup with the
following components, and species:
```{=tex}
\begin{eqnarray}
X &\in& \{CO_3^{2-}, H^+,H_2O\}
\\
C &\in& \{CO_2, HCO_3^-, H_2CO_3,CO_3^{2-},H^+,OH^-\}
\end{eqnarray}
```
This will be solved each time the geochemical module is run. Fluxes of
$CO_2$ between the atmosphere and sediment or from bioloigcal process
will also be applied to the $DIC$ variable and therefore dynamically
affect $pH$.
For users interested in simulating calcite precipitation, then this may
also be achieved by configuring the geochemistry module, and enabling
Calcite as a simulated mineral component.
##### co2_model = 1
This option adopts the CO2SYS code [@lewis1998], in which
the bicarbonate system was modelled from DIC (mmol m^-3^) and total
alkalinity (TA, mmol m^-3^), with water temperature (T, degrees),
salinity (S, PSU) and water pressure (P, dbar) derived from the coupled
hydrodynamic model, and DIC concentration derived from the aed_carbon
model.
There are multiple options for TA calculation methods in this code
depending on the data availability and environment of the study site,
which can be switched by the alk_mode option:
```{=tex}
\begin{equation}
\Theta_{alk\_code}^{car}=\left\{
\begin{array}{@{}ll@{}}
0, & \text{carbonate alkalinity only}\\
1, & \text{dependance on salinity}\\
2-5 & \text{dependance on salinity and DIC}\\
\end{array}\right.
\end{equation}
```
For freshwaters, there is a simple freshwater alkalinity option
(`alk_mode = 0`), whereby TA is assumed to be dominated by the carbonate
alkalinity. In this option, TA is calculated from the carbonate species
according to:
```{=tex}
\begin{equation}
TA=-[H^+ ]+[HCO_3^- ]+2[CO_{3}^{2-}]+[OH^-] (\#eq:TA1)
\end{equation}
```
For hardwater lakes, estuaries or coastal systems, then other ions
contribute significantly to the total alkalinity and the assumption
above is no longer valid. However, the component ions needed for an
alkalinity calculation are not always commonly available or included in
the model and so approximations are needed to estimate TA. TA is a
quasi-conservative parameter and it has been a popular practice in
coastal modelling to predict TA from salinity [e.g. @lee2006;
@alin2012; @takahashi2014], or from combination of
salinity and DIC concentration [@kim2009; @jones2016].
Accordingly, `aed_carbon` supports a few options to model the TA in
coastal waters.
The first alk_mode option ($\Theta_{alk\_code}^{car}=1$) approximates
the TA from salinity as:
```{=tex}
\begin{equation}
TA=a+bS
(\#eq:TA2)
\end{equation}
```
where $a$ and $b$ are constant coefficients, with pre-defined values of
$a=1627.4$ and $b=22.176$ derived from a study case in the Caboolture
River estuary. Other remaining `alk_mode` options
($\Theta_{alk\_code}^{car}=2-5$) approximate the TA from salinity and
DIC concentration with a quadratic polynomial relationship as:
```{=tex}
\begin{equation}
TA=p00+p10\ S+p01\ DIC+p20\ S^2+p11\ S\ DIC+p02\ {DIC}^2
(\#eq:TA3)
\end{equation}
```
where $p00$, $p10$, $p01$, $p20$, $p11$, $p02$ are constant
coefficients. For this method the available options include:
- `alk_mode=2`: constant coefficients derived from all field work in
Noosa, Maroochy, and Brisbane estuaries in Australia;
- `alk_mode=3`: constant coefficients derived from field work in Noosa
River;
- `alk_mode=4`: constant coefficients derived from field work in
Maroochy River;
- `alk_mode=5`: constant coefficients derived from field work in
Brisbane River;
The constant coefficients in these options are provided in Table
\@ref(tab:11-alkmode). A case study using alk_mode=5 in Brisbane River
is given in Section \@ref(SEQCarbonCaseStudy). Users may wish to
implement tailored alkalinity relationships as additional alk_mode
options for specific study sites and use-cases.
```{r 11-alkmode, echo=FALSE, message=FALSE, warning=FALSE}
library(knitr)
library(kableExtra)
library(readxl)
library(rmarkdown)
library(kableExtra)
table <- read_excel('tables/11-carbon/alk_mode_coeff.xlsx', sheet = 1)
kbl(table, caption = "Constant coefficients in `alk_mode` options 2 - 5.", align = "l") %>%
row_spec(0, background = "#14759e", bold = TRUE, color = "white") %>%
kable_styling(full_width = F,font_size = 11) %>%
column_spec(1, width_min = "10em") %>%
column_spec(2, width_min = "10em") %>%
column_spec(3, width_min = "10em") %>%
column_spec(4, width_min = "10em") %>%
column_spec(5, width_min = "10em") %>%
column_spec(6, width_min = "10em") %>%
column_spec(7, width_min = "10em") %>%
scroll_box(width = "770px",
fixed_thead = FALSE)
```
##### co2_model = 2
This option adopts the approach of @butler1982 to model the carbonate
system in freshwater environment. In a closed carbonate system, the TA,
DIC and pH are related by:
```{=tex}
\begin{equation}
TA=DIC \frac{K_{a1}[H^+]+2K_{a1}K_{a2}}{[H^+]^2+K_{a1}[H^+]+K_{a1}K_{a2}}+ \frac{K_w}{[H^+]} -[H^+]
(\#eq:TA)
\end{equation}
```
where $K_w$ is the ion product of water, $K_{a1}$ is the first acidity
constant, $K_{a2}$ is the second acidity constant. $pH$ is calculated
from:
```{=tex}
\begin{equation}
pH = - \log_{10}[H^+]
(\#eq:pH)
\end{equation}
```
and $DIC$ is defined as:
```{=tex}
\begin{equation}
DIC = [CO_{3}^{2-}]+[HCO_{3}^{-}]+[CO_{2}]+[H_2CO_{3}]
(\#eq:DIC2)
\end{equation}
```
where all concentrations are in ($mmol\:C/m^3$). Note that the
concentration of hydrated carbon dioxide, $[H_2CO_3]$, is considered to
be negligible and is therefore omitted.
The conversion between the carbon dioxide partial pressure, $pCO_2$ and
carbon dioxide concentration ($molL^{-1}$) is given by:
```{=tex}
\begin{equation}
[CO_2]=K_HpCO_2
(\#eq:pco2)
\end{equation}
```
where $K_H$ is the activity coefficient.
The ionic strength of the water impacts the dissociation constants.
Ionic strength, $I$, is typically defined as \citep{Butl82}:
```{=tex}
\begin{equation}
I = 0.5 \left([Na^+]+[H^+]+[HCO_{3}^-]+4[CO_{3}^{2-}]+[H^+]/K_w \right).
(\#eq:I)
\end{equation}
```
Rather than model this explicitly, the ionic strength is entered into
the model as a constant, and is not assumed to vary significantly in
space or time for a given system. From the ionic strength, an activity
coefficient is defined as:
```{=tex}
\begin{equation}
f = \left( \frac{I^{1/2}}{1+I^{1/2}}-0.2I \right) \left(\frac{298}{T_K} \right)^{2/3}.
(\#eq:act)
\end{equation}
```
The dissociation constants are then computed following:
\begin{eqnarray}
\log_{10}\left(K_{H}^{i+1}\right) &=& \log_{10}\left(K_{H}^{0}\right) -bI \\
(\#eq:diss)
log_{10}\left(K_{w}^{i+1}\right) &=& \log_{10}\left(K_{w}^{0}\right) +f \\
log_{10}\left(K_{a1}^{i+1}\right) &=& \log_{10}\left(K_{a1}^{0}\right) +f+bI \\
log_{10}\left(K_{a2}^{i+1}\right) &=& \log_{10}\left(K_{a2}^{0}\right) +2f
\end{eqnarray} where $b=0.105$ \citep{Butl82}.
For this system, if two of the three components (i.e. $TA$, $pH$ or
$DIC$) are known the third can be determined. In AED, $pH$ and $DIC$ are
tracked as state variables, and at each time step $TA$ is also computed
and avalable via a diagnostic output.
The carbonate speciation for a given value of $pH$ and $DIC$ is then
estimated from: \begin{eqnarray}
\left[CO_{3}^{2-}\right] &=& DIC \frac{K_{a1}K_{a2}}{[H^+]^2+K_{a1}[H^+]+K_{a1}K_{a2}}, (\#eq:speciation1) \\
\left[HCO_{3}\right] &=& DIC \frac{K_{a1}[H^+]}{[H^+]^2+K_{a1}[H^+]+K_{a1}K_{a2}}, (\#eq:speciation2) \\
\left[CO_{2}\right]&=&DIC\frac{[H^+]^2}{[H^+]^2+K_{a1}[H^+]+K_{a1}K_{a2}}.
(\#eq:speciation3)
\end{eqnarray}
Using this framework, the inorganic carbon model co2_model = 2 operates
as follows:
- from initial field measurements of TA and pH, calculate DIC using Equation
\@ref(eq:TA)
- calculate initial carbonate speciation using
Equation \@ref(eq:speciation1) – Equation \@ref(eq:speciation3)
- calculate partial pressure of $CO_2$ using Equation \@ref(eq:pco2)
- start timestep loop
- calculate atmospheric $CO_2$ flux using Equation \@ref(eq:sedimentExchange12)
- calculate internal $CO_2$ fluxes from phytoplankton
photosynthesis/respiration, zooplankton respiration and bacterial
respiration
- calculate new DIC using Equation \@ref(eq:DIC2)
- assuming $TA$ constant, as $CO_2$ does not change the alkalinity
directly, calculate new $pH$ by iteratively solving Equation \@ref(eq:TA)
- calculate new carbonate speciation using Equation
\@ref(eq:speciation1) – Equation \@ref(eq:speciation3)
- calculate new partial pressure of $CO_2$ using Equation \@ref(eq:pco2)
- update new $TA$ and $DIC$ concentration estimates
#### Sediment exchange
The exchange fluxes of DIC and CH4 between the sediment and overlaying
water are modelled as a function of the overlying water temperature and
bottom water dissolved oxygen concentration:
```{=tex}
\begin{equation}
\mathcal{F}_{sed}^{DIC}[T,O_2]=F_{sed}^{DIC} \theta_{sed - DIC}^{T-20} \phi_{O_2}^{DIC}[O_2]
(\#eq:sedimentExchange5)
\end{equation}
```
```{=tex}
\begin{equation}
\mathcal{F}_{sed}^{CH_4}[T,O_2]=F_{sed}^{CH_4} \theta_{sed - CH_4}^{T-20} \phi_{O_2}^{CH_4}[O_2]
(\#eq:sedimentExchange6)
\end{equation}
```
where the parameters $F_{sed}^{DIC}$ and $F_{sed}^{CH_4}$ are the
maximum flux rate across the sediment-water interface at 20°C, the
$\theta_{sed-DIC}$ and $\theta_{sed-CH_4}$ are the Arrhenius temperature
multiplier for temperature control. The last item is the oxygen
mediation of the fluxes.
**Oxygen mediation of the inorganic carbon fluxes**: The sediment flux can
be changed by bottom water O~2~ concentration. If the aed_oxygen
module is correctly linked to the carbon module then this
setting will switch on automatically. At low O~2~ concentrations, the
amount of DIC fluxing out of the sediment is decreased and at high O~2~
concentrations, it is set close to the $F_{sed}^{DIC}$, as shown in
Equation \@ref(eq:sedimentExchange5). This is a convenient
simplification that can be tuned within this module, rather than a more
complicated full set of biogeochemical reactions. The half-saturation
oxygen parameter $K_{sed-DIC}^{O_2}$ can be used to tune the DIC flux
dependence on bottom water O~2~. A similar function can be used to tune
the CH~4~ flux using the parameter $K_{sed-CH_4}^{O_2}$, as shown in
\@ref(eq:sedimentExchange2). At high O~2~ concentrations, CH~4~ flux decreases, and at
low O~2~ concentrations, the flux is close to the parameter
$F_{sed}^{CH_4}$.
```{=tex}
\begin{equation}
\Phi_{O2}^{DIC}\left[O_2\right]=\frac{O_2}{O_2+K_{sed-DIC}^{O2}}
(\#eq:sedimentExchange1)
\end{equation}
```
```{=tex}
\begin{equation}
\Phi_{O2}^{CH_4}\left[O_2\right]=\frac{K_{sed-CH_4}^{O_2}}{O_2+K_{sed-CH_4}^{O_2}}
(\#eq:sedimentExchange2)
\end{equation}
```
Once the exchange fluxes are computed it is applied to the bottom cells
of the simulated domain, and the changes in the DIC and CH~4~
concentrations in the bottom layer are:
```{=tex}
\begin{equation}
{\hat{f}}_{sed}^{DIC}= \frac{F_{sed}^{DIC}}{\Delta z_{bot}}
(\#eq:sedimentExchange3)
\end{equation}
```
```{=tex}
\begin{equation}
{\hat{f}}_{sed}^{CH_4}= \frac{F_{sed}^{CH_4}}{\Delta z_{bot}}
(\#eq:sedimentExchange4)
\end{equation}
```
where $\Delta z_{bot}$ is the bottom layer thickness.
**Advanced options**: The approach described above is the most simple
and default method for capturing inorganic carbon fluxes from the
sediment, and is referred to as the static model. This approach can be
extended to allow for spatial variability in $F_{sed}^{DIC}$ and
$F_{sed}^{CH_4}$, by engaging the link to the aed_sedflux module, where
the host models support multiple benthic cells or zones. In this case,
users input spatially discrete values of $F_{sed}^{DIC}$ and
$F_{sed}^{CH4}$.
Where dynamic rates of DIC and CH~4~ are required to flux to/from the
sediment (e.g. in response to episodic loading of organic material to
the sediment, or for assessment of long-term changes in C loading), then
the above expressions (Eq \@ref(eq:sedimentExchange5) and
\@ref(eq:sedimentExchange6)) are replaced instead with dynamically
calculated variables in aed_seddiagenesis, via a link created with the
aed_sedflux module.
**Methane ebullition**
Methane bubbles are formed when anoxic methane production in the
sediments exceeds the rate of oxidation and diffusion. As the bubbles
overcome sediment tension, they are released to the water column. The
sediment bubble flux is greatly depth-dependent and is enhanced by
increasing temperatures [@delsontro2010]. Moreover, it has been
observed that falling water levels and decreasing hydrostatic pressure
also result in increased ebullition rates [@casper2000]. The
ebullition flux is formulated mathematically as follows:
```{=tex}
\begin{equation}
{\hat{f}}_{sed}^{CH_{4}-bub}[T,\Delta z]=F_{sed}^{CH_{4}-bub} \theta_{sedch4-bub}^{T-20} \Phi_{\Delta z}^{CH_{4}-bub}[\Delta z]\frac{1}{\Delta z}
(\#eq:sedimentExchange7)
\end{equation}
```
The sediment bubble flux $F_{sed}^{CH_{4}-bub}$ can be set as a constant
or depth-dependent flux. By setting up a link to the aed_sedflux module
(`Fsed_ebb_variable = 'SDF_Fsed_ch4_ebb'`), different sediment bubble
flux rates can be implemented in each sediment zone, accounting for the
spatial variability of ebullition.
$\Phi_{\Delta z}^{{CH}_{4-bub}}\left[\Delta z\right]$ accounts for the
effect of water level fluctuations (\Delta z) on the sediment bubble
flux and is calculated by adopting a site-specific regression equation
from [Lake Kinneret](#carbonCaseStudy) derived by @ostrovsky2012.
```{=tex}
\begin{equation}
\Phi_{\Delta z}^{CH_{4}-bub}[\Delta z] = c_{n}\text{exp}\{\varepsilon_{reg}(\bar{z}-z)\}
(\#eq:sedimentExchange8)
\end{equation}
```
Where $c_n$ is a normalising constant, $\varepsilon_{reg}$ is the
exponential factor from the regression equation.
The methane bubbles released from the sediments either dissolve in the
water column or are directly emitted to the atmosphere. The dissolution
rate of methane bubbles can be set constant, or depth-dependent by
splitting the water column into two layers and assigning different
dissolution rates above (`ch4_bub_disf1`) and below (`ch4_bub_disf2`)
the splitting depth (`ch4_bub_disp`). In stratified lakes, this
functionality can be used to set different dissolution rates in the
epilimnion and hypolimnion ($R_{diss}\left[z\right]$) to account for the
effect of different thermal layers on dissolution rates.
```{=tex}
\begin{equation}
f_{dis}^{{CH}_{4-bub}}=R_{diss}\left[z\right]\ {\hat{f}}_{sed}^{CH_{4}-bub}
(\#eq:sedimentExchange9)
\end{equation}
```
**Methane oxidation**
Aerobic oxidation is mediated by methanotrophs and is the most
significant sink for dissolved methane. The metabolic rate of
methanotrophs increases with increasing temperatures, hence aerobic
oxidation is temperature sensitive. The aerobic oxidation rate can be
described according to Michealis-Menten Kinetics as follows: [@schmid2017]
```{=tex}
\begin{equation}
f_{ox}^{{CH}_4}=\ R_{oxmax}^{{CH}_4}\ \Phi_{O2}^{ch4-ox}\left[O_2\right]\theta_{ox}^{T-20}[CH_4] (\#eq:sedimentExchange10)
\end{equation}
```
where $R_{oxmax}^{{CH}_4}$ is the maximum reaction rate of methane
oxidation at 20˚C (/day), $\Phi_{O2}^{ch4-ox}\left[O_2\right]$ is the
oxygen mediation of the oxidation rate, $\theta_{ox}$ is the temperature
multiplier for methane oxidation, $T$ the water temperature, and
$[CH_4]$ is the methane concentration in the water.
The methane oxidation rate can be changed by water O~2~ concentration.
At low O~2~ concentrations, the amount of CH~4~ oxidated to DIC
decreased and at high O~2~ concentrations, it is set close to the
$R_{oxmax}^{{CH}_4}$, as shown in Equation \@ref(eq:sedimentExchange10):
```{=tex}
\begin{equation}
\Phi_{O_2}^{CH_{4}-ox}\left[O_2\right]=\frac{O_2}{O_2+K_{CH_{4}-ox}^{O_2}}
(\#eq:sedimentExchange11)
\end{equation}
```
where O~2~ is the dissolved oxygen concentration, $K_{CH_{4}-ox}^{O_2}$
is the half saturation oxygen concentration for methane oxidation.
**Air-water exchange**
Carbon dioxide and methane transfer occurs across the air-water
interface based on the gas solubility, the amount of turbulence at the
interface and the concentration gradient between the air and water,
using widely used approach introduced by @wanninkhof1992. The
air-water exchange rate of CO~2~ is modelled as:
```{=tex}
\begin{equation}
\mathcal{F}_{atm}^{{CO}_2}=\ k_{600}^{CO_2}\ \Upsilon_{0-CO_2}({pCO}_2^w-{pCO}_2^a)
(\#eq:sedimentExchange12)
\end{equation}
```
where the ${pCO}_2^w$ and ${pCO}_2^a$ are the partial pressure of CO~2~
in the water surface and the air (in unit of atm), respectively;
$\Upsilon_{0-CO_2}$ is the solubility of CO~2~, and $k_{600}^{CO_2}$ is
the air-water gas transfer velocity for CO~2~. As AED can be applied
across many types of environments, spanning the ocean to small lakes and
flowing waters, users can select from a range of gas exchange piston
velocity models and Schmidt models, or implement their own, to capture
this process. The options are listed in the [Gas Transfer] section of
the [Generic utilities & Functions](#genericUtilitiesFunctions)
chapter. The switches of the piston and
Schmidt models are set via the use of $\Theta_{gas}^{piston}$ and
$\Theta_{gas}^{schmidt}$, respectively (see option details in
[Generic utilities & Functions](#genericUtilitiesFunctions)). The
exchange flux can then be added to or subtracted from the surface cells
of an aquatic system, and the change in the CO~2~ concentration in the
surface layer is:
```{=tex}
\begin{equation}
{\check{f}}_{atm}^{{CO}_2}=\frac{F_{atm}^{CO_2}}{\Delta Z_{surf}}
(\#eq:sedimentExchange13)
\end{equation}
```
where $\Delta z_{surf}$ is the surface layer thickness.
### Optional Module Links
Other carbon sources/sinks are indicated in Eq \@ref(eq:car1) for DIC.
These include:
- [aed_oxygen][Dissolved Oxygen]: oxygen is used to control oxidation;
- [aed_organic_matter][Organic Matter]: organic matter mineralisation can update DIC;
- [aed_phytoplankton][Phytoplankton]: phytoplankton photosynthetic uptake of CO2 can
update DIC;
- [aed_geochemistry][Aqueous Geochemistry]: optional link to simulate the carbonate system;
- aed_sedflux: interface module to update the sediment-water exchange
in zones;
- [aed_seddiagenesis][Sediment biogeochemistry]: an advanced sediment biogeochemistry mode can
dynamically predict sediment fluxes of DIC and CH4.
### Feedbacks to the Host Model
The inorganic carbon module has no feedbacks to the host hydrodynamic
model.
### Variable Summary
The default variables created by this module, and the optionally
required linked variables needed for full functionality of this module
are summarised in Table \@ref(tab:11-statetable). The diagnostic outputs
able to be output are summarised in Table \@ref(tab:11-diagtable).
#### State variables {.unnumbered}
```{r 11-statetable, echo=FALSE, message=FALSE, warning=FALSE}
library(knitr)
library(kableExtra)
library(readxl)
library(rmarkdown)
carbon <- read_excel('tables/carbonTableNewGrouping.xlsx', sheet = 3)
carbon <- carbon[carbon$Table == "State variable",]
carbonGroups <- unique(carbon$Group)
carbon$`AED name` <- paste0("`",carbon$`AED name`,"`")
for(i in seq_along(carbon$Symbol)){
if(!is.na(carbon$Symbol[i])==TRUE){
carbon$Symbol[i] <- paste0("$$",carbon$Symbol[i],"$$")
} else {
carbon$Symbol[i] <- NA
}
}
for(i in seq_along(carbon$Unit)){
if(!is.na(carbon$Unit[i])==TRUE){
carbon$Unit[i] <- paste0("$$\\small{",carbon$Unit[i],"}$$")
} else {
carbon$Unit[i] <- NA
}
}
for(i in seq_along(carbon$Comments)){
if(!is.na(carbon$Comments[i])==TRUE){
carbon$Comments[i] <- paste0("",carbon$Comments[i],"")
} else {
carbon$Comments[i] <- " "
}
}
kbl(carbon[,3:NCOL(carbon)], caption = "Carbon - state variables", align = "l",) %>%
pack_rows(carbonGroups[1],
min(which(carbon$Group == carbonGroups[1])),
max(which(carbon$Group == carbonGroups[1])),
background = '#ebebeb') %>%
pack_rows(carbonGroups[2],
min(which(carbon$Group == carbonGroups[2])),
max(which(carbon$Group == carbonGroups[2])),
background = '#ebebeb') %>%
row_spec(0, background = "#14759e", bold = TRUE, color = "white") %>%
kable_styling(full_width = F,font_size = 11) %>%
column_spec(2, width_min = "7em") %>%
column_spec(3, width_max = "18em") %>%
column_spec(4, width_min = "10em") %>%
column_spec(5, width_min = "5em") %>%
column_spec(7, width_min = "10em") %>%
column_spec(7, width_max = "20em") %>%
scroll_box(width = "770px", height = "410px",
fixed_thead = FALSE)
```
#### Diagnostics {.unnumbered}
```{r 11-diagtable, echo=FALSE, message=FALSE, warning=FALSE}
library(knitr)
library(kableExtra)
library(readxl)
library(rmarkdown)
carbon <- read_excel('tables/carbonTableNewGrouping.xlsx', sheet = 3)
carbon <- carbon[carbon$Table == "Diagnostics",]
carbonGroups <- unique(carbon$Group)
carbon$`AED name` <- paste0("`",carbon$`AED name`,"`")
for(i in seq_along(carbon$Symbol)){
if(!is.na(carbon$Symbol[i])==TRUE){
carbon$Symbol[i] <- paste0("$$",carbon$Symbol[i],"$$")
} else {
carbon$Symbol[i] <- NA
}
}
for(i in seq_along(carbon$Unit)){
if(!is.na(carbon$Unit[i])==TRUE){
carbon$Unit[i] <- paste0("$$\\small{",carbon$Unit[i],"}$$")
} else {
carbon$Unit[i] <- NA
}
}
for(i in seq_along(carbon$Comments)){
if(!is.na(carbon$Comments[i])==TRUE){
carbon$Comments[i] <- paste0("",carbon$Comments[i],"")
} else {
carbon$Comments[i] <- " "
}
}
kbl(carbon[,3:NCOL(carbon)], caption = "Carbon - diagnostics", align = "l",) %>%
pack_rows(carbonGroups[1],
min(which(carbon$Group == carbonGroups[1])),
max(which(carbon$Group == carbonGroups[1])),
background = '#ebebeb') %>%
pack_rows(carbonGroups[2],
min(which(carbon$Group == carbonGroups[2])),
max(which(carbon$Group == carbonGroups[2])),
background = '#ebebeb') %>%
row_spec(0, background = "#14759e", bold = TRUE, color = "white") %>%
kable_styling(full_width = F,font_size = 11) %>%
column_spec(2, width_min = "7em") %>%
column_spec(3, width_max = "18em") %>%
column_spec(4, width_min = "10em") %>%
column_spec(5, width_min = "6em") %>%
column_spec(7, width_min = "10em") %>%
scroll_box(width = "770px", height = "520px",
fixed_thead = FALSE)
```
### Parameter Summary
The parameters and settings used by this module are summarised in Table
\@ref(tab:11-parstable).
```{r 11-parstable, echo=FALSE, message=FALSE, warning=FALSE}
library(knitr)
library(kableExtra)
library(readxl)
library(rmarkdown)
carbon <- read_excel('tables/carbonTableNewGrouping.xlsx', sheet = 3)
carbon <- carbon[carbon$Table == "Parameter",]
carbonGroups <- unique(carbon$Group)
carbon$`AED name` <- paste0("`",carbon$`AED name`,"`")
for(i in seq_along(carbon$Symbol)){
if(!is.na(carbon$Symbol[i])==TRUE){
carbon$Symbol[i] <- paste0("$$",carbon$Symbol[i],"$$")
} else {
carbon$Symbol[i] <- " "
}
}
for(i in seq_along(carbon$Unit)){
if(!is.na(carbon$Unit[i])==TRUE){
carbon$Unit[i] <- paste0("$$\\small{",carbon$Unit[i],"}$$")
} else {
carbon$Unit[i] <- NA
}
}
for(i in seq_along(carbon$Comments)){
if(!is.na(carbon$Comments[i])==TRUE){
carbon$Comments[i] <- paste0("",carbon$Comments[i],"")
} else {
carbon$Comments[i] <- " "
}
}
kbl(carbon[,3:NCOL(carbon)], caption = "Carbon - parameters", align = "l",) %>%
pack_rows(carbonGroups[1],
min(which(carbon$Group == carbonGroups[1])),
max(which(carbon$Group == carbonGroups[1])),
background = '#ebebeb') %>%
pack_rows(carbonGroups[2],
min(which(carbon$Group == carbonGroups[2])),
max(which(carbon$Group == carbonGroups[2])),
background = '#ebebeb') %>%
pack_rows(carbonGroups[3],
min(which(carbon$Group == carbonGroups[3])),
max(which(carbon$Group == carbonGroups[3])),
background = '#ebebeb') %>%
pack_rows(carbonGroups[4],
min(which(carbon$Group == carbonGroups[4])),
max(which(carbon$Group == carbonGroups[4])),
background = '#ebebeb') %>%
pack_rows(carbonGroups[5],
min(which(carbon$Group == carbonGroups[5])),
max(which(carbon$Group == carbonGroups[5])),
background = '#ebebeb') %>%
pack_rows(carbonGroups[6],
min(which(carbon$Group == carbonGroups[6])),
max(which(carbon$Group == carbonGroups[6])),
background = '#ebebeb') %>%
row_spec(0, background = "#14759e", bold = TRUE, color = "white") %>%
kable_styling(full_width = F,font_size = 11) %>%
column_spec(2, width_min = "7em") %>%
column_spec(3, width_max = "19em") %>%
column_spec(4, width_min = "10em") %>%
column_spec(5, width_min = "5em") %>%
column_spec(7, width_min = "10em") %>%
scroll_box(width = "770px", height = "800px",
fixed_thead = FALSE)
```
<br>
## Setup & Configuration
An example `aed.nml` parameter specification block for the `aed_carbon`
module that is only modelling $DIC$ is shown below:
```{fortran, eval = FALSE}
&aed_carbon
dic_initial = 1000.
pH_initial = 7.5
ch4_initial = -9999 ! disables CH4
! Carbonate buffering
co2_model = 1
alk_model = 5
! Atmospheric exchange
atmco2 = 0.000380
co2_piston_model = 1
! Sediment respiration
Fsed_dic = 10.0 ! replaced by linked SDF var
Ksed_dic = 100.
theta_sed_dic = 1.08
Fsed_dic_variable = 'SDF_Fsed_dic'
/
```
<br> An example `aed.nml` parameter specification block for the
`aed_carbon` module that includes all options is shown below:
```{fortran, eval = FALSE}
&aed_carbon
!-- DIC and pH --!
dic_initial = 91
Fsed_dic = 0.001
Ksed_dic = 53.44356
theta_sed_dic = 1.08
!Fsed_dic_variable = 'SDF_Fsed_dic'
pH_initial = 6.2
atm_co2 = 4e-04
co2_model = 1
alk_mode = 1
ionic = 0.1
co2_piston_model = 1
!-- CH4 (dissolved) --!
ch4_initial = 5
Rch4ox = 0.1
Kch4ox = 0.2
vTch4ox = 1.2
Ksed_ch4 = 3.437
theta_sed_ch4 = 1.2
methane_reactant_variable = 'OXY_oxy'
atm_ch4 = 1.76e-6
ch4_piston_model = 1
!Fsed_ch4_variable = 'SDF_Fsed_ch4'
!-- CH4 (bubbles) --!
ebb_model = 1
Fsed_ch4_ebb = 0.0
!Fsed_ebb_variable = 'SDF_Fsed_ch4_ebb'
ch4_bub_aLL = 42.95127
ch4_bub_cLL = 0.634
ch4_bub_kLL = -0.8247
ch4_bub_disdp = 20
ch4_bub_disf1 = 0.33
ch4_bub_disf2 = 0.07
/
```
<br>
## Case Studies & Examples
### Case Study : South-east Queensland estuaries {#SEQCarbonCaseStudy}
The `aed_carbon` model was applied to three estuaries of the Moreton Bay
region in south-east Queensland, Australia. The river and estuaries were
monitored to measure dissolved inorganic carbon and methane as part of a
campaign in March 2016 to understand controls on greenhouse gas
emissions.
<br>
<center>
```{r sitemapQ, fig.cap="Map of the three estuaries of the Moreton Bay region in south-east Queensland, Australia.", echo=FALSE, message=FALSE, warning=FALSE, width = 400, height = 305}
library(leaflet)
library(dplyr)
library(htmlwidgets)
library(htmltools)
aed_icon <- makeIcon(
iconUrl = "maps/marker.png",
iconWidth = 23, iconHeight = 23)
aed_sites <- read.csv("maps/aed-sites-carbon.csv")
leaflet(height=385, width=500) %>%
setView(lng = 153.1417, lat = -27.017, zoom = 08) %>%
addTiles() %>%
addProviderTiles(providers$Stamen.Terrain) %>%
addMarkers(data = aed_sites, ~Lon, ~Lat, popup = ~Site, icon = aed_icon)
```
</center>
<!-- addMarkers(lng = 153.1417, lat = -27.387, popup = "Brisbane River Estuary") -->
<!-- addMarkers(lng = 153.1417, lat = -27.017, popup = "Maroochy River") -->
<!-- addMarkers(lng = 153.1417, lat = -27.017, popup = "Brisbane River") -->
<br>
Using the AED model coupled with the 3-D model TUFLOW-FV, the dynamics
of the estuaries were simulated for the year 2016 and compared against
data from the intensive field campaigns. An example of the model
capturing the different gradients in DIC and CH~4~ in the three systems
is shown in Figure \@ref(fig:Queensland-pic1).
<br>
<center>
```{r Queensland-pic1, echo=FALSE, fig.cap="Trasect plots comparing modelled and field data for DOC (uM, 1st row), DIC (uM, 2nd row), pCO2 (uATM, 3rd row) and pCH4 (uATM, 4th row) for three estuaries in south-east Queensland: a) Brisbane river, b) Maroochy estuary, and c) Noosa estuary. Data presented for March 2016, collected by Southern Cross University Centre for Coastal Biogeochemistry.", out.width = '100%'}
knitr::include_graphics("images/carbon/seq_example1.png")
```
</center>
<br>
### Case Study : Lake Kinneret
The aed_carbon model was applied to Lake Kinneret, a deep subtropical
lake in Israel. Using the AED model coupled with the General Lake Model,
the dynamics of Lake Kinneret (Figure \@ref(fig:kinneret-map)) were
simulated from 01/01/1998 until 23/02/2002.
<br>
<center>
```{r kinneret-map, fig.cap="Map of Lake Kinneret, Israel.", echo=FALSE, message=FALSE, warning=FALSE, width = 501, height = 385}
library(leaflet)
leaflet(height=385, width=500) %>%
setView(lng = 35.583333, lat = 32.833333, zoom = 10) %>%
addTiles() %>%
addProviderTiles(providers$Stamen.Terrain) %>%
addMarkers(lng = 35.583333, lat = 32.833333, popup = "Lake Kinneret")
```
</center>
<br>
Dissolved methane concentrations were calibrated using the glmtools R
package and were compared against observations (Figure
\@ref(fig:Kinneret-pic1)). Ebullition was simulated using a
site-specific algorithm and the sources and sinks of both dissolved
methane and methane bubbles are presented on Figure
\@ref(fig:Kinneret-pic2).
<br>
<center>
```{r Kinneret-pic1, echo=FALSE, fig.cap="The observed vs. simulated dissolved methane concentrations (mmol/m^3^) at 1 m, 10 m, 20 m, 30 m, 35 m and 38-39 m depths in Lake Kinneret. The rhombus symbols represent the observed and the solid lines represent the simulated methane concentrations. Data consisting of dissolved methane concentrations in Lake Kinneret was extracted from @schmid2017, using WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer).", out.width = '100%'}
knitr::include_graphics("images/carbon/methane.png")
```