forked from cubiq/ComfyUI_IPAdapter_plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIPAdapterPlus.py
675 lines (561 loc) · 27 KB
/
IPAdapterPlus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import torch
import contextlib
import os
import comfy.utils
import comfy.model_management
from comfy.clip_vision import clip_preprocess
from comfy.ldm.modules.attention import optimized_attention
import folder_paths
from torch import nn
from PIL import Image
import torch.nn.functional as F
import torchvision.transforms as TT
from .resampler import Resampler
MODELS_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
# attention_channels
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
def get_filename_list(path):
return [f for f in os.listdir(path) if f.endswith('.bin') or f.endswith('.safetensors')]
def pad_to_square(tensor):
tensor = tensor.squeeze(0).permute(2, 0, 1)
_, h, w = tensor.shape
target_length = max(h, w)
pad_l = (target_length - w) // 2
pad_r = (target_length - w) - pad_l
pad_t = (target_length - h) // 2
pad_b = (target_length - h) - pad_t
padded_tensor = F.pad(tensor, (pad_l, pad_r, pad_t, pad_b), mode="constant", value=0)
return padded_tensor.permute(1, 2, 0).unsqueeze(0)
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
torch.nn.GELU(),
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
torch.nn.LayerNorm(cross_attention_dim)
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class ImageProjModel(nn.Module):
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class To_KV(nn.Module):
def __init__(self, cross_attention_dim):
super().__init__()
channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
self.to_kvs = nn.ModuleList([nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])
def load_state_dict(self, state_dict):
for i, key in enumerate(state_dict.keys()):
self.to_kvs[i].weight.data = state_dict[key]
def set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
if key not in to["patches_replace"]["attn2"]:
patch = CrossAttentionPatch(**patch_kwargs)
to["patches_replace"]["attn2"][key] = patch
else:
to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs)
def image_add_noise(image, noise):
image = image.permute([0,3,1,2])
torch.manual_seed(0) # use a fixed random for reproducible results
transforms = TT.Compose([
TT.CenterCrop(min(image.shape[2], image.shape[3])),
TT.Resize((224, 224), interpolation=TT.InterpolationMode.BICUBIC, antialias=True),
TT.ElasticTransform(alpha=75.0, sigma=noise*3.5), # shuffle the image
TT.RandomVerticalFlip(p=1.0), # flip the image to change the geometry even more
TT.RandomHorizontalFlip(p=1.0),
])
image = transforms(image.cpu())
image = image.permute([0,2,3,1])
image = image + ((0.25*(1-noise)+0.05) * torch.randn_like(image) ) # add further random noise
return image
def zeroed_hidden_states(clip_vision, batch_size):
image = torch.zeros([batch_size, 224, 224, 3])
comfy.model_management.load_model_gpu(clip_vision.patcher)
pixel_values = clip_preprocess(image.to(clip_vision.load_device))
if clip_vision.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(comfy.model_management.get_autocast_device(clip_vision.load_device), torch.float32):
outputs = clip_vision.model(pixel_values, output_hidden_states=True)
# we only need the penultimate hidden states
outputs = outputs['hidden_states'][-2].cpu() if 'hidden_states' in outputs else None
return outputs
def min_(tensor_list):
# return the element-wise min of the tensor list.
x = torch.stack(tensor_list)
mn = x.min(axis=0)[0]
return torch.clamp(mn, min=0)
def max_(tensor_list):
# return the element-wise max of the tensor list.
x = torch.stack(tensor_list)
mx = x.max(axis=0)[0]
return torch.clamp(mx, max=1)
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
def contrast_adaptive_sharpening(image, amount):
img = F.pad(image, pad=(1, 1, 1, 1)).cpu()
a = img[..., :-2, :-2]
b = img[..., :-2, 1:-1]
c = img[..., :-2, 2:]
d = img[..., 1:-1, :-2]
e = img[..., 1:-1, 1:-1]
f = img[..., 1:-1, 2:]
g = img[..., 2:, :-2]
h = img[..., 2:, 1:-1]
i = img[..., 2:, 2:]
# Computing contrast
cross = (b, d, e, f, h)
mn = min_(cross)
mx = max_(cross)
diag = (a, c, g, i)
mn2 = min_(diag)
mx2 = max_(diag)
mx = mx + mx2
mn = mn + mn2
# Computing local weight
inv_mx = torch.reciprocal(mx)
amp = inv_mx * torch.minimum(mn, (2 - mx))
# scaling
amp = torch.sqrt(amp)
w = - amp * (amount * (1/5 - 1/8) + 1/8)
div = torch.reciprocal(1 + 4*w)
output = ((b + d + f + h)*w + e) * div
output = output.clamp(0, 1)
output = torch.nan_to_num(output)
return (output)
class IPAdapter(nn.Module):
def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4, is_sdxl=False, is_plus=False, is_full=False):
super().__init__()
self.clip_embeddings_dim = clip_embeddings_dim
self.cross_attention_dim = cross_attention_dim
self.output_cross_attention_dim = output_cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.is_sdxl = is_sdxl
self.is_full = is_full
self.image_proj_model = self.init_proj() if not is_plus else self.init_proj_plus()
self.image_proj_model.load_state_dict(ipadapter_model["image_proj"])
self.ip_layers = To_KV(self.output_cross_attention_dim)
self.ip_layers.load_state_dict(ipadapter_model["ip_adapter"])
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim,
clip_extra_context_tokens=self.clip_extra_context_tokens
)
return image_proj_model
def init_proj_plus(self):
if self.is_full:
image_proj_model = MLPProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim
)
else:
image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=20 if self.is_sdxl else 12,
num_queries=self.clip_extra_context_tokens,
embedding_dim=self.clip_embeddings_dim,
output_dim=self.output_cross_attention_dim,
ff_mult=4
)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, clip_embed, clip_embed_zeroed):
image_prompt_embeds = self.image_proj_model(clip_embed)
uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
return image_prompt_embeds, uncond_image_prompt_embeds
class CrossAttentionPatch:
# forward for patching
def __init__(self, weight, ipadapter, dtype, number, cond, uncond, weight_type, mask=None):
self.weights = [weight]
self.ipadapters = [ipadapter]
self.conds = [cond]
self.unconds = [uncond]
self.dtype = dtype
self.device = 'cuda'
self.number = number
self.weight_type = [weight_type]
self.masks = [mask]
def set_new_condition(self, weight, ipadapter, cond, uncond, dtype, number, weight_type, mask=None):
self.weights.append(weight)
self.ipadapters.append(ipadapter)
self.conds.append(cond)
self.unconds.append(uncond)
self.masks.append(mask)
self.dtype = dtype
self.weight_type.append(weight_type)
self.device = 'cuda'
def __call__(self, n, context_attn2, value_attn2, extra_options):
org_dtype = n.dtype
cond_or_uncond = extra_options["cond_or_uncond"]
with torch.autocast(device_type=self.device, dtype=self.dtype):
q = n
k = context_attn2
v = value_attn2
b = q.shape[0]
qs = q.shape[1]
batch_prompt = b // len(cond_or_uncond)
out = optimized_attention(q, k, v, extra_options["n_heads"])
_, _, lh, lw = extra_options["original_shape"]
for weight, cond, uncond, ipadapter, mask, weight_type in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks, self.weight_type):
k_cond = ipadapter.ip_layers.to_kvs[self.number*2](cond).repeat(batch_prompt, 1, 1)
k_uncond = ipadapter.ip_layers.to_kvs[self.number*2](uncond).repeat(batch_prompt, 1, 1)
v_cond = ipadapter.ip_layers.to_kvs[self.number*2+1](cond).repeat(batch_prompt, 1, 1)
v_uncond = ipadapter.ip_layers.to_kvs[self.number*2+1](uncond).repeat(batch_prompt, 1, 1)
if weight_type.startswith("linear"):
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) * weight
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) * weight
else:
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)
if weight_type.startswith("channel"):
# code by Lvmin Zhang at Stanford University as also seen on Fooocus IPAdapter implementation
# please read licensing notes https://github.com/lllyasviel/Fooocus/blob/main/fooocus_extras/ip_adapter.py#L225
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
ip_v_offset = ip_v - ip_v_mean
_, _, C = ip_k.shape
channel_penalty = float(C) / 1280.0
W = weight * channel_penalty
ip_k = ip_k * W
ip_v = ip_v_offset + ip_v_mean * W
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
if weight_type.startswith("original"):
out_ip = out_ip * weight
if mask is not None:
# TODO: needs testing
for rate in [1, 2, 4, 8]:
mask_h = -(-lh//rate) # fancy ceil
mask_w = -(-lw//rate)
if mask_h*mask_w == qs:
break
mask_downsample = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(mask_h, mask_w), mode="bilinear").squeeze(0)
mask_downsample = mask_downsample.view(1, -1, 1).repeat(out.shape[0], 1, out.shape[2])
out_ip = out_ip * mask_downsample
out = out + out_ip
return out.to(dtype=org_dtype)
class IPAdapterModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ipadapter_file": (get_filename_list(MODELS_DIR), )}}
RETURN_TYPES = ("IPADAPTER",)
FUNCTION = "load_ipadapter_model"
CATEGORY = "ipadapter"
def load_ipadapter_model(self, ipadapter_file):
ckpt_path = os.path.join(MODELS_DIR, ipadapter_file)
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if ckpt_path.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
# sort keys
model = {"image_proj": st_model["image_proj"], "ip_adapter": {}}
sorted_keys = sorted(st_model["ip_adapter"].keys(), key=lambda x: int(x.split(".")[0]))
for key in sorted_keys:
model["ip_adapter"][key] = st_model["ip_adapter"][key]
st_model = None
if not "ip_adapter" in model.keys() or not model["ip_adapter"]:
raise Exception("invalid IPAdapter model {}".format(ckpt_path))
return (model,)
class IPAdapterApply:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter": ("IPADAPTER", ),
"clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",),
"model": ("MODEL", ),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"weight_type": (["original", "linear", "channel penalty"], ),
},
"optional": {
"attn_mask": ("MASK",),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "ipadapter"
def apply_ipadapter(self, ipadapter, model, weight, clip_vision=None, image=None, weight_type="original", noise=None, embeds=None, attn_mask=None):
self.dtype = model.model.diffusion_model.dtype
self.device = comfy.model_management.get_torch_device()
self.weight = weight
self.is_full = "proj.0.weight" in ipadapter["image_proj"]
self.is_plus = self.is_full or "latents" in ipadapter["image_proj"]
output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1]
self.is_sdxl = output_cross_attention_dim == 2048
cross_attention_dim = 1280 if self.is_plus and self.is_sdxl else output_cross_attention_dim
clip_extra_context_tokens = 16 if self.is_plus else 4
if embeds is not None:
embeds = torch.unbind(embeds)
clip_embed = embeds[0].cpu()
clip_embed_zeroed = embeds[1].cpu()
else:
if image.shape[1] != image.shape[2]:
print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m")
clip_embed = clip_vision.encode_image(image)
neg_image = image_add_noise(image, noise) if noise > 0 else None
if self.is_plus:
clip_embed = clip_embed.penultimate_hidden_states
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states
else:
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0])
else:
clip_embed = clip_embed.image_embeds
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds
else:
clip_embed_zeroed = torch.zeros_like(clip_embed)
clip_embeddings_dim = clip_embed.shape[-1]
self.ipadapter = IPAdapter(
ipadapter,
cross_attention_dim=cross_attention_dim,
output_cross_attention_dim=output_cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens,
is_sdxl=self.is_sdxl,
is_plus=self.is_plus,
is_full=self.is_full,
)
self.ipadapter.to(self.device, dtype=self.dtype)
image_prompt_embeds, uncond_image_prompt_embeds = self.ipadapter.get_image_embeds(clip_embed.to(self.device, self.dtype), clip_embed_zeroed.to(self.device, self.dtype))
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype)
work_model = model.clone()
if attn_mask is not None:
attn_mask = attn_mask.squeeze().to(self.device)
patch_kwargs = {
"number": 0,
"weight": self.weight,
"ipadapter": self.ipadapter,
"dtype": self.dtype,
"cond": image_prompt_embeds,
"uncond": uncond_image_prompt_embeds,
"weight_type": weight_type,
"mask": attn_mask
}
if not self.is_sdxl:
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
set_model_patch_replace(work_model, patch_kwargs, ("input", id))
patch_kwargs["number"] += 1
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
set_model_patch_replace(work_model, patch_kwargs, ("output", id))
patch_kwargs["number"] += 1
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0))
else:
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
patch_kwargs["number"] += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
patch_kwargs["number"] += 1
for index in range(10):
set_model_patch_replace(work_model, patch_kwargs, ("midlle", 0, index))
patch_kwargs["number"] += 1
return (work_model, )
class PrepImageForClipVision:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"padding": ("BOOLEAN", {"default": False}),
"interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],),
"crop_position": (["top", "bottom", "left", "right", "center"],),
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "prep_image"
CATEGORY = "ipadapter"
def prep_image(self, image, padding, interpolation="LANCZOS", crop_position="center", sharpening=0.0):
#add padding to image
if padding:
image = pad_to_square(image)
_, oh, ow, _ = image.shape
crop_size = min(oh, ow)
x = (ow-crop_size) // 2
y = (oh-crop_size) // 2
if "top" in crop_position:
y = 0
elif "bottom" in crop_position:
y = oh-crop_size
elif "left" in crop_position:
x = 0
elif "right" in crop_position:
x = ow-crop_size
x2 = x+crop_size
y2 = y+crop_size
# crop
output = image[:, y:y2, x:x2, :]
output = output.permute([0,3,1,2])
# resize (apparently PIL resize is better than tourchvision interpolate)
imgs = []
for i in range(output.shape[0]):
img = TT.ToPILImage()(output[i])
img = img.resize((224,224), resample=Image.Resampling[interpolation])
imgs.append(TT.ToTensor()(img))
output = torch.stack(imgs, dim=0)
if sharpening > 0:
output = contrast_adaptive_sharpening(output, sharpening)
output = output.permute([0,2,3,1])
return (output,)
class IPAdapterEncoder:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip_vision": ("CLIP_VISION",),
"image_1": ("IMAGE",),
"ipadapter_plus": ("BOOLEAN", { "default": False }),
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"weight_1": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
},
"optional": {
"image_2": ("IMAGE",),
"image_3": ("IMAGE",),
"image_4": ("IMAGE",),
"weight_2": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
"weight_3": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
"weight_4": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
}
}
RETURN_TYPES = ("EMBEDS",)
FUNCTION = "preprocess"
CATEGORY = "ipadapter"
def preprocess(self, clip_vision, image_1, ipadapter_plus, noise, weight_1, image_2=None, image_3=None, image_4=None, weight_2=1.0, weight_3=1.0, weight_4=1.0):
weight_1 *= (0.1 + (weight_1 - 0.1))
weight_1 = 1.19e-05 if weight_1 <= 1.19e-05 else weight_1
weight_2 *= (0.1 + (weight_2 - 0.1))
weight_2 = 1.19e-05 if weight_2 <= 1.19e-05 else weight_2
weight_3 *= (0.1 + (weight_3 - 0.1))
weight_3 = 1.19e-05 if weight_3 <= 1.19e-05 else weight_3
weight_4 *= (0.1 + (weight_4 - 0.1))
weight_5 = 1.19e-05 if weight_4 <= 1.19e-05 else weight_4
image = image_1
weight = [weight_1]*image_1.shape[0]
if image_2 is not None:
if image_1.shape[1:] != image_2.shape[1:]:
image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
image = torch.cat((image, image_2), dim=0)
weight += [weight_2]*image_2.shape[0]
if image_3 is not None:
if image.shape[1:] != image_3.shape[1:]:
image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
image = torch.cat((image, image_3), dim=0)
weight += [weight_3]*image_3.shape[0]
if image_4 is not None:
if image.shape[1:] != image_4.shape[1:]:
image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
image = torch.cat((image, image_4), dim=0)
weight += [weight_4]*image_4.shape[0]
clip_embed = clip_vision.encode_image(image)
neg_image = image_add_noise(image, noise) if noise > 0 else None
if ipadapter_plus:
clip_embed = clip_embed.penultimate_hidden_states
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states
else:
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0])
else:
clip_embed = clip_embed.image_embeds
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds
else:
clip_embed_zeroed = torch.zeros_like(clip_embed)
if any(e != 1.0 for e in weight):
weight = torch.tensor(weight).unsqueeze(-1) if not ipadapter_plus else torch.tensor(weight).unsqueeze(-1).unsqueeze(-1)
clip_embed = clip_embed * weight
output = torch.stack((clip_embed, clip_embed_zeroed))
return( output, )
class IPAdapterApplyEncoded(IPAdapterApply):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter": ("IPADAPTER", ),
"embeds": ("EMBEDS",),
"model": ("MODEL", ),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_type": (["original", "linear", "channel penalty"], ),
},
"optional": {
"attn_mask": ("MASK",),
}
}
class IPAdapterSaveEmbeds:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": {
"embeds": ("EMBEDS",),
"filename_prefix": ("STRING", {"default": "embeds/IPAdapter"})
},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "ipadapter"
def save(self, embeds, filename_prefix):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
file = f"{filename}_{counter:05}_.ipadpt"
file = os.path.join(full_output_folder, file)
torch.save(embeds, file)
return (None, )
class IPAdapterLoadEmbeds:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')]
return {"required": {"embeds": [sorted(files), ]}, }
RETURN_TYPES = ("EMBEDS", )
FUNCTION = "load"
CATEGORY = "ipadapter"
def load(self, embeds):
path = folder_paths.get_annotated_filepath(embeds)
output = torch.load(path).cpu()
return (output, )
NODE_CLASS_MAPPINGS = {
"IPAdapterModelLoader": IPAdapterModelLoader,
"IPAdapterApply": IPAdapterApply,
"IPAdapterApplyEncoded": IPAdapterApplyEncoded,
"PrepImageForClipVision": PrepImageForClipVision,
"IPAdapterEncoder": IPAdapterEncoder,
"IPAdapterSaveEmbeds": IPAdapterSaveEmbeds,
"IPAdapterLoadEmbeds": IPAdapterLoadEmbeds,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"IPAdapterModelLoader": "Load IPAdapter Model",
"IPAdapterApply": "Apply IPAdapter",
"IPAdapterApplyEncoded": "Apply IPAdapter from Encoded",
"PrepImageForClipVision": "Prepare Image For Clip Vision",
"IPAdapterEncoder": "Encode IPAdapter Image",
"IPAdapterSaveEmbeds": "Save IPAdapter Embeds",
"IPAdapterLoadEmbeds": "Load IPAdapter Embeds",
}