-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
273 lines (233 loc) · 11.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import numpy as np
import cv2
import os
import copy
dataset_dir = '/home/yusun/data_drive/dataset/Relative_human'
image_folder = os.path.join(dataset_dir, 'images')
visualiztion = True
#-----------------------------------------------------------------------------------------#
# data loading utils #
#-----------------------------------------------------------------------------------------#
name_dict_chinese = {
'depth_id': {0: '最前排', 1: '第二排', 2: '第三排', 3: '第四排', 4: '第五排', 5: '第六排', 6: '第七排', 7: '第八排', 8: '第九排', 9: '第十排', -1: '深度不明'},
'age': {0: '成年', 1: '青少年', 2: '小孩', 3:'婴幼儿', -1: '年龄不明'},
'body_type': {0: '正常', 1: '微胖', 2: '胖', 3: '强壮'},
'occluded_by_others': {0: '无遮挡', 1: '遮挡'},
'gender': {0: '男', 1: '女', -1:'性别不明'}
}
name_dict = {
'age': {0: 'adult', 1: 'teenager', 2: 'kid', 3:'baby', -1: 'unknown'},
'gender': {0: 'male', 1: 'female', -1:'unknown'}
}
def load_annots(dataset_dir, split_name='val'):
path = os.path.join(dataset_dir, f'{split_name}_annots.npz')
annots = np.load(path, allow_pickle=True)['annots'][()]
return annots
def load_image(image_name):
image_path = os.path.join(image_folder, image_name)
return cv2.imread(image_path)
def print_annots_info(packed_annots):
kp2ds, bboxes, meta_info = packed_annots
print(name_dict)
print('kp2ds', kp2ds)
print('bbox:', bboxes)
print('Depth Layers number:', meta_info[:,0])
print('Age type:', meta_info[:,1])
print('Gender:', meta_info[:,2])
BK_19 = {
'Head_top': 0, 'Nose': 1, 'Neck': 2, 'L_Eye': 3, 'R_Eye': 4, 'L_Shoulder': 5, 'R_Shoulder': 6, 'L_Elbow': 7, 'R_Elbow': 8, 'L_Wrist': 9, 'R_Wrist': 10,\
'L_Hip': 11, 'R_Hip': 12, 'L_Knee':13, 'R_Knee':14,'L_Ankle':15, 'R_Ankle':16,'L_BigToe':17, 'R_BigToe':18
}
OCHuman_19 = {
'R_Shoulder':0, 'R_Elbow':1, 'R_Wrist':2, 'L_Shoulder':3, 'L_Elbow':4, 'L_Wrist':5, \
'R_Hip': 6, 'R_Knee':7, 'R_Ankle':8, 'L_Hip':9, 'L_Knee':10, 'L_Ankle':11, 'Head_top':12, 'Neck':13,\
'R_Ear':14, 'L_Ear':15, 'Nose':16, 'R_Eye':17, 'L_Eye':18
}
Crowdpose_14 = {"L_Shoulder":0, "R_Shoulder":1, "L_Elbow":2, "R_Elbow":3, "L_Wrist":4, "R_Wrist":5,\
"L_Hip":6, "R_Hip":7, "L_Knee":8, "R_Knee":9, "L_Ankle":10, "R_Ankle":11, "Head_top":12, "Neck_LSP":13}
def determine_skeleton_type(img_name, joint):
if len(joint) == 19:
is_BK = len(os.path.basename(img_name).replace('.jpg',''))==7
if is_BK:
skeleton = BK_19
else:
skeleton = OCHuman_19
elif len(joint) == 14:
skeleton = Crowdpose_14
return skeleton
def prepare_annots(annots, img_name):
kp2ds, bboxes, meta_info = [], [], []
for ind, annot in enumerate(annots):
vbox = np.array(annot['bbox']) # rough bbox for visible body parts only
fbox = np.array(annot['bbox_wb']) if 'bbox_wb' in annot else None # bbox for the whole body
bboxes.append([vbox, fbox])
joint, skeleton = None, None
if 'kp2d' in annot:
if annot['kp2d'] is not None:
joint = np.array(annot['kp2d']).reshape((-1,3))
invalid_kp_mask = joint[:,2]==0
joint[invalid_kp_mask] = -2.
joint[:,2] = joint[:,2]>0
skeleton = determine_skeleton_type(img_name, joint)
kp2ds.append([joint, skeleton])
meta_info.append([annot['depth_id'], annot['age'], annot['gender']])
meta_info = np.array(meta_info)
return (kp2ds, bboxes, meta_info)
#-----------------------------------------------------------------------------------------#
# visualization utils #
#-----------------------------------------------------------------------------------------#
relative_age_types = ['adult', 'teen', 'kid', 'baby']
SMPL_24 = {
'Pelvis_SMPL':0, 'L_Hip_SMPL':1, 'R_Hip_SMPL':2, 'Spine_SMPL': 3, 'L_Knee':4, 'R_Knee':5, 'Thorax_SMPL': 6, 'L_Ankle':7, 'R_Ankle':8,'Thorax_up_SMPL':9, \
'L_Toe_SMPL':10, 'R_Toe_SMPL':11, 'Neck': 12, 'L_Collar':13, 'R_Collar':14, 'Jaw':15, 'L_Shoulder':16, 'R_Shoulder':17,\
'L_Elbow':18, 'R_Elbow':19, 'L_Wrist': 20, 'R_Wrist': 21, 'L_Hand':22, 'R_Hand':23
}
SMPL_EXTRA_30 = {
'Nose':24, 'R_Eye':25, 'L_Eye':26, 'R_Ear': 27, 'L_Ear':28, \
'L_BigToe':29, 'L_SmallToe': 30, 'L_Heel':31, 'R_BigToe':32,'R_SmallToe':33, 'R_Heel':34, \
'L_Hand_thumb':35, 'L_Hand_index': 36, 'L_Hand_middle':37, 'L_Hand_ring':38, 'L_Hand_pinky':39, \
'R_Hand_thumb':40, 'R_Hand_index':41,'R_Hand_middle':42, 'R_Hand_ring':43, 'R_Hand_pinky': 44, \
'R_Hip': 45, 'L_Hip':46, 'Neck_LSP':47, 'Head_top':48, 'Pelvis':49, 'Thorax_MPII':50, \
'Spine_H36M':51, 'Jaw_H36M':52, 'Head':53
}
SMPL_ALL_54 = {**SMPL_24, **SMPL_EXTRA_30}
smpl24_connMat = np.array([0,1, 0,2, 0,3, 1,4,4,7,7,10, 2,5,5,8,8,11, 3,6,6,9,9,12,12,15, 12,13,13,16,16,18,18,20,20,22, 12,14,14,17,17,19,19,21,21,23]).reshape(-1, 2)
# joint connection relationship for two hands, two feet, face, tow lsp hips, neck and head
All54_connMat = np.concatenate([smpl24_connMat, np.array([
[20, 35], [20, 36], [20, 37], [20, 38], [20, 39], [21, 40], [21, 41], [21, 42], [21, 43], [21, 44], \
[7, 29], [7, 31], [29, 30], [8, 32], [8, 34], [32, 33], \
[24, 25], [25, 27], [24, 26], [26, 28], \
[45, 49], [45, 5], [46, 49], [46, 4], \
[47, 16], [47, 17], [47, 48], [47, 50], [51, 49], [51, 50], [12, 50], [52, 47], [52, 12], [53, 47], [53, 12]
]) ], 0)
def joint_mapping(source_format, target_format):
mapping = np.ones(len(target_format),dtype=np.int)*-1
for joint_name in target_format:
if joint_name in source_format:
mapping[target_format[joint_name]] = source_format[joint_name]
return np.array(mapping)
def draw_skeleton(image, pts, bones=None, cm=None, label_kp_order=False, r=6):
for i,pt in enumerate(pts):
if len(pt)>1:
if pt[0]>0 and pt[1]>0:
image = cv2.circle(image,(int(pt[0]), int(pt[1])),r,cm,-1)
if label_kp_order and i in bones:
img=cv2.putText(image,str(i),(int(pt[0]), int(pt[1])),cv2.FONT_HERSHEY_COMPLEX,1,(255,215,0),1)
if bones is not None:
set_colors = np.array([cm for i in range(len(bones))]).astype(np.int)
bones = np.concatenate([bones,set_colors],1).tolist()
for line in bones:
pa = pts[line[0]]
pb = pts[line[1]]
if (pa>0).all() and (pb>0).all():
xa,ya,xb,yb = int(pa[0]),int(pa[1]),int(pb[0]),int(pb[1])
image = cv2.line(image,(xa,ya),(xb,yb),(int(line[2]), int(line[3]), int(line[4])), r)
return image
color_table = np.array([
[0.4, 0.6, 1], # blue
[0.8, 0.7, 1], # pink
[0.1, 0.9, 1], # cyan
[0.8, 0.9, 1], # gray
[1, 0.6, 0.4], # orange
[1, 0.7, 0.8], # rose
[1, 0.9, 0.1], # Yellow
[1, 0.9, 0.8], # skin
[0.9, 1, 1], # light blue
[0.9, 0.7, 0.4], # brown
[0.8, 0.7, 1], # purple
[0.8, 0.9, 1], # light blue 2
[0.9, 0.3, 0.1], # red
[0.7, 1, 0.6], # green
[0.7, 0.4, 0.6], # dark purple
[0.3, 0.5, 1], # deep blue
])[:,::-1] * 255
def draw_skeleton_multiperson(image, pts_group, skeletons, colors=None):
if colors is None:
colors = np.array([color_table[i%len(color_table)] for i in range(len(pts_group))])
for pts, skeleton, color in zip(pts_group, skeletons, colors):
if pts is None:
continue
kp2d_mapping = joint_mapping(skeleton, SMPL_ALL_54)
kp2d = pts[kp2d_mapping]
kp2d[kp2d_mapping == -1] = -2
image = draw_skeleton(image, kp2d, bones=All54_connMat, cm=color)
return image
def visualize_2d(image, packed_annots):
kp2ds_info, bboxes, meta_info = packed_annots
kp2ds, skeletons = [kp[0] for kp in kp2ds_info], [kp[1] for kp in kp2ds_info]
vboxes = np.array([bbox[0] for bbox in bboxes]).astype(np.int)
colors = np.array([color_table[i%len(color_table)] for i in range(len(kp2ds))])
skeleton_image = draw_skeleton_multiperson(image, kp2ds, skeletons, colors=colors)
for ind, vbox in enumerate(vboxes):
#cv2.rectangle(image, tuple(vbox[:2]), tuple(vbox[2:]), tuple(colors[ind]), 2)
depth, age, gender = meta_info[ind]
info = 'D{}, {}, {}'.format(depth, name_dict['age'][age], name_dict['gender'][gender])
cv2.putText(image, info, tuple(vbox[:2]+np.array([0,24])), cv2.FONT_HERSHEY_COMPLEX, 1, tuple(colors[ind]), 2)
cv2.imshow('skeleton', skeleton_image)
cv2.waitKey(0)
def calc_crop_bbox(kp2ds, expand_ratio=np.array([1.1,1.2])):
vis_masks = (kp2ds>0).sum(-1)>1
bboxes = np.zeros((len(kp2ds), 3, 2), dtype=np.int)
for ind, kp2d in enumerate(kp2ds):
left = kp2d[vis_masks[ind],0].min()
right = kp2d[vis_masks[ind],0].max()
top = kp2d[vis_masks[ind],1].min()
bottom = kp2d[vis_masks[ind],1].max()
center = np.array([(left+right)/2, (top+bottom)/2])
width_height = np.array([right-left,bottom-top])*expand_ratio
ltrbxy = np.array([center-width_height/2, center+width_height/2, center])
bboxes[ind] = ltrbxy
return bboxes
def visualize_3d(image, packed_annots, interactive_show=True):
try:
import vedo
except:
os.system('pip install vedo')
import vedo
plt = vedo.Plotter(bg=[255,255,255], axes=1, offscreen=not interactive_show)
kp2ds_info, bboxes, meta_info = packed_annots
if kp2ds_info[0][0] is None:
return
kp2ds = np.array([kp[0] for kp in kp2ds_info])
skeletons = [kp[1] for kp in kp2ds_info]
bboxes = calc_crop_bbox(kp2ds)
colors = np.array([color_table[i%len(color_table)] for i in range(len(kp2ds))])
height = image.shape[0]
depth_interval = 300
pic = vedo.Picture(image[:,:,::-1])
pic.z(-(meta_info[:,0].max()+1)*depth_interval)
plt += pic
for ind, bbox in enumerate(bboxes):
(l, t), (r, b), (cx, cy) = bbox[0], bbox[1], bbox[2]
crop_image_patch = copy.deepcopy(image[t:b,l:r])
kp2d = kp2ds[ind]
kp2d[:,0] -= l
kp2d[:,1] -= t
skeleton_image = draw_skeleton_multiperson(crop_image_patch, [kp2d], [skeletons[ind]], colors=[colors[ind]])
depth, age, gender = meta_info[ind]
#info = '{}, {}'.format(name_dict['age'][age], name_dict['gender'][gender])
#cv2.putText(skeleton_image, info, (30,30), cv2.FONT_HERSHEY_COMPLEX, 1, tuple(colors[ind]), 2)
crop_h, crop_w = crop_image_patch.shape[:2]
z = -depth*depth_interval
x = cx - crop_w / 2
y = height-cy-crop_h/2
depth_text = 'DL={}'.format(depth)
text = vedo.Text3D(depth_text, (cx-100,y+crop_h+100,z),s=40,depth=0.2)
plt += text
pic = vedo.Picture(skeleton_image[:,:,::-1])
pic.z(z).x(x).y(y)
plt += pic
plt.show()
plt.close()
def main():
annots = load_annots(dataset_dir, split_name='train')
for example_image_name in ['6182308.jpg']: #list(annots.keys())
print(example_image_name)
packed_annots = prepare_annots(annots[example_image_name], example_image_name)
#print_annots_info(packed_annots)
if visualiztion:
image = load_image(example_image_name)
visualize_2d(copy.deepcopy(image), packed_annots)
visualize_3d(copy.deepcopy(image), packed_annots)
if __name__ == '__main__':
main()