-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
388 lines (332 loc) · 16.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright (c) 2022 IDEA. All Rights Reserved.
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os, sys
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
from util.get_param_dicts import get_param_dict
from util.logger import setup_logger
from util.slconfig import DictAction, SLConfig
from util.utils import ModelEma, BestMetricHolder
import util.misc as utils
import datasets
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch, test
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--config_file', '-c', type=str, required=True)
parser.add_argument('--options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file.')
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str, default='/comp_robot/cv_public_dataset/COCO2017/')
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--fix_size', action='store_true')
# training parameters
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--note', default='',
help='add some notes to the experiment')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--pretrain_model_path', help='load from other checkpoint')
parser.add_argument('--finetune_ignore', type=str, nargs='+')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--test', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--find_unused_params', action='store_true')
parser.add_argument('--save_results', action='store_true')
parser.add_argument('--save_log', action='store_true')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--rank', default=0, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
parser.add_argument('--amp', action='store_true',
help="Train with mixed precision")
return parser
def build_model_main(args):
# we use register to maintain models from catdet6 on.
from models.registry import MODULE_BUILD_FUNCS
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
model, criterion, postprocessors = build_func(args)
return model, criterion, postprocessors
def main(args):
utils.init_distributed_mode(args)
# load cfg file and update the args
print("Loading config file from {}".format(args.config_file))
time.sleep(args.rank * 0.02)
cfg = SLConfig.fromfile(args.config_file)
if args.options is not None:
cfg.merge_from_dict(args.options)
if args.rank == 0:
save_cfg_path = os.path.join(args.output_dir, "config_cfg.py")
cfg.dump(save_cfg_path)
save_json_path = os.path.join(args.output_dir, "config_args_raw.json")
with open(save_json_path, 'w') as f:
json.dump(vars(args), f, indent=2)
cfg_dict = cfg._cfg_dict.to_dict()
args_vars = vars(args)
for k,v in cfg_dict.items():
if k not in args_vars:
setattr(args, k, v)
else:
raise ValueError("Key {} can used by args only".format(k))
# update some new args temporally
if not getattr(args, 'use_ema', None):
args.use_ema = False
if not getattr(args, 'debug', None):
args.debug = False
# setup logger
os.makedirs(args.output_dir, exist_ok=True)
logger = setup_logger(output=os.path.join(args.output_dir, 'info.txt'), distributed_rank=args.rank, color=False, name="detr")
logger.info("git:\n {}\n".format(utils.get_sha()))
logger.info("Command: "+' '.join(sys.argv))
if args.rank == 0:
save_json_path = os.path.join(args.output_dir, "config_args_all.json")
with open(save_json_path, 'w') as f:
json.dump(vars(args), f, indent=2)
logger.info("Full config saved to {}".format(save_json_path))
logger.info('world size: {}'.format(args.world_size))
logger.info('rank: {}'.format(args.rank))
logger.info('local_rank: {}'.format(args.local_rank))
logger.info("args: " + str(args) + '\n')
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build model
model, criterion, postprocessors = build_model_main(args)
wo_class_error = False
model.to(device)
# ema
if args.use_ema:
ema_m = ModelEma(model, args.ema_decay)
else:
ema_m = None
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info('number of params:'+str(n_parameters))
logger.info("params:\n"+json.dumps({n: p.numel() for n, p in model.named_parameters() if p.requires_grad}, indent=2))
param_dicts = get_param_dict(args, model_without_ddp)
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, 1, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
if args.onecyclelr:
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=args.lr, steps_per_epoch=len(data_loader_train), epochs=args.epochs, pct_start=0.2)
elif args.multi_step_lr:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_drop_list)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if os.path.exists(os.path.join(args.output_dir, 'checkpoint.pth')):
args.resume = os.path.join(args.output_dir, 'checkpoint.pth')
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if args.use_ema:
if 'ema_model' in checkpoint:
ema_m.module.load_state_dict(utils.clean_state_dict(checkpoint['ema_model']))
else:
del ema_m
ema_m = ModelEma(model, args.ema_decay)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if (not args.resume) and args.pretrain_model_path:
checkpoint = torch.load(args.pretrain_model_path, map_location='cpu')['model']
from collections import OrderedDict
_ignorekeywordlist = args.finetune_ignore if args.finetune_ignore else []
ignorelist = []
def check_keep(keyname, ignorekeywordlist):
for keyword in ignorekeywordlist:
if keyword in keyname:
ignorelist.append(keyname)
return False
return True
logger.info("Ignore keys: {}".format(json.dumps(ignorelist, indent=2)))
_tmp_st = OrderedDict({k:v for k, v in utils.clean_state_dict(checkpoint).items() if check_keep(k, _ignorekeywordlist)})
_load_output = model_without_ddp.load_state_dict(_tmp_st, strict=False)
logger.info(str(_load_output))
if args.use_ema:
if 'ema_model' in checkpoint:
ema_m.module.load_state_dict(utils.clean_state_dict(checkpoint['ema_model']))
else:
del ema_m
ema_m = ModelEma(model, args.ema_decay)
if args.eval:
os.environ['EVAL_FLAG'] = 'TRUE'
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir, wo_class_error=wo_class_error, args=args)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()} }
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
return
print("Start training")
start_time = time.time()
best_map_holder = BestMetricHolder(use_ema=args.use_ema)
for epoch in range(args.start_epoch, args.epochs):
epoch_start_time = time.time()
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm, wo_class_error=wo_class_error, lr_scheduler=lr_scheduler, args=args, logger=(logger if args.save_log else None), ema_m=ema_m)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
if not args.onecyclelr:
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.save_checkpoint_interval == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
weights = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}
if args.use_ema:
weights.update({
'ema_model': ema_m.module.state_dict(),
})
utils.save_on_master(weights, checkpoint_path)
# eval
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir,
wo_class_error=wo_class_error, args=args, logger=(logger if args.save_log else None)
)
map_regular = test_stats['coco_eval_bbox'][0]
_isbest = best_map_holder.update(map_regular, epoch, is_ema=False)
if _isbest:
checkpoint_path = output_dir / 'checkpoint_best_regular.pth'
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {
**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
}
# eval ema
if args.use_ema:
ema_test_stats, ema_coco_evaluator = evaluate(
ema_m.module, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir,
wo_class_error=wo_class_error, args=args, logger=(logger if args.save_log else None)
)
log_stats.update({f'ema_test_{k}': v for k,v in ema_test_stats.items()})
map_ema = ema_test_stats['coco_eval_bbox'][0]
_isbest = best_map_holder.update(map_ema, epoch, is_ema=True)
if _isbest:
checkpoint_path = output_dir / 'checkpoint_best_ema.pth'
utils.save_on_master({
'model': ema_m.module.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats.update(best_map_holder.summary())
ep_paras = {
'epoch': epoch,
'n_parameters': n_parameters
}
log_stats.update(ep_paras)
try:
log_stats.update({'now_time': str(datetime.datetime.now())})
except:
pass
epoch_time = time.time() - epoch_start_time
epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
log_stats['epoch_time'] = epoch_time_str
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
# remove the copied files.
copyfilelist = vars(args).get('copyfilelist')
if copyfilelist and args.local_rank == 0:
from datasets.data_util import remove
for filename in copyfilelist:
print("Removing: {}".format(filename))
remove(filename)
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)