Skip to content

Latest commit

 

History

History
471 lines (310 loc) · 9.48 KB

File metadata and controls

471 lines (310 loc) · 9.48 KB

0/1 Knapsack Problem

0-1 Knapsack Problem using best first branch and bound method Returns maxprofit with list storing the index position of the items in the best solution. The profit is maximized while staying under the weight limit. This program uses a priority queue to store the nodes ordered by best bound, the node with the highest bound value is returned when removing from the priority queue. The best first approach arrives at an optimal solition faster than breadth first search.

Algorithm:

- Sort all items in decreasing order of ratio of value per unit weight so that an upper bound can be computed using Greedy Approach.
- Initialize maximum profit, maxProfit = 0
- Create an empty queue, Q.
- Create a dummy node of decision tree and enqueue it to Q. 
- Profit and weight of dummy node are 0.
- Do following while Q is not empty.
- Extract an item from Q. Let the extracted item be u.
- Compute profit of next level node. If the profit is more than maxProfit, then update maxProfit.
- Compute bound of next level node. If bound is more than maxProfit, then add next level node to Q.
- Consider the case when next level node is not considered as part of solution and add a node to queue with level as next, but weight and profit without considering next level nodes.

Implementation:

C

#include<stdio.h>
int max(int a, int b) {
   if(a>b){
      return a;
   } else {
      return b;
   }
}
int knapsack(int W, int wt[], int val[], int n) {
   int i, w;
   int knap[n+1][W+1];
   for (i = 0; i <= n; i++) {
      for (w = 0; w <= W; w++) {
         if (i==0 || w==0)
            knap[i][w] = 0;
         else if (wt[i-1] <= w)
            knap[i][w] = max(val[i-1] + knap[i-1][w-wt[i-1]], knap[i-1][w]);
         else
            knap[i][w] = knap[i-1][w];
      }
   }
   return knap[n][W];
}
int main() {
   int val[] = {20, 25, 40};
   int wt[] = {25, 20, 30};
   int W = 50;
   int n = sizeof(val)/sizeof(val[0]);
   printf("The solution is : %d", knapsack(W, wt, val, n));
   return 0;
}

Python

#example
# items are ordered by price per weight
n = 4
W = 16
p = [40, 30, 50, 10]
w = [2, 5, 10, 5]
p_per_weight = [20, 6, 5, 2]

class Priority_Queue:
    def __init__(self):
        self.pqueue = []
        self.length = 0
    
    def insert(self, node):
        for i in self.pqueue:
            get_bound(i)
        i = 0
        while i < len(self.pqueue):
            if self.pqueue[i].bound > node.bound:
                break
            i+=1
        self.pqueue.insert(i,node)
        self.length += 1

    def print_pqueue(self):
        for i in list(range(len(self.pqueue))):
            print ("pqueue",i, "=", self.pqueue[i].bound)
                    
    def remove(self):
        try:
            result = self.pqueue.pop()
            self.length -= 1
        except: 
            print("Priority queue is empty, cannot pop from empty list.")
        else:
            return result
        
class Node:
    def __init__(self, level, profit, weight):
        self.level = level
        self.profit = profit
        self.weight = weight
        self.items = []
        
            
def get_bound(node):
    if node.weight >= W:
        return 0
    else:
        result = node.profit
        j = node.level + 1
        totweight = node.weight
        while j <= n-1 and totweight + w[j] <= W:
            totweight = totweight + w[j]
            result = result + p[j]
            j+=1
        k = j
        if k<=n-1:
            result = result + (W - totweight) * p_per_weight[k]
        return result


nodes_generated = 0
pq = Priority_Queue()

v = Node(-1, 0, 0) 
nodes_generated+=1
maxprofit = 0 # maxprofit initialized to $0
v.bound = get_bound(v)

pq.insert(v)

while pq.length != 0:
    
    v = pq.remove() #remove node with best bound

    if v.bound > maxprofit: #check if node is still promising
        #set u to the child that includes the next item
        u = Node(0, 0, 0)
        nodes_generated+=1
        u.level = v.level + 1
        u.profit = v.profit + p[u.level]
        u.weight = v.weight + w[u.level]
        #take v's list and add u's list
        u.items = v.items.copy()
        u.items.append(u.level) # adds next item

        if u.weight <= W and u.profit > maxprofit: 
            #update maxprofit
            maxprofit = u.profit
            bestitems = u.items
        u.bound = get_bound(u)

        if u.bound > maxprofit:
            pq.insert(u)

        #set u to the child that does not include the next item
        u2 = Node(u.level, v.profit, v.weight)
        nodes_generated+=1
        u2.bound = get_bound(u2)
        u2.items = v.items.copy()
        if u2.bound > maxprofit:
            pq.insert(u2)


print("\nEND maxprofit = ", maxprofit, "nodes generated = ", nodes_generated)
print("bestitems = ", bestitems)

JAVA

/* A Naive recursive implementation of 0-1 Knapsack problem */

class Knapsack { 

  

    // A utility function that returns maximum of two integers 

    static int max(int a, int b) { return (a > b) ? a : b; } 

  

    // Returns the maximum value that can  

    // be put in a knapsack of capacity W 

    static int knapSack(int W, int wt[], int val[], int n) 

    { 

        // Base Case 

        if (n == 0 || W == 0) 

            return 0; 

  

        // If weight of the nth item is more  

        // than Knapsack capacity W, then 

        // this item cannot be included in the optimal solution 

        if (wt[n - 1] > W) 

            return knapSack(W, wt, val, n - 1); 

  

        // Return the maximum of two cases: 

        // (1) nth item included 

        // (2) not included 

        else

            return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), 

                       knapSack(W, wt, val, n - 1)); 

    } 

  

    // Driver program to test above function 

    public static void main(String args[]) 

    { 

        int val[] = new int[] { 60, 100, 120 }; 

        int wt[] = new int[] { 10, 20, 30 }; 

        int W = 50; 

        int n = val.length; 

        System.out.println(knapSack(W, wt, val, n)); 

    } 
} 


~~~
## C#
```C#
~~~
using System;
class solution {
 

    // A utility function that returns

    // maximum of two integers

    static int max(int a, int b) 

    { 

         return (a > b) ? a : b; 

    }
 

    // Returns the maximum value that can

    // be put in a knapsack of capacity W

    static int knapSack(int W, int[] wt, 

                        int[] val, int n)

    {
 

        // Base Case

        if (n == 0 || W == 0)

            return 0;
 

        // If weight of the nth item is

        // more than Knapsack capacity W,

        // then this item cannot be

        // included in the optimal solution

        if (wt[n - 1] > W)

            return knapSack(W, wt, 

                            val, n - 1);
 

        // Return the maximum of two cases:

        // (1) nth item included

        // (2) not included

        else

            return max(val[n - 1]

                       + knapSack(W - wt[n - 1], wt,

                                  val, n - 1),

                       knapSack(W, wt, val, n - 1));

    }
 

    // Driver code

    public static void Main()

    {

        int[] val = new int[] { 60, 100, 120 };

        int[] wt = new int[] { 10, 20, 30 };

        int W = 50;

        int n = val.Length;
 

        Console.WriteLine(knapSack(W, wt, val, n));

    }
}










## CPP
```cpp

// C++ program to solve fractional
// Knapsack Problem
#include <bits/stdc++.h>
  
using namespace std;
  
// Structure for an item which stores
// weight & corresponding value of Item
struct Item {
    int value, weight;
  
    // Constructor
    Item(int value, int weight)
        : value(value), weight(weight)
    {
    }
};
  
// Comparison function to sort Item
// according to val/weight ratio
bool cmp(struct Item a, struct Item b)
{
    double r1 = (double)a.value / a.weight;
    double r2 = (double)b.value / b.weight;
    return r1 > r2;
}
  
// Main greedy function to solve problem
double fractionalKnapsack(struct Item arr[],
                          int N, int size)
{
    // Sort Item on basis of ratio
    sort(arr, arr + size, cmp);
  
    // Current weight in knapsack
    int curWeight = 0;
  
    // Result (value in Knapsack)
    double finalvalue = 0.0;
  
    // Looping through all Items
    for (int i = 0; i < size; i++) {
  
        // If adding Item won't overflow,
        // add it completely
        if (curWeight + arr[i].weight <= N) {
            curWeight += arr[i].weight;
            finalvalue += arr[i].value;
        }
  
        // If we can't add current Item,
        // add fractional part of it
        else {
            int remain = N - curWeight;
            finalvalue += arr[i].value
                          * ((double)remain
                             / arr[i].weight);
  
            break;
        }
    }
  
    // Returning final value
    return finalvalue;
}
  
// Driver Code
int main()
{
    // Weight of knapsack
    int N = 60;
  
    // Given weights and values as a pairs
    Item arr[] = { { 100, 10 },
                   { 280, 40 },
                   { 120, 20 },
                   { 120, 24 } };
  
    int size = sizeof(arr) / sizeof(arr[0]);
  
    // Function Call
    cout << "Maximum profit earned = "
         << fractionalKnapsack(arr, N, size);
    return 0;
}

Time complexity: O(2*n)

Auxiliary space: O(2*n)

Applications of Knapsack problem

  • Machine Scheduling
  • Space Allocation
  • Asset Opitmization