-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
150 lines (121 loc) · 6.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (C) 2024 by mao jiashun and wang jianming
# Copying and distribution is allowed under AGPLv3 license
# This script implements the training of a WGAN (either WGAN-CP or WGAN-GP) on molecular data,
# leveraging graph neural networks (GNN) for 3D molecular structure representations and SMILES-based data.
# The model involves an encoder-decoder architecture and uses datasets of SMILES strings for training.
import os
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence
from torch.autograd import Variable
import numpy as np
import sys
sys.path.append(r'/home/jmwang/WorkSpace/GENiPPI/') # Append custom workspace path for loading modules
from gPPMol.nets import EncoderCNN, DecoderRNN, GNN_Model # Importing necessary neural network models
from gPPMol.utils import * # Import utility functions from gPPMol package
from tqdm import tqdm # Progress bar for training
import argparse
import multiprocessing # For parallel processing
from gPPMol.ppi_processing.collate_fn import collate_fn # Import custom collate function for dataloader
from gPPMol.ppi_processing.Prepare_Input import Prepare_Input # For preparing input data
from gPPMol.ppi_processing.Single_Dataset import Single_Dataset # Dataset class for processing inputs
from torch.utils.data import DataLoader # Dataloader for batching and parallel processing
from gPPMol.models_3d.wgan_clipping import WGAN_CP # Import WGAN model with clipping
from gPPMol.models_3d.wgan_gradient_penalty import WGAN_GP # Import WGAN model with gradient penalty
# Set the batch size and create directory to save models
batch_size = 8
savedir = "model"
os.makedirs(savedir, exist_ok=True) # Create directory if it doesn't exist
# Set the device to CUDA if available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else 'cpu'
print(device) # Print the selected device (GPU/CPU)
is_cuda = True if device == "cuda" else False
# Load the molecular structure and prepare it for processing
structure_path = "./interface.pdb" # Path to the PDB structure file
input_file = Prepare_Input(structure_path) # Prepare the input using a custom class
list_npz = [input_file] # List of prepared inputs
# Load the dataset and create a DataLoader for batching data
dataset = Single_Dataset(list_npz)
dataloader = DataLoader(dataset, 1, shuffle=False, num_workers=1, drop_last=False, collate_fn=collate_fn)
# Load the first batch of data from the DataLoader
for batch_idx, sample in enumerate(dataloader):
H, A1, A2, V, Atom_count = sample # Load graph data (H, adjacency matrices A1, A2, V, Atom count)
break
# Load SMILES strings and corresponding labels
smiles = np.load("./gPPMol/example.npy") # Load SMILES data
y = np.load("./gPPMol/example_y.npy") # Load labels for SMILES strings
file_id = 0 # Default file identifier
# Check if a file ID is passed via command line arguments
if len(sys.argv) > 1:
file_id = sys.argv[1]
# Write the file ID to a text file
with open("./gPPMol/file_id.txt", "w") as f:
f.write(str(file_id) + "\n")
print("write file_id:", file_id)
# Importing additional utilities for SMILES decoding and data generation
from gPPMol.comgen import decode_smiles
from gPPMol.gene import queue_datagen
# Set up multiprocessing for data generation
multiproc = multiprocessing.Pool(1)
my_gen = queue_datagen(smiles, y, batch_size=batch_size, mp_pool=multiproc) # Data generator
# Define parameters for the GNN model
params = {
'n_graph_layer': 4, # Number of graph layers in GNN
'd_graph_layer': 140, # Number of nodes per graph layer
'n_FC_layer': 4, # Number of fully connected layers
'd_FC_layer': 128, # Number of nodes in each fully connected layer
'dropout_rate': 0.3, # Dropout rate for regularization
'initial_mu': 0.0, # Initial mean for weight initialization
'initial_dev': 1.0, # Initial deviation for weight initialization
'N_atom_features': 28, # Number of atom features (fixed)
'final_dimension': 4 * 4 * 4 # Final feature map dimension (size of feature vector)
}
# Instantiate the GNN model and Encoder-Decoder networks
gnn_interface_model = GNN_Model(params) # Graph Neural Network for interface modeling
encoder = EncoderCNN(9) # CNN-based encoder for 3D data with 9 input channels
decoder = DecoderRNN(512, 1024, 37, 1) # RNN-based decoder for sequence generation
# Move models to the device (GPU/CPU)
gnn_interface_model.to(device)
encoder.to(device)
decoder.to(device)
# Set models to training mode
gnn_interface_model.train()
encoder.train()
decoder.train()
# Select the model type (WGAN-CP or WGAN-GP)
model_name = 'WGAN-CP'
channels = 9 # Number of input channels
generator_iters = 50000 # Number of iterations for training the generator
# Instantiate the WGAN model based on the selected type
if model_name == 'WGAN-CP':
model = WGAN_CP(channels, is_cuda, generator_iters, gnn_interface_model, encoder, decoder, device, batch_size=8)
elif model_name == 'WGAN-GP':
model = WGAN_GP(channels, is_cuda, generator_iters, gnn_interface_model, encoder, decoder, device, batch_size=8)
else:
print("Model type non-existing. Try again.") # Error message if invalid model type is specified
exit(-1)
# Load datasets to train and test loaders (data is generated using queue_datagen)
train_loader = my_gen
test_loader = my_gen
# Feature extraction is commented out for now
# feature_extraction = FeatureExtractionTest(train_loader, test_loader, args.cuda, args.batch_size)
# Control flow for training and fine-tuning
is_train = 'True'
load_D = './discriminator.pkl' # Path to load a pre-trained discriminator
load_G = './generator.pkl' # Path to load a pre-trained generator
is_fineturn = 0 # Fine-tuning flag
# Check if fine-tuning flag is passed via command line arguments
if len(sys.argv) > 2:
is_fineturn = int(sys.argv[2])
# Start training if is_train is set to True
if is_train == 'True':
if is_fineturn:
model.load_model() # Load pre-trained models if fine-tuning
model.train(train_loader, H, A1, A2, V, Atom_count) # Train the model
# If not training, start evaluation
else:
captions1, captions2 = model.evaluate(test_loader, load_D, load_G, H, A1, A2, V, Atom_count) # Evaluate the model
aa = decode_smiles(captions1, captions2) # Decode the generated SMILES strings
print(aa) # Print the decoded SMILES strings
# Close the multiprocessing pool after processing is complete
multiproc.close()