-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
105 lines (60 loc) · 4.97 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
# mestrado
Projeto de pesquisa *"Detectores acústicos automáticos de espécies de aves noturnas em seu bioma natural"* do Departamento de Engenharia Mecânica da Escola Politécnica (Laboratório de Acústica e Meio Ambiente).
Orientador: Prof. Dr. Linilson Padovese
Co-orientador: Prof. Dr. Paulo Hubert
```{r, echo = FALSE, fig.align="center"}
knitr::include_graphics("https://github.com/Athospd/mestrado/blob/master/inst/img/wavesurfer_example.png?raw=true")
```
## Notas
> "There is the need for shared datasets with annotations of a wide variety of calls for a large number of species if methods that are suitable for conservation work are to be developed."
> --- [Automated birdsong recognition in complex acoustic environments: a review](https://onlinelibrary.wiley.com/doi/full/10.1111/jav.01447)
## Referências
### Fontes de dados
- [https://www.xeno-canto.org/](https://www.xeno-canto.org/) **X**
- [https://www.wikiaves.com.br](https://www.wikiaves.com.br) **X**
- [https://www2.ib.unicamp.br/fnjv/](https://www2.ib.unicamp.br/fnjv/) **X**
- [https://www.imageclef.org/lifeclef/2016/bird](https://www.imageclef.org/lifeclef/2016/bird)
- [http://sabiod.univ-tln.fr/nips4b/challenge1.html](http://sabiod.univ-tln.fr/nips4b/challenge1.html)
- [https://www.kaggle.com/c/mlsp-2013-birds](https://www.kaggle.com/c/mlsp-2013-birds)
### Artigos de bioacústica
- [https://pdfs.semanticscholar.org/74e1/fd40d99b811e7a6b2fa897c9d72b471aaf13.pdf](https://pdfs.semanticscholar.org/74e1/fd40d99b811e7a6b2fa897c9d72b471aaf13.pdf)
- [https://lis-unicamp.github.io/wp-content/uploads/2017/07/LeandroTacioli-Mestrado.pdf](https://lis-unicamp.github.io/wp-content/uploads/2017/07/LeandroTacioli-Mestrado.pdf) (Acesso em 2019-04-14)
- [file:///C:/Users/ap_da/OneDrive/Documents/mestrado/ignorar/automated%20birdsong%20review.pdf](file:///C:/Users/ap_da/OneDrive/Documents/mestrado/ignorar/automated%20birdsong%20review.pdf) (Acesso em 2019-05-27)
- [Experimental test of birdcall detection by autonomous recorder units and by human observers using broadcast](https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.4775) (Acesso em 2020-11-19)
- [Bird population density estimated from acoustic signals]()
### Algoritmos de identificação de músicas
- [https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition](https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition)
- [https://royvanrijn.com/blog/2010/06/creating-shazam-in-java/](https://royvanrijn.com/blog/2010/06/creating-shazam-in-java/)
- [https://laplacian.wordpress.com/2009/01/10/how-shazam-works/](https://laplacian.wordpress.com/2009/01/10/how-shazam-works/)
- [https://github.com/unixjazz/free_shazam](https://github.com/unixjazz/free_shazam)
### Machine Learning
- [https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837](https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837) (Acesso em 2019-04-14)
- [https://github.com/douglas125/SpeechCmdRecognition](https://github.com/douglas125/SpeechCmdRecognition) (Acesso em 2019-04-14)
- [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179403](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179403) (Acesso em 2019-04-14)
- [http://www.naturalhistory.com.br/wasis.html](http://www.naturalhistory.com.br/wasis.html) (Acesso em 2019-04-14)
- [http://c4dm.eecs.qmul.ac.uk/papers/2017/OSA_article_HPamula_etal_04082017.pdf](http://c4dm.eecs.qmul.ac.uk/papers/2017/OSA_article_HPamula_etal_04082017.pdf) (Acesso em 2019-07-02)
- [http://ceur-ws.org/Vol-1609/16090560.pdf](http://ceur-ws.org/Vol-1609/16090560.pdf) (Acesso em 2019-07-06)
- [https://arxiv.org/ftp/arxiv/papers/1609/1609.08408.pdf](https://arxiv.org/ftp/arxiv/papers/1609/1609.08408.pdf) (Acesso em 2019-07-06)
- [https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html](https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html)
- [https://blogs.rstudio.com/tensorflow/posts/2019-02-07-audio-background/](https://blogs.rstudio.com/tensorflow/posts/2019-02-07-audio-background/) (Acesso em 2019-08-01)
- [https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10584&context=theses](https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10584&context=theses) (Acesso em 2020-11-06)
### Pacotes de R
- [https://rethomics.github.io/zeitgebr.html](https://rethomics.github.io/zeitgebr.html)
- [https://marce10.github.io/warbleR/](https://marce10.github.io/warbleR/)
## Termos relacionados
- HMM: Hidden Markov Chains
- MFCC: Mel Frequency Cepstral Coefficients
- LPC: Linear Predictive Coding
- LPCC: Linear Prediction Cepstral Coefficients
- PLP: Perceptual Linear Predictive
- Deep Learning