forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvision_transformer.py
634 lines (534 loc) · 23.5 KB
/
vision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from paddle.nn.initializer import Constant
from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.core.workspace import register, serializable
from .transformer_utils import zeros_, DropPath, Identity
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
window_size=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=False)
if qkv_bias:
self.q_bias = self.create_parameter(
shape=([dim]), default_initializer=zeros_)
self.v_bias = self.create_parameter(
shape=([dim]), default_initializer=zeros_)
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1) + 3
self.relative_position_bias_table = self.create_parameter(
shape=(self.num_relative_distance, num_heads),
default_initializer=zeros_) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = paddle.arange(window_size[0])
coords_w = paddle.arange(window_size[1])
coords = paddle.stack(paddle.meshgrid(
[coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
coords_flatten_1 = paddle.unsqueeze(coords_flatten, 2)
coords_flatten_2 = paddle.unsqueeze(coords_flatten, 1)
relative_coords = coords_flatten_1.clone() - coords_flatten_2.clone(
)
#relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Wh
relative_coords = relative_coords.transpose(
(1, 2, 0)) #.contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[
0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
paddle.zeros(shape=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(
-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index",
relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.0)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None):
x_shape = paddle.shape(x)
N, C = x_shape[1], x_shape[2]
qkv_bias = None
if self.q_bias is not None:
qkv_bias = paddle.concat(
(self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias))
qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape((-1, N, 3, self.num_heads,
C // self.num_heads)).transpose((2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
if self.relative_position_bias_table is not None:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.reshape([-1])].reshape([
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1
]) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.transpose(
(2, 0, 1)) #.contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
window_size=None,
init_values=None,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-5):
super().__init__()
self.norm1 = nn.LayerNorm(dim, epsilon=1e-6)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
if init_values is not None:
self.gamma_1 = self.create_parameter(
shape=([dim]), default_initializer=Constant(value=init_values))
self.gamma_2 = self.create_parameter(
shape=([dim]), default_initializer=Constant(value=init_values))
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias=None):
if self.gamma_1 is None:
x = x + self.drop_path(
self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=[224, 224],
patch_size=16,
in_chans=3,
embed_dim=768):
super().__init__()
self.num_patches_w = img_size[0] // patch_size
self.num_patches_h = img_size[1] // patch_size
num_patches = self.num_patches_w * self.num_patches_h
self.patch_shape = (img_size[0] // patch_size,
img_size[1] // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2D(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
@property
def num_patches_in_h(self):
return self.img_size[1] // self.patch_size
@property
def num_patches_in_w(self):
return self.img_size[0] // self.patch_size
def forward(self, x, mask=None):
B, C, H, W = x.shape
return self.proj(x)
class RelativePositionBias(nn.Layer):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1) + 3
self.relative_position_bias_table = self.create_parameter(
shape=(self.num_relative_distance, num_heads),
default_initialize=zeros_)
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = paddle.arange(window_size[0])
coords_w = paddle.arange(window_size[1])
coords = paddle.stack(paddle.meshgrid(
[coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = coords.flatten(1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:,
None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.transpos(
(1, 2, 0)) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
paddle.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(
-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.transpose((2, 0, 1)) # nH, Wh*Ww, Wh*Ww
def get_sinusoid_encoding_table(n_position, d_hid, token=False):
''' Sinusoid position encoding table '''
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if token:
sinusoid_table = np.concatenate(
[sinusoid_table, np.zeros([1, d_hid])], dim=0)
return paddle.to_tensor(sinusoid_table, dtype=paddle.float32).unsqueeze(0)
@register
@serializable
class VisionTransformer(nn.Layer):
""" Vision Transformer with support for patch input
"""
def __init__(self,
img_size=[672, 1092],
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer='nn.LayerNorm',
init_values=None,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
epsilon=1e-5,
final_norm=False,
pretrained=None,
out_indices=[3, 5, 7, 11],
use_abs_pos_emb=False,
use_sincos_pos_emb=True,
with_fpn=True,
use_checkpoint=False,
**args):
super().__init__()
self.img_size = img_size
self.embed_dim = embed_dim
self.with_fpn = with_fpn
self.use_checkpoint = use_checkpoint
self.use_sincos_pos_emb = use_sincos_pos_emb
self.use_rel_pos_bias = use_rel_pos_bias
self.final_norm = final_norm
if use_checkpoint:
paddle.seed(0)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim)
self.pos_w = self.patch_embed.num_patches_in_w
self.pos_h = self.patch_embed.num_patches_in_h
self.cls_token = self.create_parameter(
shape=(1, 1, embed_dim),
default_initializer=paddle.nn.initializer.Constant(value=0.))
if use_abs_pos_emb:
self.pos_embed = self.create_parameter(
shape=(1, self.pos_w * self.pos_h + 1, embed_dim),
default_initializer=paddle.nn.initializer.TruncatedNormal(
std=.02))
elif use_sincos_pos_emb:
pos_embed = self.build_2d_sincos_position_embedding(embed_dim)
self.pos_embed = pos_embed
self.pos_embed = self.create_parameter(shape=pos_embed.shape)
self.pos_embed.set_value(pos_embed.numpy())
self.pos_embed.stop_gradient = True
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
dpr = np.linspace(0, drop_path_rate, depth)
self.blocks = nn.LayerList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.patch_shape
if use_rel_pos_bias else None,
epsilon=epsilon) for i in range(depth)
])
self.pretrained = pretrained
self.init_weight()
assert len(out_indices) <= 4, ''
self.out_indices = out_indices
self.out_channels = [embed_dim for _ in range(len(out_indices))]
self.out_strides = [4, 8, 16, 32][-len(out_indices):] if with_fpn else [
8 for _ in range(len(out_indices))
]
self.norm = Identity()
if self.with_fpn:
self.init_fpn(
embed_dim=embed_dim,
patch_size=patch_size, )
def init_weight(self):
pretrained = self.pretrained
if pretrained:
if 'http' in pretrained: #URL
path = paddle.utils.download.get_weights_path_from_url(
pretrained)
else: #model in local path
path = pretrained
load_state_dict = paddle.load(path)
model_state_dict = self.state_dict()
pos_embed_name = "pos_embed"
if pos_embed_name in load_state_dict.keys():
load_pos_embed = paddle.to_tensor(
load_state_dict[pos_embed_name], dtype="float32")
if self.pos_embed.shape != load_pos_embed.shape:
pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1))
model_state_dict[pos_embed_name] = self.resize_pos_embed(
load_pos_embed, (pos_size, pos_size),
(self.pos_h, self.pos_w))
# self.set_state_dict(model_state_dict)
load_state_dict[pos_embed_name] = model_state_dict[
pos_embed_name]
print("Load pos_embed and resize it from {} to {} .".format(
load_pos_embed.shape, self.pos_embed.shape))
self.set_state_dict(load_state_dict)
print("Load load_state_dict....")
def init_fpn(self, embed_dim=768, patch_size=16, out_with_norm=False):
if patch_size == 16:
self.fpn1 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2),
nn.BatchNorm2D(embed_dim),
nn.GELU(),
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn2 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn3 = Identity()
self.fpn4 = nn.MaxPool2D(kernel_size=2, stride=2)
elif patch_size == 8:
self.fpn1 = nn.Sequential(
nn.Conv2DTranspose(
embed_dim, embed_dim, kernel_size=2, stride=2), )
self.fpn2 = Identity()
self.fpn3 = nn.Sequential(nn.MaxPool2D(kernel_size=2, stride=2), )
self.fpn4 = nn.Sequential(nn.MaxPool2D(kernel_size=4, stride=4), )
if not out_with_norm:
self.norm = Identity()
else:
self.norm = nn.LayerNorm(embed_dim, epsilon=1e-6)
def interpolate_pos_encoding(self, x, w, h):
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
if npatch == N and w0 == self.patch_embed.num_patches_w and h0 == self.patch_embed.num_patches_h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
dim = x.shape[-1]
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape([
1, self.patch_embed.num_patches_w,
self.patch_embed.num_patches_h, dim
]).transpose((0, 3, 1, 2)),
scale_factor=(w0 / self.patch_embed.num_patches_w,
h0 / self.patch_embed.num_patches_h),
mode='bicubic', )
assert int(w0) == patch_pos_embed.shape[-2] and int(
h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.transpose(
(0, 2, 3, 1)).reshape([1, -1, dim])
return paddle.concat(
(class_pos_embed.unsqueeze(0), patch_pos_embed), axis=1)
def resize_pos_embed(self, pos_embed, old_hw, new_hw):
"""
Resize pos_embed weight.
Args:
pos_embed (Tensor): the pos_embed weight
old_hw (list[int]): the height and width of old pos_embed
new_hw (list[int]): the height and width of new pos_embed
Returns:
Tensor: the resized pos_embed weight
"""
cls_pos_embed = pos_embed[:, :1, :]
pos_embed = pos_embed[:, 1:, :]
pos_embed = pos_embed.transpose([0, 2, 1])
pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]])
pos_embed = F.interpolate(
pos_embed, new_hw, mode='bicubic', align_corners=False)
pos_embed = pos_embed.flatten(2).transpose([0, 2, 1])
pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1)
return pos_embed
def build_2d_sincos_position_embedding(
self,
embed_dim=768,
temperature=10000., ):
h, w = self.patch_embed.patch_shape
grid_w = paddle.arange(w, dtype=paddle.float32)
grid_h = paddle.arange(h, dtype=paddle.float32)
grid_w, grid_h = paddle.meshgrid(grid_w, grid_h)
assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = embed_dim // 4
omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
omega = 1. / (temperature**omega)
out_w = grid_w.flatten()[..., None] @omega[None]
out_h = grid_h.flatten()[..., None] @omega[None]
pos_emb = paddle.concat(
[
paddle.sin(out_w), paddle.cos(out_w), paddle.sin(out_h),
paddle.cos(out_h)
],
axis=1)[None, :, :]
pe_token = paddle.zeros([1, 1, embed_dim], dtype=paddle.float32)
pos_embed = paddle.concat([pe_token, pos_emb], axis=1)
# pos_embed.stop_gradient = True
return pos_embed
def forward(self, x):
x = x['image'] if isinstance(x, dict) else x
_, _, h, w = x.shape
x = self.patch_embed(x)
B, D, Hp, Wp = x.shape # b * c * h * w
cls_tokens = self.cls_token.expand(
(B, self.cls_token.shape[-2], self.cls_token.shape[-1]))
x = x.flatten(2).transpose([0, 2, 1]) # b * hw * c
x = paddle.concat([cls_tokens, x], axis=1)
if self.pos_embed is not None:
# x = x + self.interpolate_pos_encoding(x, w, h)
x = x + self.interpolate_pos_encoding(x, h, w)
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias(
) if self.rel_pos_bias is not None else None
feats = []
for idx, blk in enumerate(self.blocks):
if self.use_checkpoint and self.training:
x = paddle.distributed.fleet.utils.recompute(
blk, x, rel_pos_bias, **{"preserve_rng_state": True})
else:
x = blk(x, rel_pos_bias)
if idx in self.out_indices:
xp = paddle.reshape(
paddle.transpose(
self.norm(x[:, 1:, :]), perm=[0, 2, 1]),
shape=[B, D, Hp, Wp])
feats.append(xp)
if self.with_fpn:
fpns = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(feats)):
feats[i] = fpns[i](feats[i])
return feats
@property
def num_layers(self):
return len(self.blocks)
@property
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@property
def out_shape(self):
return [
ShapeSpec(
channels=c, stride=s)
for c, s in zip(self.out_channels, self.out_strides)
]