-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpflow101.py
254 lines (212 loc) · 8.85 KB
/
gpflow101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gpflow
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from gpflow.ci_utils import ci_niter
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from gpflow.utilities import print_summary
import math
np.set_printoptions(precision=4)
plt.rcParams["figure.figsize"] = (12, 6)
plt.rcParams['legend.fontsize'] = 14
plt.rcParams.update({'font.size': 14})
np.random.seed(12)
#%% ############################## MOGP
# make a dataset with two outputs, correlated, heavy-tail noise. One has more noise than the other.
sampling_bounds = [1,7]
x1 = np.random.rand(3,1) # Observed locations for first outputx
x2 = np.random.rand(5,1) # 0.5 # Observed locations for second output
#x1 = [[0.1912], [0.31214], [0.243123], [0.4234], [0.73452], [0.942234]]
#x2 = [[0.0424], [0.124457], [0.35242], [0.69875], [0.856478], [0.88535]]
X1 = x1*(np.max(sampling_bounds)-np.min(sampling_bounds))+np.min(sampling_bounds)
X2 = x2*(np.max(sampling_bounds)-np.min(sampling_bounds))+np.min(sampling_bounds)
#addition = np.linspace(4,6,20)
#b = addition.reshape((20,1))
#X2 = np.vstack((X2, b))
#Y1 = np.sin(6*X1)# + np.random.randn(*X1.shape) * 0.03
#Y2 = np.sin(6*X2 + 0.7)# + np.random.randn(*X2.shape) * 0.1
Y1 = lambda X1: np.sin(X1)# + np.random.randn(*X1.shape) * np.sqrt(0.01)
Y2 = lambda X2: np.sin(X2) + 0.2*np.cos(3*X2)# + np.random.randn(*X2.shape) *np.sqrt(0.01)
#Y1 = lambda X1: np.sin(2*math.pi*X1)
#Y2 = lambda X2: (X2/4 - np.sqrt(2))*np.sin(2*math.pi*X2+3*math.pi)**3
#order1 = np.argsort(X1.flatten())
#xsorted1 = X1.flatten()[order1]
#ysorted1 = Y1.flatten()[order1]
#order2 = np.argsort(X2.flatten())
#xsorted2 = X2.flatten()[order2]
#ysorted2 = Y2.flatten()[order2]
plt.figure(figsize=(12, 6))
plt.plot(np.linspace(0,7,100), Y1(np.linspace(0,7,100)), color='red', label='y1-true')
plt.plot(X1,Y1(X1),'ro' , label='y1 samples', ms=7, mew =1.5, markeredgecolor='black')
plt.plot(np.linspace(0,7,100), Y2(np.linspace(0,7,100)), color='blue',label='y2-true')
plt.plot(X2,Y2(X2),'bs', label='y2 samples', ms=7, mew=1.5, markeredgecolor='black')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('True function and sample space')
plt.legend(loc='best')
plt.margins(x=0)
plt.tight_layout()
plt.show()
# Augment the input with ones or zeros to indicate the required output dimension
X_augmented = np.vstack((np.hstack((X1, np.zeros_like(X1))), np.hstack((X2, np.ones_like(X2)))))
# Augment the Y data with ones or zeros that specify a likelihood from the list of likelihoods
Y_augmented = np.vstack((np.hstack((Y1(X1), np.zeros_like(Y1(X1)))), np.hstack((Y2(X2), np.ones_like(Y2(X2))))))
output_dim = 2 # Number of outputs
rank = 1 # Rank of W
# Base kernel
#k = gpflow.kernels.Matern32(active_dims=[0])
#k = gpflow.kernels.SquaredExponential()
k = gpflow.kernels.RBF()
# Coregion kernel
coreg = gpflow.kernels.Coregion(output_dim=output_dim, rank=rank, active_dims=[1])
kern = k * coreg
# This likelihood switches between Gaussian noise with different variances for each f_i:
lik = gpflow.likelihoods.SwitchedLikelihood(
[gpflow.likelihoods.Gaussian(), gpflow.likelihoods.Gaussian()])
# now build the GP model as normal
m = gpflow.models.VGP((X_augmented, Y_augmented), kernel=kern, likelihood=lik)
# fit the covariance function parameters
maxiter = ci_niter(10000)
gpflow.optimizers.Scipy().minimize(
m.training_loss, m.trainable_variables, options=dict(maxiter=maxiter),
method="L-BFGS-B")
def plot_gp(x, mu, var, color, label):
plt.plot(x, mu, ls='dashed', color=color, lw=2, label=label)
plt.fill_between(
x[:, 0],
(mu - 2 * np.sqrt(var))[:, 0],
(mu + 2 * np.sqrt(var))[:, 0],
color=color,
alpha=0.2,
label='Uncertainty-MO',
)
def plot(m):
plt.figure(figsize=(12, 6))
Xtest = np.linspace(0, 7, 50)[:, None]
(line,) = plt.plot(X1, Y1(X1), "ro", ms=7, mew=1, color='purple' , markeredgecolor='black')
mu, var = m.predict_f(np.hstack((Xtest, np.zeros_like(Xtest))))
plot_gp(Xtest, mu, var, line.get_color(), "Y1")
(line,) = plt.plot(X2, Y2(X2), "bs", ms=7, mew=1, color='orange', markeredgecolor='black')
mu, var = m.predict_f(np.hstack((Xtest, np.ones_like(Xtest))))
plot_gp(Xtest, mu, var, line.get_color(), "Y2")
plt.margins(x=0)
plt.legend()
plt.xlabel('x_test')
plt.ylabel('mean prediction on x_test)')
plt.title('MOGP model prediction on test set for two functions')
plt.tight_layout()
plt.show()
plot(m)
Xtest = np.linspace(0, 7, 50)[:, None]
mu, var = m.predict_f(np.hstack((Xtest, np.zeros_like(Xtest))))
#########################################################################
#%%SOGP
kso = gpflow.kernels.SquaredExponential()
m1so = gpflow.models.GPR(data=(X1, Y1(X1)), kernel=kso, mean_function=None)
m2so = gpflow.models.GPR(data=(X2, Y2(X2)), kernel=kso, mean_function=None)
opt = gpflow.optimizers.Scipy()
opt_logs1 = opt.minimize(m1so.training_loss, m1so.trainable_variables, options=dict(maxiter=100))
opt_logs2 = opt.minimize(m2so.training_loss, m2so.trainable_variables, options=dict(maxiter=100))
print_summary(m1so)
print_summary(m2so)
mu1so, var1so = m1so.predict_f(Xtest)
mu2so, var2so = m2so.predict_f(Xtest)
tf.random.set_seed(1)
samples1 = m1so.predict_f_samples(Xtest, 10) #generate 10 samples from posterior
samples2 = m2so.predict_f_samples(Xtest, 10)
plt.figure(figsize=(12,6))
(line,) = plt.plot(X1, Y1(X1), 'bo', ms=7, mew=1, label='Data points', color='purple', markeredgecolor='black')
plt.plot(Xtest, Y1(Xtest), lw=2, color='orange', label='f1-true') #was orange
plt.plot(Xtest, mu1so, c='green', ls=('dashed'), lw=2,label='m1-SO')
plt.fill_between(
Xtest[:, 0],
mu1so[:, 0] - 1.96 * np.sqrt(var1so[:, 0]),
mu1so[:, 0] + 1.96 * np.sqrt(var1so[:, 0]),
color="lightgrey",
label ='Uncertainty-SO',
alpha=0.4)
plot_gp(Xtest, mu, var, line.get_color(), "m-MO")
#plt.plot(Xtest, samples1[:,:,0].numpy().T, linewidth=1)
plt.legend(loc='best')
plt.margins(x=0)
plt.title('SOGP1')
plt.tight_layout()
plt.show()
plt.figure(figsize=(12,6))
(line,) = plt.plot(X2, Y2(X2), 'rs', ms=7, mew=1, label='Data points', color='orange', markeredgecolor='black')
plt.plot(Xtest, Y2(Xtest), lw=2, color='blue',label='f2-true')
plt.plot(Xtest, mu2so, c='green', ls=('dashed') , lw=2, label='m2-SO')
plt.fill_between(
Xtest[:, 0],
mu2so[:, 0] - 1.96 * np.sqrt(var2so[:, 0]),
mu2so[:, 0] + 1.96 * np.sqrt(var2so[:, 0]),
color="lightgrey",
label ='Uncertainty-SO',
alpha=0.4)
plot_gp(Xtest, mu, var, line.get_color(), "m-MO")
#plt.plot(Xtest, samples2[:,:,0].numpy().T, linewidth=1)
plt.legend(loc='best')
plt.title('SOGP2')
plt.margins(x=0)
plt.tight_layout()
plt.show()
#%% Errors calculations
# mu is for MOGP
#Xtest is for MOGP
rmse1 = np.mean((mu - Y1(Xtest))**2, axis=0)**0.5
rmse2 = np.mean((mu - Y2(Xtest))**2 , axis=0)**0.5
MAE1 = np.mean(np.abs(mu - Y1(Xtest)), axis=0)
MAE2 = np.mean(np.abs(mu - Y2(Xtest)), axis=0)
r21 = r2_score(Y1(Xtest), mu)
r22 = r2_score(Y2(Xtest), mu)
rmse1so = np.mean((mu1so - Y1(Xtest))**2, axis=0)**0.5
rmse2so = np.mean((mu2so - Y2(Xtest))**2, axis=0)**0.5
MAE1so = np.mean(np.abs(mu1so - Y1(Xtest)), axis=0)
MAE2so = np.mean(np.abs(mu2so - Y2(Xtest)), axis=0)
r21so = r2_score(Y1(Xtest), mu1so)
r22so = r2_score(Y2(Xtest), mu2so)
datamo = [['Output', 'RMSE', 'MAE', 'R2'],
['f1', rmse1, MAE1, r21],
['f2', rmse2, MAE2, r22]]
dataso = [['Output', 'RMSE', 'MAE', 'R2'],
['f1', rmse1so, MAE1so, r21so],
['f2', rmse2so, MAE2so, r22so]]
np.set_printoptions(precision=4)
def drawTable(dat):
output=""
for item in dat[0]:
output += '\t' + str(item) + '\t\t'
output += '\n'
output += "================================================================="
for item in dat[1:]:
output += '\n'
for k in item:
output += '\t' + str(k) + '\t'
return print(output)
print("=============================MOGP errors=================================")
drawTable(datamo)
print("=============================SOGP errors================================")
drawTable(dataso)
fig12 = plt.figure(figsize=(12,6))
plt.title("True function at test set vs MOGP model")
ax1 = plt.subplot(121)
plt.plot(np.linspace(min(Y1(Xtest)),max(Y1(Xtest)),50), np.linspace(min(mu), max(mu), 50), c='grey')
mu, var = m.predict_f(np.hstack((Xtest, np.zeros_like(Xtest))))
plt.plot(Y1(Xtest), mu, 'o', label='R2={}'.format(str(r21)))
plt.margins(x=0)
plt.xlabel('Y1(Xtest)')
plt.ylabel('m')
plt.legend(loc='best')
plt.tight_layout()
ax2 = plt.subplot(122)
plt.plot(np.linspace(min(Y2(Xtest)),max(Y2(Xtest)), 50), np.linspace(min(mu), max(mu), 50), c='grey')
mu, var = m.predict_f(np.hstack((Xtest, np.zeros_like(Xtest))))
plt.plot(Y2(Xtest), mu, 's', label='R2={}'.format(str(r22)))
plt.margins(x=0)
plt.xlabel('Y2(Xtest)')
plt.ylabel('m')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
#%% Video